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Lecture 6.4

Supercurrent and critical

currents

All about critical currents, zero resistance, and flux quantization

This lecture gathers several diverse answers to the question “When (or why) does
a superconductor superconduct?” We previously (re)defined “superconductivity” as
“the existence of long-range order of the order parameter Ψ(r) (in particular, of the
phase field θ(r)); we (re)defined “supercurrent” Js(r) as “the collective current of the
condensate” described by Ψ(r). Thus, although Js was called “supercurrent”, we
haven’t seen why it has with zero resistance; or how that property follows from the
long-range order.

Understanding zero resistivity really means understanding how it breaks down, e.g.
what is the critical current, which occupies most of this chapter. Four different ways of
killing superflow are presented:

(a) intrinsic limit on the phase gradient ∇Aθ;

(b) limit from B field due to the current;

(c) decay of the persistent current in a ring, or dissipation in a thin wire, due to
passage of a vortex across the superconductor;

(d) Landau’s critical velocity, depending on the dispersion law of elementary excita-
tions.

The first and second scenario correspond, roughly, to the two fields of G-L theory (Ψ(r)
and B(r); which breakdown comes first depends on the sample geometry.

In Sec. 6.4 C (item (c) above) we get at what really makes the material supercon-
ducting, when that state is stable. I first remind that that the condensate’s equations
of motion imply a ballistic response to an electric field, hence a superconductor cannot
maintain a voltage drop in the steady state.

Then, we see why the magnetic flux through any closed ring of superconductor
must be quantized. (This will be the basis of the SQUID device, to be discussed in
Lec. 6.5 , and of the vortices in Type II superconductors discussed in Lec. 6.6 and
Lec. 6.7 .) The “stiffness” of the phase, as evidenced in flux quantization, is ultimately
the explanation of zero resistivity; a particular manifestation is the “persistent current”
in a superconducting ring.
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6.4 A Ginzburg-Landau picture of critical current

How does Landau’s microscopic vc fit into the macroscopic Ginzburg-Landau picture?
The only way to represent instability of the superconducting state is that ns, or equiv-
alently the order parameter magnitude, is driven to zero. The GL picture doesn’t
explicitly include any microscopic elementary excitations, but thermal excitations are
implicit in the reduction of the order parameter amplitude |Ψ| at T > 0. 1 To rephrase
the ending of the preceding section, as we bring εeff (q) closer to zero at the critical q

point, more such excitations appear (as thermal excitations, or as quantum zero-point
type fluctuations at T = 0) and |Ψ| gets reduced. (For a general discussion of the
relationship of GL and BCS – for equilibrium statics only – see Lec. 7.8 [omitted].)

I will next show that, all by themselves, the GL equations imply a critical current.
The Landau and GL critical velocities are respectively the microscopic and macroscopic
formulations of the same phenomenon; and the following derivation shows that the two
answers are same to within a factor of order unity.

Digression: boundary condition subtleties

Let’s assume space-independent fields; the external constraint is the phase gradient,
so we take that fixed and write kθ ≡ |∇θ| for short. (Naively we might have tried
instead to constrain the total current. But physically, we’re considering the stability
against a very local fluctuation: in that case, certainly the external phase difference is
the constraint.)

[the rest of this subsection expands the above statements, in perhaps overmuch
detail]

The question we will set up first is, given a boundary condition with a net phase
change ∆θ = θ(L) − θ(0) across our sample in (say) the x direction, what is the order
parameter reduction and the current? We’ll proceed by minimizing the free energy

given this boundary condition,
∫ L

0
dxkθ(x) = ∆θ, where kθ ≡ |∇θ| for short. If the

sample is not too thick, we can have a strong current density without making a large
magnetic field, so we neglect the magnetic field energy as well as the vector potential
in the gauge-invariant gradients. As a preliminary note, it can be verified that the
minimum free energy solution is always to have kθ(x) uniform.

Assume kθ varies; to conserve current, ns(x) must vary correspondingly. Expand
FL() to second order as a function of ns. The first order term will cancel because
∫

δns(x) ∝ −
∫

δkθ(x) = 0 due to the ∆θ boundary condition. The second order term
is proportional to d2FL/dns

2[δkθ(x)]
2, which is positive definite since d2FL/dns

2 = β >
0.

Since v = ~kθ/m∗, the assumption of fixed and uniform kθ is evidently proper when
we want a critical velocity, e.g. for a superfluid put in motion relative to a channel
containing it. If on the other hand we want a critical current, it’s a rather subtle piece
of thermodynamics that this is correct thermodynamically, and that it’s wrong to fix
J = ns~kθ/m∗. See Tinkham, Sec. 4.4. The physical reason is that, to change ∆θ (while
keeping a fixed J), we’d transiently have a nonzero time derivative (θ̇(L)− θ̇(0)). It can
be shown (Lec. 6.5 ) that θ̇(x, t) = e∗V (x, t)/~, so we’d have a transient voltage across
the superconductor, meaning that work would be done on it by our current source.

