
Extended Aggregations for Databases with Referential
Integrity Issues ∗

Javier Garćıa-Garćıa

Universidad Nacional Autónoma de México, Facultad de Ciencias, UNAM, Mexico City,

CU 04510, Mexico

Carlos Ordonez

University of Houston, Department of Computer Science, Houston, TX 77204, USA

Abstract

Querying databases with incomplete or inconsistent content remains a broad
and difficult problem. In this work, we study how to improve aggregations com-
puted on databases with referential errors in the context of database integration,
where each source database has different tables, columns with similar content
across multiple databases, but different referential integrity constraints. Thus, a
query in an integrated database may involve tables and columns with referential
integrity errors. In a data warehouse, even though the ETL processes fix referen-
tial integrity errors, this is generally done by inserting “dummy” records into the
dimension tables corresponding to such invalid foreign keys, thereby artificially
enforcing referential integrity. When two tables are joined and aggregations are
computed, rows with an invalid or null foreign key value are skipped, effectively
eliminating potentially valuable information. With that motivation in mind, we
extend SQL aggregate functions computed over tables with referential integrity
errors to return complete answer sets in the sense that no row is excluded. We
associate to each referenced key in the dimension table, a probability that in-
valid or null foreign keys refer to it. Our main idea is to compute aggregations
over joined tables including rows with invalid or null references by distributing
their contribution to aggregation totals, based on probabilities computed over
correct foreign keys. Therefore, our extended aggregations can return improved
answer sets in databases that violate referential integrity or have referential is-
sues. Experiments with real and synthetic databases evaluate the usefulness,
accuracy and performance of our extended aggregations.

Email addresses: javgar@servidor.unam.mx (Javier Garćıa-Garćıa),
ordonezc@cs.uh.edu (Carlos Ordonez)

This is the author’s version. Official version published in Elsevier DKE, 69(1):63-95, 2010

1. Introduction

There has been a growing interest on the problem of obtaining improved
answer sets produced by queries in a setting where a database has incomplete
content or violates integrity constraints [9, 10, 8, 2, 4, 1]. This is a common
scenario in a data warehouse, where multiple databases of different reliability
and similar contents are integrated. Databases with referential integrity errors
commonly arise in scenarios where several organizations have their databases in-
tegrated, where exchanging or updating information is frequent, or where table
definitions change. Database integration represents a common scenario where
similar tables coming from multiple source databases (OLTP systems) have dif-
ferent referential integrity constraints and each DBMS provides distinct mecha-
nisms and rules to enforce referential integrity. Therefore, source databases may
violate referential integrity and their integration may uncover additional refer-
ential integrity problems. Another scenario where referential integrity problems
arise is when, because of performance reasons referential integrity checking is
disabled to allow fast insertions in batch mode. This action may cause the ap-
pearance of referential integrity errors. Finally, the logical data model behind a
relational database evolves, incorporating new attributes and new relations not
defined before, causing old data to violate new referential integrity constraints.

One way to deal with the problem of violation of integrity constraints is by
updating the database in order to achieve consistency. This strategy has been
thoroughly studied recently and several solutions have been proposed. In [19, 3]
consistency is achieved by inserting or deleting tuples, whereas in [36] attribute
values are changed. The objective of the proposed techniques is to repair the
original database to convert it into a consistent database. Once repaired, the
database is ready to be exploited, for example, with OLAP queries. Fixing
errors is difficult since it requires understanding inconsistencies across multiple
tables, potentially going back to the source databases. A good overview on
data cleaning can be found in [14] and [32]. This strategy presents several
disadvantages. First of all, in many real-world scenarios, we cannot be sure that
the techniques used to repair the database are error-free. The chief disadvantage
about such approach is that the database must be modified. Second, the original
database is updated and the user loses track of which data elements represent
either repaired data or correct data. Third, another solution to the problem is to
repair the database by removing inconsistent data. Removing data is the easiest,
but generally not an acceptable solution. In many data warehouse environments,
the repair is done by adding rows to some dimension tables to make explicit that
the fact with an invalid foreign key exists in the database but the dimension
record is not available or undefined, thus leaving the database without referential
integrity errors. If a valid fact record has an invalid foreign key value, a record
in the associated dimension is created with a value of ‘undefined’, and during
the ETL process, the invalid foreign key value in the fact table is changed
to reference this record. In a data warehousing environment it is essential to
repair referential integrity errors as early as possible in the ETL process, as it
is recommended in [22]. Letting referential errors go undetected can lead to

2

expensive repair processes and queries producing incomplete answers. When
a data warehouse has many denormalized tables (materialized views) repairing
referential integrity can become prohibitively expensive. A common strategy
to repair the referential integrity errors is to substitute the invalid references
with a “valid one” that refers to a tuple in the dimension table that is marked
explicitly as undefined or not available (e.g. NA). This solution, although it
repairs the referential error, does not help much if the user wants to estimate or
bound particular aggregated groups of the answer sets of aggregate functions.

In this work we propose an innovative strategy in order to obtain improved
answer sets produced by queries posed over tables with records with undefined
references or with referential integrity errors that involve aggregation functions.
Instead of repairing (changing) the invalid values of a foreign key in the original
database, or returning “undefined” groups in the answer set by aggregating the
records in the fact tables with an “undefined” value in the aggregated foreign
key, we estimate and bound aggregation answer sets by using the most likely
values from the correct references. We introduce extended aggregate functions
computed over databases with undefined references or with referential integrity
errors. In contrast with the repair techniques mentioned above, we are not
interested in updating the database foreign key values by substituting invalid
specific data with valid data. Our interest is to define extended aggregate func-
tions that dynamically and efficiently determine the expected correct answer set
or determine the lower and upper bounds of the answer set of standard aggre-
gates computed over a joined table on foreign key-primary key attributes with
potential referential integrity violations or with undefined references. In this pa-
per we generalize and expand the ideas presented in [29] and [18]. Based on our
initial studies, we present a probabilistic interpretation of the extended aggre-
gate functions and show that these functions together with the standard SQL
grouped attribute aggregations computed over a joined table on foreign key-
primary key attributes with potential referential integrity violations are part of
a common probabilistic framework.

This is an outline of the rest of our article. Section 2 presents definitions
and motivating examples. Section 3 presents our main contributions. We ex-
plain how to compute aggregations in the presence of undefined references or
of referential integrity errors and we introduce several families of extended ag-
gregations. We show how we can implement our proposal in SQL. We show
how the extended aggregates may be improved in the presence of columns not
independent. Section 4 presents experiments with real and synthetic databases.
Section 5 discusses related research. Section 6 concludes the article.

2. Definitions

2.1. Referential Integrity
A relational database is denoted by D(R, I), where R is a set of N tables

R = {R1, R2, . . . , RN}, Ri is a set of tuples and I a set of referential integrity
constraints. A referential integrity constraint, belonging to I, between two

3

tables Ri and Rj is a statement of the form: Ri(K)→ Rj(K), where Ri is the
referencing table, Rj is the referenced table, K is a foreign key (FK) in Ri and
K is the primary key or a candidate key of Rj . In general, we refer to K as
the primary key of Rj . To simplify exposition, we assume simple primary and
foreign keys and the common attribute K has the same name on both tables Ri
and Rj .

Let ri ∈ Ri, then ri [K] is a restriction of ri to K. In a valid database
state with respect to I, the following two conditions hold for every referential
constraint: (1) Ri.K and Rj .K have the same domains. (2) for every tuple
ri ∈ Ri there must exist a tuple rj ∈ Rj such that ri [K] = rj [K]. The
primary key of a table (Rj .K in this case) is not allowed to have nulls. But
in general, for practical reasons the foreign key Ri.K is allowed to have nulls
when its value is not available at the time of insertion or when tuples from the
referenced table are deleted and foreign keys are nullified [15]. We refer to the
valid state just defined as a strict state. In a data warehouse environment, a
commonly used strategy to avoid joins that return answer sets with excluded
tuples is by inserting records into the dimension tables to explicitly indicate not
available or undefined references. When two tables are joined and aggregations
are computed, the tuples with an undefined foreign key value that reference the
undefined dimension tuple are aggregated in a group marked as undefined. Since
this strategy effectively discards potentially valuable information, we also define
a rigorous state. A rigorous state is a strict state where all the dimension tuples
are defined, as opposed to the undefined dimension tuples explained above.

Referential integrity can be relaxed. We assume the database may be in an
invalid state with respect to I. That is, some referential integrity constraints
may be violated in subsets of R. A database state where there exist referential
errors is called relaxed state. In a relaxed database Ri may contain tuples having
Ri.K values that do not exist in Rj .K.

2.2. Aggregations
Let Fagg(R.A) be a simplified notation to denote the answer set returned

by an aggregation, where agg() is an aggregate function and A is some attribute
in R to compute aggregations on, or equivalently in SQL

SELECT agg(R.A)
FROM R;

The value of this atomic table with one tuple and one attribute will be denoted
as agg(R.A) to make it compatible for arithmetic and logical expressions. The
aggregate function list over attribute A associated to the values of grouping
attribute B will be denoted as BFagg(R.A), or in SQL

SELECT agg(R.A)
FROM R
GROUP BY R.B;

4

Throughout the article, since there exist several different definitions for aggre-
gate functions [26] which have distinct semantics, when we refer to an aggregate
function agg(), it is taken from {count(*), count(), sum(), max() and min()}
based on the standard SQL definition [21].

Our proposal can be applied in any database. However, our examples refer
to an OLAP database. In this work, the following two tables will be used:

Ri(PK, . . . ,K, . . . A, . . .), Rj(K, . . .),

where Ri with primary key PK represents a referencing table playing the role
of the fact table and Rj represents a referenced table acting as the dimension
table. Attribute K is a foreign key in Ri and the primary key in Rj , A is a
measure attribute over which the aggregate function is applied.

We are particularly interested in computing aggregations over a joined table
on foreign key-primary key attributes, in this case over Ri onK Rj , with potential
referential integrity violations, or with undefined references created to preserve
referential integrity. That is, over relaxed or strict databases. We are motivated
by situations where the user is not interested in receiving an undefined group
in the answer set as explained above but interested in receiving an answer set a
rigorous database would provide.

Motivated by the fact that a null reference provides no information and the
on operator eliminates Ri tuples with a null on K, if Ri.K in the referencing
table is null in some tuple we may consider such tuple incorrect. However, for
the cases where foreign keys are allowed to have nulls, as happens especially
in data warehouses, less restrictive definitions are required that assume that
foreign keys are allowed to have nulls. To consider both scenarios, and in order
to simplify our exposition, throughout the article we will denote as R[K] the set
of values in πK(R) and may or may not include the null value depending on if
it is considered valid or not. When null in the foreign key is considered correct,
all the tuples with a null in its foreign key are treated as members of a single
group of tuples, the null group. Appropriate explanations will be given for each
case. We denote a generic null value by η.

Throughout the article, since we are assuming that the data warehouse user
is not interested in receiving an undefined group in the answer set of an aggrega-
tion over a joined table on foreign key-primary key attributes, Rj [K] will always
represent a view of the referenced tableRj that will exclude the records that have
undefined, not available or a similar description, Rj [K] = πK(σK 6=′NA′(Rj)),
causing the undefined values in Ri[K] to be discarded from the answer set.
These cases will be treated as if the foreign key values pointing the dimension
tuples explicitly marked as undefined were referential integrity errors.

