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Abstract

The North Water Polynya is an area of high biological activity that supports large numbers of higher trophic-level

organisms such as seabirds and marine mammals. An overall objective of the Upper Trophic-Level Group of the

International North Water Polynya Study (NOW) was to evaluate carbon and contaminant flux through these high

trophic-level (TL) consumers. Crucial to an evaluation of the role of such consumers, however, was the establishment of

primary trophic linkages within the North Water food web. We used d15N values of food web components from

particulate organic matter (POM) through polar bears (Ursus maritimus) to create a trophic-level model based on the

assumptions that Calanus hyperboreus occupies TL 2.0 and there is a 2.4% trophic enrichment in 15N between birds and

their diets, and a 3.8% trophic enrichment for all other components. This model placed the planktivorous dovekie (Alle

alle) at TL 3.3, ringed seal (Phoca hispida) at TL 4.5, and polar bear at TL 5.5. The copepods C. hyperboreus, Chiridius

glacialis and Euchaeta glacialis formed a trophic continuum (TL 2.0–3.0) from primary herbivore through omnivore to

primary carnivore. Invertebrates were generally sorted according to planktonic, benthic and epibenthic feeding groups.

Seabirds formed three trophic groups, with dovekie occupying the lowest, black-legged kittiwake (Rissa tridactyla),

northern fulmar (Fulmarus glacialis), thick-billed murre (Uria aalge), and ivory gull (Pagophilia eburnea) intermediate

(TL 3.9–4.0), and glaucous gull (Larus hyperboreus) the highest (TL 4.6) trophic positions. Among marine mammals,

walrus (Odobenus rosmarus) occupied the lowest (TL 3.2) and bearded seal (Erignathus barbatus), ringed seal, beluga

whale (Delphinapterus leucas), and narwhal (Monodon monoceros) intermediate positions (TL 4.1–4.6). In addition to

arctic cod (Boreogadus saida), we suggest that lower trophic-level prey, in particular the amphipod Themisto libellula,

contribute fundamentally in transferring energy and carbon flux to higher trophic-level seabirds and marine mammals.

We measured PCB 153 among selected organisms to investigate the behavior of bioaccumulating contaminants within

the food web. Our isotopic model confirmed the trophic magnification of PCB 153 in this high-Arctic food web due to a

strong correlation between contaminant concentration and organism d15N values, demonstrating the utility of

combining isotopic and contaminant approaches to food-web studies. Stable-carbon isotope analysis confirmed an
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enrichment in 13C between POM and ice algae (–22.3 vs. –17.7%). Benthic organisms were generally enriched in 13C
compared to pelagic species. We discuss individual species isotopic data and the general utility of our stable isotope

model for defining carbon flux and contaminant flow through the North Water food web.

r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

In contrast to the Northeast Water Polynya off
eastern Greenland, the North Water of northern
Baffin Bay is an area of immense biological activity,
with high populations of seabirds and marine
mammals (Stirling, 1980; Falk et al., 1997).
Populations of dovekie (Alle alle), a small plankti-
vorous seabird, alone are estimated to range from
14 to 30 million pairs (Salmonsen, 1981; Nettleship
and Evans, 1985; Boertman and Mosbech, 1998).
The polynya also is thought to support large
numbers of beluga (Delphinapterus leucas), narwhal
(Monodon monoceros), and seals (Finley and
Renaud, 1980; Stirling, 1980; Stirling et al., 1981;
Richard et al., 1998), and is used seasonally by the
endangered eastern population of the bowhead
whale (Balaena mysticetus; Holst and Stirling,
1999). Most of these animals are used by aboriginal
peoples of both Canada and Greenland for food
and so are also important from an economic and
contaminants perspective (Muir et al., 1988;
Braune, 1994). However, such populations of
animals represent but the most conspicuous com-
ponents of a highly productive marine food web
consisting of at least five trophic levels (Hobson and
Welch, 1992a). What role all components of the
North Water food web play in energy or con-
taminant flux is currently unknown.
A fundamental requirement to understanding

energy flow through complex marine food webs
from primary carbon fixation through upper
trophic-level consumers is knowledge of trophic
linkages among organisms. Such knowledge is also
key to modeling the flux of persistent contaminants
that may bioaccumulate or biomagnify in marine
food webs (Muir et al., 1995; Jarman et al., 1996,
1997; Atwell et al., 1998). An important objective of
the International North Water Polynya Study
(NOW) was to establish a trophic food web model
in order to understand basic aspects of the ecology

of key groups of organisms and to provide a
template to assist in the modeling of energy and
contaminant flow. In the last decade, tracing
sources of primary productivity to and relative
trophic level of organisms in marine food webs has
been advanced by the use of measurements of
naturally occurring stable isotopes of elements such
as carbon (13C/12C) and nitrogen (15N/14N) (Mich-
ener and Schell, 1994). This approach is based on
the principle that the stable isotope ratios in
consumer tissues can be related in a predictive way
to those in their diet (DeNiro and Epstein, 1978,
1981). For carbon, there appears to be little (i.e.
approx. 1%) or no change in the relative abundance
of 13C between trophic levels following the primary
producer to primary consumer link (Hobson and
Welch, 1992a), so that this isotope is useful as an
indicator of sources of primary productivity in
simple systems where two isotopically distinct
sources are present (e.g., phytoplankton vs. ice
algae) (Hobson et al., 1995). Stable-carbon isotope
values are also relatively enriched in benthic or
inshore food webs relative to pelagic food webs
(Hobson and Welch, 1992a; Hobson et al., 1994;
France, 1995a). For nitrogen, enrichment in 15N
occurs with trophic level, an effect that appears to be
relatively constant and typically 3–4% (Michener
and Schell, 1994). Relative trophic position thus can
be modeled using stable-nitrogen isotope measure-
ments alone, an approach that recently has provided
insights to the behavior of contaminants in marine
food webs (Broman et al., 1992; Rolff et al., 1993;
Atwell et al., 1998). The combined use of stable-
carbon and stable-nitrogen isotope measurements of
marine organisms, together with more conventional
dietary approaches, can thus be used to provide
important new information on trophic relationships
and feeding ecology, including spatial use of habitat
(Hobson and Welch, 1992a; Hobson et al., 1994;
Michener and Schell, 1994; Kelly, 2000; Lawson
and Hobson, 2000).
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Following the isotopic research conducted in the
Northeast Water Polynya (Hobson et al., 1995), this
paper presents the results of an isotopic survey of
the North Water food web, from particulate
organic material (POM) through seals and seabirds.
We intend this as a broad overview to provide a
model of trophic relationships among key organ-
isms. We used stable-carbon isotope measurements
to interpret sources of primary productivity and
stable-nitrogen isotope analysis to provide esti-
mates of relative trophic position. We also address
the utility of this information for the broader NOW
objectives of modeling carbon flux and contaminant
flow through the food web. Future papers will deal
with various taxa in more detail, as well as more
specific questions of spatial and temporal patterns
in stable isotope signatures (e.g., Schell et al., 1998).