1Fluctuations reduce order parameters, as we first computed in the case of phonon fluctuations and
crystal order (see Lec. 1.6 , Debye-Waller factor.) For a general discussion of the relationship of GL
and BCS – for equilibrium statics only – see Lec. 7.8 [omitted].
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Energy minimization

The gradient free energy under these assumptions can be written

Fgrad =
~

2

2m∗

|∇Ψ|2 =
~

2

2m∗

ns|∇θ|2 = |α| ξ2kθ
2 |Ψ|2 (6.4.1)

where we used ns ≡ |Ψ|2 and rewrote the coefficient using the definition of ξ (see
Lec. 6.0 and Lec. 6.1 ). (We’ve assumed uniformity in space, so ∇|Ψ| = 0.) The total
free energy density is

Fgrad + FL = −|α|(1 − kθ
2ξ2)|Ψ|2 +

1

2
β|Ψ|4. (6.4.2)

Minimizing the free energy (6.4.2), with respect to ns ≡ |Ψ|2 (as done in Lec. 6.1 for
the gradient-free case) ,

ns = |Ψ|2 = (1 − kθ
2ξ2)ns0 (6.4.3)

where ns0 = |Ψ0|2. Thus

Js = e∗
~kθ

m∗

(1 − kθ
2ξ2)ns0. (6.4.4)

At kθ = 1/
√

3ξ this has its maximum

Jc =
2

3
√

3
e∗

~

m∗ξ
ns0 (6.4.5)

I’ve checked that numbers from Landau’s critical velocity agrees with the last result, to
factors of order unity (see Ex. 6.4.2).

In samples larger than λ, the magnetic field mechanism of Sec. 6.4 B comes into
play and we must consider some sort of “intermediate state.”

Another viewpoint on the GL critical current – Since kθ is analogous to the strain in
a solid, the kθ maximizing (6.4.4) is analogous to the elastic limit of a pure solid: if we
“stretch” the phase variation too much, the superconducting state “breaks” by going
normal. Like the mechanical limits of real solids, the critical currents of real superfluids
are usually determined by defects or specially weak places. For classic superconductors,
a typical value2 is

Jc ∼ 104 Amp/cm2. (6.4.6)

Digression on Galilean invariance

In his celebrated book on superconductivity, de Gennes asserted the choice of m∗ in
the GL theory is arbitrary; if so, the superfluid velocity vs is not a physical observable
but just a convenient way to parametrize a current. However, the velocity is physically
meaningful as is clear from microscopic formulas such as that (above) for the εeff (k).
Of course, Galilean invariance isn’t exact in a solid: the electron dispersion relation not
exactly of the form ~

2k2/2me and hence is changed by a Galilean boost. 3

The GL theory, which applies even to neutral superfluids said in (6.4.3) that |Ψ| gets
reduced in a moving superfluid. That’s an apparent violation of Galilean invariance!
To address this, we need to use a two-fluid model: the superfluid velocity represents an

2Lifted from W. A. Harrison, Solid State Physics.
3In addition, k really means the crystal momentum, not the real momentum, so our use of Newton’s

conservation laws is valid only when we can neglect umklapp, e.g. at low temperatures when thermal
phonons all have small wavevectors.
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underlying superfluid state with a nonzero phase gradient; the normal fluid velocity vn

accounts for the effects of a gas of elementary excitations in this background, which are
in equilibrium with some other degrees of freedom at velocity vn. The actual statement,
then, is the order parameter reduction depends on vs−vn; the GL theory had implicitly
taken vn = 0.

Josephson critical current: preview

High Tc or granular superconductors may consist of many small grains, with the
supercurrent propagated from grain to grain by coherent (pair) tunneling: this is a
Josephson junction, which is the subject of the next lecture (Lec. 6.5 ). It will be shown
there that the junction’s current is

Ic sin ∆θ (6.4.7)

where ∆θ is the jump in phase (of Ψ) between the two sides; clearly Ic is the maximum
supercurrent of that junction. This is closely analogous to the order parameter critical
current, since ∆θ is a discrete analog of kθ ≡ |∇θ|. (Notice how (6.4.4) and (6.4.7) have
similar dependences on the phase difference, beginning linear and showing a maximum.)

6.4 B Critical current due to magnetic field

There is a second route to critical currents. Consider the following paradox: supercon-
ductivity and magnetic field are mutually exclusive (Meissner effect); but supercurrents
make magnetic fields; ergo there are no supercurrents in superconductors! In fact this is
essentially true: the paradox’s resolution is that supercurrents only flow on the surface.
More precisely they are the screening currents (see Lec. 6.2 ) of the magnetic fields they
create. and decay in the same exponential fashion, so they are essentially confined to a
layer that is about a penetration depth (λ) thick. If the current is so great as to produce
a field that exceeds the critical field Hc, then it must drive the sample normal at that
point, which might disconnect the domain of material in the superconducting phase.

Using the formulas for λ, Φ∗
0, and Hc in Table 6.1.1, Eq. (6.4.5) can be massaged

into the form

Jc =

√
2c

16πλ
Hc (6.4.8)

Eq. (6.4.8) shows that the order-parameter mechanism of Sec. 6.4 A dominates for
sample thicknesses small compared to λ, where the current density can be high while
the total field produced is small compared to Hc. In a sample thicker than λ, we know
the current is confined within ∼ λ of the surface; then the magnetic field limit of this
section appears at the same Jc as (6.4.8) (within factors of order unity).