With these ideas in mind, the answer set returned by an aggregation over a
joined table on foreign key-primary key attributes will be denoted as:
Fagg(Ri.A, ri[K] ∈ Rj [K]) or equivalently in SQL assuming η is invalid

SELECT agg(Ri.A)
FROM Ri JOIN Rj [K] ON Ri.K = Rj .K

5

where agg() is an aggregate function, as defined above. The corresponding
aggregate function list with grouping attribute K will be denoted as:
KFagg(Ri.A, ri [K] ∈ Rj [K]), written in SQL with the same assumption as
above as

SELECT agg(Ri.A)
FROM Ri JOIN Rj [K] ON Ri.K = Rj .K
GROUP BY Ri.K;

In formal terms the problem we are solving is the following. An inconsistency
may arise due to undefined references or referential integrity errors when group:

KFagg(Ri.A) 6= KFagg(Ri.A, ri[K] ∈ Rj [K]) (1)

and total aggregates:

Fagg(Ri.A) 6= Fagg(Ri.A, ri[K] ∈ Rj [K]) (2)

are computed over joined tables.
Finally, given k ∈ Rj [K], we will denote as agg(Ri.A, ri [K] = k) the value

of the aggregate function list KFagg(Ri.A, ri [K] ∈ Rj [K]) that corresponds
to the tuples where ri [K] = k. This is a convenient shorthand for the value
that corresponds to the answer set given by the following equivalent expression
written in SQL to highlight the selected group

SELECT agg(Ri.A)
FROM Ri JOIN Rj ON Ri.K = Rj .K
GROUP BY Ri.K
HAVING Ri.K = k;

Equivalent SQL expressions are given throughout our work since our pro-
posal was implemented and evaluated in SQL.

2.3. Motivating Examples
Our examples throughout the article are based on a chain of stores database

with three tables:
sales(storeId, cityId, regionId, amt,qtr., . . .)
city(cityId, cityName, country, . . .)
region(regionId, regionName, . . .)

which are the result of integrating two databases from two companies, X and
Y, that are in a process of database integration. X had store information or-
ganized by city and Y had it organized by region. Also, suppose that within a
region there are several cities. Tables from both databases share a common key,
storeId without conflicts. The integrated database in a relaxed state is shown in
Figure 1, where invalid references are highlighted, assuming that the null value
is invalid.

6

sales
storeId cityId regionId amt qtr . . .

1 LAX AM 54 1 . . .

2 LAX AM 64 2 . . .

3 MEX AM 48 1 . . .

4 NXX AM 33 2 . . .

5 η AM 65 3 . . .

6 ROM EU 53 1 . . .

7 ROM EU 58 2 . . .

8 MAD EU 39 1 . . .

city

cityId cityName country . . .

LAX Los Angeles US . . .

LON London UK . . .

MAD Madrid SP . . .

MEX Mexico MX . . .

ROM Rome IT . . .

region

regionId regionName . . .

EU Europe . . .

AM Americas . . .

Figure 1: A store database in a relaxed state with invalid foreign keys under-
lined.

sales
storeId cityId regionId amt qtr . . .

1 LAX AM 54 1 . . .

2 LAX AM 64 2 . . .

3 MEX AM 48 1 . . .

4 NA AM 33 2 . . .

5 NA AM 65 3 . . .

6 ROM EU 53 1 . . .

7 ROM EU 58 2 . . .

8 MAD EU 39 1 . . .

city

cityId cityName country . . .

LAX Los Angeles US . . .

LON London UK . . .

MAD Madrid SP . . .

MEX Mexico MX . . .

ROM Rome IT . . .

NA Not Available η . . .

region

regionId regionName . . .

EU Europe . . .

AM Americas . . .

Figure 2: The same store database shown in Figure 1 in a strict state, after an
ETL process, with the invalid references changed to point to a tuple explicitly
marked as undefined.

7

SELECT city.cityId, cityName,
sum(amt)
FROM sales JOIN city ON

sales.cityId=city.cityId
GROUP BY city.cityId, cityName
UNION
SELECT ‘-TOTAL’, ‘-’, sum(amt)
FROM sales

cityId cityName sum(amt)

LAX Los Angeles 118
MAD Madrid 39
MEX Mexico 48
ROM Rome 111
-TOTAL - 414

Figure 3: Inconsistent answer set (total is inconsistent).

SELECT sum(amt)
FROM sales JOIN city ON
sales.cityId=city.cityId

sum(amt)

316

Figure 4: Total sales from valid references (total is inconsistent).

Figure 2 shows a strict database with no referential integrity errors, which
is the same database as above but after an ETL process where the invalid
references NXX and η in table sales were changed to point to a new tuple in
table city with the following data: < NA,Not Available, η, . . . , >.

Example 1 Take the database in Figure 1. The attribute cityId in sales is a
foreign key. The referential integrity constraint, sales(cityId) → city(cityId),
should hold between the two tables. Now observe the query in Figure 3 computed
over this database. The unioned query computes the sales amounts grouped by
city.cityId, cityName and the total sales amount. But, as we can see from the
query in Figure 4, the answer set is inconsistent in a summarizable sense. That
is, let s ∈ sales:

Fsum(sales.amt) 6= Fsum(sales.amt, s[cityId] ∈ city[cityId]).

Their total sum of sales amount is different.
In this relaxed state the answer sets are inconsistent due to the existence of

referential integrity errors. The first unioned query gives grouped aggregates,
that considered as a whole, are inconsistent with respect to the total given by
the same query. The answer set represents the original database, but with the
tuples with referential integrity errors deleted. Invalid tuples are eliminated from
the aggregate function answer set. With a strict database obtained after fixing
the referential integrity errors with undefined references as the one in Figure
2, the answer set would contain a tuple with a group marked as Not Available.
Although the answer set would be consistent, no hint could we have about the
real aggregate values of the real cities. Now, assuming that there is a high

8

SELECT region.regionId,
regionName, sum(amt)
FROM sales JOIN region ON
sales.regionId=region.regionId

GROUP BY region.regionId,
regionName
UNION
SELECT ‘-TOTAL’, ‘-’, sum(amt)
FROM sales

regionId regionName sum(amt)

AM Americas 264

EU Europe 150

-TOTAL - 414

Figure 5: Total sales from all valid references on another FK (total is consistent).

probability that the tuples with invalid foreign keys, that is, invalid values in
attribute cityId, represent true facts, could we improve the aggregate answer set
grouped by city.cityId, cityName? Can we get an approximate answer set of the
true real values?

Example 2 Based on the database integrity constraints, the functional depen-
dency: sales.cityId→ sales.regionId, should hold. Suppose the information from
Y is more reliable than information from X. A query getting total sales by region
and total overall sales is shown in Figure 5. In this case, a summarizable con-
sistent answer set is obtained joining with the foreign key regionId, in contrast
to the inconsistency mentioned above in Example 1. If we know the functional
dependency sales.cityId → sales.regionId holds, could we obtain an improved
answer set when grouping by city.cityId, cityName in the presence of invalid or
undefined foreign key values? This will be a goal of our approach.

3. Aggregations in Databases with Referential Integrity Issues

In this section we will present our proposal. First we will provide some
preliminary definitions. Based on these definitions, we present our extended
aggregations in data warehouses with undefined references or databases with
referential integrity errors.

3.1. Preliminary Definitions
For the following definitions, consider a relaxed database where the referen-

tial integrity constraint Ri(K)→ Rj(K) could be violated or a strict database
where the referential integrity errors were repaired by adding a tuple in the
referenced table, explicitly marked as undefined, and setting the referential in-
tegrity errors of the referencing table to refer to this tuple. As stated in Section
2.2, we denote as Rj [K] the set of values in πK(Rj) excluding the records that
have undefined, not available or a similar description.

9

The following definition is in the spirit of the definition of partial probability
in [27]. A partial probability is a vector which associates a probability with
each possible value of a partial value. This last value corresponds to a subset of
elements of the domain of an attribute, and one and only one of the elements
of the subset is the true value of the partial value.

Definition 1 Referential partial probability (RPP) The RPP is a vector
of probabilities that corresponds to a foreign key, say Ri.K, where its proba-
bilities are associated to each defined value of the referenced primary key, say
Rj [K]. Each value corresponds to the probability that an invalid or an undefined
foreign key reference in Ri.K is actually the associated correct defined reference
in Rj [K]. Let k ∈ Rj [K], and p(k) ∈ RPP the associated probability. We say
that Rj .K is complete under the RPP if∑

k∈Rj [K]

p(k) = 1 (3)

The idea behind the RPPs is to associate to each referenced, defined primary
key value a probability. Each probability corresponds to the probability that
the associated value be the correct reference in a tuple with an invalid or an
undefined value in the corresponding foreign key. Notice that for each refer-
enced key, a set of RPPs may be defined, one or more for each foreign key that
references it. Users with good database knowledge may assign these probabili-
ties. Depending on the probabilities the user assigns to the defined foreign key
values, different RPPs under which completeness may be satisfied (Equation 3)
can be defined. If the probability values are associated to a discrete probabil-
ity distribution we can have a uniform or Zipf or geometric or, in general, any
probability distribution function RPPs. For example, if all the valid, defined
foreign key values were equally probable, a uniform RPP would be defined. An-
other special case could be a skewed probability distribution function where the
user may want to assign probability one to a specific valid reference and zero
to all others. Nevertheless, a feasible way to assign these probabilities when
computing our proposed aggregate functions is following the intuition that a
high probability will correspond to a high frequency in the foreign key and a
low probability corresponds to a low frequency.

Definition 2 Frequency weighted RPP Let k ∈ Rj [K] and
n = | { ri ∈ Ri | ri[K] ∈ Rj [K] } |, the number of tuples with a valid, defined
reference in ri[K]. We define p(k) as

p(k) =

|σK=k(Ri)|

n if n 6= 0

1
| Rj [K] | otherwise

We are assuming a uniform probability distribution function if there are only
undefined or invalid values in Ri.K, since we do not have more information.

10

Thus defined then Rj .K is complete under the Frequency weighted RPP.

Example 3 Consider the relaxed database of Figure 1 or the strict database of
Figure 2. The Frequency weighted RPP that corresponds to sales.cityId consid-
ering the defined values of the referenced primary key city.cityId,
〈LAX,MEX,ROM,MAD,LON 〉, is

〈2
6
,

1
6
,

2
6
,

1
6
, 0〉

Here, we are assuming η is an invalid value. If this were not the case, the
Frequency weighted RPP that would correspond to the correct values taking η
as valid, that is, for 〈LAX,MEX,ROM,MAD,LON, η 〉 the Frequency weighted
RPP would be

〈2
7
,

1
7
,

2
7
,

1
7
, 0,

1
7
〉

Notice in Figure 2 that if we assume η is a valid value, the ETL process
would leave η in attribute sales.cityId in tuple 5.

We can design RPPs that fail to meet completeness. Two special RPPs
where completeness may not be satisfied are the following: For the next two
definitions, let k ∈ Rj [K]

Definition 3 Full RPP Define p(k) as p(k) = 1.

Definition 4 Restricted RPP Define p(k) as p(k) = 0.

With the Full RPP we associate to each defined, correct reference probability
1, meaning that every undefined or invalid reference of the foreign key is in fact
the associated valid value. On the other hand, with the Restricted RPP we
associate probability 0 instead.