2. Methods

2.1. Field collections

Sampling of food web components was based
primarily on collections made during the April–July
1998 NOW cruise onboard the CCGS Pierre

Radisson. Samples of POM were obtained by
filtering surface (o50m) waters onto precombusted
glass GFF filters and stored frozen. Ice-algae
samples, obtained opportunistically during June
from ice cores or from floating mats, were sieved
through 0.1-mm screen to remove zooplankton and
then frozen. Zooplankton samples were obtained
primarily by towing a 4-m2 zooplankton sampler
from bottom to surface. The sampler consisted of
four adjacent 1-m2 frames supporting two 500-mm
and two 200-mm mesh nets. Two small, 50-mm
mesh, 3-m long cylindrical nets with a 0.0075-m2

aperture were also mounted on the sampler
(Ringuette et al., 2002). Large macrozooplankton
and young-of-the-year (YOY) fish larvae and
juveniles were captured in double oblique hauls of
a high filtering capacity two-net sampler (1m2 of
500-mm mesh) in the surface layer (0–100m).
Subsamples of zooplankton were held in filtered
seawater for 24 h to evacuate gut contents but, for
logistical reasons, the majority of samples were
sorted and frozen within 5 h after tows.

Samples of the benthic amphipod A. nugax also
were obtained using baited traps on the ocean floor
at two stations. Traps contained squid or mackerel
wrapped in nylon mesh to prevent the amphipods
from feeding. Traps were deployed for 8–12 h.
Benthic samples were obtained using box coring
and crab traps. Crab traps were anchored to the
ocean floor for 8–12 h and baited with squid or
mackerel wrapped in nylon mesh.
Arctic cod (Boreogadus saida) adults were col-

lected with hand-held nets when observed swim-
ming near the surface in broken ice at one location.
Thorny skates (Raja radiata) were captured by
hook, baited with mackerel and squid, on long lines
anchored to the ocean floor for 8–12 h. Fish were
weighed and measured (fork length) and a sub-
sample of muscle taken for isotopic analyses.
Seabirds were collected opportunistically by

shotgun from a Zodiac inflatable motorboat
launched from the Pierre Radisson at transect
stations. Subsamples of muscle, liver, abdominal
fat, bone and feathers were taken for stable isotope
analysis. We used muscle tissues in this paper.
Collections were made during the months of May,
June, and July 1998. From 27 May to 28 June 1998,
samples were collected by Inuit hunters from 99
ringed seals (Phoca hispida) taken near Grise Fiord,
Nunavut, on the west side of the North Water
(76112 N, 83106 W); between 9 May and 11 July
1998, 100 ringed seals were collected near Qaanaaq,
Greenland, on the east side of the polynya (77140
N, 69100 W). Most seals were taken on landfast ice
in near-shore areas. All tissue samples were frozen
in the field. Beluga and narwhal samples were
obtained from Inuit hunters from several western
Greenland communities in 1997–1998 as part of a
larger study organized by the National Environ-
mental Research Institute in Denmark. Bowhead
whale tissue was salvaged from three eastern Arctic
animals as described in Hobson and Schell (1998).
Stable isotope values for polar bears (Ursus

maritimus) were based on those already reported
by Hobson and Welch (1992a).

2.2. Stable isotope analysis

Prior to stable isotope analyses, all tissue
samples were washed in distilled water and then
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freeze-dried, powdered and treated with a 2:1
chloroform:methanol solution to remove lipids.
Samples were then dried under a fume hood.
Zooplankton, starfish, ice algae and POM samples
were soaked in 0.1N HCl to remove carbonates and
allowed to dry without rinsing.
Stable-carbon and stable-nitrogen isotope assays

were performed on 1-mg subsamples of homoge-
nized materials by loading into tin cups and
combusting at 18001C in a Robo-Prep elemental
analyzer. Resultant CO2 and N2 gases were then
analyzed using an interfaced Europa 20:20 contin-
uous-flow isotope ratio mass spectrometer
(CFIRMS) with every five unknowns separated by
two laboratory standards. Stable isotope abun-
dances were expressed in d notation as the deviation
from standards in parts per thousand (%) accord-
ing to the following equation:

dX ¼ ½ðRsample=RstandardÞ � 1� � 1000;

where X is 13C or 15N and R is the corresponding
ratio 13C/12C or 15N/14N. The Rstandard values were
based on the PeeDee Belemnite (PDB) for 13C and
atmospheric N2 (AIR) for

15N. Replicate measure-
ments of internal laboratory standards (albumen)
indicate measurement errors of70.1% and70.3%
for stable-carbon and stable-nitrogen isotope mea-
surements, respectively.

2.3. PCB 153 analysis

Due to the need for larger sample size and the
more labor-intensive nature of contaminant analy-
sis, a smaller number of samples were analyzed for
organochlorine contaminants. A total of 132
samples were analyzed, including six zooplankton
species (numerous whole individuals per sample;
Calanus hyperboreus, n ¼ 20; Euchaeta glacialis,
n ¼ 3; Metridia longa, n ¼ 3; Mysis oculata, n ¼ 7;
Themisto libellula, n ¼ 4; Sagitta sp., n ¼ 6), one
benthic amphipod (numerous whole individuals per
sample; A. nugax, n ¼ 4), one fish species (muscle
sub-sample of individual whole animals; B. saida,

n ¼ 8), one marine mammal species (blubber; males
only; P. hispida, n ¼ 15), and seven species of
seabird (livers; A. alle, n ¼ 7; Uria lomvia, n ¼ 9;
Cepphus grylle, n ¼ 9; Rissa tridactyla, n ¼ 10;
Pagophila eburnea, n ¼ 5; Larus hyperboreus, n ¼

10; Fulmaris glacialis, n ¼ 10). Details about
extraction and analysis methods can be found in
Fisk et al. (2001).

2.4. Statistical analyses

Because our analysis was aimed at providing an
overview of trophic relationships among food web
components that encompassed as much natural
variation as possible, we pooled samples among
stations, collection periods, and sampling depths.
We consider these effects on stable isotope values in
consumer tissues elsewhere (Hobson et al., unpub-
lished data). For the purposes of developing a
robust isotopic model for the North Water, we
considered the pooling approach to be optimal.