Partly restated the last paragraph: In the form (6.4.8), you see that along a domain
wall (which always adjoins a normal region with the critical field Hc), the screening
currents necessarily approach the critical current. It’s also apparent that in a sample
carrying the critical current density, the magnetic field produced (according to Ampère’s
law) becomes comparable to Hc only when the sample thickness is at least λ.
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6.4 C Flux quantization

First take on zero resistance

Let’s first approach “zero resistance” from the viewpoint of Ohm’s law: that is, let’s
show the voltage drop is V = 0 while the current is nonzero. A superconductor cannot

maintain a voltage difference.

Recall (see the London equations in Lec. 6.2 ) that, in the presence of an electric
field, the supercurrent accelerates, just like an undamped charged particle. If the su-
perconductor is in series with an ordinary resistance, that suffices to show that the
equilibrium state must have zero voltage drop across the superconductor.

The same argument can be restated in the language of the phase function θ(r, t).
As a special corollary of the Time-Dependent Ginzburg-Landau equation introduced in
Sec. 6.1 B , I claim

dθ(r, t)

dt
= −1

~
µ(r, t) (6.4.9)

where µ is the (electro)chemical potential at r. [You might guess (6.4.9) from the
single-particle Schrödinger wavefunction, in which the phase angle rotates in time as
dθ/dt = E/~, where E is the eigenenergy.]

So, if you had a fixed electric potential drop between points r1 and r2, the phase
difference θ1−θ2 grows linearly with time, as must the phase gradient – which is entirely
equivalent to saying the supercurrent Js ∝ ∇θ accelerates ballistically. If nothing else
intervened, it would quickly reach the critical current (see below): thus, DC voltage is
inconsistent with a steady state. 4

Flux quantization and persistent current

Consider a ring (or cylinder) of superconductor (Fig. 6.4.1), pierced by a net flux
ΦB . In the superconductor,

Js =
~nse∗
m∗

(

∇θ − e∗

~c
A

)

(6.4.10)
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Figure 6.4.1: (a). A cylinder of superconductor pierced by flux. Loop integrals will be done
along the dashed curve, which is deep within the superconducting bulk. (b). Top (end-on)
view. Supercurrents Js (indicated by arrows) flow only along inner surface; dl marks the
contour for the loop integral of ∇θ. (c) A normal region contains one flux quantum, i.e. a
vortex. The path integral would be smaller by 2π for a loop passing inside the vortex than for
a loop passing outside the vortex.

4But AC V (t) will be possible, as in the Josephson effect (Lec. 6.5 ).
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But, deep within the superconductor’s bulk – farther than ∼ λ from its surface –
Js = 0 [As first asserted in Sec. 6.2 C. Hence

∇θ =
e∗

~c
A. (6.4.11)

Now let’s do the loop integral of both sides of (6.4.11) along the curve l indicated in
Fig. 6.4.1. On the one hand,

∮

dl · ∇θ = 2πn (6.4.12)

for some integer n, since the phase factor eiθ must be continuous at the end of end of
the loop. On the other hand, by a Stokes identity

e∗

~c

∮

dl ·A =
e∗

~c
ΦB (6.4.13)

where ΦB is the flux inside the loop. Combining (6.4.11),(6.4.12) and (6.4.13), we get

ΦB = nΦ∗

0 (6.4.14)

where

Φ∗

0 ≡ 2π~c

e∗
= 2.07 × 10−7gauss-cm2 (6.4.15)

is the (superconducting) flux quantum. Because it contains e∗, Φ∗

0 is half as big as the
flux quantum of mesoscopic transport (Lec. 2.2).

Vortices

Remember (from Lec. 6.3 ) the domains of Normal phase (containing flux) in the
intermediate state of Type I superconductors? A corollary of (6.4.14) is that each such
domain must contain an integral number of flux quanta. (We can simply take the loop
integral around the normal domain instead of a physical hole.)

Consequently, too, there is a minimum value (n = 1 flux quanta) of the total flux
through any normal domain. That smallest domain is a quantized vortex (also called
a flux line), a line around which there is magnetic field and the order parameter is
suppressed.

Notice that if θ changes through 2π along a loop encircling the vortex, there must
be a place inside that loop at which θ is undefined. That is the centerline of the
vortex. Furthermore, in order for Ψ(r) to be continuous even on that line, we must
have |Ψ(r)| = 0 there. The region in which |Ψ(r)| � Ψ0 is called the vortex core.
(Vortices are discussed in more detail in [the first two sections of] Lec. 6.6 .)

Vortices are found in Type II superconductors: remember that is the case λ/ξ >
1/

√
2). In Type I superconductors, vortex lines attract and would merge to form do-

mains, as in the intermediate state (Sec. 6.3 C ).

6.4 D Decay of a persistent current in a ring

A second way to parse “resistance” is: given a current, by what process does its velocity
get damped; and its kinetic energy get dissipated?

