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Abstract

This thesis’ aim is to study and contribute to the human problem solving analysis, which is
a very complex domain. That is why it is helpful to perform an analysis of a logically easier
comprehensible topic – mazes and maze solving in this case.

History of mazes, maze categorization as well as several graph based maze generation
algorithms (e.g. Prim’s algorithm, Kruskal’s algorithm or DFS based algorithms) are pre-
sented and explained in detail. Relevant graph theory concepts are explained prior to the
discussion of maze generation algorithms in order to make their logical intersection clear
and observable.

Further subchapters study connections between automated maze generation (properties
of a maze created by a specific algorithm) and its impact on human maze solving. Human in-
teraction and behavior analysis is performed on a sample data gathered by Maze Generation
Java applet, which I implemented for purposes of this master’s thesis. Technical background
of the implementation part is described in this thesis, too.

The applet let users solve predefined mazes or mazes generated by various random-
ized algorithms. Information about each solve attempt was stored and preserved for further
analysis. The analysis was performed using several methods (some of them used proba-
bly for the first time – e.g. a maze density map) and it led eventually to some interesting
conclusions (e.g. the definition of the so called got-lost ratio and its relationship to users’
movement through the maze).
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Introduction

The topic of mazes is very old. Mazes originate in ancient history, when the first labyrinths
were designed and built. Of course their primary purpose nowadays of fun and entertain-
ment was not that relevant in those times, but it developed throughout the centuries. As
the global education and wisdom level increased, mazes became very popular as a fun and
entertainment tool and also as a very interesting domain from the mathematical point of
view. Mazes have been applied more and more often within the real life, which brought up
(especially parallel with the personal computer boom) the need to have mazes generated in
an automated (i.e. algorithmic) way.

A logical question can come to a reader’s mind: is there anything new such a paper can
bring into the topic of mazes? There certainly is, but it is not really the aim of this thesis. Its
aim is to summarize several maze generation methods (with focus on graph related tech-
niques) and to perform an exploratory study of human interaction with mazes.

The first part of this thesis only briefly presents the basic concept of mazes, history of
mazes, their perception by laic and professional public today and their real life applications.
This chapter is followed by the chapter called Maze Generation presenting possible algorith-
mic ways of creating mazes. Since it focuses on graph theory related generation techniques,
some basic concepts of graph theory are explained and semantically interconnected with
related maze terms. The next chapter (Implementation) briefly presents the technical back-
ground of Maze Generation Java applet, which was implemented as a part of this thesis in
order to gather statistical data usable for human interaction analysis. Finally, the statistical
analysis of gathered users’ results is performed and discussed in the fourth chapter.
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Chapter 1

Introduction to Mazes

The task of this chapter is to present some basic concepts of mazes, their history and catego-
rization before dealing with graph theory concepts and maze generation algorithms per se.
It may contain informal terms and references, which will be formalized in further chapters.
These terms are however usually intuitively understandable, since the subject of mazes is
generally wide spread and comprehensible.

1.1 Maze Concept

1.1.1 What is a Maze?

A maze is a tour puzzle1 consisting of variously branched passages. A solver’s aim is to
move from a starting point to an end point i.e. a valid passage between these two points has
to be revealed. Since maze is a subtype of the puzzle concept, the same basic puzzle rule
applies to it as well: a maze is a problem or enigma testing solver’s diligence, ingenuity and
ability to solve it. Mazes are of various shapes, kinds and difficulty. Section 1.2 focuses on
differences between them.

1.1.2 History of Mazes

Some sources interchangeably refer to mazes also as labyrinths. However there is no con-
sensus on that among the maze fan community. The word labyrinth has a deep historic
background in ancient Crete. It was a structure elaborated by Daedalus for King Minos.
Its purpose was to hold back the Minotaur. Daedalus’ labyrinth was of a unicursal2 sort
and that is the aspect dividing the maze fan community into two fractions. Some believe
the word labyrinth should be used only for unicursal mazes (ergo a labyrinth would be
a subtype of mazes), the other fraction believes both terms are equal. For instance Oxford
dictionaries3 make no semantic difference between both labyrinth and maze.

1. Tour puzzle is a category of puzzles. Tour puzzles make the solver travel around a board (usually but not
necessarily two-dimensional) in order to find a solution.
2. A unicursal maze is a maze without any junctions and choices. It is just one long passage which slows down
the solver from reaching the end point but does not really make it difficult in any other usual way (e.g. loops,
crossings where a decision is needed etc.). See also Section 1.2.5.
3. Labyrinth – a complicated irregular network of passages or paths in which it is difficult to find one’s way,
a maze. Maze – a network of paths and hedges designed as a puzzle through which one has to find a way.
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1.2. CATEGORIZATION OF MAZES

1.1.3 Application of Mazes

Entertainment and brain training may be considered as primary goals of maze application.
So called logic mazes are special mazes with specifically defined rules altering the usual way
of maze solving. This typically involves rules regarding step sequence constraints, moving
through some predefined checkpoints, etc.

In some countries (e.g. USA) there is a tradition to build life size mazes and promote
them as tourist attractions. Lists of life size mazes across the world can be found for instance
in the following sources: [10] – Life Size Mazes, [1], [16].

Another application of mazes can be found in the video game industry. Often there is a
demand for random creation of interior and/or exterior environment. For example in case
of creating an interior ground plan, maze cells can be mapped into rooms and maze paths
into doors.

Mazes were also inspiration for many movies, e.g. Labyrinth (1986).

1.2 Categorization of Mazes

Walter D. Pullen did a great work on summarizing the topic of maze categorization. His
work is one of the most quoted maze related sources on the Internet. According to him,
there are seven categories mazes can be classified by:

• dimension

• hyper-dimension

• topology

• tessellation

• routing

• texture

• focus

Affiliation of a maze to some category (or categories) usually influences maze features re-
lated to the solving phase: difficulty, time needed to solve the maze, fun rate etc. Of course,
all these properties are subjective depending on the human solver. See Chapter 4, “Analysis
of Human Maze Solving” for more information on this topic.

This subchapter explains terms and concepts in an intuitive and informal form. The
Chapter 2, “Maze Generation” makes everything clearer and more formal.

Due to the page number limitation, this master’s thesis contains only few example fig-
urations relevant for this chapter. See [10] – Maze Algorithms for deeper descriptions and
more example figurations.

(http://oxforddictionaries.com)
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1.2. CATEGORIZATION OF MAZES

1.2.1 Dimension

Dimension is a quite intuitive concept, but it is worth defining it in a formalized way in
order to understand it properly. Eric W. Weisstein ([14] – Dimension) sees dimension of an
object as “a topological measure of the size of its covering properties. Roughly speaking, it
is the number of coordinates needed to specify a point on the object. For example, a rect-
angle is two-dimensional, while a cube is three-dimensional. The dimension of an object is
sometimes also called its dimensionality.”

This thesis focuses on two-dimensional mazes. They are easy to draw on a paper or to
realize in a life size manner.

One can imagine a three-dimensional maze as a group of two-dimensional mazes placed
“on each other” with an option to move upwards or downwards between them. Since
there are many widely spread and understandable algorithmic ways of creating a two-
dimensional maze, creating a three-dimensional maze is not really difficult as well. As al-
ready mentioned, virtual space (e.g. video game) designers use such methods to create ran-
domized complex environments.

There are also so called weave mazes. Weave mazes enable overlapping or layering of
paths within the maze, yet there is a limitation. The solver never has an option to move
between layers when being positioned at one cell (from the ground plan point of view). One
has to move inevitably between cells within the two-dimensional point of view in order
to change the position within the 3rd dimension. Therefore weave mazes are somewhere
between 2D and 3D (yet closer to 2D). Walter D. Pullen describes them as 2.5-dimensional
[10].

Mazes of a higher dimension (>3) may be difficult to imagine at first sight. Yet one of the
acceptable conceptions of higher-dimensional mazes is quite trivial. It describes them as a
set of three-dimensional mazes interconnected with so called portals [10].

1.2.2 Hyper-Dimension

This category refers to the dimension of the object the solver moves through the maze. The
following rule applies for dimensional relationships between mazes (both non-hypermaze
and hypermaze) and objects being moved within them:

Let n be the dimension of an object to be moved through a maze (e.g. a 0-dimensional
point). It is being moved along a path with dimension of n+1 (e.g. a 1-dimensional path).
Then the environment the maze exists in has to be of dimension at least n+2 (a plane, a solid,
etc.). [10]

The previous definition may not be intuitively and clearly seen in some graphical maze
representations. For instance classic maze video games usually depict a 2-dimensional object
being moved through a 2-dimensional environment leaving a 2-dimensional figure behind.
Yet it is necessary to abstract from a classic point of view and concentrate on the topological
point of view, which enables “reducing” all observed objects to dimensions fulfilling the
definition above.

4



1.2. CATEGORIZATION OF MAZES

There are three items in this category: non-hypermaze, hypermaze and hyperhyper-
maze. The most intuitive way to distinguish between various dimensions of the object being
moved within a maze is to observe the geometric figure the object “leaves behind”.

The term non-hypermaze describes the case of a point-like (0-dimensional) object. When
being moved through a maze, a line (1-dimensional object) is left behind. In case the moved
object is a line, the geometric figure formed behind is a plane (2-dimensional object). It is
described as hypermaze (of kth order, k > 0).

This master’s thesis focuses on non-hypermaze. Hyperhypermazes are out of its scope.

1.2.3 Topology

According to Walter D. Pullen’s work, the topology category divides mazes according to the
space they exist in.

Normal
A normal maze is a maze existing in a standard Euclidean space. Such a space needs to

fulfill all Euclid’s postulates ([14] – Euclid’s Postulates).

Plainair4

Plainair mazes are mazes that do not fit into a regular Euclidean space (by not fulfilling
one or more of Euclid’s postulates). For instance a set of interconnected plane mazes placed
on a surface of a cube.

1.2.4 Tessellation

The tessellation categorization divides mazes into several groups according to the shape
(and/or its regularity or irregularity) of their basic units they are composed of – cells.

Orthogonal
The implementation part of this master’s thesis deals with mazes of orthogonal tessel-

lation. A maze cell must have at least three edges in order to form a regular 2-dimensional
plane. Orthogonal tessellation defines the condition of perpendicularity between all neigh-
boring pairs of cell walls (logically implying that the cell has inevitably four walls and it is
a rectangle or a square). Such a maze cell can have up to four neighboring cells intersecting
at right angles (see Figure A.1 for an example).

Omega
Walter D. Pullen uses so called omega-like tessellation, which should cover any non-

orthogonal mazes (e.g. delta or upsilon). Its aim is also to cover individually defined tessel-

4. Plainair – planes twisted through air ([10] – Maze and Labyrinth Glossary).
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1.2. CATEGORIZATION OF MAZES

lations, since there are many possibilities how to do that. One just needs to define his own
cell shape and create an adequate interconnecting system.

Theta
The theta tessellation forms a maze into a specific ring-like shape. Either the starting

point or the end point is located in the center, the other is then located at the outer edge
of the maze. All passages are aligned along circles with the same center but with different
radius from it.

Crack
Crack ("shapeless" or "deformed") represents mazes without any consistent tessellation

system. Automated generation of such mazes (e.g. pixel carving approach: [10] – Maze Al-
gorithms) is different from algorithms primarily described in this master’s thesis and is out
of its scope.

Fractal
A fractal maze is a maze that consists of several mazes assembled together. Stanislav

Vejmola deals with this kind of maze tessellation as well ([13], chapter 4.3).

Other Tessellations

• Zeta – an orthogonal tessellation with one addition. Besides regular four directions
(oriented at the right angle) there is also an option to move in 45 degree angle. I.e.
cell’s diagonals can be designed as walls too.

• Delta – represents a triangle shaped maze cell that can have up to 3 neighboring cells.

• Sigma – a basic maze unit is formed into the shape of a hexagon. Such a cell can have
up to six neighboring cells.

• Upsilon – octagon shaped cells that can have up to eight neighboring cells ergo eight
possible directions to move to.

1.2.5 Routing

The Routing category classifies mazes into several subcategories according to the properties
of their passage (path) system. The passage system pattern can sometimes help to determine
the method by which the maze was created (see also Section 2.3).