Definition 5 Referentiality (REF) Let ri ∈ Ri and k ∈ Rj [K], a defined
reference, we define the referentiality of a foreign key value ri[K] with respect
to k, REF (ri[K], k), as follows:

REF (ri[K], k) =

1 if ri[K] = k

0 if ri[K] 6= k and ri[K] ∈ Rj [K]
p(k) if ri[K] /∈ Rj [K]

where the probability p(k) corresponds to a given RPP.

Intuitively, REF(ri[K],k) is the degree to which a foreign key value ri[K] in
a tuple ri ∈ Ri refers to a correct reference k ∈ Rj [K].

11

Table 1: Extended aggregates according to different RPPs (Definition 1).

Name abrev. prefix RPP

Weighted referential WR w any RPP under which
completeness is satisfied

Frequency weighted referential FWR fw Frequency weighted

Full referential FR f Full

Restricted referential RR r Restricted

3.2. Extended Aggregate Function Definitions
For the following definitions, consider a relaxed database where the referen-

tial integrity constraint Ri(K)→ Rj(K) could be violated or a strict database
with undefined references as described in Section 2.1. Let ri ∈ Ri and k ∈ Rj [K]
be a defined correct reference value. Our extendend aggregate functions com-
puted over relaxed databases with referential integrity errors or strict databases
with undefined references will be defined under a given RPP as follows:

x count(Ri.PK, ri [K] = k) =
∑
ri∈Ri

REF (ri [K] , k) (4)

x count(Ri.A, ri [K] = k) =
∑
ri∈Ri

REF (ri [K] , k) (5)

x sum(Ri.A, ri [K] = k) =
∑
ri∈Ri

ri [A] ∗REF (ri [K] , k) (6)

In Equations 5 and 6, we are assuming the tuples with η in ri[A] are ignored.
For the x sum() aggregates, we are assuming also, as in many OLAP scenarios
(e.g. Example 1), that the ri[A] values, when different from zero, are always
positive or negative. The specific name and meaning of the extended aggregate
is obtained by changing prefix x and using the corresponding RPP, according
to Table 1.

Equation 4 corresponds to count(*). When η is assumed to be an invalid
reference, the RR extended aggregates correspond to the standard SQL aggrega-
tions computed over a joined table on foreign key-primary key attributes, with
potential referential integrity violations.

Example 4 Consider the relaxed database of Figure 1 or the strict database of
Figure 2. Let s ∈ sales. The referentiality of the values in sales.cityId with
respect to k ∈ city[cityId] that corresponds to each of the tuples with defined
references is shown in Table 2.

The referentiality of the same foreign key that corresponds to the tuples with
invalid or undefined references using different RPPs is shown in Table 3.

Next we show how to compute the different extended aggregates that corre-
spond to the aggregate sum() using the corresponding RPP shown in Table 3.

12

Table 2: Referentialities (Definition 5) of foreign key sales.cityId values in valid
tuples. Let s ∈ sales and k ∈ city[cityId]

REF (s [cityId] , k) LAX LON MAD MEX ROM

< 1,LAX,. . . , 54,. . .> 1 0 0 0 0
< 2,LAX,. . . , 64,. . .> 1 0 0 0 0
< 3,MEX,. . . , 48,. . .> 0 0 0 1 0
< 6,ROM,. . . , 53,. . .> 0 0 0 0 1
< 7,ROM,. . . , 58,. . .> 0 0 0 0 1
< 8,MAD,. . . , 39,. . .> 0 0 1 0 0

Table 3: Referentialities (Definition 5) of foreign key sales.cityId values in tuples
with invalid or undefined references (see Figures 1 and 2) with different RPPs
(Definition 1). Let s ∈ sales and k ∈ city[cityId]..

REF (s [cityId] , k) LAX LON MAD MEX ROM

RPP
Frequency weighted 2/6 0 1/6 1/6 2/6
Full 1 1 1 1 1
Restricted 0 0 0 0 0
Uniform 1/5 1/5 1/5 1/5 1/5
User-defined (Constant) 0 0 0 1 0

Frequency weighted referential:

fw sum(sales.amt, s [cityId] = LAX) =

1× 54 + 1× 64 + 0× 48 + 2/6× 33 + 2/6× 65 + 0× 53 + 0× 58 + 0× 39 = 150.66

Figure 6 shows the origin of each equation element and the RPP involved.

Full referential: f sum(sales.amt, s [cityId] = LAX) = 216.00
Restricted referential: r sum(sales.amt, s [cityId] = LAX) = 118.00
Weighted referential: w sum(sales.amt, s [cityId] = LAX) = 137.60
The last expression computed with the Uniform RPP.

Aggregates for max() and min() can be defined also under our framework.
The FR and RR variants are defined as follows

x max(Ri.A, ri [K] = k)
= MAX({ri [A] ∗REF (ri [K] , k) | ri ∈ Ri})

(7)

x min(Ri.A, ri [K] = k)
= MIN({ri [A] ∗REF (ri [K] , k) | ri ∈ Ri})

(8)

In order to compute the WR and, specifically, the FWR variants, we need

13

Figure 6: Computation of aggregate fw sum(sales.amt, s[cityId] = LAX).

to compute the average of the maximum/minimum of the ri [A] values in Ri
of each of the possible ways the defined reference k may be present in the set
of tuples with an invalid or undefined reference in foreign key Ri.K. Let Ei
be this set and e its size. That is, Ei = {ri|ri ∈ Ri ∧ ri[K] /∈ Rj [K]} and
e = |Ei|. The value that better fits our assumptions as the number of possible
ways a given defined foreign key value k may be present in Ei is

(
e
m

)
, where

m = dp(k)∗ ee, assuming there are tuples with an invalid or undefined reference
in Ri.K and p(k) > 0. The referentialities of the invalid or undefined references
are used here to determine the average a defined reference may be present in Ei.
To determine the ways the ri[A] values in Ei may be present in this average and
obtain the average of the maximum/minimum of ri[A] of all the Ri instances,
for a certain defined value k, we procede as follows. Let (ae) be the sequence
of all the ri[A] values in Ei and, in the case of the w max() functions, the items
of (ae) ordered in descending order. If {ri | ri ∈ Ri ∧ ri[K] = k} 6= φ, in
this sequence, the ri[A] values that meet the condition ri[A] < amax, where
amax = MAX({ri[A] | ri ∈ Ri ∧ ri[K] = k}), are then substituted by amax.
Due to these substitutions, we may have a different sequence for each k value.
Notice also that these sequences may have repeated values.

With these definitions we have

w max(Ri.A, ri [K] = k) =

MAX({ri[A] | ri ∈ Ri}) if e = 0

Pe−m+1
i=1 ai∗(e−i

m−1)
(e

m) otherwise

(9)

Intuitively, (ae) has the maximum values of ri[A] of the ri tuples with a

14

defined reference k in ri[K] of all the
(
e
m

)
instances of Ri where the defined

reference k may be present in Ei, ordered in descending order. Thus defined,
a1 will be the maximum of ri[A] in

(
e−1
m−1

)
instances, a2 in

(
e−2
m−1

)
, and so on, up

to complete the
(
e
m

)
instances.

The w min() functions are defined accordingly, taking sequence (ae) in as-
cending order and substituting amin = MIN({ri[A] | ri ∈ Ri ∧ ri[K] ∈ Rj [K]})
instead of amax when ri[A] > amin.

Example 5 Consider the relaxed database of Figure 1 or the strict database of
Figure 2. Let s ∈ sales. To compute fw max(sales.amt, s[cityId] = LAX) we
procede as follows. The number of tuples with an invalid or undefined value in
foreign key sales.cityId is e = 2. The number of tuples that best fit the average
of tuples value LAX may be present in these tuples is dp(k) ∗ ee = d(2/6) ∗ 2e =
1 considering the frequency weighted RPP. The s[amt] values of the invalid
or undefined tuples are 65 and 33, and the maximum value of s[amt] in the
valid tuples where s[cityId] = LAX is 64. Then (ae) = (65, 64). According to
Equation 9 we have

fw max(sales.amt, s[cityId] = LAX) =
65 ∗ 1 + 64 ∗ 1

2
= 64.5

As for the definitions of the total aggregates, that is, the value of Fx agg(),
using the simplified notation defined in Section 2.2, we have the following:

x count(Ri.PK) =
∑

k∈Rj [K]

x count(Ri.PK, ri [K] = k) (10)

x count(Ri.A) =
∑

k∈Rj [K]

x count(Ri.A, ri [K] = k) (11)

x sum(Ri.A) =
∑

k∈Rj [K]

x sum(Ri.A, ri [K] = k) (12)

x max(Ri.A) = MAX({ri[A] | ri ∈ Ri}) (13)

x min(Ri.A) = MIN({ri[A] | ri ∈ Ri}) (14)

3.3. Function Properties
Our extended aggregate functions must fulfill certain properties to be con-

sidered clean extensions of their counterparts in standard SQL.
Ascending/Descending, An ascending feature as defined in [23] holds for the

aggregate functions x count(*), x count() and x max(). That is, in our context,
as tuples are inserted or deleted, the aggregate functions may increase (i.e.
ascending) or decrease (i.e. descending). For x sum() aggregate functions, there
are cases where inserting or deleting tuples implies an increasing or decreasing
aggregate as in many OLAP scenarios (e.g. Example 1), where the measure
attribute, when different from zero, is always positive or negative. In these
cases the aggregate functions x sum() fulfill an ascending or descending feature.

15

Functions x min() fulfill a descending feature. That is, inserting/deleting tuples
may imply a decreasing/increasing aggregate respectively.

Proposition 1 The extended aggregates x count(*), x count() and x max() are
ascending aggregates. If ∀ri ∈ Ri, ri[A] ≥ 0 then the x sum() functions are
ascending aggregates.

Proof. Since by definition REF (ri[K], k) ≥ 0, Definition 5, following the
definitions of the extended aggregates x count(*), x count() and x sum() and
the FR and RR variants of the x max() aggregate functions, Equations 4 to
7, we can see that inserting or deleting a tuple in Ri increases or decreases,
respectively, the aggregates, no matter if the tuple has a defined, undefined or
invalid reference in ri[K]. As for the WR and FWR variants of the x max(),
Equation 9, aggregates, by the definition of the sequence (ae), in the case a
tuple is inserted, the aggregate will only possibly increase when the inserted
tuple meets the condition ri[A] > amax, no matter if it has a defined, undefined
or invalid reference in ri[K]. Deleting a tuple will only possibly decrease the
aggregate since, at most, an item of (ae) could decrease or could be eliminated.
�

Equivalently, for x min() and for x sum() with negative values in the measure
attribute, we have the following:

Proposition 2 The extended aggregates x min() are descending aggregates. If
∀ri ∈ Ri, ri[A] ≤ 0 then the x sum() functions are descending aggregates.

Safety. If our extended aggregations are used in a rigorous database as
defined in Section 2.1 a safety feature holds meaning that the answer sets will not
be different compared to the ones from the standard SQL joined aggregations,
that is, the SQL grouped attribute aggregations computed over a joined table
on foreign key-primary key attributes. Here, we assume η is invalid.

Proposition 3 If ∀ri ∈ Ri, ri[K] ∈ Rj [K] then Fx agg() = Fagg().