3. Results

3.1. 15N trophic model

Mean stable-nitrogen isotope measurements var-
ied considerably among taxa (5.1–21.1%) and
followed a general enrichment with trophic level
(Table 1, Fig. 1). The most depleted d15N values
were measured for ice algae and POM, and the most
enriched for seabirds and marine mammals. This
difference allowed us to depict trophic level of
several organisms relative to the calanoid copepod,
C. hyperboreus, which we assumed occupied trophic
level (TL) 2 (i.e. a primary herbivore). Assuming
additionally that, other than for seabirds, isotopic
enrichment was constant among trophic levels and
of the order of 3.8% (Hobson and Welch, 1992a),
we calculated the relative trophic level of consumers
according to

TL ¼ 2þ ðd15Nconsumer � d15NC:hyperboreusÞ=3:8:

Captive-rearing studies on birds suggest that the
diet-tissue isotopic fractionation factor of +2.4% is
appropriate for these taxa. Following the derivation
outlined in Fisk et al. (2001) with a slightly modified
d15N value for C. hyperboreus based on larger
sample sizes, our trophic-level calculation for birds
becomes

TLbird ¼ 3þ ðd15Nbird � 10:3Þ=3:8:
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Table 1

Stable-nitrogen and stable-carbon isotope values (mean7SE) of food-web components of the North Water and corresponding derived
relative trophic level (TL). Habitat and feeding modea are listed for invertebrates

Taxonomic group or species nb d15N (%) Derived TL d13C (%)

POM 38 6.870.3 –22.370.2
Ice algae 8 5.170.3 –17.770.2

Invertebrates
a

Phylum Cnidaria
Class Hydrozoa

A. digitale (PL, PR) 10 9.070.3 2.3 –20.570.1
Class Anthozoa
Order Actinaria (SES, PR) 3 13.170.6 3.4 –18.370.5

Phylum Ctenophora
Class Tentaculata

Mertensia sp. (PL, PR) 9 8.970.5 2.3 –19.070.5
Ctenophores (unidentified) (PL, PR) 2 9.770.9 2.5 –21.671.6

Phylum Mollusca
Class Bivalvia

Astarte sp. (EB, SPF) 3 9.170.7 2.3 –16.770.5
Astarte elliptica (EB, SPF) 1 8.5 2.2 –16.6
Astarte montagui (EB, SPF) 4 11.870.2 3.0 –18.270.4
Macoma sp. (EB, SPF) 3 7.170.1 1.8 –17.670.1
Yoldia thraciaeformis (EB, SPF) 4 7.970.2 2.0 –17.870.7
Lepeta caeca (SB, GR) 1 7.2 1.8 –19.4

Class Gastropoda
Clione sp. (PL, PR) 37 9.670.2 2.5 –22.470.2
Colus sp. A (SB, SC-OM) 1 11.6 3.0 –16.3
Colus sp. B (SB, SC-OM) 1 12.7 3.3 –16.8

Phylum Annelida
Class Polychaeta

Lumbrineris sp. (EB-SB,PR-SC) 2 14.170.5 3.6 –18.070.7
Phyllodoce mucosa (EB-SB, PR-SC) 2 12.370.4 3.2 –17.870.5

Phylum Sipuncula
Phascolosoma eremeta (EB-SB, DF) 2 12.370.1 3.1 –16.870.3

Phylum Arthropoda
Subphylum Crustacea
Class Maxillopoda
Subclass Copepoda

Calanus glacialis (PL, OM- SFF) 2 9.170.4 2.3 –20.670.8
Calanus hyperboreus (PL, SFF-FF?) 80 7.970.1 2.0 –21.170.1
Chiridius sp. (PL, PR) 2 10.370.3 2.6 –20.570.0
E. glacialis (PL, PR) 55 11.870.1 3.0 –21.870.1
M. longa (PL, PR-SFF?) 37 9.670.1 2.5 –21.270.1

Class Malacostraca
Subclass Eumalacostraca

Acanthostepheia spp. (SPB-SB, PR) 3 10.470.3 2.6 –17.970.2
A. nugax (SPB-SB, SC) 11 13.270.8 3.4 –18.570.4
Atylus carinatus (SB-SPB, OM) 6 9.270.2 2.3 –18.070.2
Euphausiid (unidentified) (PL, FF) 1 11.4 2.9 –22.0
M. oculata (SPB-SB, DF-PR) 162 10.470.1 2.7 –20.370.1
Onisimus sp. (SB-SPB, SC-OM) 1 10.0 2.6 –18.8
Pandalus sp. (SPB-SB, DF-PR) 2 13.370.5 3.4 –16.070.2
Themisto abyssorum (PL, PR) 10 10.270.4 2.6 –21.870.2
T. libellula (PL, PR) 106 9.770.1 2.5 –20.470.1
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Our model for the overall food web and that for
seabirds provided a very reasonable assessment of
organism TL with C. hyperboreus at TL 2, the

planktivorous dovekie at TL 3.3, arctic cod at TL
3.6, ringed seal at TL 4.5, and polar bear at TL 5.5
(Table 1). We depicted relative trophic level among

Table 1 (continued)

Taxonomic group or species nb d15N (%) Derived TL d13C (%)

Phylum Chaetognatha
Sagitta sp. (PL, PR) 76 10.470.1 2.7 –21.470.1

Phylum Echinodermata
Class Crinoidea

H. glacialis (SBS, SPF) 4 11.770.3 3.0 –18.170.6
Class Asteroidea

Ctenodiscus crispatus (SB-EB, DF) 10 12.770.4 3.3 –15.170.5
Class Ophiuroidea

Gorgonocephalus arcticus (SBS, SPF-DF) 7 12.270.3 3.1 –17.671.4
Ophiophthalmus sp. (SB, DF) 10 13.670.2 3.5 –10.270.4
O. sarsi (SB, DF-OM) 38 9.770.3 2.5 –11.370.5

Class Echinoida
Strongylocentrotus pallidus (SB, DF-OM) 3 8.370.5 2.1 –15.771.6

Phylum Chordata
Subphylum Tunicata
Class Appendicularia

Oikopleura sp. (PL, FF) 4 9.470.7 2.4 –22.570.8

Mixed zooplankton (1–2mm) 13 8.570.1 2.2 –21.270.2

Fish

B. saida (adult) 8 14.070.2 3.6 –19.370.1
Boreogadus saida (larvae) 3 10.770.8 2.7 –20.070.5
Raja radiata 3 14.870.2 3.8 –17.970.2
Liparid 2 10.671.0 2.7 –20.171.3
Lumpfish 2 13.770.01 3.5 –19.070.1
Wolffish (larvae) 1 13.1 3.4 –20.4