6



1.2. CATEGORIZATION OF MAZES

Perfect
There are several constraints a perfect maze needs to fulfill: there must not be any pas-

sage loops, there must not be any isolated cells (so called islands) in the maze and there
must be exactly one path between any pair of cells (i.e. the maze has exactly one solution).
The concept of a perfect maze will also be discussed in further parts of this master’s thesis.

Braid
A braid maze is a maze without any dead ends. One can imagine a passage pattern of

such maze as a web of inter-circled paths. The absence of dead ends may radically increase
the difficulty of the maze (in case it is designed in a clever way).

Unicursal
The concept of a unicursal maze has been already discussed. Its passage system consists

of just one snake-like passage without any choices for the solver to be taken (see Figure A.3).
Solving such a maze is generally easy. All it can cause is delaying the solver from reaching
the end point. Yet this may be the desired effect in some cases.

Sparseness
A sparse maze is created by not carving and eventually not including all the grid cells

(or pixels) in the maze. It means there can be inaccessible parts. (Do not confuse with an
island – an inaccessible set of passages surrounded by walls.) Such a cell is not a part of any
passage, thus it becomes a part of the wall.

Partial Braid
A partially braid maze is a combination of dead ends and loops. A dead-end-to-loop

ratio5 may be calculated and altered in order to analyze its influence on difficulty of the
maze.

1.2.6 Texture

Identifying a maze’s texture can be done either by just observing the maze or by expressing
it using mathematical evaluation. The first alternative requires the maze texture to by quite
obvious, i.e. its texture deviation should be more or less extreme.

The second alternative is pretty straight and requires a statistical expression of maze
cells’ properties. When comparing intensity of two states (e.g. occurrence of short and long
passages), one needs to calculate the number of cells in each state. A case-specific and ra-
tional method should be chosen in order not to alter the results undesirably. This concerns
especially cells under investigation which seem to be in both states (e.g. intersection cells).

5. Let the dead-end-to-loop ratio be the relationship between the number of cells belonging to a dead end path
and the number of cells belonging to a loop.
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1.2. CATEGORIZATION OF MAZES

Bias
A bias texture describes the maze paths’ tendency to be directed in either a horizontal

or vertical way. A horizontally biased maze has (relatively) long horizontal passages and
(relatively) short vertical passages. The same but vice versa applies for vertically biased
mazes.

Run
A high run-like maze is a maze characterized by (relatively) long passages (in either

direction). To distinguish a short passage from a long one, a border line needs to be set. It
should be determined ad hoc depending on the size of the analyzed maze.

Elite
Maze elitism is about the solution path. One can observe its two main characteristics:

number of maze cells being a part of the solution path and the enlacement eventually the
perplexity of the solution path. See the difference between solution paths of Figure A.8 and
Figure A.9.

Symmetry
A maze is symmetric if one part of the maze is mirrored into another part. This effect

can be achieved by applying rotational symmetry6 or reflection using reflection axis7. The
reflected part preserves the cell structure of the original part, but in reflected cell arrange-
ment.

River
A maze with a high river factor is a maze created using an algorithmic or non-algorithmic

method, which carves river-like paths. It means the path “flows” through the grid and a
newly created cell is mostly a follower of the previously created cell. See for instance Fig-
ure A.9 or Figure A.10 for high river factor examples.

1.2.7 Focus

Although the title does not exactly express it, Walter D. Pullen uses this category to distin-
guish various methods of maze creation. There are two basic algorithmic ways: wall adders
and passage carvers.

Wall adders are algorithms focusing on wall positioning. Virtual creation takes place
usually on an empty canvas. The algorithm places walls on the canvas in an algorithm-
specific way.

6. A rotationally symmetric object is an object that preserves its looks after a certain amount of rotation.
7. Mathematics uses the term fixed point or set of fixed points – an axis in our case. A fixed point is a point
where a function maps to itself, i.e. f(x) = x holds. The object is mirrored by the so called axis of reflection.

8



1.2. CATEGORIZATION OF MAZES

Passage carvers concentrate on paths and cell positioning. Related algorithms deal with
cells and with their relationships. Virtually, one can imagine it as a canvas with a grid com-
pletely full of walls. A passage carving algorithm carves through the grid and destroys some
of the walls (ergo creating a path between the cells which shared the destroyed cell). Again
– it proceeds according to its algorithm-specific step order.

9



Chapter 2

Maze Generation

2.1 Maze Generation Techniques

There are two basic ways of maze generation: algorithmic and non-algorithmic.
Algorithmic methods create mazes according to a predefined step order. In order to cre-

ate a randomly (more accurately – a pseudorandomly) structured maze, at least one or more
steps need to be randomized (i.e. the decision making within the step has to use a function
returning a random result). This thesis puts focus on graph based algorithms (while there
are actually two aspects of mazes that are related to graphs: maze generation and maze
structure per se).

Graph based maze generation algorithms create mazes by building a spanning tree,
which is a kind of graph (see further chapters for a more formal description). At the end
of the generation process a spanning tree topologically corresponding to a maze is created.
The tree is either being gradually assembled by joining smaller fragmental tree structures
(e.g. Kruskal’s algorithm) or the creation can continuously expand from one specific ran-
domly chosen spot (a maze cell designated as the root of the tree), e.g. Prim’s algorithm.

There are two basic ways of automated maze generation: wall adding and passage carv-
ing (see Section 1.2.7). The recursive division method is an example of a wall adding algo-
rithm. Some maze generation algorithms (e.g. Prim’s algorithm) can even be implemented
both ways, i.e. as a passage carver as well as a wall adder.

Fractal mazes (see Section 1.2.4) can be potentially created in an algorithmic way. It is a
way of assembling individual fractal mazes into a whole. All fractal maze parts need to be
topologically equivalent and their tessellation systems must fit. Also the border overpasses
between them have to be synchronized in order to enable the solver to move within them.

The non-algorithmic methods are not interesting for the purpose of this thesis and will
not be discussed any further.

2.2 Introduction to Topic Relevant Parts of Graph Theory

This subchapter may seem to contain too much mathematically oriented information. Yet it
is essential (and mostly very intuitive and understandable) knowledge one needs to com-
prehend in order to study algorithmic maze generation further. Maze generation and mazes
generally have a lot in common with mathematics. Czech “puzzle guru“ Doc. Ing. Stanislav

10



2.2. INTRODUCTION TO TOPIC RELEVANT PARTS OF GRAPH THEORY

Vejmola, CSc. for example considers mazes to be the most interesting part of fun mathemat-
ics [13].

2.2.1 Basic Concepts

This chapter cumulates and presents only basics and just those parts from graph theory
relevant for this master’s thesis. In no manner is this an attempt to sum up the graph theory
in a complex way. This chapter mixes terminology from several sources, chosen according
to the intuitive clearness of explanations.

Graph Theory
Graph theory is said to have its origins in the problem of citizens of Koenigsberg [4].

The city was divided by a river into four parts connected by seven bridges (see Figure 2.1).
They were wondering whether it was possible to start walking from any land mass, cross
all bridges and return to the starting point without crossing any bridge more than once.
Swiss mathematician and physicist Leonhard Euler (1707–1783) analyzed this problem by
simplifying the reality to basic graph concepts – vertices1 and edges2. (Eventually he found
out there was no way to make such a walk, since all graph nodes would have to be of an
even degree3.)

Figure 2.1: Seven Bridges of Königsberg [15]

1. Vertex – sometimes also referred to as node or point.
2. Edge – sometimes also referred to as connection or line.
3. The degree of a vertex of a graph is the number of edges incident to it.

11



2.2. INTRODUCTION TO TOPIC RELEVANT PARTS OF GRAPH THEORY

Graph
A graph is the basic concept in graph theory. It is a triplet composed of a vertex set V(G),

an edge set E(G), and a mapping (function) ε : E → V 2 called relation of incidence. This
function associates a pair of vertices {x, y} to each edge e ∈ E. Edge e and its associated
vertices are incident. A vertex without any incidence is an isolated vertex.

A graph can be either directed or undirected. A directed graph contains oriented edges
and the notation e = (x, y) describes an ordered pair and its orientation from x to y (eventu-
ally depicting various relationships – precedence, superiority, time chronology etc.). On the
other hand edges of undirected graphs have no orientation and incident vertices are orga-
nized in a set meaning there is no order (notation e = {x, y}). This is sufficient for purposes
of maze generation algorithms and their graph presentation.

Another graph attribute is so called connectivity and it is used to distinguish connected
and disconnected graphs. A connected graph is a graph interconnecting all vertices, i.e. there
is not such a pair of vertices without being connected. Vertices are called adjacent if they are
connected via a single edge.

Graph Comparison
Graphs G = (V,E, ε) and G′ = (V ′, E′, ε′) are equal, if V = V ′, E = E′ and ε = ε′.
Directed graphs G = (V,E, ε) and G′ = (V ′, E′, ε′) are isomorphic 4 under following

circumstances:

• let f be a function f : V → V ′

• let g be a function g : E → E′

• ε(e) = {x, y} ⇔ ε′(g(e)) = {f(x), f(y)}

Informal hints to decide on isomorphism are as follows:

• isomorphic graphs have the same number of edges and vertices

• each vertex x of a degree d is mapped by isomorphism to a vertex x’ of the exact same
degree

• a couple of adjacent vertices x, y are mapped by isomorphism again only to a couple
of adjacent vertices x’, y’

Another way of identifying structural similarities between graphs is the concept of sub-
graph. Graph G’ is a subgraph of graph G if it is created by removing n (n>=0) edges or m
(m>=0) vertices from graph G. This implies that graph G is also a subgraph of itself.

Factor G’ of a graph G is a subgraph preserving the whole vertex set of graph G (also
referred to as spanning subgraph). If G = (V,E, ε) and G′ = (V ′, E′, ε′) then V = V ′.

4. Graph isomorphism is a bijective map preserving graph structure (vertices, edges and their incidence).

12



2.2. INTRODUCTION TO TOPIC RELEVANT PARTS OF GRAPH THEORY

Tree
A tree is an undirected connected graph without cycles5 i.e. there is exactly one path6

between each pair of vertices. A connected graph with n vertices and n-1 edges is a tree.
Removing any edge would cause the graph’s disconnectedness whereas adding an edge
would create a cycle.

Spanning Tree
If a tree is spanning, it means it includes all the graph vertices. A spanning tree of a

connected graph G can also be defined as a "maximal set of edges of G that contains no cycle,
or as a minimal set of edges that connect all vertices" [17]. Graph G with a finite number of
vertices has a finite number of spanning trees t(G). This invariant7 number can be calculated
using the Kirchhoff’s matrix-tree theorem. A possible step sequence to calculate a graph’s
spanning tree number is to:

• construct the graph’s degree matrix and adjacency matrix

• construct the Laplacian matrix Q (which is the difference of the two matrices men-
tioned above)

• calculate an absolute value of any (arbitrary) cofactor of Q

See Appendix B for a simple example calculation. Another alternative of calculating the
number of spanning trees of a graph includes eigenvalues calculation of the graph’s Lapla-
cian matrix8. Jiří Sedláček also deals with this topic presenting a third calculation alternative
([11], chapter 7).

Weighted Graph
A graph may also be weighted. It means that a label (so called weight – usually a number)

is associated with every edge in the graph. Then the so called minimum spanning tree is a
spanning tree with weight less than or equal to the weight of every other potential spanning
tree of the graph. Weight is not relevant for maze representation in general. Yet some maze
generation algorithms are based on algorithms that deal with minimum spanning trees, that
is why it is good to know at least the basic principle.

2.2.2 Graph Theory, Mazes and Maze Generation Algorithms

First of all an important thing needs to be mentioned. Graphs serve the purpose of some
maze generation algorithms, but not only. A maze structure per se (aside from its gener-
ation process) can also be represented by some kind of a graph, since it is “just” a set of

5. Cycle – sometimes also referred to as loop.
6. A path is a list of n edges connecting two graph vertices x, y ∈ V, x 6= y, n > 0.
7. Invariant property is a property that does not change when applying specific (ad hoc) transformations to
the object holding this property.
8. http://en.wikipedia.org/wiki/Kirchhoff’s_theorem
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vertices and a set of edges. I.e. even maze structure that was not created by a graph oriented
algorithm may be represented by some sort of a graph.

Graph based maze generation algorithms described in this thesis are based on vari-
ous graph related algorithms. These include creating, traversing or searching diverse graph
structures. Applying an algorithm for maze creation usually involves deriving the algorithm
it is based on, although the basic logic remains untouched.

