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1 Holomorphic functions

1.1 The complex derivative

The basic objects of complex analysis are the holomorphic functions. These

are functions that posses a complex derivative. As we will see this is quite a

strong requirement and will allow us to make far reaching statements about

this type of functions. To properly understand the concept of a complex

derivative, let us recall �rst the concept of derivative in Rn.

De�nition 1.1. Let U be an open set in Rn and A : U → Rm a function.

Given x ∈ U we say that A is (totally) di�erentiable at x i� there exists an

m × n-matrix A′ such that,

A(x + ξ) = A(x) + A′ξ + o(‖ξ‖)

for ξ ∈ Rn su�ciently small. Then, A′ is called the derivative of A at x.

Recall that the matrix elements of A′ are the partial derivatives

A′
ij =

∂Ai

∂xj
.

Going from the real to the complex numbers, we can simply use the decom-

position z = x+iy of a complex number z into a pair of real numbers (x, y) to
de�ne a concept of derivative. Thus, let U be an open set in C and consider

a function f : U → C. We view U as an open set in R2 with coordinates

(x, y) and f = u+iv as a function with values in R2 with coordinates (u, v).
The total derivative of f , if it exists, is then a 2 × 2-matrix f ′ given by

f ′ =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
.

So far we have only recited concepts from real analysis and not made use

of the fact that the complex numbers do not merely form a 2-dimensional

real vector space, but a �eld. Indeed, this implies that there are special

2×2-matrices, namely those that correspond to multiplication by a complex

number. As is easy to see, multiplication by a+ib corresponds to the matrix,(
a −b
b a

)
.

The crucial step that leads us from real to complex analysis is now the

additional requirement that the derivative f ′ take this form. It is then more

useful to think of f ′ as the complex number a + ib, rather than this 2 × 2-
matrix.
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De�nition 1.2. Let U be an open set in C and f : U → C a function. Given

z ∈ U we say that f is complex di�erentiable at z i� there exists f ′(z) ∈ C
such that,

f(z + ζ) = f(z) + f ′(z)ζ + o(|ζ|)
for ζ ∈ C su�ciently small. Then, f ′(z) is called the complex derivative of f
at z. f is called holomorphic at z i� f is complex di�erentiable in an open

neighborhood of z.

Proposition 1.3. Let U be an open set in C and f : U → C a function. f
is complex di�erentiable at z ∈ U i� f is totally di�erentiable at z and its

partial derivatives at z satisfy the Cauchy-Riemann equations,

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

If U ⊆ C is open we say that f : U → C is holomorphic on U if it

is holomorphic at all z ∈ U . We denote the space of functions that are

holomorphic on U by O(U). In the following, non-empty connected open

subsets of the complex plane will be of particular importance. We will refer

to such open sets as regions. Since any non-empty open set in the complex

plane is a disjoint union of regions it is su�cient to consider the spaces of

holomorphic functions of the type O(D), where D ⊆ C is a region. The

elements of O(C) are called entire functions.

Exercise 1. Let U be an open set in C and f : U → C a function. Given

z ∈ U we say that f is complex conjugate di�erentiable at z i� there exists

fz(z) ∈ C such that,

f(z + ζ) = f(z) + fz(z)ζ + o(|ζ|)

for ζ ∈ C su�ciently small. Then, fz(z) is called the complex conjugate

derivative of f at z. f is called anti-holomorphic at z i� f is complex

conjugate di�erentiable in an open neighborhood of z.

1. Show that the total derivative of f as a real 2 × 2-matrix takes the

form (
a b
b −a

)
, for a, b ∈ R,

where f is complex conjugate di�erentiable.

2. Deduce the corresponding modi�ed Cauchy-Riemann equations.

3. Show that a function is anti-holomorphic i� it is the complex conjugate

of a holomorphic function.
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1.2 Elementary Properties of Holomorphic functions

Proposition 1.4. Let D ⊆ C be a region and f ∈ O(D). Then, f is constant

i� f ′(z) = 0 for all z ∈ D.

Proof. If f is constant it follows immediately that f ′ = 0. Conversely, sup-
pose that f ′ = 0. Then, viewing f as a function from an open set D in R2

to R2 we know that its total derivative is zero. By results of real analysis it

follows that f is constant along any path in D. But since D is connected it

is also path connected and f must be constant on D.

Proposition 1.5. Let D ⊆ C be a region.

1. If f ∈ O(D) and λ ∈ C, then λf ∈ O(D) and (λf)′(z) = λf ′(z).

2. If f, g ∈ O(D), then f + g ∈ O(D) and (f + g)′(z) = f ′(z) + g′(z).

3. If f, g ∈ O(D), then fg ∈ O(D) with (fg)′(z) = f ′(z)g(z) + f(z)g′(z).

4. If f, g ∈ O(D) and g(z) 6= 0 for all z ∈ D, then f/g ∈ O(D) and

(f/g)′(z) =
f ′(z)g(z) − f(z)g′(z)

(g(z))2
.