Proof. This is easily seen observing that if there are no tuples with an
invalid or undefined value in foreign key Ri.K, ∀ri ∈ Ri, ri[K] ∈ Rj [K], then,
by Definition 5 we have REF (ri[K], k) = 1, if ri[K] = k or 0 otherwise, which,
in turn means, by the definitions of our extended aggregates, that the tuples
that account for a given extended aggregate are the tuples where ri[K] = k, k ∈
Rj [K] where, in this context, Rj [K] = πK(Rj) since η is invalid. This is precisely
the semantics of the SQL grouped attribute aggregations computed over a joined
table on foreign key-primary key attributes [21].
�

Summarizable consistency. For the WR and FWR count(*), count() and
sum() aggregate functions, a summarizable consistency property holds. That
is, these distributive aggregate functions applied to an attribute is equal to a
function applied to aggregates, that, in turn, are generated by the original ag-
gregate function applied over the attribute of each partition of the table. This

16

property corresponds to the summarizability feature described in [25]. That
is, a distributive function over a set should preserve the results over the sub-
sets of its partitions. We will prove summarizable consistency for aggregate
w count(Ri.PK) (w count(*)). The proof is similar for the other WR and FWR
aggregates and is based on the definition of referentiality, Definition 5, and the
completeness property under an RPP of these type of aggregates, Equation 3.

Proposition 4 Let ri ∈ Ri and attribute PK its primary key. Then

w count(Ri.PK) =
∑

k∈Rj [K]

w count(Ri.PK, ri [K] = k) = | Ri |

Proof. By Definition 4 we have∑
k∈Rj [K]

w count(Ri.PK, ri [K] = k) =
∑

k∈Rj [K]

(
∑
ri∈Ri

REF (ri[K], k))

=
∑

k∈Rj [K]

(∑
{ri|ri[K]∈Rj [K]}

REF (ri[K], k) +
∑

{ri|ri[K]/∈Rj [K]}

REF (ri[K], k)
)

=
∑

k∈Rj [K]

(∑
{ri|ri[K]∈Rj [K]}

REF (ri[K], k)
)
+

∑
k∈Rj [K]

(∑
{ri|ri[K]/∈Rj [K]}

REF (ri[K], k)
)

Using Definition 5 where ri[K] 6= k and ri[K] ∈ Rj [K] we have

=
∑

k∈Rj [K]

(∑
{ri|ri[K]=k}

REF (ri[K], k)
)
+

∑
k∈Rj [K]

(∑
{ri|ri[K]/∈Rj [K]}

REF (ri[K], k)
)

Using Definition 5 where ri[K] = k we have

= |{ri|ri[K] ∈ Rj [K]}|+
∑

k∈Rj [K]

(∑
{ri|ri[K]/∈Rj [K]}

REF (ri[K], k)
)

Using Definition 5 where ri[K] 6= Rj [K] we have

= |{ri|ri[K] ∈ Rj [K]}|+
∑

k∈Rj [K]

(
p(k) ∗ |{ri|ri[K] /∈ Rj [K]}|

)
Since the RPP of the WR aggregate functions meets the completeness property
we have

= |{ri|ri[K] ∈ Rj [K]}|+ |{ri|ri[K] /∈ Rj [K]}| = |Ri| (15)

�
Summarizable consistency for w sum(Ri.A) can be formulated as

w sum(Ri.A) =
∑

k∈Rj [K]

w sum(Ri.A, ri [K] = k) =
∑
ri∈Ri

Ri.A

17

WR and FWR count(*), count(), sum(), max() and min() total aggregates are
invariant with respect to rigorous referential integrity repairs. In our context,
a tuple with an invalid or undefined foreign key is rigorously repaired with
respect to referential integrity by the substitution of its foreign key value with
a defined reference. As the rigorous referential integrity repairs take place, the
total aggregate remains invariant with respect to rigorous referential integrity
repairs. That is, the total aggregate remains constant during this type of repair
processes. It is easy to see that, for example, for the w count(*) aggregate, by
Equation 15 in Proposition 4, all the tuples, with or without a defined reference,
participate in the total aggregate and since rigorously repairing a tuple, in our
context, is equivalent to transfer a tuple from set {ri|ri ∈ Ri∧ri[K] /∈ Rj [K]} to
set {ri|ri ∈ Ri∧ri[K] ∈ Rj [K]}, the total remains invariant. A similar reasoning
can be applied to the other aggregates. This result is also a consequence of
the completeness property (Equation 3) under an RPP of the WR and FWR
aggregates. As for the x max() and x min() aggregates, it is easily seen from
Equations 13 and 14, that the total aggregates do not depend on the value of
the foreign key.

The elements of the aggregate lists of the RR and FR extended aggregates
are plausible. A plausibleness property means that the answer set represents
a potential repair of the table. For the FR aggregates, the repair consists in
assigning to all the undefined or invalid references, the defined reference we are
considering. For the RR aggregates, this repair consists in never updating the
undefined or invalid reference with the defined value we are considering.

3.4. SQL Implementation of Extended Aggregations
In Figure 7 we show a query in SQL over the database in Figure 1, call-

ing sum() and fw sum() grouped by city.cityId, cityName, lines 2 to 5, and
the equivalent SQL expressions obtaining the same answer set, assuming there
exists at least one defined reference in foreign key cityId, lines 7 to 26. The
corresponding query for database in Figure 2 could be computed with a view of
table city excluding the tuple marked as undefined.

We first compute a temporal table named fw temp, lines 7 to 14, with five
attributes:

• the values of the attribute cityName, renamed as C, from the referenced
table that correspond to the primary key city.cityId values referenced by
the foreign key sales.cityId;

• the foreign key sales.cityId valid values taken from city.cityId, renamed
as K;

• the number of tuples with a given value in the foreign key sales.cityId,
rfreq;

• the number of rows that have a value different from null in a given at-
tribute, to compute aggregate function count(), is computed from the tu-
ples with a value different from null in sales.cityId, freq;

18

1: /* SQL query calling extended aggregation */
2: SELECT city.cityId, cityName, sum(amt), fw sum(amt)
3: FROM city JOIN sales
4: ON sales.cityId = city.cityId
5: GROUP BY city.cityId, cityName;

6: /* SQL statements evaluating extended aggregation */
7: CREATE TABLE fw temp AS
8: SELECT city.cityId AS K, cityName AS C,
9: count(*) AS rfreq,
10: count(sales.cityId) AS freq,
11: sum(sales.amt) AS sumagg
12: FROM city RIGHT OUTER JOIN sales
13: ON sales.cityId = city.cityId
14: GROUP BY K, C;

15: SELECT K as cityId, C AS cityName,sumagg AS sum,
16: /* sum(Ri.A, ri [K] = k) */
17: (sumagg + (
18: /* sum(Ri.A, ri [K] /∈ Rj [K]) */
19: COALESCE ((SELECT sumagg FROM fw temp WHERE K IS NULL),0)*
20: /* p(k) */
21: (rfreq/
22: (SELECT sum(rfreq) FROM fw temp
23: WHERE K IS NOT NULL)))
24:) AS fw sum
25: FROM fw temp
26: WHERE K IS NOT NULL;

Figure 7: Query calling fw sum() and SQL statements evaluating the extended
aggregation.

19

• finally, the sum() of attribute sales.amt for each group, as sumagg.

For this implementation we use an alternative way to express fw sum(Ri.A, ri[K] =
k). Using Equation 6 and Definition 5 we have:

fw sum(Ri.A, ri[K] = k)
= sum(Ri.A, ri[K] = k) + sum(Ri.A, ri[K] /∈ Rj [K]) ∗ p(k)

It is easy to see that both fw count() variants, Equations 4 and 5, have similar
alternative expressions. To simplify exposition, η is considered an invalid ref-
erence. By computing a RIGHT OUTER JOIN and a GROUP BY in lines 12
and 14 respectively, if there are referential integrity errors, a row with a null
value in attributes K and C will be generated holding in attributes rfreq and
sumagg the number of rows with referential errors and the sum() of attribute
sales.amt of these rows respectively. In this same row, attribute freq will hold
the number of invalid values different from null. Notice that the cardinality
of table fw temp is the number of valid referenced values, plus one in case
there are referential integrity errors. The SELECT clause that follows, line 15,
computes the sum() and fw sum() for each value in the element list. We show
in lines 16, 18 and 20 the place where each element of the FWR aggregate is
computed. In line 17, for each tuple in the answer set, one for each valid ref-
erence, sumagg holds the sum() of attribute sales.amt of all the tuples of the
corresponding valid reference. Each one of these values is added to the sum() of
attribute sales.amt of all the tuples with an invalid reference, or zero if there
are no tuples with invalid values (COALESCE clause in line 19), multiplied by
the corresponding value in the frequency weighted RPP (dynamically computed
in lines 21 to 23). The additional overhead due to the computation of the FWR
aggregates comes from the sequential scan of table fw temp. To compute ag-
gregate functions fw count(*) or fw count() we only need to substitute attribute
sumagg with attributes rfreq or freq respectively in the appropriate places.

We were able to design a clean function invocation for the SQL implemen-
tation of the FWR aggregates since the frequency weighted RPP is computed
dynamically. For the other WR aggregates, the user is required to provide the
corresponding RPP. In Figure 8 we show an SQL implementation using table
fw temp which was computed in the past SQL example and a RPP, refpp,
with referenced and unreferenced foreign key valid values associated to a prob-
ability in the RPP. An additional overhead linear in the number of valid foreign
key values should be considered due to the statement in lines 2 to 8. Table
refpp has two fields: Kpp holds the referenced and unreferenced values and pp
holds their corresponding probability. The user has to be aware that for the
WR aggregates, if completeness is to be fulfilled (Equation 3), the probabilities
in the corresponding RPP must add to one. The SELECT statement in lines
10 to 16 covers the different cases in order to give a complete, summarizable
consistent answer set. In a related work, in [30] we studied the performance of
several techniques to compute by means of SQL clauses referential quality met-
rics. The SQL implementation presented above may be optimized with one of

20

1: /* SQL statement to get unreferenced keys */
2: CREATE TABLE w temp AS
3: SELECT * FROM
4: fw temp FULL OUTER JOIN
5: (SELECT Kpp, pp, city.cityName AS cc
6: FROM refpp JOIN city ON city.cityId = refpp.Kpp
7: WHERE refpp.pp > 0) AS foo
8: ON fw temp.K = foo.Kpp;

9: /* SQL statement to compute weighted referential aggregate */
10: SELECT COALESCE(K,Kpp) AS cityId, COALESCE(C,CC) AS cityName,
11: (COALESCE (sumagg,0) +
12: (COALESCE ((SELECT sumagg FROM w temp
13: WHERE K IS NULL AND Kpp IS NULL),0)*
14: (COALESCE(pp,0)))) AS wsum
15: FROM w temp
16: WHERE K IS NOT NULL OR Kpp IS NOT NULL;

Figure 8: SQL implementation of w sum() with a RPP in table refpp.

the techniques studied, namely the early foreign key grouping technique. This
technique evaluates a group-by clause by foreign keys before executing, in our
context, the RIGHT OUTER JOIN. The rationale behind this optimization is
in reducing the size of the referencing table before joining with the referenced
table. In Figure 7, to implement the mentioned technique, the code in lines 8 to
14, may be changed to the one presented in Figure 9. In Section 4 we present
several experiments concerning this optimization.

To compute aggregate function w max() we need to compute the maximum
of each group of tuples of each of the defined references in the referencing table,
determine sequence (ae) for each defined value and with the probability of each
value and the number of tuples with an undefined reference, according to Defi-
nition 9, compute each maximum. Function w min() is computed accordingly.