The conceptual intersection of graph theory and graph based maze generation algo-
rithms is quite intuitive since many concepts are named similarly or identically.

Consider a maze being a grid 9. Then the graph theory related analogy to a grid is a
graph. A grid consists of cells – graph vertices. Following maze parts are supposed to be
turned into graph vertices when redrawing a maze into a graph: crossing, last cell of a dead
end path, entrance cell, exit cell, isolated cell10. Numbering or another way of identification
may be used in order to identify a maze cell with a graph vertex it is mapped into.

Grid cells (i.e. maze cells) are connected to each other via paths i.e. edges of a graph. The
path between cells x and y denotes the ability to carve from x to y and vice versa. Possible
formal denotation of a path between vertices x and y is ex,y ([13], page 75). If the number of
edges (paths) between two cells is equal to 1, these cells can be referred to as adjacent cells.
A path connecting cells 1 and n via a series of neighboring pairs of adjacent cells may be
formulated as a sequence of several single path denotations e1,2, e2,3, . . . en-1,n.

Maze presentation using a graph has several relevant advantages. First of all it is the most
intuitive way for a graphical figuration of a maze. Another advantage is a graph’s ability
to abstract from scaling, original maze cells’ positioning and shape. (Abstraction from the
shape of maze cells may be very helpful especially in case of their extraordinary or unusual
shape.) The vertex set and edge set and their connections are the only important aspects.
That is why a redrawn positioning system in a form of a graph can make the maze cells’
relationships clearer and more evident than a classic maze grid. Graph presentation can
also assist at structural comparison of mazes using the concepts of subgraph and graph
isomorphism.

The definition of a perfect maze (which might be used as a start up point and which
can be easily derived to create definitions of other maze types11) includes the following
constraints:

1. The maze has no loops.

2. The maze has no isolated areas.

3. Between any pair of cells there’s exactly one path (i.e. there’s only one possible solu-
tion).

9. Intuitive and wide spread understanding and graphical representation of a maze grid is a rectangular shape
with orthogonal tessellation. Yet it is important to keep in mind that this is just one of the potential representa-
tions. The other ones are more or less also eligible to be interpreted by a graph structure of some sort.
10. An isolated group of interconnected maze cells is an island (isolated graph).
11. Perfect maze as a maze type is mentioned with reference to the routing category item (see Section 1.2.5).
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According to its definition within graph theory, a tree as a specific graph structure is used
for purposes of fulfilling conditions 1) and 3). A tree as a structure is therefore very close
to fit the need to represent a perfect maze. To get a little closer, another conditional tree
feature has to be deliberated – spanning 12. A spanning tree of a connected graph G is a tree
composed of all the vertices of G (and the 2nd condition is therefore fulfilled). Let G be a
connected graph with V vertices. Then any spanning tree within G will have V-1 edges.

If the maze is perfect, any cell can be designated as a root of a spanning tree matching the
maze structure. If the starting cell of a maze (a cell, where the solving starts) is designated
as the root, some algorithms (e.g. the depth-first search algorithm) can be applied to search
the tree and find the way from the starting cell to the end cell.

2.3 Graph Based Maze Generation Algorithms

2.3.1 Randomized Prim’s Algorithm

Prim’s algorithm is an algorithm capable of finding a minimum spanning tree for a con-
nected weighted undirected graph. This algorithm per se is not really interesting for the
purposes of automated maze generation. What is more relevant is its randomized version.
But some tutorial information regarding the Prim’s algorithm should be presented first.

The algorithm was first developed by a Czech professor and mathematician Vojtěch
Jarník in 1930. Another inventor of this algorithm is Robert Clay Prim, who invented it
independently from Vojtěch Jarník in 1957. Eventually a Dutch computer scientist Edsger
Wybe Dijkstra rediscovered it in 1959. Therefore this algorithm can also be referred to by the
following names: Jarník algorithm, Prim–Jarník algorithm or DJP algorithm.

As already mentioned, this – so called greedy13 – algorithm can be used to find a min-
imum spanning tree within a graph, i.e. a tree structure containing all the graph vertices.
The limitations of the spanning tree structure have been discussed in the previous chapter.
Jonathan Gross and Jay Yellen ([6], page 146) provide a quite intuitive example of Prim’s
algorithm pseudocode:

Input: a weighted connected graph G.
Output: a minimum spanning tree T.

1. Choose an arbitrary vertex s of graph G.

12. Some sources refer to the minimum spanning tree concept. This means that weighted (usually numbered)
edges are taken into consideration. Yet it is not relevant for the maze generation process dicussed in this thesis,
since it is not necessary for the paths (i.e. edges) to be weighted.
13. A greedy algorithm is an algorithm reaching locally (in each step) for the most optimal choice in order to
approach the best (i.e. the most optimal) global choice [3]. (However, some greedy algorithms are heuristic,
which means that the probability of finding the most optimal global solution is very high, but not guaranteed.
Yet it is not the case of Prim’s algorithm, since its correctness can be mathematically proven.)
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2. Initialize the Prim tree T as vertex s.

3. Initialize the set of frontier edges for tree T as empty.

4. While Prim tree T does not yet span G

(a) Update the set of frontier edges for T.

(b) Let e be a frontier edge for T with the smallest14 edge-weight.

(c) Let v be the non-tree endpoint of edge e.

(d) Add edge e (and vertex v) to tree T.

5. Return Prim tree T.

(For a more formal definition of Prim’s algorithm see [5], page 41.)
The question is how can this algorithm be altered in order to generate random mazes?

The answer is easy. The alternative algorithm should abstract from weighted edges i.e. it
should consider the graph to be unweighted and the random factor would be therefore
implemented within the step 4. More accurately – the algorithm would not choose the most
minimally weighted edge. It would choose any (random) edge directly connecting a vertex
within the tree (a cell already being a part of the maze) with a vertex outside the tree (a
non-tree vertex – a cell not being carved into so far).

Randomized Prim’s algorithm can be implemented from two points of view: as a passage
carver or as a wall adder. Darryl Nester mentions three variations of randomized Prim’s
algorithm [9]. Walter D. Pullen uses a method dividing maze cells into three groups ([10] –
Maze Algorithms): in-cells (cells already being a part of the maze), out-cells (cells not being
a part of the maze as yet), frontier cells (cells not being a part of the maze yet but having at
least one in-cell as a neighbor):

1. Start by picking a cell, making it "in", and setting all its neighbors to "frontier".

2. Proceed by picking a "frontier" cell at random, and carving into it from one of its
neighbor cells that are "in".

3. Change that "frontier" cell to "in", and update any of its neighbors that are "out" to
"frontier".

4. The Maze is done when there are no more "frontier" cells left (which means that there
are no more "out" cells left, so they are all "in").

Finally, the pseudocode from Maze Generation Java applet related to this master’s thesis:

1. Choose a random cell within the maze grid (given by its width and height) and design
it as a start cell.

14. Substituting the word “smallest” with “highest” would result in creating a maximum spanning tree instead
of a minimum spanning tree.
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2. Add the start cell to (by now empty) inCells set.

3. Mark cells around the start cell as frontier, i.e. add them to frontierCells set.

4. While frontierCells set is not empty:

(a) Choose a random frontier cell cF from frontierCells.

(b) Choose a random in-cell cI adjacent to cF.

(c) Add cF to inCells.

(d) Mark all out-cells around cF as frontier.

(e) Add a path between cI and cF to the maze paths set.

(f) Remove cF from frontierCells set.

For Java source code see Example C.0.4 and for illustration see Figure 2.2.
When implementing this algorithm, only two data set structures storing cells are needed:

a set of in-cells (inCells, grey color) and a set of frontier cells (frontierCells, yellow color).
This alternative has two (optionally even three) randomizations. The first (one-shot only)
randomization may consist in choosing an arbitrary vertex to start the algorithm from (step
1). Another randomization occurs repeatedly when choosing a random frontier cell (step 4a).
And finally the third randomization (step 4b) happens (again repeatedly) when choosing an
in-cell the selected frontier cell should be connected with (in case the selected frontier cell
has more than one neighboring in-cell).

Figure 2.2: Randomized Prim’s algorithm example
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2.3.2 Randomized Kruskal’s algorithm

Randomized Kruskal’s algorithm used for maze generation purposes originates in Kruskal’s
algorithm. Joseph Bernard Kruskal, Jr. was an American (not only) mathematician and com-
puter scientist. He first presented this algorithm in 1956.

Kruskal’s algorithm is – as well as Prim’s algorithm – a greedy algorithm able to find
a minimum (or maximum) spanning tree within a graph. The difference between Prim’s
and Kruskal’s algorithm is in the “area” of graph the algorithm operates in. As described in
previous chapter, Prim’s algorithm builds the spanning tree from one point up in an expan-
sible way. On the other hand Kruskal’s algorithm operates in the whole graph area creating
and binding fragmental acyclic trees to each other (thus dealing with a forest). Eventually
adding the last edge creates a spanning tree.

Alan Gibbons’ interpretation of Kruskal’s algorithm ([5], page 63):

1. Relabel the elements of E so that: if w(ei) > w(ej) then i > j

2. MWT ← ∅

3. for i = 1 to |E| do

(a) if MWT
⋃
{ei} is acyclic then

(b) MWT ←MWT
⋃
{ei}

Commentary: MWT stands for minimum-weight spanning tree. Relabeling of elements of
E means ordering the list of edges according to their weight. The third step represents it-
eration through the ordered list. If it starts with the smallest number, the algorithm returns
the minimum spanning tree. If it starts with the highest number, the algorithm returns the
maximum spanning tree.

How can one alter this algorithm in order to be usable for maze generation? Again (since
the same holds for Prim’s algorithm), the randomized version needs to abstract from graph
edges being weighted. Although every wall has got to be processed, they are chosen in a
random order. Choosing a wall means potentially creating a path between cells the wall
divides. Unless there is another path between the two cells, the currently chosen wall is
removed and the path is created (otherwise removing the chosen wall would result in a
loop, which is highly undesired).

Darryl Nester presents his version of pseudocode of the randomized Kruskal’s algorithm
[9]:

1. Make a list of every available wall.

2. Choose a wall and remove it from the list.

3. If there is no path between the two cells on either side of that wall, remove it.

4. If all cells are connected, we are done; otherwise, return to step 2.
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Step 3 is very intuitive at first sight, but keeping track of the actual cell relationship situation
requires a specific solution. Walter D. Pullen’s pseudocode ([10] – Maze Algorithms) is more
specific and indirectly mentions sets for purposes of storing the forest system within the
graph:

“Label each cell with a unique id, then loop over all the edges in random order. For each
edge, if the cells on either side of it have different ids, then erase the wall, and set all the
cells on one side to have the same id as those on the other. If the cells on either side of the
wall already have the same id, then there already exists some path between those two cells,
so the wall is left alone so as to not create a loop.”

Finally – the pseudocode implemented within the Maze Generation Java applet (for Java
source code example see Example C.0.5):

1. Initialize a list of tree sets, starting with each cell being in its own set.

2. Choose a random wall from the wall list and interpret both cells it divides.

3. If cells are not in the same tree set yet, create a path between these two cells and join
their tree sets.

4. Remove the wall from the wall list

5. Unless the wall list is empty, loop back to step 2.

Eventually there is just one tree set left when the algorithm finishes. It contains the whole
spanning tree corresponding to the resulting maze. Some sources recommend using disjoint-
set data structure in order to operate on sets efficiently.

Figure 2.3 illustrates the randomized Kruskal’s algorithm. Yellow colored wall is a wall
which is randomly picked at the moment when it cannot be removed anymore (in order to
prevent creating a loop).

Figure 2.3: Randomized Kruskal’s algorithm example
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2.3.3 Recursive Backtracker

A recursive backtracker is a maze generation algorithm based on the so called depth-first
search (DFS) technique. Graph search is not the only application of the DFS algorithm15,
that is why “search” is slightly misleading in its name. Yet there is a general adherence to
this naming convention.

The DFS algorithm wanders through the graph in a depth oriented way. It means that
if possible, the next visited vertex is a child of the previously visited vertex. Otherwise, in
case the latest visited vertex has no more “available” children, the algorithm backtracks to
the previously visited vertex and tries again. It is done when all vertices have been visited
by the algorithm (regardless of the actual purpose of wandering through the graph). In case
the algorithm builds a tree along the way (by registering and storing visited graph vertices
and graph edges), a spanning tree is eventually returned.