SORRY – this could cut to the point more quickly.
Consider a ring (or hollow cylinder) at T < Tc, with a (super)current circulating,

as in Sec. 6.4 C: how can this current decay? A lower energy state is always available
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(superconducting with Js = 0). But we’ll find there’s a large barrier to that lower
energy state, so the persistent current is (very) metastable. Still, in any finite ring there
is, in fact, a nonzero but very small energy dissipation, via quantized events related
to flux quantization. (For a standard type I superconductor, an limit on resistivity
ρ ≤ 3 × 10−23Ω cm was measured. 5 Another measurement (runs of ∼ 30 days) found
time constants of roughly 105 years. 6 )

The current is on the inner surface of the cylinder. Since there’s no field deep in
the bulk of the cylinder, there must be a uniform field in the hollow center which is
being screened by the surface current, and therefore proportional to it. As argued in
the Sec. 6.4 C, the net flux of that field must be a multiple nΦ∗

0 of the flux quantum.
We showed in Sec. 6.4 C too that

∮

(∇θ · dl) = 2πn. The only way to decrease the
current is to decrease the encircled flux, such that n → n − 1, called a “phase slip” 7

since
∮

(∇θ) · dl changes by 2π. That requires moving a quantum of flux from inside to
outside the cylinder.

The energy cost of making a vortex line is proportional to its length, so the energy
barrier is related to the thickness of the ring or cylinder; hence, thermal activation is
possible and important in sufficiently small samples. More realistically, the barrier is
against nucleating a single small closed loop of vortex. Once the loop is nucleated, every
bit of it feels a “Magnus” force from the supercurrent (see Lec. 6.7 ) pushing the loop’s
diameter to expand – which it can do without any further barriers 8 until it stretches
across the thickness of our ring. However, in a large sample, the expected frequency
of phase slips can exceed than the age of the universe: in effect we have a persistent

current that flows without dissipation.
In view of (6.4.9), the rate of phase slips is the voltage difference, in a supercon-

ducting type material:

~
d

dt
(θ2 − θ1) = −(µ2 − µ1). (6.4.16)

[I believe µi here denotes the pair chemical potential. Possibly this equation and the
surrounding ideas belongs after Lec. 6.5 .] So if the flux decay rate happens to be propor-
tional to the gauge-invariant gradient, or equivalently if the dissipation is proportional
to J2

s , it means V ∝ I with I2R Joule heating, and we have an Ohmic resistance. In
that case, the current must decay exponentially with time, as in an ordinary RL circuit.
Contrariwise, if the decay rate and dissipation scale more rapidly to zero when Js → 0
– indeed we expect an activated form exp(−B/T ) where B is the barrier mentioned
above – we say the resistance is zero.

A current-carrying wire (or sheet) is no different – locally – from a cylinder or ring.
In place of the multiple-connected topology, some boundary condition fixes the (gauge-
invariant) phase difference between the two ends. Therefore, to change the current, we
still have to pass a flux quantum’s worth of flux across the wire, a phase-slip process
which has the same huge barrier in any reasonable-sized samples, so we observe zero
resistance.

In summary, whereas a normal current can be degraded just by scattering one in-
dependent electron, a supercurrent can be degraded only by a process which involves
a large chunk of superconductor. It is due to the topological properties of the phase
angle, and so it is possible only in a system which has undergone a broken symmetry.

5D. J. Quinn III and W. B. Ittner III, J. Appl. Phys. 33, 748 (1962)
6J. File and R. G. Mills, PRL 10, 93 (1963). I need to check if this is the record.
7Phase slips also occur in charge-density waves [Lec. 3.4 ] where the order parameter also has a

phase, but they have a different relation to the current in that case.
8This probably occurs at special sites where the nucleation barrier is lowered, completely analogous

to a Frank-Read source that nucleates dislocation loops repeatedly in crystalline solids.



642 LECTURE 6.4. SUPERCURRENT AND CRITICAL CURRENTS

As Anderson emphasizes in Basic Notions, the rigidity of ordinary solids is completely
analogous. 9 [As we approach the normal state continuously by letting |Ψ| vanish –
see next sections – the cost of making a vortex also vanishes. Thus it becomes easy to
nucleate phase slips and dissipation will be seen.]

At T = 0 quantum tunneling replaces activation over the barrier.

6.4 X Landau’s critical velocity

Landau considered the instability of superflow with respect to creating elementary ex-
citations. This fundamental mechanism for a critical current does not involve the mag-
netic field, so it applies in principle to neutral superfluids. It certainly applies in any
superconducting slab or wire sufficiently thin compared to the penetration depth, so
current doesn’t make an appreciable magnetic field.

[Sec. 6.4 B works out a distinct mechanism, related to electromagnetism: by Ampère’s
law, a supercurrent necesssarily creates a magnetic field, but this tends to destroy su-
perconductivity. The mechanism of the present section is more general since it applies
to neutral superfluids too.