3.5. Extended Aggregates Computed on Tables with Columns not Independent
We can improve the estimated answer sets of our extended aggregations com-

puted over a joined table on foreign key-primary key attributes with potential
referential integrity violations or with undefined references, if we have another
foreign key or other attributes with values of higher quality in the same table
(e.g. a foreign key with less referential errors or undefined references). Consider
a table with foreign keys belonging to a set of attributes that are not mutu-
ally independent. This scenario is possible when two or more databases are
integrated and there are tables that share a common primary key. Functional
dependencies may be defined between sets of attributes involving foreign keys.
Although the database may not be in 3NF, remember we are assuming a relaxed

21

SELECT city.cityId AS K, cityName AS C,
sum(rfreq) AS rfreq, sum(freq) AS freq,
sum(sumagg) AS sumagg
FROM city RIGHT OUTER JOIN
(SELECT cityId AS K,

count(*) AS rfreq, count(sales.cityId) AS freq,
sum(sales.amt) as sumagg

FROM sales
GROUP BY cityId) as foo
ON foo.K = city.cityId
GROUP BY cityName, city.cityId;

Figure 9: Implementation of early foreign key grouping technique

database or a strict database with undefined references, and our goal now is to
keep all data, instead of repairing it. Suppose we have two foreign keys Ri.Ka

referencing Rja .Ka and Ri.Kb referencing Rjb .Kb, where Rja and Rjb are two
referenced tables, and an attribute Ri.A over which an aggregate function is
computed. In our running example city may stand for table Rja and region for
Rjb , the corresponding foreign keys are sales.cityId and sales.regionId respec-
tively. Also suppose the following functional dependency should hold between
both attributes: Ri.Ka → Ri.Kb. We can imagine this situation as if a set of
elements represented by values in attribute Ri.Ka, e.g. cities, should be con-
tained in an element represented by a value of Ri.Kb, e.g. a region. Now, both
foreign keys, Ri.Ka and Ri.Kb, may each have a RPP associated, say RPPa and
RPPb respectively. Let ri ∈ Ri where ri[Kb] = kb and kb ∈ Rjb [Kb]. Suppose
ri[Ka] /∈ Rja [Ka], that is, ri[Ka] is an invalid or an undefined reference. Since
Ri.Ka → Ri.Kb, the subset of defined references that may occur in ri[Ka], say
Skb

, is
{ka | ka ∈ Rja [Ka] ∧ p(ka|kb) > 0}

where p(ka|kb) is the conditional probability that the defined reference in ri[Ka]
is in fact ka given that ri[Kb] = kb. The conditional probability p(ka|kb) may
not be equal to p(ka) where p(ka) ∈ RPPa.

Based on definition of completeness of a referenced primary key under an
RPP, see Definition 1, we say a set of defined references, say Skb

, is complete
under the conditional probabilities of its elements given a value, say kb, if∑

k∈Skb

p(k|kb) = 1 (16)

Consider now the case where ri[Kb] /∈ Rjb [Kb] and ri[Ka], say ka, is an
element of Rja [Ka]. Then for only one defined value in Rjb [Kb], say kb, we have
p(kb|ka) = 1 and for the rest, the conditional probability is zero.

22

Example 6 Consider the relaxed database of Figure 1 or the strict database of
Figure 2. Observe the tuple with value 5 in sales.storeId. As discussed before,
the frequency weighted RPP may be used to compute our extended aggregates.
According to Example 3 and assuming η is invalid the frequency weighted RPP
is

〈2
6
,

1
6
,

2
6
,

1
6
, 0〉

Now, since the user trusts the foreign key sales.regionId, the “real” value of
the invalid or the undefined reference mentioned above is a city in the Americas
region. That is

SAM = {LAX,MEX}.

If we take the referencing relation as σregionId=′AM ′(sales) the frequency weighted
RPP that corresponds to foreign key cityId considering the values of the refer-
enced primary key city.cityId, 〈LAX,MEX,ROM,MAD,LON 〉, is

〈2
3
,

1
3
, 0, 0, 0〉

where the probabilities that correspond to LAX and MEX are the following con-
ditional probabilities

p(LAX | AM) =
2
3
, p(MEX | AM) =

1
3

considering there are three tuples that correspond to the Americas region.

To improve the estimated answer sets of our frequency weighted extended
aggregations we can procede as follows. Observe that the set of defined refer-
ences in Ri.Kb defines a partition of the corresponding set of defined references
in Ri.Ka. Assuming all the references in Ri.Kb are defined references, we can
define a partition of Ri using the values of attribute Ri.Kb and including the tu-
ples with an invalid or an undefined reference in Ri.Ka. We can use the tuples of
Ri with a defined reference in Ri.Ka to determine the conditional probabilities
as in Example 6. Several other cases have to be considered. For the partitions
with tuples with defined references in Ri.Kb but having only tuples with invalid
or undefined values in Ri.Ka, a discreate uniform probability distribution func-
tion is defined as in Definition 2 considering only the values in the referenced
table Rja that are not associated to a defined reference in Rjb . In our running
example, this could be the case of tuples with invalid or undefined references
in sales.cityId associated to defined regions that, in turn, are not associated
to any defined city. Using a uniform distribution, these tuples will account for
part of the corresponding aggregate of the cities that are not associated to any
region. Tuples with an invalid or undefined reference in both foreign keys Ri.Ka

and Ri.Kb will account for part of the corresponding aggregate of all the defined
references in Ri.Ka.

As for the tuples with a defined reference in Ri.Ka but with an invalid or

23

Table 4: Referential aggregate sum(), FWR and FWR improved with trusted
foreign key regionId. Frequency weighted RPP and conditional probabilities
are shown.

cityId cityName sum(amt) fw sum(amt) fw sum(amt) Freq. w. cond.
improved RPP prob.

LAX Los Angeles 118 150.6 183.3 0.33 0.66
MAD Madrid 39 55.3 39.0 0.17 -
MEX Mexico 48 64.3 80.6 0.17 0.33
ROM Rome 111 143.6 111.0 0.33 -
-TOTAL - 316 414.0 414.0 1.0 1.0

undefined reference in Ri.Kb, they may be treated as correct tuples by dynam-
ically repairing the tuple with the corresponding value of Ri.Kb obtained from
the paired values of the functional dependency assuming there is at least one
correct tuple with the defined reference in Ri.Kb for the corresponding defined
value in Ri.Ka. Otherwise, these tuples are treated as a separated partition.

In case there are violations to the functional dependency, in order to recon-
struct feasibly the functional dependency so we can apply the strategy explained
above, we can follow the intuition that a dependency violation appears with a
much less frequency than a correct functional dependency. On the other hand,
a pair of values of Ri.Ka and Ri.Kb that appear frequently associated in a
number of tuples may be considered as a correct pair of values according to the
functional dependency constraint. With these ideas in mind, we can reconstruct
the functional dependency by choosing for each correct reference ka in Ri.Ka

the correct reference kb in Ri.Kb to which ka is associated the most. Ties are
solved simply by choosing one value.

Take the databases of our running examples in Figure 1 and 2. We show
in Table 4 how the aggregation fw sum() may be improved by means of the
foreign key regionId.

Now, if the trusted foreign key is Ri.Ka, we proceed in a similar fashion. A
defined reference of foreign key Ka determines only one value of Kb. If a pair
of defined values ka, kb have not the maximum frequency, reference in attribute
Kb will be considered an invalid value.

3.6. Probabilistic Interpretation
In order to obtain a valid inference from our extended aggregate functions,

it is important that the user bears in mind the following assumptions. Notice
we are assuming that Rj .K is complete. That is, Rj [K], the set of referenced
defined values, are all the possible defined values. On the other hand, attribute
Ri.K is assumed to have potentially invalid references, undefined references
and/or the η value, that may be considered valid or not. In this work, the
computation of our aggregates is based on the imprecise nature given to the
undefined and invalid references. That is, the real defined value of this kind of

24

references is assumed to be an element of a set, the set of referenced defined val-
ues. Although we can design RPPs that fail to meet completeness (see Definition
1), the set of referenced defined values is assumed to be complete. Alternative
approaches, may consider Ri.K invalid references valid after all, assuming that
the error is due to an incomplete set of references in Rj [K].

Users may assign different RPPs, nevertheless, the Frequency weighted RPP
assumes that the probability that a certain defined value be the actual value
that should stand instead of the invalid or undefined value in a foreign key,
depends on the occurrence, frequency, of that same defined value in the given
foreign key. That is, the occurrence is not completely random, it depends on
the observed defined values. On the other hand, we are assuming also that the
occurrence of an invalid or undefined value does not depend on the invalid or
undefined values. As for the aggregate functions like sum() where the aggregate
function is applied over an attribute, we are assuming that the foreign key and
the invalid or undefined values are not related to the attribute in question. That
is, the values of the attribute do not depend on the values of the foreign key.

Now consider a set of binomial random variables each one of them repre-
sented by a potentially defined reference of a given foreign key Ri.K. Suppose
each random variable has, as its initial value, the number of tuples where the
value it represents is present in Ri.K. Next, given our assumptions, suppose
that each tuple of Ri with an invalid or undefined reference in attribute K is
an independent trial of a given random variable, say the one represented by the
potentially defined reference k ∈ Rj [K]. Let the probability of success of the
binomial random variable represented by k be the corresponding probability in
the RPP. A successfull trial, in this context, represents the fact that an invalid
or undefined reference is updated with value k. That is, it is rigorously repaired
with respect to referential integrity with value k.

Notice that if k ∈ Ri[K] (if η is valid, then it should be considered also)
then |{ri | ri ∈ Ri ∧ ri[K] = k}|, in our context, is the lower bound of the
corresponding binomial random variable. If k /∈ Ri[K], then the lower bound
is 0, that is, no tuples with the defined reference k in ri[K]. In both scenarios,
the lower bound represents the case where all the trials (tuples with referential
integrity errors or with undefined references) were unsuccessful. That is, the
case where the actual value of attribute Ri.K in the tuple with the invalid
or undefined foreign key is different from k. This number corresponds to the
correct tuples with ri[K] = k. The upper bound of this binomial random
variable represents the case that all the tuples with referential integrity errors
or undefined values were successful. That is, the case where all the actual values
of the invalid or undefined values of foreign key Ri.K are indeed k. We can see
then that for the random variables described above, if k ∈ Ri[K] the probability
is 0 that it takes a value lower than |{ri | ri ∈ Ri ∧ ri[K] = k}|, once the invalid
or undefined references are repaired and the probability is 1 that it has a value
lower or equal to |{ri | ri ∈ Ri ∧ ri[K] = k}|+ |{ri | ri ∈ Ri ∧ ri[K] /∈ Rj [K]}|
once the repair process takes place. If k /∈ Ri[K] the corresponding values are 0
and |{ri | ri ∈ Ri ∧ ri[K] /∈ Rj [K]}| respectively. Now observe we can compute
the expected value of the binomial random variable by adding to its initial value

25

the product between the number of independent trials (tuples with an invalid or
undefined reference) and its corresponding probability in the RPP. This value
represents the expected number of tuples in Ri that will eventually end with
value k in attribute K, assuming all the tuples with an invalid or undefined
reference were rigorously repaired with respect to referential integrity.