Proof. The proofs are completely analogous to those for real functions on

open subsets of the real line with the ordinary real di�erential. Alternatively,

1.-3. follow from statements in real analysis by viewing C as R2.

Note that items 1.-3. imply that O(D) is an algebra over the complex

numbers.

Proposition 1.6. Let D1, D2 ⊆ C be regions. Let f ∈ O(D1) such that

f(D1) ⊆ D2 and let g ∈ O(D2). Then g ◦ f ∈ O(D1) and moreover the

chain rule applies,

(g ◦ f)′(z) = g′(f(z))f ′(z) ∀z ∈ D1.

Proof. This is again a result of real analysis, obtained by viewing C as R2.

(Note that g′ and f ′ are then 2× 2-matrices whose multiplication translates

to multiplication of complex numbers here.)

Proposition 1.7. Let D1, D2 ⊆ C be regions. Let f : D1 → C such that

f(D1) ⊆ D2. Let g ∈ O(D2) be such that g ◦ f(z) = z for all z ∈ D1. Let
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z ∈ D1. Suppose that g′(f(z)) 6= 0 and that g′ is continuous at f(z). Then,

f is complex di�erentiable at z and

f ′(z) =
1

g′(f(z))
.

Proof. Again, this is a statement imported from real analysis on R2. (There,

the condition g′(f(z)) 6= 0 is the condition that the determinant of the 2×2-
matrix g′(f(z)) does not vanish.)

A few elementary examples together with the properties of holomorphic

functions we have identi�ed so far already allow us to generate considerable

families of holomorphic functions.

Example 1.8. The following are elementary entire functions.

• The constant functions: They have vanishing complex derivative.

• The identity function: f(z) = z has complex derivative f ′(z) = 1.

Example 1.9. We de�ne the complex exponential function exp : C → C as

follows. For all x, y ∈ R de�ne

exp(x + iy) := exp(x) (cos(y) + i sin(y)) ,

where exp, cos and sin are the functions known from real analysis.

Exercise 2. Using results from real analysis about the real analytic functions

exp, cos and sin show that the complex exponential function f(z) = exp(z)
is entire and that f ′(z) = exp(z) for all z ∈ C.

Example 1.10. The following are (classes of) holomorphic functions pro-

duced from the elementary entire functions of Example 1.8 by addition, mul-

tiplication, division or composition.

• Polynomials: Any polynomial p(z) =
∑

n λnzn, where λn ∈ C, is entire
with p′(z) =

∑
n6=0 λnnzn−1.

• Rational functions: Let p(z) and q(z) be polynomials with q 6= 0 and

suppose that p and q have no common zeros. Let D = C \ N , where

N is the set of zeros of q. Then, f(z) = p(z)/q(z) ∈ O(D).

• Hyperbolic functions: The following are entire functions,

cosh(z) :=
exp(z) + exp(−z)

2
and sinh(z) :=

exp(z) − exp(−z)
2

.
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• Trigonometric functions: The following are entire functions,

cos(z) :=
exp(iz) + exp(−iz)

2
and sin(z) :=

exp(iz) − exp(−iz)
2i

.

• The logarithm: Since exp(z + 2πi) = exp(z) we have to restrict the

domain of exp in order to �nd a unique inverse. It is customary to make

the following choice: Consider the region D2 := R + i(−π, π). Then

exp is a bijective function D2 → D1, where D1 = C \ R−
0 . We de�ne

log as the unique function such that exp(log(z)) = z for all z ∈ D1

and such that the image of log lies in D2 ⊆ C. Then, log ∈ O(D1)
and log′(z) = 1/z for all z ∈ D1. This version of the logarithm is also

called the principal branch.

Exercise 3. Suppose f is a holomorphic function on a region D ⊆ C. Sup-
pose that the real or the imaginary part of f is constant. Show that f must

be constant on D.

Exercise 4. At which points in the complex plane are the following functions

complex di�erentiable and at which points are they holomorphic?

1. f(x + iy) = x4y5 + ixy3

2. f(x + iy) = sin2(x + y) + i cos2(x + y)

Exercise 5. De�ne another version (�branch�) of the logarithm function that

is holomorphic in the region D = C \ R+
0 .

Exercise 6. De�ne tan z := sinz
cos z . Where is this function de�ned and where

is it holomorphic?

Exercise 7. De�ne a function z 7→
√

z on C or on a subset of C. Is this

function holomorphic and if yes, where? Comment on possible choices in the

construction.

1.3 Conformal mappings

Recall that we have the standard Euclidean scalar product on the complex

plane, by viewing C as a two-dimensional real vector space. That is, we have

〈z, z′〉 := aa′ + bb′ = <(zz′),

where z = a+ib and z′ = a′+ib′. Recall also that |z| =
√

〈z, z〉. In geometric

terms we have,

〈z, z′〉 = |z||z′| cos θ,
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where θ is the angle between z and z′, viewed as vectors in the complex

plane.