Basic idea

First note that by Galilean relativity, a neutral superfluid in vacuum can be boosted
as fast as we like without affecting its superfluidity. We have a critical current only
when our system is in contact with a stationary external world, which serves as a
momentum reservoir: (i) the container walls (or sometimes a porous medium), in the
case of a neutral superfluid (ii) the solid lattice, in the case of a superconductor. So
|vs|, implicitly, is always measured relative to an environment with v = 0.

Let’s imagine we constrain the phase difference as a boundary condition. So long as
the superfluid order parameter is nonzero we have a nonzero phase gradient kθ hence
a nonzero supercurrent. The alternative is a normal state, with zero order parameter;
here, phase difference ∆θ is undefined and we can have zero current. Compare the
respective total energies: the SC state is higher by the KE of the supercurrent, but
lower by the condensation energy. Hence, once the former exceeds the latter, the system
goes normal.

Within the Ginzburg-Landau picture (see Sec. 6.4 A), as |vs| increases (always
measured relative to the environment), the order parameter is reduced, until supercon-
ductivity disappears at a critical |vs|, or equivalently at a critical current Jc.

Doppler effect for elementary excitations

Consider any elementary excitation in any medium with velocity v. (It’s a general-
ized quasiparticle as described in Lec. 1.7 , which might be either a boson or a fermion.)
Let its energy dispersion be ε(q) as a function of the wavevector, in a comoving frame
(in which the superfluid appears at rest). Claim: measured in the “lab frame” (in which
the metal ions or channel walls are at rest), the effective dispersion

εeff (q) = ε(q) + v · ~q. (6.4.17)

This is the Galilean transformation of the dispersion law, or equivalently the Doppler
effect, as we shall see.

9See N. P. Ong’s website for a popular-level explanation of the rigidity (2007).
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Figure 6.4.2: Landau’s critical velocity. In each panel, the bold line is the dispersion curve and
the dot-dashed line, tangent to it, has slope ~vc where vc is the critical velocity. (a). Dispersion
~

2q2/2m for a free particle, giving vc = 0. (b) Phonon dispersion in dilute superfluid gas (c)
Phonon/roton excitations in 4He; the “roton” refers to the minimum occuring at |q| = q0.
(d) Fermion dispersion for a superconductor. The heavy dashed line shows the electron/hole
dispersion of a normal Fermi liquid as in Lec. 1.8(no superconductivity), which implies vc =
0. The solid curve shows the Bogoliubov quasiparticle dispersion as in Lec. 7.3 ; ∆0 is the
superconducting gap.

Let’s see how (6.4.17) is justified. According to Galilean relativity, an object with
energy E and momentum p in a frame moving at velocity v, relative to the lab is
transformed to E′ = E+v ·p in the stationary reference frame. Transcribing E → ε(q)
and p → ~q, we claim the effective dispersion relation is (6.4.17). 10

A second approach to rationalize (6.4.17) could be called the “Doppler shift” ar-
gument. Write the wavefunction, for the quasiparticle in the comoving frame of the
fluid.

ψ(r′, t) = e−iω′t+iq·r′ (6.4.18)

where r′ is measured in the comoving frame, and ~ω ≡ ε(q), Just substituting r = r′+vt
into (6.4.18), we obtain ψ(r, t) = exp(−iωt+ iq · r), with

ω = ω′ − v · q. (6.4.19)

When ψ(x) represents the amplitude of a sound wave, (6.4.19) is precisely the Doppler
effect; when it is a Schrödinger amplitude in quantum mechanics, we identify ~ω′ =
ε(q) and ~ω = εeff (q), and (6.4.19) becomes (6.4.17). RESTATING: We obtain ψ =
ei(~q·r−εeff (q)t/~) which is just (6.4.18) with ε(q) → εeff (q) as defined by (6.4.17).

11

[This justification has some analogies to the argument in Lec. 6.3 , as to why our
effective field energy given a background field H, reduced to |B −H|2.]

10Another version from (classical) Newtonian mechanics, in terms of the excitation’s momentum p.
If that is changed by ∆p in a time interval ∆t, then a momentum −∆p is transferred to the stationary
reservoir and exerts a force f = −∆p/∆t during that interval. The site where this force acts is displaced
δr = v∆t, so the work done is ∆W = f · ∆r = −∆p · v. By integrating this, one obtains an energy
term −v · p which (after identifying p = ~q) is the second term of (6.4.17).

11An alternative way to frame the “Doppler” argument starts with the definition of group velocity
in the comoving frame vg = ~−1∇qkε(q) (as derived in basic solid state theory, for example). Then
the group velocity in the stationary frame, determined from εeff (q) in the same fashion, ought to be
just v + vg , and (6.4.17) is the only formula that gives this.
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Landau’s critical velocity

Now, if εeff (q) ≤ 0 for some q, then the system is unstable to emitting excitations
at that wavevector. This always happens for large enough v, as is clear when (6.4.17)
is represented graphically, in the (q, ε) plane by the difference between the ε(q) curve
and a line at slope ~v as in Fig. 6.4.2). Then Landau’s critical velocity vc is the first
velocity where this happens. It is simply 1/~ times the slope of a line from the origin
tangent to the bottom of the dispersion curve (see Fig. 6.4.2.)