Seabirds

A. alle 122 11.370.3 3.2 –18.770.2
U. lomvia 62 14.170.1 4.0 –19.970.04
C. grylle 30 13.770.2 3.9 –19.370.1
R. tridactyla 26 13.770.2 3.9 –19.370.1
P. eburnea 5 14.170.3 4.0 –19.370.1
L. hyperboreus 10 16.270.3 4.6 –18.870.3
Fulmarus glacialis 24 14.170.1 4.0 –19.670.1

Marine mammals
c

Odobenus rosmarus* 6 12.570.3 3.2 –17.870.1
Balaena mysticetus* 3 13.270.7 3.4 –18.270.3
Erignathus barbatus* 5 16.870.1 4.3 –16.670.3
P. hispida (Thule) 100 17.070.1 4.4 –19.470.1
P. hispida (Grise Fiord) 97 17.570.2 4.6 –18.370.1
D. leucas (Baffin) 30 16.070.2 4.1 –17.770.2
D. leucas (Greenland) 40 16.970.2 4.4 –17.670.1
M. monoceros (Greenland) 89 16.070.1 4.1 –18.270.03
Ursus maritimus* 3 21.170.3 5.5 –18.070.3

aHabitat: PL, plankton; SPB, supra-benthic; SB, surface benthic; EB, endobenthic; SBS, surface benthic sessile. Feeding mode: FF,

filter-feeder; SFF, selective filter-feeder; SPF, suspension-feeder; PR, predator; SC, scavenger; OM, omnivore; DF, detritus-feeder;

GR, grazer.
bn refers to the number of grouped samples involving several individuals.
cAsterix refers to those samples collected outside the North Water (see text).
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seabirds (Fig. 2) and marine mammals (Fig. 3) and
indicated the positions these consumers would
occupy if their diet consisted entirely of C.

hyperboreus, T. libellula, Arctic cod or, in the case
of polar bears, ringed seals. Relative trophic level
differed among seabirds (ANOVA F ¼ 10:9;
df=6273, po0:001), with three distinct groups
apparent (Fig. 2). Glaucous gull (L. hyperboreus)
had a higher trophic level than all other species
(Tukey’s Test, po0:05). Among marine mammals,
trophic position also differed among species and
populations (F ¼ 5:1; df=8, 308; po0:05), with
polar bear occupying a higher trophic position than
all other species ðpo0:05Þ:

3.2. Stable-carbon isotopes

Stable-carbon isotope values varied greatly
among food web components (Table 1, range in
means –22.5% to –10.2%). As sources of primary
productivity, POM and ice algae were distinct with
POM more depleted in 13C (t ¼ 17:95; po0:001).
Benthic organisms such as mollusks and echino-
derms were enriched in 13C compared with pelagic

organisms, resulting in two distinct isotopic groups
(Fig. 1). Among pelagic species used in Fig. 1, d13C
and d15N values were correlated (r2 ¼ 0:79;
po0:01), indicating a trophic enrichment effect in
13C. No such relationship was clear among benthic
species that showed a broad range in d13C values.
Within taxonomic groups, d13C values also

showed considerable variation. Notably, among
crustaceans, Pandalid shrimp were highly enriched
in 13C (�16.0%). Echinoderms were generally
enriched in 13C, but Ophiophthalmus and Ophiura

sarsi were the two most enriched samples measured
(�10.2% and �11.3%, respectively) and contrasted
with the relatively lower d13C values of Gorgonoce-

phalus arcticus and Heliometra glacialis (�17.6%
and �18.1%, respectively). Among fish, larvae were
among the most depleted samples, and Raja spp.
was notably enriched at �17.9%. Seabirds showed
variation in d13C values (ANOVA F ¼ 6:35;
df=6,272, po0:001) with both dovekie and glau-
cous gull, occupying the lowest and highest seabird
trophic level, respectively, having more enriched
values than other species (Tukey, po0:007). Marine
mammals were generally associated with the pelagic
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Fig. 1. Stable-carbon and stable-nitrogen isotope values (mean7SE) of pelagic and benthic components of the North Water food web,
For clarity, not all samples measured are depicted. See Table 1 for values: 1, Clione sp.; 2, Themisto abyssorum; 3, E. glacialis; 4, Sagitta

sp.; 5,M. longa; 6, C. hyperboreus; 7, A. digitale; 8, T. libellula; 9,M. oculata; 10, U. lomvia; 11, B. saida; 12, P. hispida (combined); 13,

L. hyperboreus; 14, M. monoceros; 15, D. leucas (combined); 16, Polychaeta (combined); 17, Colus sp., B; 18, Pandalus sp.; 19,

Ctenodiscus crispatus; 20, O. sarsi; 21, Ophiopthalmus sp.; 22,H. glacialis; 23, Phascolosoma eremeta; 24, Colus sp., A; 25, Onisimus; 26,

Atylus carinatus; 27, Macoma sp.; and 28, Astarte sp.
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isotope trajectory of Fig. 1, but bearded seal
(Erignathus barbatus) was a notable exception with
a mean d13C value of �16.6% indicative of a link to
the benthic food web.

3.3. PCB 153�d15N relationships

PCB 153 was quantified in all samples. Recovery
of internal standards ranged from 60% to 120%; all
samples were corrected for percent recovery. Due to
high variability in lipid content between sample

types, all concentrations were lipid-corrected
prior to developing relationships with d15N values.
Only data for male ringed seals were used in
d15N relationships because the birth and feeding
of young provides an additional mechanism to
eliminate PCB 153 and other POPs in female
P. hispida (Cameron et al., 1997). A positive linear
relationship (r2 ¼ 0:65; po0:001; linear re-
gression, F -value=241, df=1131) was found be-
tween log of PCB 153 concentration and d15N value
(Fig. 4).
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Fig. 3. Relative trophic positions of marine mammals collected in the North Water and adjacent regions as indicated in Table 1: T,

Thule; GF, Grise Fiord; B, Baffin; Gr, Greenland.