We shall now be interested in mappings A : C → C that preserve angles

between intersecting curves. First, we consider R-linear mappings. Then,

for A to be angle-preserving clearly is equivalent to the identity,

|z||z′|〈A(z), A(z′)〉 = |A(z)||A(z′)|〈z, z′〉 ∀z, z′ ∈ C.

(We also require of course that A not be zero.)

Lemma 1.11. Let A : C → C be an R-linear mapping. Then, A preserves

angles i�

A =
(

a −b
b a

)
, or A =

(
a b
b −a

)
where a, b ∈ R and a and b are not both equal to zero.

Proof. Exercise.

More generally, to make sense of the concept of angle-preservation for

a map f : D → C, where D is a region, it is necessary that f possesses a

continuous total di�erential. Then, f preserves angles i� its total di�erential

f ′ preserves angles at every point of D.

Proposition 1.12. Let D ⊆ C be a region and f : D → C a function

possessing a continuous total di�erential in D. Then, f is angle-preserving

i� f is holomorphic in D or anti-holomorphic in D and its derivative never

vanishes.

Proof. Exercise.

A conformal mapping is a mapping that preserves both angles and orien-

tation. Recall that a linear map is orientation preserving i� its determinant

is positive. More generally, a mapping is orientation preserving i� its total

derivative has positive determinant everywhere.

Proposition 1.13. Let D ⊆ C be a region and f : D → C a function

possessing a continuous total di�erential in D. Then, f is conformal i� f is

holomorphic in D and its derivative never vanishes.

Proof. Exercise.
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1.4 Power series and analytic functions

With each sequence {cn}n∈N of complex numbers and each point z0 ∈ C we

can associate a power series

f(z) =
∞∑

n=0

cn(z − z0)n,

around z0. Recall the following result from real analysis.

Lemma 1.14. The radius of convergence r of the power series is given by

1
r

= lim sup
n→∞

|cn|1/n.

That is, the power series converges absolutely in the open disk Br(z0) to a

complex function f : Br(z0) → C. For any 0 < ρ < r the convergence is

uniform in the open disk Bρ(z0). It diverges for z outside of the closed disk

Br(z0).

Proof. Exercise.

De�nition 1.15. Let D ⊆ C be a region and f : D → C. We say that f is

analytic in D i� for every point z ∈ D and any r > 0 such that Br(z) ⊆ D
the function f can be expressed as a power series around z0 with radius of

convergence greater or equal to r.

Theorem 1.16. Let D ⊆ C be a region. Suppose that f is analytic in D.

Then f ∈ O(D) and f ′ is also analytic in D. Moreover, if

f(z) =
∞∑

n=0

cn(z − z0)n,

converges in Br(z0), then

f ′(z) =
∞∑

n=1

ncn(z − z0)n−1,

converges in Br(z0).

Proof. (Adapted from Rudin.) Fix z0 ∈ D and r > 0 such that Br(z0) ⊆ D.

Suppose f(z) is given by the power series given above and covering in Br(z0).
Denote the second power series above by g(z). It is then enough to show
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that g(z) converges in Br(z0) and that g(z) is the complex derivative of f
for all z ∈ Br(z0).

Firstly, it is clear by Lemma 1.14 that g(z) has the same radius of con-

vergence as f(z). In particular, g(z) converges in Br(z0). Fix z ∈ Br(z0)
and de�ne ξ := z − z0. Then, set ρ arbitrarily such that |ξ| < ρ < r. Let

ζ ∈ Bs(0) \ {0} where s := ρ − |ξ| and set

h(ζ) :=
f(z + ζ) − f(z)

ζ
− g(z).

We have to show that h(ζ) → 0 when |ζ| → 0. h(ζ) can be written as

h(ζ) =
∞∑

n=0

cnan(ζ),

where

an(ζ) :=
(ξ + ζ)n − ξn

ζ
− nξn−1.

Note that a0(ζ) = 0 and a1(ζ) = 0. By explicit computation we �nd for

n ≥ 2,

an(ζ) = ζ
n−1∑
k=1

kξk−1(ξ + ζ)n−k−1.

Now, |ξ| < ρ and |ξ + ζ| < ρ so that we get the estimate,

|an(ζ)| < |ζ|1
2
n(n − 1)ρn−2.

This implies

|h(ζ)| < |ζ|1
2

∞∑
n=2

|cn|n(n − 1)ρn−2.

However, since ρ < r, the sum converges by Lemma 1.14 showing that there

is a constant M such that

|h(ζ)| < |ζ|M.

This completes the proof.

The �rst remarkable result of complex analysis is that the converse of

this theorem is also valid: Every holomorphic function is analytic. However,

in order to show this we will have to introduce the integral calculus in the

complex plane.

Exercise 8. Let a, b, c, d ∈ R such that ad−bc 6= 0. Show that f(z) := az+b
cz+d

is analytic in D := C \ {−d
c} according to De�nition 1.15.