The following pseudocode [6] formalizes the DFS algorithm:

Input: a connected graph G and a starting vertex v.
Output: a depth-first spanning tree T and a standard vertex-labeling of G.

1. Initialize tree T as vertex v.

2. Initialize the set of frontier edges for tree T as empty.

3. Set df number(v) = 0.

4. Initialize label counter i:=1.

5. While tree T does not yet span G

(a) Update the set of frontier edges for T.

(b) Let e be a frontier edge for T whose labeled endpoint has the largest possible df
number.

(c) Let w be the unlabeled endpoint of edge e.

(d) Add edge e (and vertex w) to tree T.

(e) Set df number(w) = i.

(f) i := i + 1.

6. Return tree T with its df numbers

15. The DFS is not only an automated maze generation method, but it can also serve as an automated maze
solving method (which is however out of this thesis’ scope). See for instance [6], page 139.
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Commentary: df number identifies the order the vertices are visited in. It can be observed,
that if “df number(x) < df number(y), then vertex x must be an ancestor of vertex y in tree
T” [6].

Recursive backtracker algorithm works in a similar way. It carves from the start point
throughout the whole graph, using backtracking when necessary. The important aspect is
randomization. The first randomization step occurs when a random cell is chosen to start the
algorithm from. Another randomization happens when choosing a neighbor (child vertex)
to carve into from the current cell.

The pseudocode from Darryl Nester’s point of view (he refers to this algorithm as “ran-
dom walk” [9]):

1. Start in a randomly-chosen cell.

2. If the current cell has at least one unvisited neighbor, choose one at random, knock
down the walls between the current cell and the new cell, move into the new cell, and
repeat step 2.

3. If the current cell has no unvisited neighbors, backtrack into the cell from which we
"broke into" the current cell, then return to step 2. The maze is finished when we
backtrack into the cell in which we started.

Walter D. Pullen ([10] – Maze Algorithms) goes a bit further with his declaration and men-
tions an effective way of implementing such an algorithm using a stack:

“When carving, be as greedy as possible, and always carve into an unmade section if
one is next to the current cell. Each time you move to a new cell, push the former cell on the
stack. If there are no unmade cells next to the current position, pop the stack to the previous
position. The Maze is done when you pop everything off the stack.”

Stack is also the data structure used within the Maze Generation Java applet:

1. Design a randomly chosen cell as the current cell and add it to the stack.

2. IF the current cell has any unvisited neighbors THEN

(a) randomly choose one of them and design it as the next cell

(b) add next cell to the stack

(c) create path between current cell and next cell

(d) mark next cell as the current cell

3. ELSE pop a cell from the stack and design it as the current cell

4. WHILE stack is not empty

(a) loop back to 2
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The first move is performed outside the loop in order to initialize the stack, so that the
while-condition can check for finalization of the maze creation. See Example C.0.6 for Java
source example and Figure 2.4 for illustration. Yellow points depict cells where the new walk
started from.

Figure 2.4: Recursive backtracker algorithm example

2.3.4 Hunt and Kill Algorithm

The Hunt and Kill algorithm is a modification of the recursive backtracker. However it can-
not be logically compared to the DFS anymore, since its randomness breaks the basic princi-
ple of the DFS – the backtracking. When the algorithm reaches a cell with no more available
unvisited neighboring cells to carve into, it does not backtrack to the previous cell. Instead
a random already visited cell with available unvisited neighbors is found and the carving
starts from this point again. Walter D. Pullen describes this state as the so called “hunt-
mode” ([10] – Maze Algorithms). He describes the whole maze creation process using this
algorithm as follows:

“It’s most similar to the recursive backtracker, except when there’s no unmade cell next
to the current position, you enter hunting mode, and systematically scan over the maze until
an unmade cell is found next to an already carved into cell, at which point you start carving
again at that new location. The maze is done when all cells have been scanned over once in
hunt mode.”

Implementation of this algorithm within Maze Generation Java applet can be paraphrased
with the following pseudocode:

1. Choose a random cell to start from, design it as the current cell and mark it as visited.

2. While not all cells have been visited:
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(a) IF current cell has unvisited neighbors THEN

i. randomly choose one of them and design it as the next cell
ii. create path between the current cell and the next cell

iii. mark the next cell as the current cell
iv. mark the (newly assigned) current cell as visited

(b) ELSE

i. randomly choose an already visited cell with available unvisited neighbors

See Example C.0.7 for a Java source code example and Figure 2.5 for illustration. Yellow
points depict cells where the new walk started from.

Figure 2.5: Hunt and Kill algorithm example

2.3.5 Bacterial Growth Algorithm

The bacterial growth algorithm is very similar to the principle of Prim’s algorithm. Both
build the spanning tree from one point up. The difference is in the “intensity” of adding
new edges and vertices to the tree. Prim’s algorithm adds one edge per each step of the
loop, whereas bacterial growth algorithm adds an edge (and the corresponding vertex) to
each cell with available (yet unvisited) neighbors. The number of visited cells can therefore
be (at most) doubled after each step. This is where (most likely) the name of the algorithm
comes from – bacteria population usually increases in an exponential way.

The pseudocode of such an algorithm can be stated as follows:

1. Design a randomly chosen cell as the current cell and mark it as visited.

2. Unless all cells have been visited:
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(a) For each cell marked as visited:

(b) IF such a cell has any unvisited neighbors THEN

i. Randomly choose one, carve a path into it and mark it as visited

However this is not very efficient version of this algorithm. Creating, using and iterating
only a set of already visited cells with unvisited neighbors would be more appropriate. See
Example C.0.8 for a Java source code example and Figure 2.6 for illustration.

Figure 2.6: Bacterial growth algorithm example

2.4 Other Approaches of Maze Generation

There are also some other maze generation techniques worth being mentioned at least briefly.
However inserting them into this subchapter does not mean they are not connected with
graph theory at all. Logic principles of some of them do originate or are somehow con-
nected with graph theory, whereas the terminal structure of all of them can be represented
by some kind of a graph structure.

Eller’s Algorithm
Eller’s algorithm is very interesting because it is one of the fastest algorithms for maze

generation purposes and it is also highly efficient with memory allocation. The principle is
that only one row is being processed at once.

Walter D. Pullen ([10] – Maze Algorithms): “It creates the Maze one row at a time, where
once a row has been generated, the algorithm no longer looks at it. Each cell in a row is con-
tained in a set, where two cells are in the same set if there’s a path between them through
the part of the Maze that’s been made so far. This information allows passages to be carved
in the current row without creating loops or isolations. . . . Creating a row consists of two
parts: Randomly connecting adjacent cells within a row, i.e. carving horizontal passages,
then randomly connecting cells between the current row and the next row, i.e. carving ver-
tical passages.”
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Wilson’s Algorithm
Wilson’s algorithm is another random walk based algorithm eventually creating a maze

structure corresponding to a spanning tree. A random walk is performed between two ran-
domly chosen cells. Then a third cell (outside of the already carved path) is chosen as a
starting point for another random walk, which finishes when it hits a cell that is already a
part of the maze. This cell thus becomes a root of a newly created subtree within the final
spanning tree.

Darryl Nester [9] provides an intuitive solution, if an undesired loop is created during
the random walk:

1. Choose a random cell, and mark it as ”used”.

2. Start in a randomly chosen unused cell (call it ”START”).

3. Do a random walk – keeping track of the path taken – until you stumble into a ”used”
cell (call it ”END”).

4. Remove walls along the path from START to END. If any cells on that path were
visited more than once during the walk, only remove the wall in the most recent
direction. Mark all cells on that path (including START) as ”used”.

5. If unused cells remain, return to step 2.

Recursive Division
The recursive division algorithm is a typical wall adding algorithm. Its connection with

graph theory is not as obvious as by some other previously mentioned algorithms. Yet even-
tually a graph can be used to depict the final maze structure.

The algorithm starts with dividing an empty maze area horizontally or vertically, “with
an opening randomly placed along it. Then recursively repeat the process on the two sub-
areas generated by the dividing wall. For best results, give bias to choosing horizontal or
vertical based on the proportions of the area, e.g. an area twice as wide as it is high should
be divided by a vertical wall more often.” [10]
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Chapter 3

Implementation

A subtask of this master’s thesis was to implement an application with the following basic
features:

• The user can have a maze created using several algorithms.

• Mazes can be watched when being created, so that the differences between algorithms
can be clearly observed.

• The user can interactively solve mazes.

• The application gathers data collected from users for further analysis.

In order to enable a potentially big amount of users to play and solve mazes, the application
needed to be provided online. Several aspects needed to be considered: friendliness of UI
design, available IDEs, behavior at the client’s side (necessary web browser components,
virtual machine behavior and efficiency), multithreading features (which eventually showed
to be very important), etc. Since I had no previous experience with any alternatives (e.g.
Flash), I chose Java applet technology.

When designing back end implementation, I had to take available technologies into con-
sideration. The Faculty of Informatics, Masaryk University1 provides its students (not only)
with MySQL accounts. Because of the faculty’s network restrictions and other potentially
arising problems at the client’s side, I have implemented server side PHP scripts to store
and operate the data in the database based on requests sent by the applet. It showed to be a
good and quite efficient solution for such a small sized project.

See Appendix E for electronic attachment description.

3.1 Back End

Data analysis regarding Chapter 4, “Analysis of Human Maze Solving” will be performed
on user data, which consists of information about each attempt to solve a maze. The follow-
ing information is connected with each solve attempt and can be retrieved from the MySQL
database for analysis purposes:

1. http://www.fi.muni.cz
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• Username – unique user identifier.

• Timestamp – time identifier.

• Maze finished – whether user has successfully solved the maze or not.

• Show visited cells – whether the option to show already visited cells was enabled
during the solve attempt or not.

• Maze type – name of the predefined maze or name of the randomized algorithm
which created the random maze.

• Maze size – size of the maze (maze width and maze height).

• Maze paths – set of all pairs of cells representing a valid path stored as a string with
specific structure.

• Start cell – starting point of the maze.

• End cell – end point of the maze.

• User draw – list of cells ordered chronologically as the user visited them during the
solving phase (including the time information for each turn) stored as a string with
specific structure.

• Time – time in seconds.

An attempt is represented by a record, which can be eventually in 3 various states (see
Figure 3.1):

• Initialization – user started solving but he neither clicked the "Give up" button nor
did he solve the maze successfully (win_time = -1 AND maze_finished = false)

• User won – user solved the maze successfully (win_time > -1 AND maze_finished =
true)

• User gave up – user gave up and clicked the "Give up" button (win_time > -1 AND
maze_finished = false)
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Figure 3.1: Database record states.

3.2 Front End

Maze Generation Java applet2 was developed using NetBeans IDE 6.9.1 and compiled by
Java 6 update 22. Applet enables user (solver) to:

• solve predefined mazes (using mouse or keyboard arrow keys, but exceptions may
apply according to the predefined maze characteristics)

• have a maze created using various randomized algorithms

• watch the process of maze creation (or skip the watching phase and have it created
and shown immediately) – applies to non-predefined mazes only

• have a maze exported to a bitmap file for further processing (printing, etc.)

Predefined mazes are static mazes with hard-coded properties (width, height, starting cell
and end cell position, ability to see already visited cells while solving) and path structure.
The point is to provide a bunch of identical mazes to a mass of users in order to increase the
results’ objectivity of human interaction analysis.

3.2.1 User Interface

At the moment (January 2011), application UI contains following controls:

• Slow motion checkbox – if checked, maze is created “live” in order to point out the
characteristics of used algorithm (applies to non-predefined mazes only).

• Slow motion slider – adjusts the speed of the slow motion option.

2. http://www.fi.muni.cz/~xfoltin/mazes
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• Generate button – starts generating the maze (if slow motion checked, it can be also
used to skip the slow motion generation and show the maze immediately).

• Give up button – user gives up current solve attempt by clicking this button.

• Size combobox – shows the selected desired maze size (applies to non-predefined
mazes only).

• Maze list – list of available mazes to choose from (predefined and non-predefined
ones).

• Menu bar:

– Actions / Export current maze – exports current maze to a bitmap file for further
processing.

– Options / Show visited cells – enables solver to see already visited cells while
solving (usually applies to non-predefined mazes only, but there may be excep-
tions).

