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1 Introduction

The purpose of this document is to present an ab initio derivation of the
reflectivity for a plane electromagnetic wave reflecting off a flat multilayer
surface (see Figure 1). Each layer is assumed to be isotropic and described
by a complex dielectric constant. The final result will be in the form of a
recursion relation first derived by Parratt[1].

2 Conventions

In this document, the phase convention e−iωt will be used. The Henke[2]
tables1 assume the opposite convention. For this reason, the sign of β that
appears in the supporting documentation for the Henke data is opposite of
what one would use from the formulas derived here. In particular, the index
of refraction n will become n = 1 − δ + iβ, and not n = 1 − δ − iβ as is
stated in the supporting documentation for the tables.

The SI form of the Maxwell equations is used in this work. In SI units,
the Maxwell equations assume a simpler form than if Gaussian units were
employed. The SI forms of the macroscopic Maxwell equations are

∇ · ~B = 0, (1)

∇× ~E = −
∂ ~B

∂t
, (2)

∇ · ~D = ρ, (3)

∇× ~H = ~j +
∂ ~D

∂t
, (4)

1http://henke.lbl.gov/optical_constants/
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Figure 1: This figure shows the possible paths of a photon within a multilayer that
is composed of two dielectric slabs sandwiched between the vacuum at the top and a
bulk substrate at the bottom. When the photon encounters the boundary between
two layers, it either reflects or refracts. The shade and thickness of a photon line
is used to denote the relative probability of the line.

where ~j and ρ are the macroscopic (or free) current and charge densities,
respectively.

3 Plane Waves

In dealing with harmonic plane waves, it often simpler to use a complex
representation for the fields:

~E(~x, t) = ~E(~k, ω)ei
~k·~x−iωt (5)

~H(~x, t) = ~H(~k, ω)ei
~k·~x−iωt (6)

~B(~x, t) = ~B(~k, ω)ei
~k·~x−iωt (7)

~D(~x, t) = ~D(~k, ω)ei
~k·~x−iωt (8)
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The physical fields are obtained by taking the real parts of the corresponding
complex fields. The amplitudes such as ~E(~k, ω) are in general complex
valued where the phase of ~E(~k, ω) corresponds to a phase shift of the wave.

If the medium is a lossy one, then ~k will also be a complex (bi-)vector.
The real part of ~k corresponds to the direction of constant phase of the wave,
whereas the imaginary part will give the direction of constant amplitude. In
general these directions will be different.

It is important to note that a complex representation such as the above
is permissible only because the Maxwell equations are linear in the fields
with real coefficients. Then both the real and imaginary parts of the fields
independently satisfy the Maxwell equations with no mixing of the real and
imaginary components. When dealing with expressions that are non-linear
in the fields, one must first revert back to the real fields before evaluating
the expression in order to avoid the undesired mixing.

In the absence of sources, the Maxwell equations can be written in terms
of the complex field amplitudes as:

~k × ~E(~k, ω) = ω ~B(~k, ω) (9)

~k × ~H(~k, ω) = −ω ~D(~k, ω) (10)

~k · ~D(~k, ω) = 0 (11)

~k · ~B(~k, ω) = 0. (12)

For a linear homogeneous isotropic medium, we will assume that the
macroscopic fields ( ~D, ~H) are related to the microscopic ones ( ~E, ~B) via the
constitutive relations

~D(~k, ω) = ε(ω) ~E(~k, ω) (13)

~H(~k, ω) = µ−1(ω) ~B(~k, ω), (14)

where, in general, the dielectric constant ε(ω) and the permeability µ(ω) are
complex and frequency dependent.

For clarity, in the following unless otherwise indicated, the explicit func-
tional dependence upon ~k and ω will be dropped. Hence, ~E(~k, ω) will be
written simply as ~E, and ε(ω) will be written as ε. With this understanding,
equations (9)-(12) may be written

~k × ~E = µω ~H (15)

~k × ~H = −ωε~E (16)

~k · ~E = 0 (17)

~k · ~H = 0. (18)
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Taking the cross product of the first of these with ~k and substituting in the
second results in

~k · ~k = k2 = ω2µε, (19)

which is a dispersion relation between ~k and ω.
In a medium where ~k is real, such as the vacuum, equations (15-18)

imply that the vectors ~k, ~E, and ~H are mutually orthogonal. This claim
cannot be made if the dielectric medium is complex.