If you had the dispersion relation ~
2q2/m of an ordinary particle (e.g. one free atom

of 4He), the line would be tangent at q = 0 so vc = 0. For an ordinary metal vc = 0
too, since we have ε(kF ) = 0 for electron or hole excitations. (It is proper to measure
from the Fermi level (as introduced in Lec. 1.7 .)

However, in a superconductor the Landau critical slope is nonzero because a gap
develops in the dispersion relation, ε(kF ) = ∆.12

In a neutral superfluid, the low-lying excitations are phonons with dispersion ω(q) =
vsq, with vs the speed of sound, so the Landau criterion would say vc = vs due to
phonons, as in Fig. 6.4.2(a). In 4He, as is well known, the curve ω(q) bends downwards
again at larger q and has the so-called “roton” minimum around q = q0 ≈ 2π/(3nm),
shown in Fig. 6.4.2(b); the line would actually be tangent near to this minimum yielding
a much smaller Landau vc around 60 m/s. The real critical velocity is about 1/100
smaller than that; it is believed to be due to not-so-elementary excitations such as
nucleation of vortex loops at irregularities along the surface.

The main point of the Landau criterion, then, is that (i) it provides a strict upper
bound on vc, and (ii) it extends the idea that superflow persists because the system
must overcome an energy barrier to reach a state of no superflow.

Landau’s critical velocity and T > 0

At finite temperatures, the superfluid/cuperconductor contains a gas of thermal
excitations (fermions called quasiparticles in a superconductor, or phonons in superfluid
helium) in equilibrium with the unmoving walls of the container, or (in a solid) with the
lattice (and perhaps the defects which are fixed in it). In view of (6.4.17) the excitations
with wavevector antiparallel to the flow are favored over those with wavevector aligned
with it, indeed it turns out the excitations carry a current contribution opposite to the
superflow. Thus J is decreased while the phase gradient ∇θ is unchanged, so that n∗

s is
reduced from its T = 0 value. [One can profitably develop this picture into a “two-fluid”
model, with some transport due to a “normal” fluid of quasiparticles that behave much
like ordinary carriers in (say) a semiconductor.]

Now let’s note what happens to the order parameter for a velocity close to Landau’s
critical velocity, vc. Recall that by definition, at v = vc the effective dispersion curve
εeff (q) has a zero-energy excitation at a certain wavevector qc. Such excitations will
have a large thermal population, if T > 0, and even in the ground state there will be
large zero-point fluctuations. Consequently, as v → vc and εeff (qc) → 0, the order
parameter magnitude |Ψ| → 0.

Having εeff (qc) = 0 is much like having a soft phonon mode in an elastic lattice
(see Lec. 3.0 and Lec. 3.4 ). The reduction of |Ψ| by fluctuations in a superfluid or
superconductor is just like Debye-Waller factor reduction of the harmonic crystal’s order

12M. Tinkham (Introduction to Superconductivity, p. 119 (1st ed.), says this vc is called the “depairing
velocity” since (as just noted) the condensate of pairs will emit quasiparticles until it decays to zero.
He refers us to J. Bardeen, Rev. Mod. Phys. 34, 667 (1962) for a review.
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parameter due to fluctuations (Lec. 1.6 ). 13

6.4 Y Intermediate state in wire due to current?

Consider a wire of radius R � λ at T < Tc carrying a current I ; Now, the field just
outside the surface is B(R) = 2I/cR from Ampere’s law. If B(R) > Hc, then the
wire can no longer (all) stay superconducting, and a resistivity appears. (the “Silsbee
effect”). Thus Ic = c

2HcR
So what happens in the cylindrical wire for I > Ic? We encounter a paradox:

for any cylindrically symmetrical current distribution, B(r = 0) = 0 so there must
be some superconducting core along the wire’s central axis. This core is a cylinder
extending (say) to a radius R′ < R. This core must carry all the current (it would
have no longitudinal voltage drop, so there is nothing to drive a current in the normal-
state shell surrounding the core.) But B(R′) > B(R) > Hc, so we face the same old
contradiction at the smaller radius R′.

The only way out is that there is a longitudinal voltage drop, and the supercon-
ducting core region must be broken up into disconnected domains (in the longitudinal
direction). I believe the current passing from one domain to the next has such a high
density that the metal gets driven normal by the current density, even though B = 0
along the central axis.

This is another form of the “intermediate state” made up of coexisting domains of
superconductor and normal material (at field Hc.) The resistivity has been described
by a sort of effective medium theory; that is, one coarse-grains to a scale bigger than
the domains but smaller than the sample size, and finds an effective uniform resistivity
for the mixture. Such theories are suspect, since the conductivity certainly depends on
the spatial arrangement of conducting regions.

Similar contradictions appear when a slab geometry is considered.
I am somewhat puzzled whether the whole notion is well-posed. If the field adjacent

to the surface is nearly Hc, then Ampère’s law says ∇×B = (4π/c)J; since the fields are
exponentially decaying this implies Js = cHc/4πλ is the current density adjacent to the
surface. On the other hand, we see from (6.4.8) that (within G-L theory) a fundamental
limit on the current density anywhere is

√
2cHc/16πλ, which is certainly smaller.