Fig. 2. Relative trophic positions of marine birds collected in the North Water, May–July 1998. Dashed lines indicate expected

position of seabirds with exclusive diets of the prey types listed on the right: DOVE, dovekie; BLGU, black guillemot; BLKI, black-

legged kittiwake; TBMU, thick-billed murre; IVGU, ivory gull; NOFU, Northern Fulmar; GLGU, glaucous gull.
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4. Discussion

4.1. Patterns in 15N and the trophic model

Our isotopic investigation of the North Water
marine food web has revealed a general pattern of
enrichment in 15N with trophic level. This pattern is
similar to that found by Hobson and Welch (1992a)

for the adjacent Lancaster Sound region and also
for the Northeast Water Polynya (Hobson et al.,
1995), providing further evidence of the utility of
this approach for trophic modeling in marine
systems (Michener and Schell, 1994). We used a
single trophic enrichment factor of 3.8 for nitrogen
throughout the food web and also made the
assumption that C. hyperboreus occupied TL 2.
These are undoubtedly oversimplifications of what
must be a more complex isotopic system, with
trophic enrichment factors probably changing
among groups of organisms (Michener and Schell,
1994). For interpretation of contaminant data,
there is the additional complication of contaminant
load and d15N values representing different time
periods. Nonetheless, such a model provided a
remarkably convincing depiction of trophic rela-
tionships among and within taxa. The general
placement of herbivorous copepods at TL 2, Arctic
cod at TL 3.6, seals at TL 4.5, and polar bears at
TL5.5 indicates a reasonably robust model based on
known diet.

4.2. Carbon-13 implications for tracing sources of

primary productivity

Previous studies of high Arctic marine food webs
have demonstrated that POM often may be less
enriched in 13C compared with ice algae (Hobson
and Welch, 1992a; Hobson et al., 1995), a result
likely associated with a general phenomenon of
differential diffusion of dissolved CO2 or HCO3

�

through boundary layers around plant cells (Smith
and Walker, 1980; France, 1995a, b). We found a
similar result for the North Water food web with
POM averaging 4.6% lighter than ice algae.
Potentially, such an isotopic difference could be
used to trace relative contributions of these two
sources of primary productivity to grazers and
higher-level consumers. Seasonal enrichment or
depletion of 13C in zooplankton may reflect inputs
of ice algae and POM in diets, respectively.
However, our analyses were conducted on bulk
ice-algae samples; further research is required to
determine if isotopic differences are maintained at
the species level. Among other factors, carbon
isotopic fractionation between inorganic substrates
and algal cells is sensitive to cell size (Fry and Sherr,
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1984; Goericke et al., 1994) and we expect d13C
values to differ among algal species.
Whether due to greater inputs of enriched ice

algae vs. ungrazed POM to the benthos, to the
general phenomenon of thicker boundary layers
about plant cells influencing carbon fixation in
slower moving waters (Hecky and Hesslein, 1995;
France and Holmquist, 1997), or to factors related
to bacterial or meiofaunal processes in the benthic
substrate (McConnaughey and McRoy, 1979;
Dunton et al., 1989), we found that benthic
organisms were considerably enriched in 13C
compared to pelagic species. This phenomenon
appears to be widespread and has been documented
in both marine and freshwater systems (France,
1995a, b). It provides a convenient tool to document
pelagic vs. benthic feeding preferences in higher
trophic-level organisms whose diets and area of
foraging are poorly known (see below).

4.3. Insights to individual species feeding ecology

Invertebrates to fish. Among the copepods
sampled, d15N values ranged from 7.9% (or TL
2.0) for the herbivorous copepod C. hyperboreus to
11.8% (or TL 3.0) for the carnivorous copepod E.

glacialis. These two copepods thus provided us with
a herbivory–carnivory scale on which to base our
results. C. hyperboreus is believed to be a primary
herbivore (Bradstreet and Cross, 1982), gorging on
phytoplankton during the summer spring bloom
when it accumulates lipid reserves for overwintering
and enters diapause at depth in the fall, living on
stored lipids. Although Chiridius glacialis is also
considered an herbivorous species, its life cycle
strategy differs markedly from that of the winter
spawning C. hyperboreus. C. glacialis females feed
on ice algae early in spring to fuel reproduction
(Conover and Huntley, 1991; Tourangeau and
Runge, 1991). Grazing on unpigmented microzoo-
plankton has been suggested for the species in the
Northeast Water Polynya (Hirche and Kwasniews-
ki, 1997, see also Ohman and Runge, 1994). At TL
2.3, our results concur with the hypothesis of C.

glacialis having an omnivorous diet dominated by
herbivory.
The trophic ecology of M. longa is the least

well known of all the dominant Arctic copepods.

M. longa can feed on phytoplankton but prefer
animal prey (Conover et al., 1991). Its relatively
high d15N value (TL 2.5) supports an omnivorous
diet dominated by carnivory.

C. glacialis and E. glacialis are both carnivorous
predators. The lower TL value of C. glacialis

compared to E. glacialis can be explained by its
smaller size (cephalothorax length of 3mm vs.
8mm) and the smaller prey items it consumes. E.

glacialis is the largest and most voracious copepod
of the Arctic plankton. Copepods of the genus
Euchaeta are known to feed on other large
copepods (Øresland, 1995) and fish larvae (Yen,
1987). E. glacialis occupied the highest trophic level
(TL 3.0) of all planktonic animals, surpassing
Arctic cod larvae (TL 2.7) and the small plankti-
vorous seabird A. alle (TL 2.9).
Stable-nitrogen isotope values for macrozoo-

planktonic animals ranged from 8.9% (or TL 2.3)
for the medusae A. digitale to 13.2% (or TL 3.4) for
the carrion-feeding lysianassid amphipod A. nugax.
While the high trophic position of the copepod-
eating arrow worm Sagitta sp. and larval Arctic cod
are coherent with their known carnivorous diet
(Drolet et al., 1991; Øresland, 1995; Michaud et al.
1996), other known carnivores have relatively low
d15N values. For example, the gelatinous predators
Aglantha digitale and Mertensia ovum both feed on
copepods in Arctic waters (Siferd and Conover,
1992; Pag"es et al., 1996) and have relatively low
inferred trophic levels (2.3) compared to other
animals having similar diets. Unfortunately, few
comparative isotopic data exist for arctic gelatinous
predators and further study is required to investi-
gate this apparent discrepancy.
As with most predators, the diet of carnivorous

zooplankton such as the amphipods T. libellula and
Onisimus sp. varies with size, including larger and
more frequent animal prey as the animal grows
(Grainger and Hsiao, 1990; Scott et al., 1999). For
example, juvenile T. libellula feed on algal matter
(Grainger and Hsiao, 1990) whereas copepods
largely dominate the diet of adults (Wing, 1976;
Fortier et al., 2001). The relatively low inferred TL
signal of these amphipods compared to that of
other predators of copepods such as E. glacialis (TL
3.0) likely reflects the dominance in the analysis
of young omnivorous animals, which are more
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vulnerable to capture by the plankton net than large
carnivorous adults. Similarly, Arctic cod adults,
which feed on large Calanus copepods and amphi-
pods of the genus Gammarus, Onisimus, and
Themisto (Bradstreet and Cross, 1982), showed
enriched isotopic values (TL3.6) compared to larvae
(TL 2.7) that prey on copepod nauplii and small
copepodites (Drolet et al., 1991; Michaud et al.,
1996).
The results reported here for copepods, Arctic