Following these ideas, we can see that the RR and FR variants of aggregates
x count(*), x count() and x sum() are the lower and upper bounds, respectively,
of the value the corresponding standard aggregate may take when the tuples
with an invalid or undefined reference are rigorously repaired with respect to
referential integrity. The WR and FWR are the expected value, again, of the
corresponding standard aggregates and its result depends on which RPP is
considered. This happens to be true also for the extended aggregates x max()
and x min(), where the RR and FR variants are the lower and upper bound
in the case of aggregates x max() and vice versa in the case of x min(). As for
the WR and FWR variants, assuming

(
e
m

)
, (Section 3.2), is the total of all the

possible ways a defined reference k may be present in the set of tuples with an
invalid or undefined reference, where e = |{ri|ri ∈ Ri ∧ ri[K] /∈ Rj [K]}| and
m = dp(k)∗ ee, assuming there are tuples with an invalid or undefined reference
then, the meaning of Equation 9 in this context is also, as the other WR and
FWR aggregates, the expected value of the corresponding standard aggregate.

3.7. Discussion
In order to evaluate the usefulness of the answer sets delivered by the WR

and the FR aggregations, the following important aspect has to be discussed:
How hard is it to compute all the plausible answer sets of the aggregate func-
tions, how many are there and does a repair process eventually give the answer
set delivered by the weighted referential aggregations? We discuss these issues
below.

As in Section 3.2, let e be the number of tuples with an invalid or undefined
reference in foreign key Ri.K, that is, e = |{ri|ri ∈ Ri ∧ ri[K] /∈ Rj [K]}|.
Also, based on the definition of a rigorous referential integrity repair of a tuple
with an invalid or undefined foreign key, defined in Section 3.3, let a rigorous
referential integrity repair of attribute Ri.K be a new instance of Ri, with the
same number of tuples, but with the invalid or undefined values of foreign key K
replaced with defined values taken from the set of values of Rj [K]. The number
of potential referential integrity repairs of attribute Ri.K is (| Rj [K] |)e. For our
running examples, either Figure 1 or 2, there are 25 potential rigorous referential
integrity repairs of attribute sales.cityId which is a big number considering
there are only 2 tuples with invalid or undefined foreign key values. As for the
number of plausible values of a given group, assuming a rigorous repair process
of a foreign key could have taken place, given the interpretation just discussed we
can see that for the aggregate function count() there are e+ 1 or less plausible
answers and 2e at most for the aggregate function sum(). For our examples,
take the group represented by the value LAX. The plausible answers for the
aggregate function count() for the group represented by value LAX are {2, 3, 4}
since there are 2 invalid/undefined references. The aggregation fw count() gives

26

us 2.6 for value LAX since there are 2 valid tuples with this value, the total
number of errors is 2 and, as we saw in Example 3, the probability of value
LAX in the corresponding RPP is 2/6, considering η as an invalid reference.
If we compute the probabilities of each of the plausible answers considering
the RPP of the same example we have {(2, 0.44), (3, 0.44), (4, 0.11)}, where the
first number of each pair is the plausible answer and the second its probability.
The cumulative probability of the plausible answer 3 is 0.88 with the plausible
answers sorted in ascending order, meaning that the probability is 0.88 that
the answer be 3 or less once a rigorous repair process of foreign key sales.cityId
takes place.

In the same way, for the aggregate function sum() the plausible answers for
value LAX and their corresponding probabilities considering the same RPP
as above, are {(118, 0.44), (151, 0.22), (183, 0.22), (216, 0.11))}. The cumulative
probability of the plausible answer 151 is 0.66 with the plausible answers sorted
on ascending order. As we can see from Example 4 the corresponding value of
the fw sum() for value LAX, Los Angeles, is 150.66. Bear in mind also that our
method considers that if there are functional dependencies defined where trusted
attributes are involved, like in Example 6 foreign key regionId, these functional
dependencies may be used to reduce the number of potential referential integrity
repairs, refining this way the answer sets of our extended aggregates.

We can see then that the proposed aggregations are a very efficient way
to compute the estimated answer sets and the upper and lower bounds of the
corresponding aggregate functions, although we do not pretend to give an exact
result of a rigorous repair process.

4. Experimental Evaluation

We used two real databases and a synthetic database, generated with the
TPC-H DBGEN program [34]. For each specific case we report the relational
DBMS used. We used standard SQL (ANSI) in our implementation, making it
portable in each relational DBMS.

4.1. Real Databases
4.1.1. Government Organization

We present our extended aggregates on a database from a government or-
ganization responsible of supervising education services in a state in Mexico
(state name omitted due to privacy restrictions). It includes records of 1.7 M
enrolled students in 16,000 public and private schools. Evaluation of extended
aggregations was carried out on the DBMS Oracle 9i.

The government organization supervises the preschool, elementary and mid-
dle school systems. It verifies that certain minimum services are provided such
as student evaluations every two months, scholarships, scholastic breakfasts and
others.

Every annual cycle each school sends information to a centralized database
about its enrolled student population, and every two months sends information

27

about its active student population. Nevertheless, more than 30% of the regis-
tered schools are not connected to the database. These schools represent about
10% of all the student population, but are the schools with the lowest budget.
It has been detected that the records that come from these schools have a high
incidence of referential integrity errors mostly due to typo errors in the fields
of studentId and schoolId, that is, the foreign keys that reference the tables of
the enrolled student population and the registered schools, respectively. Before
using extended aggregates, the government organization discarded entirely the
tuples with referential errors losing valuable data.

Several assumptions about the database were discussed and were validated
by the user in order to obtain valid inferences from the extended aggregates:

• the number of erroneous tuples was proportional to the number of records
sent by a given school

• a tuple with an erroneous foreign key in the schoolId field came from a
school that was not connected to the database

• a referential integrity error did not depend on the particular type of entity
that the corresponding tuple came from

• when computing aggregate functions where an attribute is aggregated (e.g.
sum()), this attribute did not depend on the foreign key (e.g. the amount
received per student did not depend on the studentId since all students
receive monthly the same amount)

Our extended aggregations have been used to answer queries related to infor-
mation about how many services and of what type a student or a school have
received. By identifying the schools that potentially can send data with ref-
erential integrity errors, our method to improve our FWR aggregations, refer
to Section 3.5, is being used to obtain better estimations in this set of schools.
When the number of referential integrity errors is low, the FR aggregates are
used to estimate upper bounds in sums and counts. Results were discussed with
the Information Technology manager, a database developer and two users. The
IT manager was relief of having an alternative method to respond to the users
while he had a solution that had to do with altering the database to correct
the referential integrity problems. The database developer was surprise of how
quickly this alternative solution was implemented. Users have told us that the
computed estimates are useful. Also, they have validated the accuracy of the
estimates, since the invalid tuples are fixed during a parallel data cleaning ef-
fort. This experience also shows how our techniques can be combined with other
strategies.

4.1.2. Retail Company
An important retail company in Mexico listing on the stock market for more

than 25 years tried our extended aggregates in one of its applications to assess
the usefulness of our approach. Our aggregates were used in a reward program

28

Table 5: Transaction detail in a given point of sale (POS).

date store POS transId cli- agentId prod- amt sellerId
entId uctId

02/23/07 213 5 1276 44...47 14545779 14...14 $22, 347.83 73...03
02/23/07 213 5 1277 44...47 14...21 $16, 086.96 73...03
02/23/07 213 5 1278 15...77 12017425 14...77 $1, 477.39 73...03
02/23/07 213 5 1279 21...30 12017378 14...84 $2, 826.09 73...03
02/23/07 213 5 1280 21...30 14...25 $773.91 73...03
02/23/07 213 5 1281 43...40 14...18 $513.04 73...03
02/23/07 213 5 1282 23...48 14...84 $4, 513.04 73...03

Table 6: Total commission per agent

concept amt
Total sales amt. $1′654, 404
Total sales amt. $110, 001

without agent
Commission paid $154, 440
Bonus paid $11, 000

applied to agents. The agents are advisers working in specialized departments
that participate in sales and they earn commissions based on sales depending on
the number of sales and the total amount sold of their corresponding products.
In every point of sale, a seller registers the information related to a sale including
the agent’s code, but in several occasions this code is omitted or is erroneous,
since this particular data is manually inputted. The company has separated file
systems in several stores nationwide and the information is daily concentrated
in a central Oracle database. In this centralized database, about 7% of the total
number of sales that should appear with an agent’s code, have an invalid value
in this field. Table 5 shows several registers of how the information is received,
some of them with no information in the agent’s code field, agentId.

Several assumptions about the database were discussed and were validated
by the user in order to obtain valid inferences from the extended aggregates, for
example: a referential integrity error did not depend on the particular type of
transaction nor on the attribute that was aggregated.

The commission is paid after a given time to avoid paying an agent when
a product is returned. A bonus is added to compensate the sales that were
inputted without a valid value in agentId. This bonus is computed using the
fw sum() aggregate considering the total amount of sales without an agent code
and taking into account the total number of sales where an agent took part.
Tables 6 and 7 show the amount of sales per agent, the commission earned and
the bonus computed using fw sum().

4.2. TPC-H Database
Our synthetic databases were generated by the TPC-H DBGEN program

[34], with scaling factors 1 and 2. We did not define any referential integrity

29

Table 7: Agent bonus computed using fw sum()

date agentId amt. comm. sales bonus
02/23/07 45779 $282, 231 $28, 223 12 $1, 760
02/23/07 17425 $438, 111 $43, 811 13 $1, 906
02/23/07 17378 $138, 168 $138, 16 9 $1, 320
03/14/07 84536 $333, 949 $33, 394 17 $2, 493
03/14/07 13754 $171, 440 $17, 144 14 $2, 053
03/14/07 17033 $180, 504 $18, 050 10 $1, 466

Table 8: PDFs used to insert invalid values.

PDF Probability function Parameters
Uniform 1

h h = |Rj |
Zipf 1/ks

HM,s
M = |Rj |
s = 1

Geometric (1− p)n−1p p = 1/2

constraint to allow referential errors. We inserted referential integrity errors in
the referencing table (lineitem) with different rates of errors (0.1%, 0.2%,. . . ,
1%, 2%,. . . , 10%). The invalid values were inserted following several different
probability distribution functions (pdfs) including uniform, Zipf and geometric,
and in two foreign keys (l orderkey, and l suppkey).

The results we present in this section, use a default TPC-H scale factor 1.
The referencing table, lineitem and the referenced tables, orders and supplier,
have the following cardinalities: 6M, 1.5M and 10k tuples, respectively. The
invalid values were randomly inserted according to three different pdfs, that
follow the parameters shown in Table 8, where Rj stands for the referenced
table. To evaluate the time performance of the most demanding computation
of our extended aggregation, that is, the computation of the auxiliary table
fw temp in Figure 7, we used as referencing table lineitem and as referenced
tables orders, supplier and part. The latter table with 200k registers. The
evaluation was done with and without using the optimization technique named
early foreign key grouping (see Section 3.4).

4.3. Approximation Accuracy
In order to evaluate the approximation accuracy for the WR aggregations,

we conducted the following experiments. We inserted referential integrity er-
rors in the foreign key l suppkey of referencing table lineitem with a 10% error
rate. The erroneous values were generated so that they follow the three pdfs
introduced above and were inserted randomly in order to simulate a scenario
where the errors occurred in an independent manner. Before doing so, we stored
the valid references on another table in order to “repair” the invalid references

30

Figure 10: Accuracy of the fw sum() aggregate function.

when needed. We simulated a process of gradually repairing the database and
within this process we also computed our proposed aggregate functions. Re-
member that in our framework, we are not interested in how repairs are done,
but in getting an approximation of the answer set. We then evaluated the FWR
aggregations and their corresponding standard SQL joined aggregations. Next,
we repaired a 2% random subset of the original invalid references; our FWR
aggregations and standard SQL joined aggregations were computed again. We
repeated this process until the table was totally repaired. In each iteration we
kept the aggregate values for each different group in order to compare such
values with the “correct” ones on the final repaired table.