An independent version of the same story

This version is more complete
Even this extremely simple geometry has a complicated solution. Imagine a (solid)

cylindrical wire, carrying a current I . For sufficiently small currents, it flows as su-
percurrent. (Don’t forget, all this current flows in a layer of thickness ∼ λ next to
the surface.) However, when the wire’s magnetic field exceeds Hc, the wire next to
the surface cannot remain superconducting. Does the superconducting region moves
inwards? That just makes it worse, since the magnetic field scales as I/R. Does the
whole wire go normal? In that case, the current gets distributed uniformly through-
out the cross-section, so that sufficiently close to the axis, B < Hc and that part of
the wire should go superconducting. Thus, we have a paradox, so long as we assume
translational symmetry along the wire.

13This is a preview of calculations in Lec. 7.5 , which includes an exercise finding the order parameter
reduction via BCS/Bogoliubov theory. Note that even at T = 0, I think there’s a Ψ reduction (in a
neutral superfluid): when εeff (q) → 0 for such a phonon/roton mode, then its zero-point motion
diverges, hence Ψ → 0. Something similar must with Bogoliubov quasiparticles in that exercise.
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The approximate solution was found by London: it consists of a stack of supercon-
ducting domains, with a conical shape, with separation ∆z. See Fig. 6.4.3. They do
not quite touch, and there is a voltage drop ∆V from each to the next. We assume
(this is an approximation) that within the normal parts, the current points exactly in
the longitudinal (z) direction. Consequently, within the normal portions, B = B(r)
independent of z. Furthermore, where B touches the superconducting domain, it must
be equal to Hc: thus B is independent of r. If

I(r) = 2π

∫ r

0

J(r′)dr′ (6.4.20)

is the net current within r, then by Ampère’s law, I(r) ∝ r which requires J(r) ∝ 1/r,
namely J(r) = I/2πRr to get total current I . At radius r, the normal current path has
length r(∆z)/R so that, by Ohm’s law, the voltage drop is

∆V =
r(∆z)

R

I

2πRr
ρ =

∆z

2πR2
ρ =

∆Vnormal

2
(6.4.21)

where ρ is the normal-state resistivity. The cancellation of the r factors is the justifica-
tion for the conical shape assumed. Also, in (6.4.21) ∆Vnormal is the voltage drop, if the
sample were all in the normal state (since its cross-section is πR2). Thus, this predicts
a discontinuous drop of the resistance by a universal factor on transitioning from the
completely normal state to this intermediate state. (It is actually a factor of ∼ 0.7 due
to domain-wall energy costs, which we ignored.)

The above argument doesn’t tell us what ∆z should be. That was done later.
Presumably it depends on those domain wall costs.

JS
S

a) b)

N

Figure 6.4.3: (a). Intermediate state solution for cylindrical wire. For current above a cer-
tain critical value, wire develops a stack of superconducting domains, offset by ∆z and not
quite touching at the centers. Geometry has cylindrical symmetry around the center axis.
The current density (arrows) in the normal regions increases toward the axis. (b). In the
superconducting parts, the current flows as a screening current around the edges.

Exercises

Ex. 6.4.1 Landau’s critical velocity in a superconductor I (T)

Try the dispersion of a particle in free space, ε(q) = |~q|2/2m∗, in (6.4.17): check
you get |~q −m∗v|2 + const. Is this sensible?

Ex. 6.4.2 Landau’s critical velocity in a superconductor II (T)

The dispersion relation of a quasiparticle in a BCS superconductor at T = 0 has a
dispersion law with a sharp minimum at ε(kF ) = ∆0.
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(a) Write the critical velocity vc this implies according to Landau’s argument.

(b) Note also that the microscopic theory gives a BCS coherence length as ξ0 =
~vF /π∆0. Thus show that your answer from (a) agrees with the Ginzburg-Landau an-
swer (within a factor of order unity!) provided we identify the G.-L. and BCS coherence
lengths, ξ ∼ ξ0.

Metal Tc(K) ∆(meV) Hc(mT) ξ0(µm) λ (µm)
Sn 3.72 11.5 30.9 23 3.4
Al 1.14 3.4 10.5 160 1.6
Pb 7.19 27.3 80.3 8.3 3.7
Nb 9.50 30.5 198∗ 3.8 3.9
Nb3Ge 23.2

Table 6.4.1: Data for standard metal and alloy superconductors [All taken from Kittel.]. ∗

means a type II superconductor: thermodynamic critical field is shown, note Hc1 < Hc < Hc2.

Ex. 6.4.3 Phase slips in a wire I: variational approach

Imagine a wire with the superconducting phase constrained at both ends. For ex-
ample, it is bent into a loop and has a net current around it, corresponding to a phase
change of 2πn. The way to change that is if, at some point along the wire, the order
parameter magnitude momentarily goes to zero; at that moment, we can change the
phase on one side of that node (and not the other), with no gradient cost since there is
no order parameter. Then the order parameter comes back, in the reverse process, but
the net phase change is 2π(n − 1). As explained in the text, the macroscopic voltage
is h/2e∗ times the phase-slip rate, i.e. the effective resistivity is proportional to the
phase-slip rate per unit length of the wire. The phase-slip rate should have an activated
temperature dependence, exp(−UB/T ) where UB is an energy barrier.