The real index of refraction nr of a medium is defined as the ratio of
the speed of light in the vacuum to the speed of constant phase speed in
the medium, i.e., nr = (c/ω)Re(k). The complex index of refraction n is
defined by

n =
ck

ω
. (20)

4 The Poynting Vector

The flux in an electromagnetic wave is given by the time-averaged magnitude
of the Poynting vector ~S(~x, t), which is proportional to the cross product
of the ~E(~x, t) and ~H(~x, t) fields. In performing this cross product the real
valued fields must be used. Naively using the complex fields would result in
an undesirable mixing of the real and imaginary parts. To see this, write

~E(~x, t) = ~E(~x)e−iωt

= ( ~Er + i ~Ei)e
−iωt

= ( ~Er cosωt+ ~Ei sinωt) + i( ~Ei cosωt− ~Er sinωt)

(21)

and

~H(~x, t) = ( ~Hr + i ~Hi)e
−iωt

= ( ~Hr cosωt+ ~Hi sinωt) + i( ~Hi cosωt− ~Hr sinωt)
(22)

Then the time-averaged Poynting vector is

〈~S(~x, t)〉 =〈Re[ ~E(~x, t)]× Re[ ~H(~x, t)]〉

= ~Er × ~Hr〈cos
2 ωt〉+ ~Ei × ~Hi〈sin

2 ωt〉

+ ( ~Er × ~Hi + ~Ei × ~Hr)〈cos ωt sinωt〉

=
1

2
( ~Er × ~Hr + ~Ei × ~Hi)

=
1

2
Re[ ~E(~x)× ~H∗(~x)] =

1

2
Re[ ~E∗(~x)× ~H(~x)],

(23)

4



which is not the same as using the real part of ~E(~x)× ~H(~x).
For plane waves of the form

~E(~x) = ~Eei
~k·(~x−~x0), (24)

we can write

~E∗(~x)× ~H(~x) = ~E∗ × ~He−2 Im~k·(~x−~x0) (25)

=
1

µω
~E∗ × (~k × ~E)e−2 Im~k·(~x−~x0) (26)

=
1

µω

(

~k| ~E|2 − ~E(~k · ~E∗)
)

e−2 Im~k·(~x−~x0), (27)

where where ~E is the field amplitude2 at x0, and | ~E|2 = ~E · ~E∗. For a
medium such as the vacuum where ~k is real, (17) implies that ~k · ~E∗ = 0.
But when ~k is complex, ~k · ~E = 0 does not mean that ~k · ~E∗ is also zero.
After a bit of algebra and making use of (17), we find

〈~S(~x, t)〉 = e−2 Im~k·(~x−~x0)〈~S(~x0, t)〉, (28)

where

〈~S(~x0, t)〉 =
1

2µω

[

| ~E|2 Re~k − 2 Im~k × (Re ~E × Im ~E)

]

. (29)

When ~k is complex, this equation shows that the imaginary part of ~k leads
to exponential damping of the time-averaged Poynting vector. With the
addition of the second term in the brackets above, we see that energy is
transported in a direction that differs from the direction of the wave, which
is given by Re~k. This term is zero if ~k is real, or if the electric field is
linearly polarized since for linear polarization, the real and imaginary parts
of the electric field lie in the same direction. As will be seen, for so-called
TM fields, the electric field in a lossy medium is elliptically polarized in the
plane of incidence causing this term to introduce a component to the flux
that is parallel to the multilayer surface and in the plane of incidence. In
this paper, we are primarily interested in the component of the Poynting
vector that is normal to the dielectric surfaces. Hence this term will drop
out of the calculation.

2In a lossy medium where Im~k, the field amplitude decrease along the direction of

Im~k.
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5 Multilayer Geometry

We assume that the multilayer is composed of N parallel layers with thick-
nesses dj , j = 1, . . .N sandwiched between a semi-infinite vacuum on one
side and a semi-infinite substrate on the other. The vacuum will be denoted
as the j = 0 layer, and the substrate by j = N+1. A coordinate system will
be adopted such that the z axis is perpendicular to the interface planes and
increases from the vacuum to the substrate. In particular, the z coordinate
of the plane forming the interface between the j and j+1 layers is given by
zj , where

zj = zj−1 + dj . (30)

For later purposes, it is convenient to extend the set of dj values to include
the symbols d0 = 0 and dN+1 = 0.

