
Chapter 9

Harmonic Analysis

9.1 The Christ-Kiselev Maximal Inequality

If f ∈ L2(R, dx), then the integral in

f̂R(k) ≡ (2π)1/2

∫ R

−R
e−ikxf(x) dx

converges for each R < ∞ and each k, and by general principles (see The-
orem 1.7.15.TK), fR converges in L2(R, dk) to f̂ , the Fourier transform. x-ref?
It is natural to ask about pointwise convergence for a.e. k. It is a deep,
complicated, and celebrated result of Carleson that this is true for any
f ∈ L2(R, dx). By settling for a slightly weaker result, we will prove this here
if f ∈ Lp(R, dx) for some p with 1 ≤ p < 2. Of course, the natural approach
is via a maximal function, and we will use a particularly elegant version of
the construction due to Christ and Kiselev. Their result will turn out to
be useful in the study of eigenfunction expansions of general Schrödinger
operators; see TK. x-ref?

Let {Aα}α∈R be a family of measurable sets of a measure space (M,dµ)
which obey

α > β ⇒ Aβ ⊂ Aα (9.1.1)

We will let χα denote the characteristic function of Aα.

For simplicity, we will suppose two regularity conditions for the family
of sets; namely, that for β > α, µ(Aβ\Aα) < ∞ and

lim
ε↓0

µ(Aα+ε\Aα) = lim
ε↓0

µ(Aα\Aα−ε) = 0 (9.1.2)
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and up to sets of measure zero,

lim
α↓−∞

Aα =
⋂

α

Aα = ∅; lim
α→∞

Aα =
⋃

α

Aα = M (9.1.3)

This implies that for any f ∈ Lp(M,dµ) that

α 7→ ‖fχα‖p is continuous (9.1.4)

The main example that will concern us is M = R, Aα = (−∞, α), in
which case (9.1.2) is equivalent to µ having no pure points. With a little
more effort, one can accommoodate such pure points (see the argument
below in Theorem 9.1.2).

Let T : Lp(M,dµ) → Lq(M,dµ) be a bounded map. Define the Christ-
Kiselev maximal function:

(T ∗f)(x) = sup
α

|T (χαf)(x)|

Theorem 9.1.1 (Christ-Kiselev Maximal Inequality). Let p < q < ∞.

Then T ∗ is bounded from Lp(M,dµ) to Lq(M,dµ). Indeed,

‖T ∗f‖q ≤ 2−β(1 − 2−β)−1‖T‖Lp→Lq‖f‖p (9.1.5)

where β = p−1 − q−1.

Remarks. 1. Since 1 ≤ p < q < ∞, 0 < β < 1. Since G(β) ≡
2−β/(p − 2−β) =

∑∞
n=1 2−nβ is monotone in β, G(β) > G(1) = 1 so the

constant in the theorem is always larger than 1, consistent with the obvious
‖T‖ ≤ ‖T ∗‖.

2. This result is trivial if q = ∞, since in that case

‖T ∗f‖∞ = sup
α

‖T (χαf)‖∞ ≤ ‖T‖ sup
α

‖χαf‖p = ‖T‖ ‖f‖p

Proof. Fix f ∈ Lp with ‖f‖p = 1. Define

G(α) = ‖fχα‖
p
p (9.1.6)

By (9.1.4), α 7→ G(α) is a continuous function and by (9.1.3), it obeys
limα→−∞ G(α) = 0, limα→∞ G(α) = 1.