– Help – contains Help and About dialog windows.

3.2.2 Relevant Classes and Data Structures

MazeCanvas
MazeCanvas extends Java AWT class Canvas. A Canvas component represents a blank

rectangular area of the screen onto which the application can draw or from which the appli-
cation can trap input events from the user (keyboard arrows and mouse clicks). MazeCanvas
is the application component mazes are drawn onto.

Maze
A maze class represents a maze with its basic attributes: maze type (string description of

its origin), width, height, start cell, end cell, set of paths.

Cell
A cell is a basic maze unit. It is characterized by its x-coordinate and y-coordinate (see

Example C.0.1). The coordinates of the upper left cell in each maze are [0, 0]. X-coordinate
represents the horizontal dimension of a maze, i.e. its width. Y-coordinate represents the
vertical dimension of a maze, i.e. its height. Cell class is a supertype of following classes:
CellIn (start cell of the maze), CellOut (end cell of the maze), CellWithTiming.

CellWithTiming (extends Cell) is a structure representing a cell including the information
of time (in seconds, since the start of the solving phase) when solver visited the cell (see
Example C.0.2). This enables the backtracking, replaying and following of a maze solve
attempt for eventual analysis.

29



3.2. FRONT END

Path
A path is a structure consisting of two cells denoting the fact there is a connection be-

tween them (i.e. one can carve from one to the other and vice versa).

Pathset
A pathset is a java.util.HashSet structure each algorithm uses to store paths in. It is a

convenient way to archive the maze paths structure and it enables the programmer to eas-
ily check presence or absence of a valid path within a maze using the contains(Object o)
method.

MazeCreator
The MazeCreator class’ aim is to provide a maze after the user has chosen his desired way

of having it created (predefined maze or maze created by a randomized maze generation
algorithm).

Randomized Algorithms Classes
Each randomized maze generation algorithm is implemented within its own class ex-

tending java.lang.Thread class. The multithreading feature is critical for user friendliness
and efficiency of this application, since concurrently running subtasks enable for instance
skipping the maze creation during the slow motion process. Multithreading is also neces-
sary when contacting PHP scripts and sending data to the database server.

MethodUtil
MethodUtil is a class providing static methods frequently and commonly used by maze

generation algorithms. A typical example is the getRandomCell method returning a random
maze cell provided it knows the size of the maze (see Example C.0.3).
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Chapter 4

Analysis of Human Maze Solving

4.1 Human Problem Solving

ProSo1 is a research group at the Faculty of Informatics, Masaryk University studying var-
ious aspects of “cognitive science – an exciting intersection of computer science, psychol-
ogy, artificial intelligence and education.” According to one of ProSo’s publications [12], an
extensive study of human problem solving is important, because “humans and comput-
ers solve problems in different ways and have complementary strengths; to build tools for
human–computer collaboration we need to understand what makes problems difficult for
humans.” ProSo researchers find inspiration for human problem solving analysis in various
puzzle games: Sudoku, Sokoban or Replacement puzzle. See for instance [2], [7] (in Czech).

Problems from the human problem solving point of view can be categorized according
to the complexity of their definitions into two groups: well-structured and ill-structured
problems. Well-structured problems are (relatively) clearly defined and structured, whereas
ill-structured problems are vaguer. The maze solving problem – as a logic puzzle problem –
can be defined as well-structured. The basic principle and how-to-play is very intuitive and
the problem can be observed relatively easily. The so called game state and state space are
used for this purpose.

Concerning maze solving – game state is a possible state of game represented by the
solver being positioned on one of the maze cells. State space is an undirected graph contain-
ing vertices representing all possible game states. An edge between vertices x and y means
there is a direct transition from state x to y and vice versa. Since a maze state space is gen-
erally a graph, a perfect maze state space is then a spanning tree (which connects this topic
again with graph theory concepts). Number of vertices in such a spanning tree equals to the
number of cells in its corresponding maze. Figure 4.1 shows an example of a simple maze
state space with the starting cell designed as the root of the tree (the starting cell is green
and the end cell is red).

1. http://www.fi.muni.cz/~xpelanek/proso
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Figure 4.1: A state space example

4.2 Maze Solving

4.2.1 General Assumptions

Mazes can be generated and/or solved in a both automated and non-automated way (hu-
man in our case). The most interesting combination is automated generation vs. human
solving or vice versa, since these two combinations show differences between humans and
computers and their perception of a problem (generation or solving).

There are many aspects that influence the difficulty of the maze and the time needed to
solve it. Walter D. Pullen deals also with this topic ([10] – Maze Psychology), yet focusing
especially on life size mazes. There are many ideas helpful for our purpose as well, though.

A very typical approach to solve a maze is so called wall following ([13], [10] – Maze
Psychology), but it is helpful only in some cases. Its principle lies in “following” either the
left or the right wall, which leads into finding the solution. If the maze is infinite or if it
contains loops, this technique might/will not work. Loops generally influence the solving
phase a lot. If there are only dead ends in the maze (the case of all perfect mazes), the solver
can find out relatively easily if he is on the wrong way. Loops can make the solver believe
he is heading successfully towards the end cell.

Another aspect influencing maze difficulty is its size. The length of the solution path or
complexity of maze tessellation and eventually the cell shape are relevant as well. As already
mentioned, many categories (see Section 1.2) influence maze solving difficulty variously.
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4.2.2 Brute Force vs. Analytical Solving

A solver’s thinking and behavior is very vague and subjective but also a very interesting
aspect worth observing, analyzing and studying. Let us assume and experimentally distin-
guish two basic approaches: brute force solving and analytic solving. The brute force ap-
proach should be observable by fast movement throughout the maze area, especially (but
not only) directly towards the end cell. In case the solver happens to find and traces the
solution path soon enough, it is a very fast approach. Analytic solving is an approach where
the solver is able to stop for a moment and analyze a part of the maze (or even the whole
maze) in order to find the solution path. It can also help to rule out a possible dead end.
One can assume such an approach may be more helpful in large-sized mazes that are more
likely to take longer to solve using the brute force method. Both methods seem to have their
advantages and disadvantages.

Let us take a closer look at the difference between brute force and analytical solving.
Figure 4.2 and Figure 4.3 show the distribution of a number of moves over time (do not
confuse with the distribution function in probability theory; let us refer to it as the moves-
over-time function). The move count is assigned to the interval of one second, which can be
then perceived as a discrete variable. The last second is the moment when the solver carved
into the end cell.

Figure 4.2: Analytic Example
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Figure 4.3: Brute Force Example

Both solving examples were synthetically produced when simulating assumptive user
behavior. Let us observe some basic differences between both approaches first. The analytic
example contains many time intervals without any moves, which could mean that the user
stopped and analyzed the surroundings of his current position. (Of course that is just an
assumption. He could have been disturbed or simply could have stopped for many other
reasons.) Another interesting fact is that immediately after the last no-move interval (inter-
vals 2, 10, 17, 22) the number of moves rapidly increases during the next interval. It could
mean that the solver analyzed successfully and followed a path he was sure about (and that
is why he moved faster).

On the other hand the assumption regarding brute force solving is based on high in-
tensity and fast steady movement of the solver through the maze area. Time intervals with
a low number of or no moves could be explained by the solver running into a dead end,
which made him stop and analyze the situation (compared to an analytic oriented solver,
who analyzes “voluntarily”).

Both example mazes are medium sized. Despite the fact that they were different, let us
calculate the average count and standard deviation of the number of moves throughout the
time (Table 4.1). It might be helpful and illustrate the way I might study mazes in further
subchapters.
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Average Standard deviation
Brute force 5.19 2.38

Analytic solving 2.26 2.62

Table 4.1: Examples’ statistics

A lower average number of the analytic solving example proves it to be more moderate
and not so “aggressive”. Standard deviation of the brute force example is lower despite
the fact that its average is more than doubled. Ergo a relatively high standard deviation of
analytic solving mirrors a high frequency of time intervals without any moves.

When analyzing predefined mazes and individual users’ behavior, I’ll try to prove (or
reject) the assumption, that solvers usually use one of these two basic approaches (brute
force or analytic solving).

4.3 Data Collection

Note: shortly after publishing the applet a bug regarding the movement evidence was re-
vealed. Therefore numbers concerning successfully solved mazes come from the whole data
sample, but any previous or upcoming data regarding moves count (average number of
moves etc.) come from the part of users’ data (approx. 82 % of all data) which was obtained
after the bug has been fixed. Let’s refer to these periods as applet version 1 (before the bug
was fixed) and applet version 2 (after it has been fixed).

The gathering of user data took for over a month (43 days). It was quite essential for
me to convince users to register and solve mazes while being logged in under their unique
username. The point is for me to be able to study behavior of a specific person (regardless
of his/her identity and characteristics). About three quarters of all mazes were solved by
registered users. To increase users’ motivation I organized a competition. (A prerequisite to
enter the competition chart was to have all solvable predefined mazes solved.) One could
gain 1 point for successfully solving a medium sized maze and 2 points for solving a large
sized maze. Competition results have been evaluated and top 3 players were given a prize.
According to the final standings, I suppose the competition did not really invoke as much
interest as I expected however I am satisfied with the eventual extent of users’ data and
I find it sufficient for my exploratory data analysis. Table 4.2 contains some basic information
about the whole data gathering process. Table 4.3 contains maze size measurements which
are referred to in following subchapters.
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Number of users who successfully solved at least one maze 48
Time spent by reg. users (successful and unsuccessful attempts) 24.24 hours
The most active reg. user spent 6.35 hours
Anonymous users spent (all together) 4.48 hours
Successfully solved mazes (all together) 1733

Table 4.2: Global statistics

Maze size Width (cells) Height (cells) Total number of cells
Tiny 7 7 49

Small 15 15 225
Medium 37 25 925

Large 60 40 2400

Table 4.3: Global statistics

See Table D.1 and Table D.2 for global randomized and predefined mazes’ statistics.

4.4 Data Analysis

4.4.1 Analyzing Tools

The following tools are used to express or visualize the statistical sample data:

• line charts (e.g. visualization of moves-over-time function)

• tables

• maze screenshots with various illustrations

• state space graphs

• maze density maps

State space graphs were created using Pajek2 software, which is a highly powerful tool for
graph visualization. When looking at such a figure, note that: the starting cell is green, the
end cell is red, the rest of the cells is yellow; when focusing on (shortest or user’s) solution
path as well, cells which are a part of it are marked blue.

A maze density map (e.g. see Figure A.5) depicts the frequency of users’ landing on a
specific cell, i.e. the density map is usually created according to a sample containing several
(>1) records. Density map can be imagined as a scatter plot representing the maze area. Each

2. http://pajek.imfm.si
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cell would be depicted as a rectangular part of the area with dots; each dot representing one
user landing onto this cell. Density map considers only the fact whether the user visited the
cell or not; moves count involving this cell is not relevant. The more cell visits (i.e. the more
dots), the higher the frequency is. On a density map the frequency is proportional to the
darkness of the cell (see Figure 4.4). Cells being landed on not even once are white. Move
evidence is needed for calculation of such a density map that is why only samples from
applet version 2 are relevant.

Figure 4.4: Density colors (100 % is the highest visits count per cell within the sample).

I derived and improved the Maze Generation applet in order to implement an analysis
environment. It enabled me to “replay” any solve attempt of any user stored in the database.
I also implemented export features within this environment, which enabled me to easily
export maze screenshots, density maps and Pajek files necessary to create state space graphs.

Abbreviations, that are often used (and will be closer explained, if necessary) in follow-
ing subchapters:

• SA – successful attempt(s)

• SAC – successful attempts count

• AST – average solution time

• TT – total time

• SP – solution path

• SSP – the shortest solution path

• ANM – average number of moves3

• MNM4 – minimum number of moves

3. A move should be understood as a cell c where the user “lands” at a specific time t. (I.e. landing on the same
cell in two different seconds counts as two moves.)
4. MNM of a maze is equal to the length of its SSP.
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• MPS – moves per second

• GLR – got-lost ratio

• AVG/MIN/MAX/STDEV – average/minimum/maximum/standard deviation

4.4.2 Randomized Mazes Analysis

There were five randomized algorithms implemented at the moment of data gathering: ran-
domized Prim’s algorithm, randomized Kruskal’s algorithm, recursive backtracker, hunt-
and-kill algorithm and bacterial growth algorithm. Since I implemented bacterial growth
algorithm only a few days prior to the evaluation, it will not be contained in the random-
ized mazes’ data evaluation.