As figure 1 indicates, each dielectric layer will consist of a superposition
of reflected and refracted electromagnetic waves. The exception is in the
substrate, which contains only refracted waves. The net electric field in the
jth layer can be written as

~E(j)(~x, t) = ~E(j)(~k(j), ω)ei(
~k(j)·~x−ωt) + ~E′(j)(~k′(j), ω)ei(

~k′(j) ·~x−ωt), (31)

where ~k(j) is the wave vector of the forward traveling wave and ~k′(j) is that
of the reflected wave. A similar equation holds for the ~H field.

6 Boundary Conditions

The boundary conditions of the fields may be found by applying Stokes’s
theorem to the Maxwell equations involving the curl, and the divergence
theorem to those involving the divergence. These operations are trivial and
will not be given here. It follows that the component of ~E(~x, t) parallel to
the surface is preserved across the boundary. For a dielectric surface with
finite conductivity, there can be no surface current and it follows that the
parallel component of ~H(~x, t) is also preserved. Only for an ideal conductor
with infinite conductivity does one have to worry about a surface current. If
ẑ is the surface normal, the boundary conditions on ~E and ~H at the interface
between the j and j + 1 layers at the point ~xj = (x, y, zj) is given by

ẑ × ~E(j+1)(~xj , t) = ẑ × ~E(j)(~xj , t))

ẑ × ~H(j+1)(~xj , t) = ẑ × ~H(j)(~xj , t)).
(32)

6



Let ~E|| = ẑ × ~E denote the components of the electric field parallel to

the interface. Then using (31) in the boundary condition for ~E produces

~E
(j)
|| ei

~k(j)·~xj + ~E
′(j)
|| ei

~k′(j)·~xj = ~E
(j+1)
|| ei

~k(j+1)·~xj + ~E
′(j+1)
|| ei

~k′(j+1)·~xj . (33)

We can separate the vector ~xj into a components parallel and perpendicular
to the z = zj plane by writing ~xj = ~x||+ zj ẑ, whereby the previous equation
becomes

~E
(j)
|| eik

(j)
z zjei

~k(j)·~x|| + ~E
′(j)
|| eik

′(j)
z zjei

~k′(j)·~x||

= ~E
(j+1)
|| eik

(j+1)
z zjei

~k(j+1)·~x|| + ~E
′(j+1)
|| eik

′(j+1)
z zjei

~k′(j+1)·~x||.

(34)

The only way for this boundary condition to hold at all points ~x|| in the
z = zj plane is for

~k(j) · ~x|| = ~k′(j) · ~x|| = ~k(j+1) · ~x|| = ~k′(j+1) · ~x||, (35)

or

k(j)x = k′(j)x = k(j+1)
x = k′(j+1)

x

k(j)y = k′(j)y = k(j+1)
y = k′(j+1)

y .
(36)

From these equations it follows that reflection and refraction take place in a
plane (called the plane of incidence). Moreover, since the above must hold
for both real and imaginary parts of the wave vectors, and assuming that the

wave vector in the vacuum ~k(0) is real, then k
(j)
x,y are also real. Hence, we are

left to conclude that only k
(j)
z can have a non-zero imaginary component. It

follows from the dispersion relation given by (19) that either k
′(j)
z = k

(j)
z or

k
′(j)
z = −k

(j)
z . If, as has been assumed, that the net electric field in a layer is

the sum of distinct reflected and a forward traveling waves, then consistency
demands that

k′(j)z = −k(j)z (37)

Using the above relations, (34) can be rewritten as

~E
(j)
|| eik

(j)
z zj + ~E

′(j)
|| e−ik

(j)
z zj = ~E

(j+1)
|| eik

(j+1)
z zj + ~E

′(j+1)
|| e−ik

(j+1)
z zj . (38)

Similarly,

~H
(j)
|| eik

(j)
z zj + ~H

′(j)
|| e−ik

(j)
z zj = ~H

(j+1)
|| eik

(j+1)
z zj + ~H

′(j+1)
|| e−ik

(j+1)
z zj . (39)
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7 Reflectivity

The reflectivity, R of a multilayer is defined as the ratio of the flux in
the reflected wave to that of the incident wave at the interface between the
vacuum (j = 0) and the first (j = 1) dielectric slab. This can be computed as
ratio of the magnitude of the time-averaged Poynting vector of the reflected
wave to that of the incident wave. Since for the vacuum, ~k is real, it follows
trivially from (29) that

R =
| ~E′|2

| ~E|2
=

| ~H ′|2

| ~H|2
. (40)

That latter equality is a result of replacing ~E by (16), expanding the resulting
vector products, and using (18).