For m = 1, 2, . . . and j = 1, . . . , 2m − 1, define αm
j by G(αm

j ) = j/2m

and αm
j is the smallest such solution. Since G is continuous and monotone

with G(−∞) = 0 and G(∞) = 1, such αm
j exist.
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Let χ−∞ = 0, χ∞ = 1, and αm
0 = −∞, αm

2m = ∞. Define for j =
1, . . . , 2m,

fm
j = f(χαm

j
− χαm

j−1
)

Then

‖fm
j ‖p

p =
1

2m
(9.1.7)

Given α real in [0, 1], write α =
∑∞

m=1 km/2m with each km = 0 or 1
as its base 2 decimal expansion. If α = 1, take k1 = k2 = · · · = 1. Let
jm(α) =

∑m
ℓ=1 kℓ2

m−ℓ so, by the continuity of G and monotonicity of χα in
α,

fχα =

∞
∑

m=1
km=1

fm
jm(α) (9.1.8)

modulo sets of measure zero. The sum is only over those m iwth km = 1.
It follows that

|(T ∗f)(x)| ≤
∞
∑

m=1

[

sup
1≤j≤2m

|T (fm
j )(x)|

]

≤
∞
∑

m=1

( 2m
∑

j=1

|T (fm
j )(x)|q

)1/q

(9.1.9)

since
∑L

ℓ=1|aℓ|
q ≥ max(|aℓ|)

q.
Call the term inside the m summand in (9.1.9) hm(x). Then

‖hm‖q
q =

2m
∑

j=1

∫

|Tfm
j (x)|q dµ(x)

=

2m
∑

j=1

‖Tfm
j ‖q

q

≤ 2m‖T‖q‖fm
j ‖q

p

= 2m2−qm/p‖T‖q

by (9.1.7). Thus, by the triangle inequality on the Lq norm,

‖T ∗f‖q ≤
∞
∑

m=1

‖hm‖q

≤
∞
∑

m=1

‖T‖2−mβ
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= ‖T‖
2−β

(1 − 2−β)

Remarks. 1. It is a well-known result that if T : L1(M,dµ) →
L∞(M,dµ), then (Tf)(x) =

∫

K(x, y)f(y) dµ(y) where K ∈ L∞(M ×
M) and ‖K‖∞ = ‖T‖. For such an operator, it is trivial that
supα,x|T (fχα)(x)| ≤ ‖T‖ ‖f‖1. As p → 1, p → ∞, the constant β → 1
and 2−p/(1− 2−p) → 1, which is an indication of how good our constant is.

2. The measure space for the range need not be the same as the domain.

Here is a procedure for extending this result to some discrete cases. Let
Z+ = {n ∈ Z | n > 0} = {1, 2, 3, . . . , }. Let χn be the characteristic function
of {1, . . . , n} ⊂ Z+. Then

Theorem 9.1.2. Let p < q < ∞. Let T map ℓp(Z+) to Lq(M,dµ). Let

(T ∗f)(x) = sup
n=1,2,...,

|T (fχn)(x)|

Then T ∗ maps ℓp(Z+) to Lq(M,dµ) and

‖T ∗f‖q ≤ 2−β(1 − 2−β)−1‖T‖ ‖f‖p (9.1.10)

where β = p−1 − q−1.

Proof. We will essentially linearly interpolate T to define a map from Lp(R).
Given a function g ∈ Lp(R), define Sg ∈ ℓp(Z+) by

(Sg)(n) =

∫ n

n−1
g(y) dy

Also define S̃ (essentially a dual of S) taking ℓp(Z+) to Lp(R, dx) by

(S̃f)(x) = f(n) if n − 1 ≤ x < n

= 0 if x < 0

Then ‖S̃f‖p = ‖f‖p and ‖Sg‖p ≤ ‖g‖p since |
∫ n
n−1 g(y) dy| ≤

(
∫ n
n−1|g(y)|p dy)1/p by Hölder’s inequality. Moreover, applied to functions

on Z+,

SS̃ = 1 (9.1.11)
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Define H = TS : Lp(R, dx) → Lq(M,dµ). By Theorem 9.1.1, for any
g ∈ Lp(R, dx),

‖H∗g‖q ≤ 2−β(1 − 2−β)−1‖H‖ ‖g‖p

≤ 2−β(1 − 2−β)−1‖T‖ ‖g‖p

since ‖S‖ = 1. Thus for any f ∈ ℓp(Z+),

‖H∗S̃f‖q ≤ 2−β(1 − 2−β)−1‖T‖ ‖f‖p (9.1.12)

since ‖S̃‖ = 1. But by (9.1.11),

(T ∗f)(x) = sup
n=1,2,...

|[TSS̃(fχn)](x)|

≤ sup
n=1,2,...

|[Hχn(S̃f)](x)|

≤ (H∗S̃f)(x)

so (9.1.12) implies (9.1.10).