Implemented randomized algorithms always create a different pseudorandom maze, yet
within the limitations of the size of the maze grid (i.e. within the limited number of cells).
That is why if we want to analyze such user data, we might want to focus more on the global
aspects, which we can find and study especially using statistical functions.

Some basic points are already revealed by Table D.1. We can observe that regardless of
the number of successfully solved mazes per algorithm, the average time and the average
number of moves increase with the size of the maze. It applies for the bacterial growth
algorithm with less than 40 solved mazes as well as for the randomized Prim’s algorithm
with over 8805 successfully solved mazes. A basic (yet a little bit generalized and relative)
assumption is confirmed: the larger the maze, the more difficult it is (the more time is needed
to solve it).

A proportional relationship between AST and ANM is quite intuitive and also shown in
a graph (data from Table D.1) and by interpretation of Pearson product-moment correlation
coefficient6 (Figure 4.5).

5. The extremely high number of solved medium sized mazes created by Prim’s algorithm has a reason in how
competition rules were set. Users were awarded one point per each medium maze and two points per each large
maze. Eventually users found out that a medium sized maze by Prim’s algorithm was the fastest to solve, ergo
the easiest way to gain points. Users obviously going for the prize winning positions mostly solved this kind of
maze.
6. r ∈ < −1; 1 >: 1 – proportionality, -1 – inverse proportionality, 0 – no linear correlation
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Figure 4.5: Randomized mazes: AST and ANM relationship

Users had an option to have all cells they had visited marked while solving any maze
created by a randomized algorithm. However not more than 8.5 % of such attempts were
started in this mode. There could be two main reasons for that: either the users did not know
of the availability of such a feature, or they simply did not want the puzzle to be easier to
solve (probably because of higher motivation). Humans usually do not like to be challenged
with puzzles that are too easy or too difficult [12].

By altering the data composition from the base table, we can try to mine for some other
data, which might help us compare algorithms among each other. (Tiny-sized maze results
are excluded.) See Table 4.4.

Results are ordered descending according to the average solution time per maze size cat-
egory. We can observe dominance of the DFS based algorithms (hunt-and-kill algorithm and
recursive backtracker). This dominance is evident especially for large sized mazes, which ac-
cent the algorithm differences the most. (The higher the difference between the maze size
category maximum and minimum is, the more relevant the sample appears to be). Com-
parison of statistics of Kruskal’s and backtracker algorithm for medium sized mazes can be
interesting as well. Despite a lower average solution time of the backtracker algorithm, the
average moves count is higher. I interpret this as a consequence of a high river factor (and
long dead end paths) of mazes created by recursive backtracker: when reaching a dead end,
one needs to get back from where he got there, which is fast but increases the moves count
quite rapidly.

On the other hand mazes created by the randomized Prim’s algorithm eventually showed
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Allgorithm Maze size SAC AST ANM
1 Hunt And Kill Large 6 194 392
2 Recursive backtracker Large 3 158 331
3 Randomized Kruskal’s Large 14 144 170
4 Randomized Prim’s Large 29 67 129

1 Hunt And Kill Medium 46 121 212
2 Randomized Kruskal’s Medium 18 79 99
3 Recursive backtracker Medium 10 64 166
4 Randomized Prim’s Medium 861 30 82

1 Recursive backtracker Small 54 18 92
2 Randomized Kruskal’s Small 9 15 39
3 Hunt And Kill Small 8 13 61
4 Randomized Prim’s Small 9 12 40

Table 4.4: Randomized mazes’ statistics

to be the least difficult to solve. As already mentioned users did notice that and took advan-
tage of it when gaining competition points.

Walter D. Pullen summarized some maze characteristics ([10] – Maze Algorithms) into
a table showing that the dead end count in the non-DFS based algorithms (Kruskal’s and
Prim’s) is much higher than in the DFS based algorithms. According to results from Darryl
Nester’s applet [9], the dead end count of Prim’s algorithm is approximately 2.7 times higher
than the dead end count of a DFS based algorithm (both measured on the same maze size).
Although DFS based algorithms have a relatively smaller count of dead ends, they tend to
be longer (thus increasing the river factor of a maze). Short dead ends are easier to spot and
avoid which accelerates the solving. Again – Darryl Nester applet’s statistical feature proves
the increased river rate of DFS based algorithms.

Maze difficulty is also influenced by the positioning of the starting cell and the end cell.
Both cells may visually seem to be close to each other, but the path between them may be
complicated and branched. Random mazes within Maze Generation applet have the starting
and the end cell randomly positioned, but always opposite to each other.

However we can state that the river factor (parallel with its relationship to the dead end
count) is the main cause of increased DFS based algorithms’ difficulty comparing to non-
DFS based algorithms.

4.4.3 Predefined Mazes Analysis

The point of creating and publishing predefined mazes was to have a data sample enabling a
closer and more objective comparison of users’ individual approaches when solving mazes.

40



4.4. DATA ANALYSIS

All of them were static (unlike randomized mazes) and the same for everyone. To increase
the results’ objectivity, the basic sample data should be reduced. Table D.2 is based only
on first attempts (per maze) of (only) registered users. Although it decreases the successful
attempts count, I do believe such a sample is still good enough to perform an exploratory
data analysis, which is one of the objectives of this thesis. (First 2–3 mazes have a higher
successful attempt count most likely because they were the first ones to appear in the list
without scrolling it down.)

Basic Observation
Table D.2 enables us to perform some basic observations. As expected - the smaller the

maze, the lower the average solution time is. None of medium mazes took longer to solve
than any of the two large mazes (at average). The same as with the average solution time
applies for the average moves count, but with one exception – medium sized Predefined-
Maze3. It has been created by the DFS based algorithm (recursive backtracker) and the start-
ing cell and the end cell were positioned so that the solution path would fill up almost 40
percent of the whole maze area (see elitism column7). Ergo its average solution time is not
the highest, but one needs to perform relatively many moves and pass many cells (in com-
parison to the maze size) to get to the end cell.

If we ordered the sample data by AST (and by maze size), we would find out – as ex-
pected – that non-DFS based algorithms (Kruskal’s and Prim’s) took the shortest time to be
solved. Yet there is one exception – PredefinedMaze13 which was created by the recursive
backtracker algorithm. It is related to PredefinedMaze3, which will be properly explained.

By deriving the sample data, we can also get another interesting observation. Let Mavg

be maze’s average moves count and let Mmin be maze’s minimum moves count necessary
to solve the maze. Then let (100− (Mmin/(Mavg/100))) be the got-lost ratio (GLR) which ex-
presses the amount (in percent) of unnecessarily performed moves. Table 4.5 orders results
according to GLR (ascending).

The largest examples (9 and 10) made users roam mazes the most. On the other hand
PredefinedMaze3 and PredefinedMaze8 have the lowest GLR. It is related to their high
elitism factor (i.e. a large portion of the maze is a part of the solution path, that is why it
is “harder” to get lost). In general – inverse proportionality between elitism factor and GLR
can be observed (see also Figure 4.6), which is proven also when interpreting the Pearson
product-moment correlation coefficient.

7. Length of the shortest solution path compared to the maze size.
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Maze type Algorithm ANM MNM Elitism GLR
PredefMaze3 Recursive Backtracker 363 358 38.70 % 1.38 %
PredefMaze8 Recursive Backtracker 98 90 40.00 % 8.16 %
PredefMaze7 Kruskal’s Algorithm 40 35 15.56 % 12.50 %
PredefMaze1 Prim’s Algorithm 106 80 8.65 % 24.53 %
PredefMaze13 Recursive Backtracker 129 92 9.95 % 28.68 %
PredefMaze11 Prim’s Algorithm 117 80 8.65 % 31.62 %
PredefMaze5 Hunt And Kill Algorithm 207 134 14.49 % 35.27 %
PredefMaze2 Kruskal’s Algorithm 182 113 12.22 % 37.91 %
PredefMaze12 Kruskal’s Algorithm 191 113 12.22 % 40.84 %
PredefMaze15 Hunt And Kill Algorithm 249 134 14.49 % 46.18 %
PredefMaze14 Hunt And Kill Algorithm 294 155 16.76 % 47.28 %
PredefMaze4 Hunt And Kill Algorithm 297 155 16.76 % 47.81 %
PredefMaze10 Kruskal’s Algorithm 360 180 7.50 % 50.00 %
PredefMaze9 Prim’s Algorithm 310 119 4.96 % 61.61 %
PredefMaze6 Kruskal’s Algorithm N/A N/A N/A N/A

Table 4.5: Predefined mazes’ statistics with got-lost ratio (GLR)

Figure 4.6: Predefined mazes: GLR and elitism relationship
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Contextual Observation
Let us take a look at predefined mazes from the point of view I consider to be the most

interesting within this experiment. It involves slightly altering the maze and studying the
final impact on users’ solving results. Some predefined mazes were coupled which means an
original had its altered version. Such pairs involve predefined mazes 1–5 and their couples
11–15. Between mazes within each couple there is another 9 mazes to solve (in case users
followed my request and solved them chronologically). This difference should make sure
the solver forgets about previously solved mazes and perceives their couples as new mazes.
Non-coupled solvable mazes (7–10) were created in order to compare various algorithms to
each other. PredefinedMaze6 is a specific case. It is the only one without any solution (which
was a priori not announced of course). It eventually showed to be a very interesting part of
the experiment.

When comparing mazes and mentioning their statistical properties, usually Table D.2
and Table 4.5 are referenced.

PredefinedMaze1 and PredefinedMaze11
This is a maze pair with the highest successful attempt count (SAC) when summed.

However the SAC of PredefinedMaze1 is almost three times higher as the SAC of Prede-
finedMaze11. PredefinedMaze1 was created by randomized Prim’s algorithm. Predefined-
Maze11 is the same maze, but with an extra 8 walls down which ergo create loops (since the
original one is a perfect maze). Figure 4.7 shows the state space of PredefinedMaze1 (blue
vertices belong to the SSP).
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Figure 4.7: PredefinedMaze1 – state space

Figure 4.8 shows the original PredefinedMaze1 (a) with its shortest (and only) solution
path and PredefinedMaze11 (b) with its shortest solution path (SSP), with the extra walls
down (which are numbered) and with a (blue) often used alternative (will be explained).
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(a)

(b)

Figure 4.8: PredefinedMaze1 and PredefinedMaze11
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Approximately 27 users of PredefinedMaze1 followed the SSP with no or very short
turnoffs. Letters A to E represent crossings where users tended to branch away from the SSP
the most. Quite logically they almost never branched away to the right from the SSP. They
branched away to the left with following frequency: A – 15 users, B – 7 users, C – 4 users,
D – 16 users, E – 5 users (note that the mentioned sets of users are not necessarily disjoint).
The closer to the top of the maze, the more attractive it became to turn off left.

2–3 users (out of 16) solved the PredefinedMaze11 exactly or in a very similar way to
PredefinedMaze1, ergo they followed the shortest way. This makes me believe users actu-
ally did not notice they may have already solved a very similar (almost identical) maze.
Removing wall no. 6 showed to have the greatest impact on solving PredefinedMaze11. The
solution path of 12 users contained the blue cell sequence (check Figure A.4 and Figure A.5
for both density maps to observe the difference). Most of them actually copied the shortest
solution path (SSP), went the “blue” way and then joined the SSP again. There was almost
no looping. Only 2 people got trapped into a loop caused by walls 4 and 8.

The blue path increases the SSP only by 2 cells (however it is not SSP anymore). Since it is
not really much of a difference, there must be some other motivation of using this alternative
way. In my opinion it’s a kind of psychological aspect that has been (indirectly) already
mentioned: users see an approximately 15 cells long straight path leading towards the end
cell, which makes them believe (or hope) it’s a correct path.

The difference between average solution times (AST) of both mazes is quite high (26
seconds). The lower AST of PredefinedMaze11 might have been caused by users being more
trained after solving several mazes, or simply by a smaller sample data. This may apply for
other maze couples as well.