cod and amphipods clearly indicate that important
specific and/or ontogenetic differences in stable
isotope values can be masked by pooling species
and/or developmental stages in the analysis (e.g., as
in Schell et al. 1998). Although time consuming,
more detailed species- and stage-specific analyses of
zooplankton are methodologically feasible as
shown in the present study and could greatly
improve our understanding of trophodynamics in
the arctic marine food web.
We considered the results of d13C and d15N

analyses in association with known or assumed
habitat preferences and feeding mode of inverte-
brates. Consistent with pelagic habits, almost all
planktonic species displayed the lowest d13C values
and were within the range of –20% to –22%.
Benthic and epibenthic species were more enriched
in 13C; the two species of mobile brittlestars had the
highest d13C values recorded (�10.2% and
�11.3%). Benthic invertebrate species generally
showed a higher range of d15N values compared
with pelagic species. Those species with a more
endobenthic lifestyle tended to have either low (7.1–
9.1%) or high (11.8–14.1%) d15N values. Supra-
benthic species, (those living in association with the
sediment surface but venturing frequently in the
water column) formed two groups, one with
intermediate d15N values of 9.2–10.4% and the
other with high values (13.2–13.3%). Omnivores
and detritivores tended to have the highest d13C
values and a wide range of d15N values or trophic
positions, whereas filter-feeders and nearly half the
predators had lower d13C values and more average
d15N values. Scavengers and the other half of the
predators had average to high d15N values. The
extreme 13C enrichment seen in omnivores and
detritivores likely reflects their use of cycled as well
as ungrazed carbon available in the benthos. By

measuring both isotopes for benthic species we were
able to delineate trophic and habitat effects and
identify trophic clusters that suggest similar feeding
patterns among taxa. Further research into evalu-
ating relative sources of nutrient inputs to the
benthos will need to consider the elemental turn-
over rates of carbon and nitrogen in benthic
consumers in order to design an appropriate
seasonal sampling design (e.g., Fry and Arnold,
1982).

4.3.1. Seabirds

Seabirds in the North Water appear to fall into
three distinct trophic levels on the basis of their
stable isotope values. Glaucous gulls (L. hyperbor-

eus) occupied the highest trophic level. Thick-billed
murres (U. lomvia), black guillemots (C. grylle),
black-legged kittiwakes (R. tridactyla), ivory gulls
(P. eburnea), and northern fulmars (Fulmarus

glacialis) occupied an intermediate trophic position
that did not differ statistically from one another,
while the dovekie occupied the lowest trophic level.
For each of these species, the stable isotope values
are lower than expected on the basis of what has
been reported in previous studies of stomach
contents (as summarized in Bradstreet and Brown,
1985). The lower trophic levels found here suggest
that seabirds in this area relied more on lower
trophic organisms than in other areas of the Arctic.
It is also possible that the importance of lower
trophic organisms has been underestimated in
studies relying on conventional dietary methods
(Hobson, 1993).
At the highest seabird trophic level, glaucous

gulls scavenge on seals, take Arctic cod, and also
adults and young of other seabirds, especially
during the breeding season (Gaston and Nettleship,
1981; Stempniewicz, 1983; N. Karnovsky, unpub-
lished results). However, like most gulls, this species
has a broad diet that is expected to change within
and between populations (Schmutz and Hobson,
1998). The TL of 4.6 inferred in this study was for
birds taken in June when their isotope values will
reflect primarily a pre-breeding diet with little
incorporation of seabird prey.
The intermediate trophic level inferred for thick-

billed murres, black guillemots, black-legged kitti-
wakes, ivory gulls, and northern fulmars was, for
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the most part, consistent with their known diets of
the pelagic amphipod, T. libellula, and Arctic cod
(N. Karnovsky, unpublished data). Diet assess-
ments of thick-billed murres collected at Coburg
Island, Bylot Island and Prince Leopold Island
colonies, as well as along the Pond Inlet ice edges
and Barrow Strait area, contained primarily Arctic
cod; T. libellula was secondary in terms of total prey
biomass (Birkhead and Nettleship, 1981; Gaston
and Nettleship, 1981; Bradstreet and Cross, 1982;
Bradstreet and Brown, 1985). In the nearby Lan-
caster Sound and Barrow Strait area, black
guillemots feed on both invertebrates and Arctic
cod, with cod accounting for the majority of the
biomass of adult diets (Bradstreet, 1976, 1980;
Bradstreet and Brown, 1985). Likewise, black-
legged kittiwakes are known to feed on Arctic cod
(Welch and Crawford, 1993). However, stable
isotope analysis of black-legged kittiwakes from
Browne island showed that there may be a
separation between chick and adult diets, with
adult birds consuming T. libellula while they feed
their chicks more cod (Hobson, 1993).
Northern fulmars have been observed to feed on

seal carcasses, cod and squid and, along ice edges
and upwelling sites, to take copepods and other
zooplankton (Salmonsen, 1950; Bradstreet and
Cross, 1982; Hobson and Welch, 1992b; Welch
and Crawford, 1993). Similarly, ivory gulls have
been observed scavenging offal of beluga whales,
narwhals, seals, and walruses (Odobenus rosmarus;
Renaud and McLaren, 1982) and in some areas
have been noted to take the amphipod, A. glacialis

(Divoky, 1976). On the basis of the scavenging
activity observed in other areas, both northern
fulmars and ivory gulls in this study have un-
expectedly low trophic levels, perhaps indicating
that they scavenge less in the North Water than
elsewhere or that previous reports of scavenging
have exaggerated its long-term nutritional impor-
tance.
In the North Water during spring and summer

dovekies apparently rely primarily on the copepods
Calanus glacialis and C. hyperboreus (Bradstreet,
1982; N. Karnovsky, unpublished). Later in the
breeding season, these birds shift to feeding at a
higher trophic level on T. libellula and Arctic cod
(Bradstreet, 1982; N. Karnovsky, unpublished).