From the boundary conditions, we found that the component of the wave

vector parallel to the jth multilayer interface, ~k
(j)
|| , is real for an incident

plane wave from the vacuum. Since the boundary conditions also imply
that this component is the same for all the layers, the superscript (j) can
be dropped and the parallel component written simply as ~k||. For simplicity

in what follows, the x axis will be chosen to lie in the direction of ~k||, i.e.,
~k|| = kxx̂. Then using

~k(j) = kxx̂+ k(j)z ẑ, (41)

equations (15) and (16) can be written in component form as

ωµjH
(j)
x = −k(j)z E(j)

y , (42)

ωµjH
(j)
y = kxE

(j)
z − k(j)z E(j)

x , (43)

ωµjH
(j)
z = kxE

(j)
y , (44)

and

ωε(j)E(j)
x = k(j)z H(j)

y , (45)

ωε(j)E(j)
y = kxH

(j)
z − k(j)z H(j)

x , (46)

ωε(j)E(j)
z = −kxH

(j)
y . (47)

The electric field ~E(j) can always be written as a component that lies in
the plane of incidence, and one normal to the plane. In the vacuum, if ~E(0)

is perpendicular to the plane of incidence, then ~H(0) will lie in the plane
of incidence, and if ~E(0) lies in the plane of incidence, then ~H(0) must be
perpendicular to the plane. Thus we can consider two distinct cases: The
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first case, known as TE “Transverse Electric”, is one where the incident
electric field ~E(0) is perpendicular to the plane of incidence. In the second
case, TM or “Transverse Magnetic”, the ~H(0) field normal to the plane of
incidence.

7.1 TE Case

For this case, the incident electric field from the vacuum is normal to the
plane of incidence. Expressed in terms of components, it can be written as
~E(j) = E(j)ŷ. Then the only non-zero component of the ~H(j) field that is
parallel to the interface is

H(j)
x = −

k
(j)
z

ωµj

E(j). (48)

Similarly, the reflected field satisfies

H ′(j)
x =

k
(j)
z

ωµj
E′(j). (49)

Using the above expressions, it is straightforward to show that the two
boundary condition equations (38) and (39) may be written as

E(j)eik
(j)
z zj (1 + a−1

j Rj) = E(j+1)eik
(j+1)
z zj (1 +Rj+1) (50)

fjE
(j)eik

(j)
z zj (1− a−1

j Rj) = fj+1E
(j+1)eik

(j+1)
z zj(1−Rj+1), (51)

where

fj = k(j)z /µj , (52)

aj = e2ik
(j)
z dj , (53)

and

Rj = aje
−2ik

(j)
z zj

E′(j)

E(j)
. (54)

Note that in defining aj, we have assumed that both d0 and dN+1 are 0,
otherwise dj corresponds to the width of the jth layer as defined by (30).

The system of equations given by (50) and 51 may be easily solved for
Rj to yield the Parratt recursion relation

Rj = aj
Fj +Rj+1

1 + FjRj+1
, (55)
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where

Fj =
fj − fj+1

fj + fj+1
. (56)

The recurrence relation (55) may be solved for R0 iteratively by noting
that RN+1 = 0 in the substrate where there is no reflected field. The
quantities Fj and aj may be precomputed since they depend only upon the

thicknesses dj of the dielectric layers, and k
(j)
z , which may be computed from

(20) via

k(j)z =
√

(ω/c)2n2
j − k2x

=
ω

c

√

n2
j − cos2 φ,

(57)

where φ is the graze angle that the incident wave makes with the multilayer
surface at z0.

Then the reflectivity is given by

R = |R0|
2. (58)

7.2 TM Case

In the transverse magnetic case, the incident magnetic field is normal to the
plane of incidence and can be written as ~Hj = H(j)ŷ. The non-zero electric
field component parallel to the interface plane for the forward moving wave
is

Ej
x =

k
(j)
z

ωε(j)
H(j), (59)

and

E′j
x = −

k
(j)
z

ωε(j)
H ′(j) (60)

for the reflected field. Using these equations, the boundary conditions given
by equations (38) and (39) become

fjH
(j)eik

(j)
z zj(1− a−1

j Rj) = fj+1H
(j+1)eik

(j+1)
z zj(1−Rj+1) (61)

H(j)eik
(j)
z (1 + a−1

j Rj) = H(j+1)eik
(j+1)
z zj(1 +Rj+1), (62)
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where

fj = k(j)z /ε(j) = (µjc
2/n2

j)k
(j)
z , (63)

aj = e2ik
(j)
z (zj+1−zj) = e2ik

(j)
z dj , (64)

and

Rj = aje
−2ik

(j)
z zj

H ′(j)

H(j)
. (65)

Equations (61) and (62) are formally identical to equations (50) and (51).
As such, the recurrence relation given by (55) may be used here for the TM
case provided that fj is given by (63).