Figure 10 shows the accuracy of fw sum() with attribute l extendedprice in
table lineitem. The coefficient of variation (σ/µ) of attribute l extendedprice
for the invalid tuples was 0.609 meaning that the value of this attribute in the in-
valid tuples had a low variance. Each plot, one for each pdf, shows the maximum
and minimum correct aggregate values eventually reaching their corresponding
values where the error rate is 0%. As we can see, the lines that correspond
to the fw sum() values are almost constant (horizontal line), meaning that the
estimated values become increasingly similar to the final real aggregate value.
The function fw sum() converges to the standard SQL joined aggregation sum().
When the error rate is 0% the plotted value on the right side in each plot, cor-
responds to the totally repaired table. For all the groups with invalid tuples, we
computed the average of the absolute difference between the fw sum() with a
rate of 10% of referential integrity errors and the correct sum() and this average
was never above 1.46% the value of the average of the corresponding correct
element of sum().

In the next experiment we evaluated the approximation accuracy for the
WR aggregations, but with different RPP. We simulated the probability that a
referential error was in fact a given value following certain pdf. We obtained

31

Table 9: Value correspondence between w sum(l extendedprice) computed with
different pdfs assuming 10% errors in foreign key l suppkey and several statistics.
Figures sorted in descending order to show similarities.

PDF hp/ w sum() statistic∗∗ statistic
lp∗ value

Constant hp 22, 972, 499, 088 hp sum() +sum() inv. tup. 22, 972, 499, 088
Geom. (p = 0.8) hp 18, 381, 997, 908
Zipf. hp 2, 366, 677, 292
(M = 10k, s = 1)

Uniform 25, 197, 285 sum() + avg() inv. tup. 22, 361, 380
(h = 10k) ∗∗∗

Uniform 18, 076, 153 sum() + avg() inv. tup. 15, 204, 441
(h = 10k) ∗∗∗

Zipf. lp 15, 166, 175 lp sum() 15, 166, 175
(M = 10k, s = 1)

Geom. (p = 0.8) lp 15, 166, 175
Constant lp 15, 166, 175

∗ hp - valid reference with highest probability, lp - valid reference with lowest probability
∗∗ inv. tup. - invalid tuples
∗∗∗ For Uniform pdf, valid references that correspond to max(w sum()) and min(w sum())

the aggregate values of w sum(l extendedprice) that corresponded to the valid
foreign key value with the highest and lowest probability, hp and lp respec-
tively, with different RPPs assuming 10% errors in foreign key l suppkey. The
Constant pdf consists in assigning to one potentially valid reference a probabil-
ity of one meaning that all the invalid references are, in fact, the corresponding
correct reference and, obviously, the rest values have probability zero. Depend-
ing on the distribution, the values were different. We computed the sum() and
the avg() of attribute l extendedprice taking into account only the invalid tuples
(i.e. with an invalid reference in attribute l suppkey; inv. tup. in Table 9), and
we also obtained the sum() of attribute l extendedprice of the tuples belonging
to the valid reference with the highest and lowest probability. In Table 9, we
present the different w sum() values sorted on descending order. We can see
a correspondence between the obtained w sum() values and the statistics. By
pairing the aggregate values and the statistics we can see a consistency with
the behavior of each of the probability distribution functions. Observe the best
estimate for the distribution of the invalid values is the Uniform pdf, which is
precisely the pdf used by TPC-H.

4.4. Time Performance
The queries used to compute the WR, FWR and FR aggregations first com-

pute an auxiliary table, fw temp in Figures 7 and 8. In SQL, this table is
computed with a RIGHT OUTER JOIN between the referenced table and the
referencing table with several aggregations depending on the function answer
set that is needed. For example, for the fw sum() extended aggregation it com-
putes both count() and sum() for each group and the corresponding values for
the invalid references. It also computes the aggregate values of the invalid ref-
erences, taken such references as a single group. The tuples in this group can

32

Figure 11: Comparing time performance of aggregations.

be identified because the attribute that corresponds to the referenced primary
key is η. Therefore, this group of invalid references can be constructed. These
computations are done over the auxiliary table. The size of this table is the
number of distinct values that are in the foreign key.

We study the time performance of extended aggregations in Figure 11 for
the aggregate functions fw sum() and f sum(). Our experimental results evaluate
performance of extended aggregation against standard SQL joined aggregations
with foreign keys l orderkey and l suppkey of table lineitem, with different
rates of errors inserted as described before. In general, time performance is
good, slightly slower than SQL.

As we can see, there are even instances where our proposed aggregations
perform better than the standard SQL joined aggregations. This is because: (1)
an early aggregation grouping is computed before executing the join operation
(push “group by” before join) and the remaining computations are done on
the auxiliary table described earlier. For the sum() aggregations, performance
depends on the size of the referenced table, as can be seen in Figure 11. For the
WR aggregates, the additional computations are done over the auxiliary table.
This overhead is linear in the size of the referenced table.

Since obtaining the auxiliary table prove to be the most demanding compu-
tation while computing our extended aggregates, we isolated its calculation and
measure its performance in several scenarios. In Table 10 we can see the time it
took to compute the auxiliary table with lineitem as referencing table, and as
referenced tables supplier, part and orders. The computations were measured
with and without the early foreign key grouping optimization technique. As we
can see, the size of the referenced table plays an important role while measuring
time performance.

Summarizing, the performance of our extended aggregations computation
depends on the size of the referencing table, the number of invalid values and the

33

Table 10: Time performance computing auxiliary table with several referenced
tables of different sizes and using lineitem (6M) as referencing table (time in
seconds).

Referenced tables
Computation technique supplier part orders

10k 200k 1.5M
Early ‘group by’ optim. 73 83 176
No optimization 239 266 286

number of distinct values in the foreign key attribute. Using the early foreign key
grouping optimization technique should be incorporated in an implementation
of the extended aggregates.

5. Related Work

Research on managing and querying incomplete data has received significant
attention. In [9] the authors define a set of extended aggregate operations that
can be applied to an attribute containing partial values. These partial values,
which generalize applicable null values [12], correspond to a finite set of possible
values for an attribute in which only one of these values is the true one. The
authors develop algorithms for several aggregate functions that deliver sets of
partial values. In our work, we explore a similar idea, assuming that an incorrect
reference represents imprecise data. The source of this value is an element of
the set of valid references of the foreign key. This assumption, although strong,
happens to be useful when we know the tuple holding the incorrect reference
comes from a specific source database. Getting consistent answer sets from a
query on an isolated database, where some integrity constraints are not sat-
isfied is studied in [8]; the authors focus on time complexity and identify the
set of inclusion dependencies under which getting a consistent answer set is de-
cidable. In contrast, in our work we focus on aggregations, where referential
integrity constraints are not satisfied. In [7] the authors identify two comple-
mentary frameworks to define views over integrated databases and they propose
techniques to answer SPJ queries (queries with select, project and/or join oper-
ators) where there are missing foreign key values; the authors prove the problem
of getting consistent answer sets is significantly difficult (non-polynomial time).
In [2] the authors study scalar aggregation queries in databases that violate a
given set of functional dependencies. They study the problem of computing the
ranges of all possible answer sets for aggregation queries, which results in a big
search space. This approach has the benefit that, although the possible answer
sets are incompletely represented by a range of values, the computations can be
done in polynomial time. The authors do not address the specific problem of
computing aggregations in the presence of invalid foreign keys.

34

There are several approaches that allow to dynamically obtain consistent
answers, that is, answers that do not violate integrity constraints, without mod-
ifying the database. In [17] based on query rewriting, the authors proposed a
system named ConQuer that retrieves data that is consistent with respect to
key constraints given by the user together with their queries. A similar strat-
egy is used in [20], but for consistent answering of conjunctive queries under
key and exclusion dependencies. This is done by rewriting the query in Datalog
with negation. In [11] the authors present a framework for computing consistent
query answers. They consider relational algebra queries without projection and
denial constraints. Since their framework can handle union queries, it can ex-
tract indefinite disjunctive information from an inconsistent database. All this
is done by producing a Java program that computes the consistent answers. In
contrast, in our work, an attempt is done to use in some way the inconsistent
tuples to obtain an improved answer.

From a data modeling perspective, uncertainty and imprecision have also
been handled with extended data models that capture more information about
the expected behavior of databases. By defining an imprecise probability data
model [27], the authors can handle imprecise and uncertain data. They de-
velop a generalized aggregation operator capable of determining a probability
distribution for attributes with imprecise or uncertain values. They extend
their method to cover aggregations involving several attributes. In our work we
consider each invalid reference as a place holder (tag) where a crisp [27], but
uncertain value should be stored. Also, associated to the values of the refer-
enced primary key with respect to a given foreign key, there is a vector that
holds for each value of the primary key, the probability that this value appears
in a given tuple in the foreign key of the referencing table. Users can assign
these probabilities, but we give a feasible and automated method, exploiting
the frequency weighted RPP, to get such probabilities. Reference [4] presents
an extended OLAP data model to represent both uncertain and imprecise data.
The authors introduced aggregation queries and the requirements that guided
their semantics in order to handle ambiguous data. Certain knowledge about
the data is needed to determine the probability that a fact has a precise value in
an underlying possible world. Later, in [5] they enrich these concepts defining
extended databases and an extended database model where a probability may
be associated to a set of facts where each one of them may represent a possible
world. Finally, in [6] the authors extended their previous framework to remove
the independence assumption over imprecise facts. We want to stress the fact
that this work does not discuss evaluation issues when referential integrity errors
occur. Such omission is important because in a database integration scenario,
where accurate aggregations are required, tables are likely to have referential
integrity errors.

Concerning the properties of the aggregate functions, in [23] the authors
define an ascending aggregate function as a monotonic increasing function. De-
scending functions are defined accordingly. In contrast, in our work, we con-
ceived a new property that has to do with the repairing process of foreign keys.
When an invalid foreign key is repaired, that is, when its value is changed by

35

a valid value, the total value of the aggregate function remains invariant, that
is, invariant with respect to referential integrity repairs. Although repairing a
foreign key in other contexts may be seen as an insertion of a valid tuple, in
our case, since the value of the foreign key is considered as imprecise, the value
of the aggregated attribute of the tuple with an invalid foreign key always ac-
counts for an amount of the aggregate total value. Concerning summarizability
[25], meaning that a distributive function over a set preserves the results over
the subsets of its partitions, since an invalid foreign key value is considered as
an imprecise value, summarizability consistency is preserved in almost all cases.
A special interesting scenario arises when for all tuples the foreign key holds
invalid values. Since a frequency weighted RPP cannot be computed using the
frequency of the valid foreign key values, we assume all the referenced values
have the same probability.