As for applications of these inequalities, we start with a result on Fourier
transforms. We exploit the fact that we will prove in Section ?? (see Theo-
rem 1.7.14.TK) that if x-ref?

f̂(k) = (2π)−ν/2

∫

eik·xf(x) dνx (9.1.13)

initially on functions f ∈ L1(Rν , dνx), then one has an a priori bound for
1 ≤ p < 2, q = (1 − p)−1[> p since p < 2],

‖f̂‖q ≤ ‖f‖p

initially for f ∈ L1 ∩ Lp but then allowing f̂ to be defined on Lp(Rν , dνx).

Theorem 9.1.3. Let 1 ≤ p < 2. Then for any f ∈ Lp(Rν , dνx),

sup
0<R<∞

∣

∣

∣

∣

∣

(2π)−ν/2

[
∫

|x|<R
e−ik·xf(x) dx

]

∣

∣

∣

∣

∣

= (F∗f)(k) (9.1.14)

lies in Lq(R, dνx). For each such f and a.e. k ∈ R
ν,

lim
R→∞

(2π)−ν/2

∫

|x|<R
e−ik·xf(x) dx = f̂(k) (9.1.15)
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Remark. The point, of course, is that for f ∈ Lp but f /∈ L1, the inte-
gral in (9.1.13) does not converge absolutely. (9.1.15) says it does converge
conditionally (over balls) for a.e. k and defines the Fourier transform.

Proof. Let

Aα = {x ∈ R
ν | |x| < α}

By Theorem 9.1.1, F∗f ∈ Lq and ‖F∗f‖q ≤ 2−β(1 − 2−p)‖f‖p. Such a
maximal inequality, together with the existence of the limit if f ∈ L1 ∩ Lp,
implies (9.1.15) by the usual strategy of Theorem 7.2.2.

We can apply Theorem 9.1.2 to general convergence of Fourier series
with an arbitrary orthonormal basis. We need the following preliminary:

Lemma 9.1.4. Let an be a sequence indexed by Z+ and let ‖a‖p =
(
∑

n|an|
p)1/p, which may be infinite. Then for p > q,

‖a‖p ≤ ‖a‖q (9.1.16)

Proof. We need only prove this for {an}
∞
n=1 a finite sequence and then take

limits. For such a sequence,

|aj |
p ≤ |aj |

(

∑

n

|aj |

)p−1

Summing over j, we find

‖a‖p
p ≤ ‖a‖p

1

proving (9.1.16) for q = 1. For general p, q, a, let ã = |a|q, p̃ = p/q > 1, and
note

‖a‖p
p = ‖ã‖p̃

p̃ ≤ ‖ã‖p̃
1 = ‖a‖p

q

proving (9.1.16) in general.

Theorem 9.1.5. Let {ϕn}
∞
n=1 be an arbitrary orthonormal basis for

L2(M,dµ). For a sequence {cn}
∞
n=0, define

c∗(x) = sup
n=1,...,m

∣

∣

∣

∣

n
∑

j=1

cjϕj(x)

∣

∣

∣

∣

Then for any p < 2,

‖c∗‖L2(M,dµ) ≤ 2−β(1 − 2−β)−1‖c‖ℓp (9.1.17)



9.2. HARMONIC AND SUBHARMONIC FUNCTIONS 685

with β = p−1− 1
2 . In particular, if c ∈ ℓp for p < 2, and ϕ(x) =

∑∞
j=1 cjϕj(x)

(L2-sum), then for a.e. x,

lim
n→∞

n
∑

j=1

cjϕj(x) = ϕ(x) (9.1.18)

Proof. By the lemma, if Tc(x) =
∑∞

j=1 cjϕj(x) (L2-sum), then

‖Tc‖L2(M,dµ) = ‖c‖2 ≤ ‖c‖p

Thus, by Theorem 9.1.2, (9.1.17) holds and then (9.1.18) follows by the
usual strategy (see Theorem 7.2.2).