8 Transmission Through a Multilayer

The case when the substrate is the vacuum (or air) is also of interest, where
it is meaningful to talk about the transmission probability through the mul-
tilayer. This probability, or transmittance, is defined to be the fraction of
incident flux that passes into the multilayer substrate. For a substrate with
a complex wave vector k we find

T =
〈~S(z+N )〉 · ẑ

〈~S(z−0 )〉 · ẑ
(66)

where ~S(z−0 ) is the value of the Poynting vector for the forward propagating

incident wave at the top of the multilayer, and ~S(z+N ) is the refracted wave
at the boundary of the substrate. Here the plus and minus superscripts are
used to signify the particular sides of the dielectric boundary, with z± = z±ǫ.
For clarity, the dependence upon the x and y variables has been suppressed.

For the special cases of TE and TM modes, the term involving the cross
product of the real and imaginary electric fields in (29) is zero since it is in
a direction that is orthogonal to ẑ. Hence we find

〈~S(z−0 )〉 · ẑ =
| ~E(z−0 )|

2

2µ0ω
k(0)z (67)

at the top of the multilayer (where k
(0)
z is real), and

〈~S(z+N )〉 · ẑ =
| ~E(z+N )|2

2µN+1ω
Re k(N+1)

z (68)
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just inside the substrate, with the result

T = (µ0/µN+1)Re(k
(N+1)
z /k(0)z )

| ~E(z+N )|2

| ~E(z−0 )|
2
. (69)

In these expressions, ~E(~x) represents the complex field amplitude at the
position ~x.

8.1 TE Transmittance

For TE mode, the electric field has no z component and is perpendicular to
the plane of incidence. Hence,

T = |T |2
µ0 Re k

(N+1)
z

µN+1k
(0)
z

(70)

where

T =
E(z+N )

E(z−0 )
. (71)

The latter equation can be written in the form

T =
E(z+N )

E(z−0 )
(72)

=

(

E(z−1 )

E(z−0 )

)(

E(z−2 )

E(z−1 )

)

· · ·

(

E(z−N )

E(z−N−1)

)(

E(z+N )

E(z−N )

)

(73)

= T0T1 · · ·TN−1TN , (74)

where

Tj =
E(j+1)

E(j)
exp[izj(k

(j+1)
z − k(j)z ) + ik(j+1)

z dj+1] (75)

and (31) was used to write

E(z−j ) = E(j)eik
(j)
z zj (76)

for the refracted wave in the jth layer. It is straightforward to show from
equations (50) and (55) that

Tj = eik
(j+1)
z dj+1

1 + Fj

1 + FjRj+1
. (77)
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8.2 TM Transmittance

In TM mode, the magnetic field is perpendicular to the plane of incidence
so that both ~k · ~H = 0 and ~k∗ · ~H∗ are zero. Then it is easy to show from
(16) that

| ~E|2 =
|~k|2

ω2|ε|2
| ~H|2 =

µ2c4

ω2|n|4
|~k|2|H|2, (78)

where c is the speed of light in the vacuum. This allows (69) to be cast into
the form

T =

(

µN+1/µ0

|nN+1|4

)

Re k
(N+1)
z

k
(0)
z

|~k(N+1)|2

|~k(0)|2
|T |2 (79)

where

T =
H(z+N )

H(z−0 )
(80)

= T0T1 · · ·TN . (81)

By a similar analysis as for the TE case, we find

Tj =
H(j+1)

H(j)
exp[izj(k

(j+1)
z − k(j)z ) + ik(j+1)

z dj+1] (82)

= eik
(j+1)
z dj+1

1 + Fj

1 + FjRj+1
, (83)

where Fj and Rj are given in section 7.2 for the TM case.

9 Examples

In this section, we will consider a couple of examples and compare the results
with those in standard textbooks as a consistency check.