A closely related research field studies probabilistic databases. Concerning
query answering, in [16] the authors present a probabilistic relational algebra
where tuples are assigned a probability (weight) of belonging to a relation. The
authors define among other operations, the natural join operation for proba-
bilistic relational algebra. In [37] the author uses logic theories based on a
probabilistic first order language to formalize probabilistic databases. In [24]
the authors assume that the events are not pairwise independent. Using postu-
lates they are able to define classes of strategies for conjunction, disjunction and
negation meaningful from the viewpoint of probability theory. Operations such
as join must take into account the strategies for combining probabilistic tuples.
Also, interval probabilities are considered instead of point probabilities. In our
work, we take advantage of functional dependencies to improve our extended
aggregates. To use our techniques adequately, the user has to take into consid-
eration the assumptions behind our extended aggregates. On the other hand,
these assumptions allow efficiency in the computation of our aggregates. In [13]
the authors show that the data complexity of most SQL queries over probabilis-
tic databases is #P-complete. This shows clearly the need of alternatives due
to the challenge these type of queries represent.

Specifically, concerning aggregate operators in probabilistic databases in [33]
the authors define aggregate operators over probabilistic DBMSs and present
linear programming based semantics for computing these aggregate operators.
Nevertheless, they prove that in general it is intractable to compute these op-
erators. Also they present approximation algorithms that run in polynomial
time, but the result may be an approximation of the correct answer. An im-
portant difference with our work is that the aggregate operators in probabilistic
databases are defined over probability intervals. The use of a RPP to assign a
single probability to each invalid foreign key is a key element to the efficiency
of our proposed aggregates. In a recent work done over Trio [35], a DBMS for
uncertain and probabilistic data, in [28] the authors define aggregations that
obtain the answer sets with the lowest, the highest probability and, considering
all the values and the probabilities associated to those values, the expected value
of an aggregation. The authors bound the aggregations with respect to their
probability. In contrast, in our work, we bound our aggregates considering the

36

value of the answer set. Our lower or upper bounds refer to the lower or upper
value an answer set can reach.

To close our discussion on related work, we summarize past research on
improving database systems to handle referential integrity issues. In [30] we
propose to measure referential integrity errors. In this work, we introduced
the early foreign key grouping optimization technique mentioned in Section 3.4,
used to obtain the auxiliary table to compute our extended aggregates. Since
extended joins involving foreign keys are needed to compute our aggregates, we
adapted the optimization techniques so it could be used in our computations.
In [31] we generalize referential integrity metrics to distributed databases. We
also consider an additional metric to measure consistency in table replicas. In
[18] and [29] we presented our initial studies of how to improve aggregations.

6. Conclusions

This work improved SQL aggregations to return enhanced answers sets in
the presence of referential integrity errors. Referential integrity errors are ma-
nipulated as imprecise values that stand for precise values, determined by a
foreign key. We introduced the following families of extended aggregate func-
tions: weighted referential (WR), frequency weighted referential (FWR), full
referential (FR) and restricted referential (RR) aggregations. The definition of
these extended aggregate functions is based on a new concept called referen-
tiality. Intuitively, referentiality is the degree to which a foreign key value in a
referencing tuple refers to some correct key in the referenced table. WR aggre-
gations are based on referential partial probability vectors (RPPs) associated
with the foreign key. A particular family of WR aggregations is the frequency
weighted referential aggregations (FWR) whose RPP is based on a dynamically
evaluated RPP computed from the frequency of tuples with a given reference
in the referencing table. FR aggregations represent an extreme repair scenario
where each aggregated group receives all the values corresponding to existing
referential integrity errors or undefined foreign key values. FR aggregations are
helpful when the user needs to include, for each group, all tuples with invalid
references. We studied how to compute our extended aggregations considering
independent and dependent columns. Our extended aggregations exhibit im-
portant properties, which are essential to consider them correct extensions of
standard SQL aggregations. A WR aggregation for row counts is summarizable
consistent, ascending and safe. Safe means that if no referential errors or un-
defined values exist, then the extended aggregation result is equal to the result
returned by it standard SQL counterpart. A WR sum aggregation is safe and
summarizable consistent and when it behaves as an increasing or decreasing
function, then it is ascending or descending, respectively. All extended aggre-
gations, together with WR and FR maximum and minimum aggregates, their
total aggregate share the invariant with respect to referential integrity repairs
property. The maximum extended aggregates are ascending, whereas minimum
aggregates are descending; both fulfill the safe property. On the other hand,

37

FR aggregations are safe and plausible. Plausible means the answer set repre-
sents a potential repair for each group, that consists of assigning to all invalid
references, the reference that represents each group with a valid key. Our ex-
tended aggregations are evaluated with plain SQL queries without modifying
the DBMS code, which provides fast and wide applicability. Experiments with
two real databases and a synthetic database evaluated usefulness, accuracy and
performance.

There are several research issues for future work. Some of our ideas can
be extended to more general SPJ queries, especially involving multiway joins.
We would like to study the alternative scenario where the referenced table is
assumed to be incomplete. Due to the dynamic nature of extended aggregates,
we need to improve them with online aggregation techniques for interactive use.
We would like to propose a system that based on query rewriting, the user could
retrieve, out of standard SQL aggregate queries where foreign keys are involved,
alternative SQL queries to obtain consistent answer sets.

Acknowledgments. The first author was sponsored by the UNAM information
technology project “Macroproyecto de Tecnoloǵıas para la Universidad de la
Información y la Computación”. We would like to thank the participants of the
workshop ACM DOLAP 08 for their interesting comments and feedback and all
the anonymous reviewers for insightful comments which helped us to extend an
earlier version of this paper.

References

[1] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in
inconsistent databases. In ACM PODS, pages 68–79, 1999.

[2] M. Arenas, L. Bertossi, J. Chomicki, X. He, V. Raghavan, and J. Spin-
rad. Scalar aggregation in inconsistent databases. Theor. Comput. Sci.,
296(3):405–434, 2003.

[3] O. Arieli, M. Denecker, B.V. Nuffelen, and M. Bruynooghe. Database
repair by signed formulae. In FoIKS 2004, LNCS, volume 2942, pages
14–30. Springer, 2004.

[4] D. Burdick, P.M. Deshpande, T.S. Jayram, R. Ramakrishnan, and
S. Vaithyanathan. OLAP over uncertain and imprecise data. In VLDB
Conference, pages 970–981, 2005.

[5] D. Burdick, P.M. Deshpande, T.S. Jayram, R. Ramakrishnan, and
S. Vaithyanathan. OLAP over uncertain and imprecise data. The VLDB
Journal, 16(1):123–144, 2007.

[6] D. Burdick, A. Doan, R. Ramakrishnan, and S. Vaithyanathan. OLAP over
imprecise data with domain constraints. VLDB Conference, pages 39–50,
2007.

38

[7] A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. Data integration
under integrity constraints. Inf. Syst., 29(2):147–163, 2004.

[8] A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability and complexity
of query answering over inconsistent and incomplete databases. In ACM
PODS, pages 260–271, 2003.

[9] A. L. P. Chen, J. S. Chiu, and F. S. C. Tseng. Evaluating aggregate
operations over imprecise data. IEEE TKDE, 8(2):273–284, 1996.

[10] R. Cheng, D.V. Kalashnikov, and S. Prabhakar. Evaluating probabilistic
queries over imprecise data. In ACM SIGMOD Conference, pages 551–562,
2003.

[11] J. Chomicki, J. Marcinkowski, and S. Staworko. Computing consistent
query answers using conflict hypergraphs. In CIKM ’04: Proceedings of the
thirteenth ACM international conference on Information and knowledge
management, pages 417–426. ACM, 2004.

[12] E.F. Codd. The Relational Model for Database Management-Version 2.
Addison-Wesley, 1st edition, 1990.

[13] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases.
In VLDB Conference, pages 864–875, 2004.

[14] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining
database structure; or, how to build a data quality browser. In ACM
SIGMOD Conference, pages 240–251, 2002.

[15] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Addi-
son/Wesley, Redwood City, California, 3rd edition, 2000.

[16] N. Fuhr and T. Rölleke. A probabilistic relational algebra for the integration
of information retrieval and database systems. ACM Trans. Inf. Syst.,
15(1):32–66, 1997.

[17] A. Fuxman, E. Fazli, and R.J. Miller. Conquer: efficient management
of inconsistent databases. In ACM SIGMOD Conference, pages 155–166,
2005.

[18] J. Garćıa-Garćıa and C. Ordonez. Estimating and bounding aggregations
in databases with referential integrity errors. In ACM DOLAP Workshop,
pages 49–56, 2008.

[19] G. Greco, S. Greco, and E. Zumpano. A logical framework for querying
and repairing inconsistent databases. IEEE TKDE, 15(6):1389–1408, 2003.

[20] L. Grieco, D. Lembo, R. Rosati, and M. Ruzzi. Consistent query answer-
ing under key and exclusion dependencies: algorithms and experiments.
In CIKM ’05: Proceedings of the 14th ACM international conference on
Information and knowledge management, pages 792–799. ACM, 2005.

39

[21] ISO-ANSI. Database Language SQL-Part2: SQL/Foundation. ANSI, ISO
9075-2 edition, 1999.

[22] R. Kimball and J. Caserta. The Data Warehouse ETL Toolkit: Practical
Techniques for Extracting, Cleaning, Conforming, and Delivering Data.
John Wiley & Sons, 2004.

[23] A. J. Knobbe, A. Siebes, and B. Marseille. Involving aggregate functions
in multi-relational search. In PKDD02, pages 287–298, 2002.

[24] L.V.S. Lakshmanan, N. Leone, R. Ross, and V.S. Subrahmanian. Prob-
view: a flexible probabilistic database system. ACM Trans. Database Syst.,
22(3):419–469, 1997.

[25] H. J. Lenz and A. Shoshani. Summarizability in OLAP and statistical data
bases. In SSDBM Conference, pages 132–143, 1997.

[26] H. J. Lenz and B. Thalheim. OLAP databases and aggregation functions.
In SSDBM Conference, pages 91–100, 2001.

[27] S. McClean, B. Scotney, and M. Shapcott. Aggregation of imprecise and
uncertain information in databases. IEEE TKDE, 13(6):902–912, 2001.

[28] R. Murthy and J. Widom. Making aggregation work in uncertain and
probabilistic databases. In Workshop on Management of Uncertain Data,
VLDB Conference, pages 76–90, 2007.

[29] C. Ordonez and J. Garćıa-Garćıa. Consistent aggregations in databases
with referential integrity errors. In ACM International Workshop on In-
formation Quality in Information Systems, IQIS, pages 80–89, 2006.

[30] C. Ordonez and J. Garćıa-Garćıa. Referential integrity quality metrics.
Decision Support Systems Journal, 44(2):495–508, 2008.

[31] C. Ordonez, J. Garćıa-Garćıa, and Z. Chen. Measuring referential integrity
in distributed databases. In ACM CIMS, pages 61–66, 2007.

[32] E. Rahm and D. Hong-Hai. Data cleaning: Problems and current ap-
proaches. IEEE Bulletin of the Technical Committee on Data Engineering,
23(4), 2000.

[33] R. Ross, V.S. Subrahmanian, and J. Grant. Aggregate operators in prob-
abilistic databases. J. ACM, 52(1):54–101, 2005.

[34] TPC. TPC-H Benchmark. Transaction Processing Performance Council,
http://www.tpc.org/tpch, 2005.

[35] J. Widom. Trio: A system for integrated management of data, accuracy,
and lineage. In CIDR, pages 262–276, 2005.

40

[36] J. Wijsen. Database repairing using updates. ACM Trans. Database Syst.,
30(3):722–768, 2005.

[37] E. Zimányi. Query evaluation in probabilistic relational databases. In Se-
lected papers from the international workshop on Uncertainty in databases
and deductive systems, pages 179–219. Elsevier Science Publishers B. V.,
1997.

41