9.2 Harmonic and Subharmonic Functions

Definition. Let O ⊂ R
ν be a connected open set. A function, u, from O to

R is called harmonic if and only if

(i) u is continuous.

(ii) For any compact set, K ⊂ O, there is an ε > 0 so for all x ∈ K,
Bε

x = {y | |y − x| < ε} ⊂ O and

u(x) =

∫

Sν−1

u(x + rω) dω (9.2.1)

for all r ∈ (0, ε).

Here Sν−1 is the unit sphere in R
ν, Sν−1 = {x | |x| = 1}, and dω is

the normalized spherical measure, that is, ω(Sν−1) = 1 and ω is the unique
rotation invariant measure. Then, for example,

∫

Bε
x

f(y) dy = τν

∫ ε

0
dr

[

rν−1

∫

f(x + rω) dω

]

with the τν , the area of the unit sphere = ν× volume of the unit ball.

Definition. Let O ⊂ R
ν be a connected open set. A function, u, from O to

−∞∪ R is called subharmonic if and only if

(i) u is lsc.
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(ii) For any compact set K ⊂ O, there is an ε > 0 so for all x ∈ K,
Bε

x = {y | |y − x| < ε} ⊂ O and for r < ε,
∫

Sν−1

|u(x + rω)| dω < ∞ (9.2.2)

u(x) ≤

∫

Sν−1

u(x + rω) dω (9.2.3)

Remarks. 1. lsc and usc are defined in Section 5.2.

2. Any usc function takes its maximum value on any compact set, so in
(9.2.2), the integral could only diverge to −∞. That we assume it doesn’t,
eliminates the case u ≡ −∞ since (9.2.2) implies u(x) < ∞ for a.e. x ∈ O.

3. The usual definition makes a stronger hypothesis; namely, that (9.2.1)
or (9.2.3) holds for any x and r with Br

x ⊂ O. We will prove this below for
u’s that obey the weaker hypothesis. If u is assumed C2, we can suppose
only that for each x, (9.2.1) holds for some ε without requiring a uniformity
for x ∈ K.

4. For u harmonic, the ideas in Theorem 9.2.4 show that u continuous
can be replaced by a measurable and bounded on compact sets.

5. u is called superharmonic if −u is subharmonic. u is harmonic if and
only if it is both subharmonic and superharmonic.

6. In Example 9.2.21, we will construct a subharmonic function which
is only usc and not continuous.

Example 9.2.1. Let O be a convex set in R
ν and F : O → R a convex

function. Then, we claim that F is subharmonic for F is continuous and so
usc. Moreover, if Br

x ⊂ O and ω ∈ Sν−1,

F (x) ≤ 1
2 F (x + rω) + 1

2 F (x − rω) (9.2.4)

since x = 1
2(x + rω) + 1

2(x − rω). Averaging over ω, (9.2.4) implies (9.2.3).
Notice in case ν = 1, Sν−1 = {±1} and (9.2.3) is just midpoint convexity.
So, in one dimension, subharmonic is the same as convex (and harmonic is
the same as affine).

The following pair of results makes it clear why subharmonicity inclues
a usc condition.

Proposition 9.2.2. Let u be a subharmonic function on O ⊂ R
ν. For any

x ∈ O,

u(x) = lim
r↓0

∫

u(x + rω) dω (9.2.5)