Birds collected in this study were taken primarily
during the copepod feeding stage of the early part
of the breeding season; the stable isotope results
generally support this notion.
Our results indicate that invertebrates play a

critical role in arctic seabird diets. Based on the
stable isotope analysis, seabirds appear to occupy a
lower trophic level in the North Water than
elsewhere in the Arctic. Alternatively, previous
studies based on conventional approaches elsewhere
in the Arctic may have overestimated trophic level
since invertebrates may not preserve well in
stomachs (Hobson, 1993; Hobson et al., 1995).
The central position of cod in the transfer of energy
to seabirds in other areas of the Arctic may be
replaced by invertebrates in the North Water.
Properly placing seabirds in energy and contami-
nant flow analyses is critical, as both the dovekie
and thick-billed murre are important components
of the diets of people in the communities adjacent to
the North Water (Evans and Kampp, 1991; Boert-
man and Mosbech, 1998).

4.3.2. Marine mammals

Polar bears occupied the highest trophic level in
the North Water. The major prey items of polar
bears are ringed and bearded seals (Stirling and
Archibald, 1977; Smith, 1980), although polar bears
have also been known to prey on walrus (Kiliaan
and Stirling, 1978; Calvert and Stirling, 1990),
belugas (Lowry et al., 1987; Rugh and Shelden,
1993), and narwhals (Smith and Sjare, 1990), as well
as birds in the summer (Stempniewicz, 1993;
Donaldson et al., 1995). Polar bears are thought
to feed almost exclusively on ringed seals in the
eastern Canadian High Arctic (Stirling and Archi-
bald, 1977; Smith, 1980). Similarly, our isotopic
model suggests that polar bears in the area may feed
exclusively on ringed seals (Fig. 3). Even though
polar bear tissues were obtained from animals in
Lancaster Sound, d15N tissue values for ringed seals
in the North Water are similar to those for ringed
seals in Lancaster Sound (Hobson and Welch,
1992a). Thus, d15N tissue values for polar bears in
these two areas would likely be similar as well.
Ringed seals are considered to be opportunistic

feeders (McLaren, 1958; Johnson et al., 1966;
Lowry et al., 1978; Weslawski et al., 1994). Arctic
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cod appears to be the major source of food for
ringed seals between late autumn to early spring,
whereas in summer, pelagic amphipods such as T.

libellula, euphausiids, mysids, and benthic crusta-
ceans become important (Johnson et al., 1966;
Lowry et al., 1980a; Weslawski et al., 1994). The
isotopic data reflect an integration of diet during the
late spring to early summer period. Our isotopic
model suggests that during this period, the diet of
ringed seals in both Grise Fiord and Qaanaaq
consisted predominantly of Arctic cod (Fig. 3),
although lower trophic-level organisms occurred
more frequently in the diet of ringed seals from
Qaanaaq. Dietary studies have shown that although
Arctic cod is the predominant prey type in the diet
of ringed seals in Grise Fiord and Qaanaaq in late
spring/early summer, polar cod (Arctogadus glacia-

lis) is also an important source of prey for ringed
seals in these areas, especially in Grise Fiord (e.g.,
Bradstreet and Finley, 1983; Siegstad et al., 1998;
Holst, 2000). At this time, however, no stable
isotope values are available for polar cod.
Bearded seals are primarily benthic feeders

(Kenyon, 1962; Lowry et al., 1980b), which is
consistent with the enrichment of their d13C tissue
value. Bearded seal diet in the eastern Canadian
High Arctic consists mainly of fish, including Arctic
cod and sculpins, as well as a variety of benthic
invertebrates (Finley and Evans, 1983). Similarly,
our model suggests a diet consisting predominantly
of fish (Fig. 3).
Most walruses migrate to the North Water in the

spring and summer, although some are known to
overwinter there (Vibe, 1950; Finley and Renaud,
1980). Atlantic walruses take a wide variety of
benthic prey, including bivalves such as Mya

truncata and Hiatella arctica, which tend to be the
most important prey items, as well as gastropods
and polychaetes (Vibe, 1950; Mansfield, 1958;
Welch et al., 1992; Fisher and Stewart, 1997).
Ringed and bearded seal remains also have been
found occasionally in walrus stomachs from the
North Water (Vibe, 1950) and other areas in the
Canadian Arctic (Mansfield, 1958; Loughrey,
1959). The isotopic data suggest that the diet of
walruses in the North Water consists predomi-
nantly of bivalves, as reflected in their lower d15N
tissue values compared to other marine mammals.

Even though d15N tissue values for M. truncata and
H. arctica are unknown, the d15N tissue values for
bivalves of the genus Astarte, which have been
shown to occur in the walrus diet (Fisher and
Stewart, 1997), fall within the isotopic range of
possible prey items.
The North Water may be an overwintering site

for some belugas and narwhals (Vibe, 1950;
Sergeant and Hoek, 1974; Mansfield et al., 1975;
Sergeant and Brodie, 1975), as well as for bowhead
whales (Richard et al., 1998; Holst and Stirling,
1999). However, most animals migrate to the
polynya between late spring and early summer,
presumably to feed. Beluga and narwhal occupied
similar trophic levels. Their diets are assumed to
consist mainly of fish, including Arctic cod and
polar cod, as well as squid (Mansfield et al., 1975;
Finley and Gibb, 1982; Heide-J�rgensen and
Teilmann, 1994; Heide-J�rgensen et al., 1994).
Our isotopic model shows a lower trophic position
for these species than one consistent with a diet
predominated by Arctic cod (Fig. 3), indicating that
lower trophic-level prey such as squid or pelagic
crustaceans may constitute a large proportion of
their diets (e.g., Bradstreet and Cross, 1982).
The bowhead whale is a plankton feeder; our

isotope results are consistent with this lower
trophic-level position compared to most other
marine mammals. Its diet consists primarily of
euphausiids and copepods, but epibenthic organ-
isms such as mysids and gammarid amphipods are
also eaten regularly (Lowry et al., 1978; Hazard and
Lowry, 1984; Carroll et al., 1987; Lowry, 1993). The
isotope data suggest a higher trophic level for the
bowhead whale than would be expected if the diet
consisted exclusively of the copepod C. hyperboreus

(Fig. 3), which is known to be an important prey
item for bowheads in Alaska (Lowry and Frost,
1984). Although there are no published reports of
the diet of bowhead whales in the North Water,
according to Lowry (1993) the spring diet of
bowhead whales taken near Point Barrow, Alaska,
consists of 54.2% copepods, 42.4% euphausiids,
2.6% mysids, and 0.8% other invertebrates,
whereas the fall diet consists of 96.0% euphausiids,
0.3% mysids, 2.6% gammarid amphipods, and
1.1% other items. Contrary to Antarctica and to
other subarctic seas, euphausiids are numerically
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insignificant in the eastern Canadian Arctic. T.
libellula largely dominates pelagic macrozooplank-
ton crustaceans in the area. As non-selective
feeders, we suspect that T. libellula is a large part
of their diet. According to Dunbar (1941, 1957), T.

libellula forms the most important link in the food
chain between copepods and other smaller plank-
tonic forms on the one hand, and the vertebrates on
the other, thus playing in the Arctic the trophic role
of euphausiids in the Southern Ocean. Acording to
our isotopic model, bowhead whales feeding
exclusively on C. hyperboreus or T. libellula should
present a TL of 3.0 and 3.5, respectively. Thus, our
value of 3.4 for eastern bowhead whales using the
North Water suggests a diet comprised largely of T.

libellula.