PredefinedMaze2 and PredefinedMaze12
PredefinedMaze2 was created by the randomized Kruskal’s algorithm. Its couple – Pre-

definedMaze12 – has an extra 9 walls down. Figure 4.9 shows PredefinedMaze12 with its
SSP (which is the same, since adding new passages had no impact). Numbers represent
walls which were removed from the original PredefinedMaze2.
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Figure 4.9: PredefinedMaze12

When we compare density maps of both mazes (Figure A.6 and Figure A.7), we come
to the conclusion that the density map of PredefinedMaze12 obviously contains many more
dark cells. Removing the walls increased the number of opportunities to roam throughout
the maze (although the SSP remained unchanged), which is also mirrored in a higher aver-
age number of moves (ANM) of PredefinedMaze12. According to density allocation, walls 1,
4 and 5 seem to have been crossed the most often. Again – I believe users solved the second
maze quicker because of previous training.

PredefinedMaze3 and PredefinedMaze13
Unlike in the case of the previous two predefined mazes, removing walls in the third case

did change the length of the SSP. The minimum number of moves (MNM) decreased rapidly
– by 71 %. However the AST decreased only by 43 % (from 134 to 76 seconds). The original
PredefinedMaze3 was created by the recursive backtracker algorithm, which is specified by
a relatively low dead end count and high river factor. The original SSP was designed to be
very long (almost 40 % elitism factor), which – as already mentioned – caused a very low
GLR. Figure 4.10 shows the SSP of PredefinedMaze13; numbers represent the walls removed
from the original maze. (Check the density map of PredefinedMaze3 (Figure A.8) to see its
SSP, which is exactly copied by the darkest cells set.)
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Figure 4.10: PredefinedMaze13

Density maps (Figure A.8 and Figure A.9) are quite clear and they depict the fact that
both mazes have a very low GLR. Only 2 users out of 15 got lost or followed the original
solution path when solving PredefinedMaze13. (Passages created by all walls – besides no.
1 – were used minimally or not at all.) The rest of the users found the SSP immediately or
very quickly.

When observing the state space graph of PredefinedMaze3 (Figure 4.11) and comparing
it with the state space graph of PredefinedMaze1 (Figure 4.7), we can see that mazes built
by DFS based algorithms have a markedly lower dead end count than mazes created by
non-DFS based algorithms. It is visualized by the branching intensity of both graphs. (Blue
vertices represent mazes’ SSP.)
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Figure 4.11: PredefinedMaze3 – state space

PredefinedMaze4 and PredefinedMaze14
Both mazes in this couple have the same SSP. The original one (PredefinedMaze4) was

created using the DFS based hunt and kill algorithm, which already tells some basic features
one should be expecting from such mazes. The altered maze has 9 extra walls down in
comparison to its original.

Removing of several walls in the lower left corner had almost no impact on users’ move-
ment. As usual and expected – solvers mostly concentrate on the surroundings of a virtual
straight line connecting the starting cell and the end cell. See Figure A.10 and Figure A.11 to
compare both mazes’ density maps.

PredefinedMaze5 and PredefinedMaze15
This maze couple consists of two totally identical mazes (created by the hunt and kill

algorithm). The only difference was in the form of the solving process. Users solved the
first maze in the mode enabling the previously visited cells to be marked. When solving
PredefinedMaze15, this mode was turned off. It is quite difficult to decide whether turning
this mode off had a relevant impact or not. The AST increased from 120 to 135 seconds
(12.5 %) and the ANM increased from 207 to 249 (20 %). The advantage of seeing already
visited cells could be probably more significant when observing a larger data sample of users
solving a larger (than medium sized) braid maze (which the maze was not in this case). See
Figure A.12 and Figure A.13 to compare both mazes’ density maps and to observe their SSP
(the darkest cells set).

PredefinedMaze6
PredefinedMaze6 was created by the randomized Kruskal’s algorithm and it is a special
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case of maze, since it had intentionally (and as the only one) no solution. The point was to
study the impact of such a situation on users’ behavior. I was warned before planning this
and the warning was partially competent. The warning concerned potential loss of users’
motivation after such an effortful and yet unsuccessful struggle. Some solvers did actually
lose a lot of time while solving this maze. Solve attempt maximum was 16.8 minutes, which
is obviously too much for such a medium sized maze.

Because of a (already mentioned) bug in the applet version 1, not all unsuccessful at-
tempts were registered into the database during this time period; only those ones finished
by clicking the “Give up” button (ergo excluding attempts finished by just closing the web
browser tab or window). Let us just work with the data we have.

24 users performed 37 solve attempts ergo some of them tried it more than once. One
solver reported the absence of the solution by creating a bug in the project’s trac system.
Approximately 5 users contacted me directly and reported that this maze had no solution,
whereby I always kindly apologized and explained the reason. After the first report I placed
a note under the applet informing that an absence of a solution is not a bug, yet some users
probably did not see it.

8 users attempted to solve this maze at least twice. Most of the repeated attempts were
registered with very minimal or no moves count, which might imply they checked the maze
only visually and wanted to make sure there really is no solution. When analyzing attempts
with a significantly higher moves count from applet version 2, it is worth mentioning that
the average number of moves (ANM) was 402 and the average time before clicking the give-
up button was 231 seconds. None of the rest of the predefined mazes had a higher ANM or
a higher average solution time (AST).

Figure 4.12 shows the density map of PredefinedMaze6. The red line depicts the critical
wall that was added to the algorithmically created original maze and it also shows the (only)
way which would normally lead towards the end cell.
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Figure 4.12: PredefinedMaze6

PredefinedMaze7 and PredefinedMaze8
This is a couple of small sized yet differently created mazes. PredefinedMaze7 was cre-

ated using the non-DFS based randomized Kruskal’s algorithm and PredefinedMaze8 by
the DFS based recursive backtracker.

I asked users to solve all predefined mazes chronologically. That is why I decided to
design these two mazes as very easy in order to increase users’ motivation and to let them
relax a little bit, since the upcoming two mazes were designed as large sized.

PredefinedMaze9 and PredefinedMaze10
Both mazes are large sized and created by a different algorithm. PredefinedMaze9 was

created using randomized Prim’s algorithm, PredefinedMaze10 using randomized Kruskal’s
algorithm. None of the rest of the predefined mazes has a lower elitism factor or a higher
AST. See Figure A.14 and Figure A.15 containing density maps of both mazes (sets of the
darkest cells copy both SSPs).

At this moment, we can try to compare medium sized and large sized mazes created by
Prim’s and Kruskal’s algorithms (Table 4.6). We can observe a relatively low increase of the
SSPs in comparison to the increase of the rest of the parameters.
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Randomized Prim’s algorithm Randomized Kruskal’s algorithm
Maze size SSP AST ANM SSP AST ANM

Medium 925 80 71 106 113 112 182
Large 2400 119 166 310 180 224 360
Diff. + 159.5 % + 48.8 % + 133.8 % + 192.5 % + 59.3 % + 100 % + 97.8 %

Table 4.6: Comparison of mazes created by randomized Prim’s and Kruskal’s algorithm

4.4.4 User Behavior Analysis

User behavior analysis will be based on the study of moves (moves count, average moves
count per maze or moves-per-second ratio, moves-over-time function). Small sized prede-
fined mazes (7 and 8) are excluded and only applet version 2 sample data will be used. In
this subchapter I will try to point out some interesting patterns or habits I’ve observed while
analyzing the predefined mazes.

The moves-per-second8 (MPS) ratio is the average moves count per second of one maze
solving attempt. User’s SAC is the count of different predefined mazes successfully solved
by the user (only first attempts count in). User’s AVG MPS is the MPS average of all user’s
maze solving attempts. Maze’s AVG MPS is the average of all solving attempts of a particu-
lar predefined maze. MPS MIN and MPS MAX should be taken by analogy.

Table D.3 (ordered by the descending user’s AVG MPS) shows users who had solved at
least 5 predefined mazes during the applet version 2 time period.

Table 4.7 (ordered by the descending maze’s AVG MPS) shows that users tend to move
faster in mazes with a higher river factor, which means less crossings/decision points. (It
applies especially for DFS based algorithms.)

The assumption is that brute force solving is specified by a high MPS and GLR rate.
A solver relatively randomly (and quickly) roams through the maze area hoping to be on
the correct solution path. Such behavior is supposed to lead to a high got-lost ratio because
the probability of being on a dead end path (without analysis of the surroundings) is higher.
This applies especially for mazes created by non-DFS based algorithms which have a higher
dead end ratio.

Analytic solving should be specified by a low MPS and GLR rate. Solvers are expected
to move rationally after analysis of the surroundings of their current position. This results
in longer time intervals without any moves, ergo decreasing the MPS rate. Analysis should
lead to a higher probability of finding the correct solution path. Therefore the GLR should
be low. Let us see whether we can observe a proportional relationship between the MPS and
GLR (Figure 4.13).

8. Moves per second (MPS) ratio = overall moves count / win time [s]
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Maze Algorithm Maze’s SAC Maze’s AVG MPS
PredefMaze13 Recursive backtracker 10 3.71
PredefMaze3 Recursive backtracker 15 3.42
PredefMaze11 Randomized Prim‘s 11 3.09
PredefMaze14 Hunt And Kill 11 2.98
PredefMaze12 Randomized Kruskal’s 11 2.73
PredefMaze4 Hunt And Kill 14 2.63
PredefMaze15 Hunt And Kill 12 2.59
PredefMaze9 Randomized Prim’s 10 2.57
PredefMaze5 Hunt And Kill 15 2.23
PredefMaze2 Randomized Kruskal’s 19 2.02
PredefMaze1 Randomized Prim’s 22 2.01
PredefMaze10 Randomized Kruskal’s 11 1.98

Table 4.7: Predefined mazes and their AVG MPS

Figure 4.13: User’s GLR and MPS relationship

Basically the trend line is the evidence of a very irregular but yet mostly proportional
relationship between MPS and GLR rates. Proportional tendency is proven also by inter-
preting the Pearson product-moment correlation coefficient r. A deep comparison of the
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MPS vs. GLR relationship demands a more complex calculation and problem formalization.
The cause is their dependency on external aspects. The GLR depends on static (objective) as-
pects of maze size and SSP length, whereas the MPS rate depends on a dynamic (subjective)
aspect of total solution time, which varies from user to user. Such a complex analysis will
not be performed within this master’s thesis, yet it might be a good suggestion for further
papers concerning this topic.

Attempts with a low MPS and high GLR are quite specific and they have a negative
impact on proving my primary assumptions. These are attempts of – with all due respect
– not very successful users, who – as I interpret the results – solved slowly (low MPS) and
yet got lost or mislead quite often (high GLR). Of course – statistics are supposed to help
to mirror the reality and not vice versa. However I believe the undesired irregularity would
continuously retreat (but not completely disappear) as the sample data got more extended.

Individual users’ approach
The extremely low MPS and GLR rates of User16 are caused by his specific solving ap-

proach. He always started solving a maze after a relatively long while (when an average
of 47 % of the total time had passed). He used this gap most likely to analyze and find the
correct solution path. Therefore his every attempt had a minimal or zero GLR.

Let us take a closer look at some users and predefined mazes. We will use the moves-
over-time function to visualize large sized predefined mazes (9 and 10) of users User1,
User2, User14, and User15 (ergo 2 users with the highest and the lowest MPS; each with
all 12 attempts available for statistics). Observe and compare graphs within Figure 4.14 and
Figure 4.15.
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(a)

(b)

Figure 4.14: PredefMaze9 – users with high MPS (a) and low MPS (b)
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(a)

(b)

Figure 4.15: PredefMaze10 – users with high MPS (a) and low MPS (b)
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Maze User AVG MPS STDEV
PredefMaze9 User1 3.38 2.60

User2 2.72 1.70
User14 1.03 1.53
User15 1.20 1.37

PredefMaze10 User1 2.42 2.95
User2 2.34 1.54
User14 0.83 1.31
User15 0.76 1.24

Table 4.8: Users’ individual results – PredefMaze9 and PredefMaze10

Large sized mazes should be the most suitable for observing differences in users’ solving
approach. Yet it is getting more and more difficult to prove that users actually do use either
the analytical or brute force approach. More accurately we can observe properties we use to
distinguish the analytical solving approach. But brute force approach properties as defined
in my assumptions are not possible to be observed clearly and distinctly. One would expect
brute force attempts to have a higher average MPS (User1 and User2) and to be more steady
(lower deviation – Table 4.8), which is not true in either of our cases. We also assumed
that the analytical approach would bring better winning time results for large sized mazes.
However this cannot be clearly decided as well (see graphs).