9.1 A Single Dielectric Interface

For this example, N = 0 to indicate a single interface between the the
vacuum and a bulk substrate. Then (55) is easily solved to yield

R0 = F0 =
f0 − f1
f0 + f1

, (84)
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which for the specific TE and TM cases, becomes

RTE
0 =

sinφ−
√

n2 − cos2 φ

sinφ+
√

n2 − cos2 φ
(85)

RTM
0 =

n2 sinφ−
√

n2 − cos2 φ

n2 sinφ+
√

n2 − cos2 φ
, (86)

where n is the (complex) index of refraction of the substrate, and φ is the
graze angle of the incoming wave with respect to the interface. If a complex
refraction angle sinφ′ is defined by

sinφ′ =
√

n2 − cosφ, (87)

we can write

RTE
0 =

sinφ− sinφ′

sinφ+ sinφ′
(88)

RTM
0 =

n2 sinφ− sinφ′

n2 sinφ+ sinφ′
(89)

Using (77) to find the transmission coefficient yields

T0 = 1 + F0 = 1 +R0. (90)

Physically, this expression corresponds to the notion that the energy in the
transmitted wave is equal to that of incident one plus what is taken away
by the reflected component, which is traveling in the opposite z direction.

For TE mode, evaluating R and T is straightforward producing

RTE = |RTE
0 |2 (91)

=

∣

∣

∣

∣

µ1 sinφ− µ0n sinφ′

µ1 sinφ+ µ0n sinφ′

∣

∣

∣

∣

2

(92)

and

T TE =
µ0

µ1

Re k
(1)
z

k
(0)
z

|1 +RTE
0 |2 (93)

=
4µ0µ1 sinφRe(n sinφ′)

|µ1 sinφ+ µ0n sinφ′|2
. (94)

After some simple algebra, it is easy to see that R+ T = 1 for TE mode.
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For TM mode, we find

RTM = |RTM
0 |2 (95)

=

∣

∣

∣

∣

µ0 sinφ− (µ1/n) sinφ
′

µ0 sinφ+ (µ1/n) sinφ′

∣

∣

∣

∣

2

(96)

and

T TM =

(

µ1/µ0

|n|4

)

Re k
(1)
z

k
(0)
z

|~k(1)|2

|~k(0)|2
|1 +RTM

0 |2 (97)

=
4µ0µ1 sinφ

|µ0 sinφ+ (µ1/n) sinφ′|2

[

Re(n sinφ′)(cos2 φ+ |n sinφ′|2)

|n|4

]

. (98)

It is easy to see that when n is real, the bracketed quantity in the trans-
mittance reduces to Re(sinφ′/n). But for the general case of complex n the
simplification of this term requires some caution. First proceed by expand-
ing Re(n sinφ′) and |n sinφ′|2 in terms of their complex conjugates and then
simplify. This produces

[

·

]

=
(n sinφ′ + n∗ sinφ′∗)(cos2 φ+ nn∗ sinφ′ sinφ′∗)

2|n|4
(99)

=
n|n|2 sinφ′∗ + n sinφ′(n2 cos2 φ′ + n∗2 sin2 φ∗)

2|n|4
, (100)

where (87) has been used to write

cos2 φ = n2 cos2 φ′. (101)

The important thing to note here is that since cos2 φ is a real-valued quantity,
n2 cos2 φ′ may be replaced by n∗2 cos2 φ′∗ in the bracketed expression. After
some some simplification we find

[

·

]

= Re

(

sinφ′

n

)

, (102)

and finally

T TM =
4µ0 sinφRe[(µ1/n) sin φ

′]

|µ0 sinφ+ (µ1/n) sin φ′|2
. (103)
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10 Summary

In this document, we considered the reflection of an electromagnetic wave
in the vacuum from a flat semi-infinite multilayer dielectric substance. The
multilayer was assumed to be composed of N dielectric layers, each of finite
thickness, on a semi-infinite substrate. We found that the reflectivity of the
multilayer to be given by

R = |R0|
2, (104)

where R0 is calculated from the Parratt recursion relation

Rj = aj
Fj +Rj+1

1 + FjRj+1
, (105)

starting from j = N using RN+1 = 0. Here,

aj = e2ik
(j)
z dj , (106)

Fj =
fj − fj+1

fj + fj+1
, (107)

fj =

{

k
(j)
z /µj TE

(µjc
2/n2

j )k
(j)
z TM

, (108)

and

k(j)z =
ω

c

√

n2
j − cos2 φ. (109)

In these equations, the thickness of the jth layer is dj , with d0 defined to be 0,
nj is the index of refraction of the jth layer, µj is the magnetic permeability
of the layer, and φ is the grazing angle of the incident electromagnetic wave
with the multilayer.
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