4.4. Contaminants

Data for a large range of PCB congeners and
other persistent organic pollutants (POPs, e.g.,
chlordanes, DDT, etc.) were generated for the
North Water food web. For brevity, and because
the focus of this paper is stable isotopes, only data
for PCB 153 is presented (see Fisk et al. 2001). PCB
153 was chosen because it is considered one of the
most recalcitrant and bioaccumulative PCB con-
geners, usually having among the highest concen-
trations of any POP measured in Arctic biota (Muir
et al., 1988; Henriksen et al., 1996). Because PCB
153 is lipophilic and very slowly biotransformed by
any species investigated so far, metabolic differ-
ences between groups of animals or species will not
confound the PCB 153–d15N relationships. As well,
PCB 153 is commonly used as a marker for
assessing the bioaccumulation or biomagnification
of other POPs (Boon et al., 1994).
The strong positive relationship observed be-

tween PCB 153 concentrations (lipid basis) and
dd15N confirms the biomagnification of this con-
taminant through Arctic marine food webs (Muir
et al., 1988; Braune and Norstrom, 1989). Assuming
that a change in d15N value of 3.8% represents one
trophic level, the slope of 0.61 corresponds to a
trophic magnification factor of 10.2. Therefore, on
average, the lipid-corrected concentration of PCB
153 increases 10.2 fold from one trophic level to the
next in the North Water food web. This slope of

0.61 is lower than those reported for SPCB (SPCB
represents the concentration of a large number of
individual PCB compounds, of which PCB 153 is a
major contributor) in a temperate marine food
chain (slope=0.88) (Jarman et al., 1996) and for
PCB 153 in an Arctic marine food chain
(slope=0.81) (Norstrom, 1994). Jarman et al.
(1996) used seabird eggs vs. muscle tissue and
Norstrom (1994) combined data from a number of
different studies using trophic level vs. raw d15N
values that may confound direct comparisons with
our study.
Examination of the PCB 153 concentrations

shows the utility of examining ecological process
with contaminants. Ivory gull, black-legged kitti-
wake, and northern fulmar all had PCB 153
concentrations which were greater than predicted
for their respective d15N values based on the PCB
153–d15N relationships (Fig. 4). This is likely due to
past exposure to high PCB 153 concentrations,
either through accumulation from scavenging dead
marine mammals or from feeding at winter habitats
which are more contaminated. There are no
reported half-lives of PCB 153 in seabirds however,
the half-life of mirex in herring gulls (Larus

argentatus) has been reported as 559 days (Clark
et al., 1987). Mirex is recalcitrant and has similar
physical and chemical properties to PCB 153
therefore half-lives of PCB 153 in seabirds are
likely similar to mirex and >1yr. This is much
longer than the turnover rate of 15N in muscle
protein, which represents the integrated diet of
seabirds over the past month (Hobson, 1993). In
general, kittiwakes apparently do not scavenge
marine mammals (Baird, 1994), so that their high
PCB 153 concentrations are likely due to accumula-
tion in their winter habitat of the more highly
contaminated eastern seaboard of North America
(Muir et al., 1990). Northern fulmars migrate and
are known to scavenge marine mammals (Finley
et al., 1952), but the relative role of each of these
variables in their PCB 153 concentrations is not
known. However, Ivory gulls do not migrate
significantly out of the Arctic (Haney and Macdo-
nald, 1995). High PCB 153 concentrations suggest
that scavenging of marine mammal tissue is more
predominant in ivory gulls throughout the year
than is reflected in current d15N values. These
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results emphasize the need to consider the temporal
context of the isotopic vs. contaminants data as well
as the fact that d15N values are based on muscle
protein, whereas contaminants often are more
directly related to lipids (Jarman et al., 1996).

4.5. Implications for tracing carbon and energy flux

One goal of this study was to integrate the use of
stable isotope analysis into models of carbon flux to
higher trophic-level organisms. Although we will
present the details of these analyses elsewhere, we
consider here the general approach to the use of
stable isotope models in energy- and carbon-flux
calculations using seabirds as an example. To our
knowledge, stable isotope models have not been
used previously in large-scale marine carbon flux
models.
The general approach used in studies investigat-

ing the role of seabirds in energy and carbon flux in
marine systems has been to quantify daily energy
requirements of individuals based on field metabolic
rates and body size and to integrate those require-
ments at the population level over time and space
(Weins and Scott, 1975). Total integrated energy
requirements for breeders, non-breeders, and young
of the year are then combined to estimate total
energy flux during the breeding season and other
times associated with an estimated area of ocean
surface to yield energy flux per unit area (Schneider
et al. 1987).
In order to convert energy-flux calculations to

equivalent amounts of fixed carbon or tonnage of
prey species it is necessary to know the diet or
trophic level of the consumers and how this may
change seasonally and with age or breeding status.
This requirement follows from the need to convert
energy values to equivalent carbon mass, since
different prey organisms have different energy
equivalents. More importantly, regardless of differ-
ential caloric content of prey types, energy flux
through one prey-trophic level is not equivalent to
the same energy flux through a higher trophic level
due to low conversion efficiencies between trophic
levels. Although energy conversion between trophic
levels may be as high as 20% (Cushing, 1975; Smith
and Eppley, 1982), a value of 10% is typically
assumed (Briggs and Chu, 1987; Welch et al. 1992).

Clearly, if trophic-level estimates are not accu-
rate, carbon-flux estimates or derived proportions
of fixed carbon consumed by seabirds and other
upper trophic-level organisms may be off by as
much as an order of magnitude. This effect is
particularly true of seabirds and marine mammals
whose diets are often poorly known (Hobson et al.,
1994). Hobson (1993) demonstrated how chick diet
is often of a higher trophic level than adult diet for
high Arctic seabirds (see also Hodum and Hobson,
2000). Our isotopic analysis of adult seabird diet in
the North Water shows generally a greater con-
sumption of invertebrate prey than was previously
assumed, indicating a more efficient transfer of
fixed carbon to seabirds. It will be important to
utilize derived trophic estimates presented in this
paper for several species and groups in order to
estimate carbon flux through higher trophic-level
organisms.
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