In my opinion, all these discoveries lead to a conclusion, that a distinct and clear dif-
ference cannot be observed. Most users seem a priori to lean to the analytical approach,
but actually it is more like a mix of both approaches. Even the most brute force like attempt
(PredefinedMaze9 – User1) eventually needed a longer pause to finally find the correct solu-
tion path. Generally we should speak more about the changing of phases within an attempt.
And eventually characteristics of such phases can (and actually do) lean to characteristics of
either of the two approaches. Probably a deep study of such a phase interchange might be
another interesting inspiration for further research within this topic.
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Conclusion

This master’s thesis was my first experience with such a kind of research. Eventually I found
it much more interesting than I expected. It proves that maze generation and mazes gener-
ally are a very interesting phenomenon that deserves a deeper studying (not only for pur-
poses of human problem solving).

Since there are not many sources concerning such a specific topic as maze generation is,
I decided to include some summarizing information in this thesis as well, thus enabling any
– even a laic – reader to reveal the fascinating world of mazes. One can start with easier
tutorial chapters followed by chapters containing more of mathematics and formalization.
Finally, a minor (and very laic) look into the psychological aspect of this topic is provided
by the last part of this work.

The topic of maze generation is much more extensive than it seems at the first sight.
There are still many things to explore, many experiments to perform. There are also things
I would do differently, for instance a better analysis and preparation prior to implementing
and publishing the maze generation applet, which would probably avoid some bugs or
problems (that however have not caused any critical or blocking situations).

My master’s thesis may (and hopefully will) serve as a starting point for other authors
and papers. As already mentioned, there are still many things to try and prove or reject.
I have tried to establish some basic concepts (analytical vs. brute force approaches, got-lost
ratio, etc.), but of course in a very laic and simple way. Now it is up to other people to
elaborate or develop them, eventually to reject them and to find another proper way of for-
malizing this topic. Other people are more than welcome to bring some more formalization
(functional dependencies, algorithms, probability evaluations) into this topic, since in my
opinion it might help a lot especially in the field of human problem solving.

However the exploratory part of this research is very important as well. The data collect-
ing system I used was quite simple and not perfect at all. My sample unfortunately did not
consist of many various sorts of humans (speaking of age, education level etc.). It might also
be very interesting to be able to physically see and observe the solver while solving specific
types of mazes (focusing for example on altering various maze properties and analyzing the
impact) or maybe even other types of puzzle games.

Since I have already put so much effort into this work, I am going to keep the web project
running. After some time I will either rerun the scripts, recreate charts and re-evaluate the
results or I will provide all the obtained results to someone willing to make further research
(of course after prior agreement).
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Appendix A

Figures

Figure A.1: A maze created by Kruskal’s algorithm (Maze Generation applet).

Figure A.2: A maze created by the recursive backtracker algorithm (Maze Generation ap-
plet).
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Figure A.3: A unicursal maze ([8] – http://www.mikes-mazes.com/graphics/unicur.gif).

Figure A.4: Density map – PredefinedMaze1.
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Figure A.5: Density map – PredefinedMaze11.

Figure A.6: Density map – PredefinedMaze2.
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Figure A.7: Density map – PredefinedMaze12.

Figure A.8: Density map – PredefinedMaze3.

64



A. FIGURES

Figure A.9: Density map – PredefinedMaze13.

Figure A.10: Density map – PredefinedMaze4.

65



A. FIGURES

Figure A.11: Density map – PredefinedMaze14.

Figure A.12: Density map – PredefinedMaze5.
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Figure A.13: Density map – PredefinedMaze15.

Figure A.14: Density map – PredefinedMaze9.
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Figure A.15: Density map – PredefinedMaze10.
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Kirchhoff’s Theorem Example

I decided to mention this example because I was unable to find another relevant source
directly interconnecting the Kirchhoff’s theorem with the concept of perfect mazes. It shows,
how to calculate the number of spanning trees of a connected graph (ergo the number of
different perfect mazes on a specific maze grid – see bottom of the figure). The basic graph
is actually a cycle graph, for which applies that the number of spanning trees is equal to
the number of vertices of the cycle graph. Using the Kirchhoff’s theorem might be helpful
especially when dealing with more complex maze grids.

Figure B.1: Kirchhoff’s theorem example
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Java Source Code Examples

public String toString(){
return "[" + this.getX() + "," + this.getY() + "]";

}

Return example: “[14,6]”

Example C.0.1: Cell – toString() method

public String toString(){
return "[" + this.getTimeOfClick() + ":" + this.getX() + ","

+ this.getY() + "]";
}

Return example: “[25:14,6]”

Example C.0.2: CellWithTiming – toString() method

public static Cell getRandomCell(int mazeWidth, int mazeHeight){
Random r = new Random();
Cell c = new Cell(r.nextInt(mazeWidth),r.nextInt(mazeHeight));
return c;

}

Example C.0.3: MethodUtil – getRandomCell(int, int) method
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Cell startCell = MethodUtil.getRandomCell(mazeWidth, mazeHeight);
Cell cF = new Cell();
Cell cI = new Cell();
inCells.add(startCell);
markAsFrontierAround(startCell);
while(!frontierCells.isEmpty()){

cF = getRandomFrontierCell();
cI = getRandomInCellAround(cF);
inCells.add(cF);
markAsFrontierAround(cF);
addPathBetween(cI, cF);
frontierCells.remove(cF);

}

Example C.0.4: Randomized Prim’s algorithm

while(!wallList.isEmpty()){
currentWall = getRandomWall();
currentPath = currentWall.innerWallToPath();
c1 = currentPath.getC1();
c2 = currentPath.getC2();
if (getSetIndexOf(c1) != getSetIndexOf(c2)){

joinSetsOf(c1, c2);
addPathBetween(c1, c2);

}
wallList.remove(currentWall);

}

Example C.0.5: Randomized Kruskal’s algorithm
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Cell currentCell = MethodUtil.getRandomCell(mazeWidth, mazeHeight);
visitedCells.add(currentCell);
if (hasUnvisitedAround(currentCell)) {

newCell = getRandomUnvisitedAroundCell(currentCell);
stack.add(currentCell);
addPathBetween(currentCell, newCell);
currentCell = newCell;

} else {
currentCell = stack.get(stack.size() - 1);
stack.remove(stack.size() - 1);

}
while(!stack.isEmpty()){

visitedCells.add(currentCell);
if (hasUnvisitedAround(currentCell)){

newCell = getRandomUnvisitedAroundCell(currentCell);
stack.add(currentCell);
addPathBetween(currentCell, newCell);
currentCell = newCell;

} else {
currentCell = stack.get(stack.size()-1);
stack.remove(stack.size()-1);

}
}

Example C.0.6: Recursive backtracker algorithm

Cell currentCell = MethodUtil.getRandomCell(mazeWidth, mazeHeight);
visitedCells.add(currentCell);
while(visitedCells.size() < cellCount){

if (hasUnvisitedAround(currentCell)){
newCell = getRandomUnvisitedAroundCell(currentCell);
addPathBetween(currentCell, newCell);
currentCell = newCell;
visitedCells.add(currentCell);

} else {
currentCell = getRandomUncompleteCell();

}
}

Example C.0.7: Hunt-and-kill algorithm
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Cell startCell = MethodUtil.getRandomCell(mazeWidth, mazeHeight);
visitedCellsCopy.add(startCell);
visitedCells = new HashSet<Cell>(visitedCellsCopy);
while(visitedCells.size() < cellCount){

for (Cell cell : visitedCells) {
if (hasUnvisitedAround(cell)) {

newCell = getRandomUnvisitedAroundCell(cell);
visitedCellsCopy.add(newCell);
addPathBetween(cell, newCell);

}
}
visitedCells = new HashSet<Cell>(visitedCellsCopy);

}

Example C.0.8: Bacterial growth algorithm

73



Appendix D

Table Data

Algorithm Maze size SAC AST (sec.) TT – SA (min.) ANM
Bacterial Growth Large 3 27 1.37 127

Medium 32 14 7.53 78
Small 1 11 0.18 40
Tiny 2 2 0.08 11

Hunt And Kill Large 6 194 19.47 392
Medium 46 121 93.45 212
Small 8 13 1.83 61
Tiny 40 7 4.77 21

Randomized Kruskal’s Large 14 144 33.70 170
Medium 18 79 23.83 99
Small 9 15 2.38 39
Tiny 35 4 2.45 15

Randomized Prim’s Large 29 67 32.55 129
Medium 861 30 443.68 82
Small 9 12 1.80 40
Tiny 62 4 4.97 13

Recursive Backtracker Large 3 158 7.90 331
Medium 10 64 10.73 166
Small 54 18 16.58 92
Tiny 42 8 5.65 21

Table D.1: Randomized mazes’ global statistics
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Maze type Size SAC AST (sec.) TT – SA (min.) ANM MNM Elitism
PredefMaze1 Medium 47 71 56.33 106 80 8.65 %
PredefMaze2 Medium 39 112 73.07 182 113 12.22 %
PredefMaze3 Medium 29 134 65.03 363 358 38.70 %
PredefMaze4 Medium 25 126 52.70 297 155 16.76 %
PredefMaze5 Medium 24 120 48.17 207 134 14.49 %
PredefMaze6 Medium N/A N/A N/A N/A N/A N/A
PredefMaze7 Small 18 17 5.32 40 35 15.56 %
PredefMaze8 Small 18 30 9.02 98 90 40.00 %
PredefMaze9 Large 16 166 44.52 310 119 4.96 %
PredefMaze10 Large 14 224 52.45 360 180 7.50 %
PredefMaze11 Medium 16 45 12.25 117 80 8.65 %
PredefMaze12 Medium 16 85 22.88 191 113 12.22 %
PredefMaze13 Medium 15 76 19.07 129 92 9.95 %
PredefMaze14 Medium 16 114 30.57 294 155 16.76 %
PredefMaze15 Medium 17 135 38.37 249 134 14.49 %

Table D.2: Predefined mazes’ filtered statistics (only first attempts of only registered users)

User SAC AVG MPS MPS MIN MPS MAX MAX–MIN diff. AVG GLR
User1 12 4.00 2.43 6.93 4.50 42.83
User2 12 3.77 2.35 5.75 3.40 45.72
User3 5 3.69 2.85 4.48 1.63 51.95
User4 12 3.59 2.64 6.13 3.49 20.74
User5 12 3.57 1.76 5.22 3.46 43.42
User6 12 3.01 2.52 4.23 1.71 32.46
User7 5 2.55 1.65 3.33 1.68 20.29
User8 7 2.40 2.09 2.85 0.76 25.41
User9 5 2.38 1.61 4.59 2.98 13.17
User10 5 2.36 1.09 3.15 2.06 36.88
User11 12 2.23 1.62 2.99 1.37 33.31
User12 5 2.03 1.45 2.63 1.18 31.85
User13 6 1.64 1.10 2.30 1.20 45.89
User14 12 1.45 0.84 2.07 1.23 15.81
User15 12 1.41 0.76 2.24 1.48 8.81
User16 5 1.39 0.92 1.76 0.84 2.23

Table D.3: Statistics of registered users solving predefined mazes (only users with SAC > 4
from appet version 2 period are shown). Ordered by AVG MPS descending.
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Appendix E

Electronic Attachment

Folder structure of the electronic attachment:

• db_data

– tblMazes.csv1 – sample data until December 7th 2010

– tblMazes.sql – MySQL script to recreate an empty table with corresponding field
data types and structure

• MazeGeneration – NetBeans 6.9.1 project folder containing all the necessary Maze
Generation applet source files

• PHP_scripting

– MazeGeneration.php – a relic file because of ongoing development purposes

– MazeGeneration2.php – the actual PHP script file accepting requests from Maze
Generation applet

Comments:

• The applet is versioned. Each database record contains the applet version number it
has been created by.

• NetBeans project contains more algorithm classes than a user is actually shown in the
list. Only classes of algorithms available for solving are correctly implemented!

• ANONYM identifies records of anonymous users, ergo users who had not been logged
while solving.

• As already mentioned, records from applet version 1 contain invalid data in columns
user_draw and user_draw_timing and therefore should be excluded from any move-
ment analysis.

1. Vertical bar is the column separator. Column user_draw is a relic and it contains no relevant data or (mostly)
no data at all and may be ignored.
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