The aim of this exercise is an estimate of this energy barrier.

(a). Show that, in the G-L free energy density, we can write

FL(Ψ) − FL(Ψ0) = |Fcond|
(

1 − |Ψ|2
Ψ2

0

)2

(6.4.22a)

Fgrad = |Fcond|ξ2
|∇Ψ|2

Ψ2
0

(6.4.22b)

It will be handy to scale the energy, order parameter, and length in this fashion.

(b). We have a one dimensional geometry with coordinate x. The free energy per
unit length is FA⊥ where A⊥ is the cross-sectional area.

Consider a case with no current; there will be random phase slips of either sign. The
ground state would have Ψ = Ψ0 everywhere. Consider a trial state where

Ψ(x = 0)/Ψ0 = φ1, 0 ≤ φ1 ≤ 1. (6.4.23)

We want to map out a function U(φ) equal to the energy cost of the best possible G-L
configuration, constrained by the condition in Eq. (6.4.23). To do so, we assume a
variational state

Ψ(x) =

{

Ψ0(1 − ∆φ|x|/`), |x| < `;

Ψ0, |x| > `.
(6.4.24)
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where ∆φ = 1 − φ.
Work out the total added cost ∆Ftot a sum of the Landau and gradient contri-

butions; they favor short and long `, respectively. The Landau term should come to
|Fcond|`(∆φ)2C(∆φ), where C(...) is a second-order polynomial.

Find the optimal ` and substitute to find ∆Ftot(φ, `) = U(φ).

(c) optional Now redo it all in the presence of a (super)current density Js. The key
result is that now, the barrier is lower and the maximum occurs before Ψ = 0 is reached.

Don’t worry about magnetic field energies. Hints: (1) Js must be independent of
x, by current conservation, so this enters as a spatially constant parameter. (2) The
amplitude part of Fgrad, which we had in the earlier parts, separates from the phase
part of Fgrad. (3) The phase part is proportional to J2

s /nsup(x), where ns(x) ≡ |Ψ(x)|2
as usual. (4) Since Js ∝ ns(x)(dθ/dx)

2 , evidently reducing ns in an interval around
x = 0 increases the overall phase change across that interval.

An important subtlety is that, as we vary Ψ1, we should not keep Js the same.
Instead, we should imagine the phase difference at distant points is being held fixed.
Since we increased the phase offset around x = 0, we decreased the phase offset every-
where else (so the overall current Js is diminished compared to the original current, but
remember that at any stage Js is uniform in x.) The diminished phase offset decreases
the phase-gradient energy everywhere else. This change can be calculated by analogy
to the path used in Sec. 6.3 A to estimate magnetic field energy.

Ex. 6.4.4 Phase slips in a wire II: exact solution

We can use the calculus of variations to get the exact differential equation for Ψ(x),
which is simple so long as there is no magnetic field and no current.

(a). First set to zero the variational derivative of Ftot (based on, perhaps, (6.4.22))
with respect to Ψ(x): your result should have the form

const d2Ψ/dx2 − F ′

L(Ψ) = 0 (6.4.25)

where F ′

L(Ψ) ≡ dFL(Ψ)/dΨ. Next, multiply both sides of (6.4.25) by dΨ/dx and notice
that each term can be integrated, so the whole thing can be written dH̃/dx = 0, where

H̃ ≡ 1

2
const

(dΨ

dx

)2

+ V (Ψ). (6.4.26)

Mathematically, if we make the mapping x → time, Ψ → coordinate, V (Ψ) → potential
energy, and H̃ → Hamiltonian, this is exactly how you integrate Newton’s equations
of motion for a particle in that one-dimensional potential. (What is the mathematical
relation of V (Ψ) to FL(ψ)?)

(b). You can now integrate this; to fix the “constant of motion” H̃ , note that far
away from the fluctuation, Ψ(x) = Ψ0. (You also know the value Ψ(0) = φ1Ψ0, but
dΨ/dx|x=0 is not determined.) You should find something proportional to tanh(x−x0);
what determines x0?

(c). Now, insert your answer into the energy densities (6.4.22)(a,b) and integrate
over x. (Hint: if you didn’t work (c), there is enough information in the last paragraph
of (c) to guess the full solution.) You should get |Fcond|ξA⊥ times a very simple function
of ∆φ ≡ ∆Ψ/Ψ0.

Ex. 6.4.5 How small to see phase slips?

(a). Let’s guess that the energy barrier to a (transient) fluctuation in which the
order parameter vanishes in a wire is |Fcond|ξA⊥, where A⊥ is the cross-sectional area.
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That is plausible, within a factor unity, by dimensional analysis: the cost of suppressing
Ψ to zero uniformly is |Fcond| (by definition), and the healing length over which the
order parameter returns to its bulk value is ∼ ξ.

Based on the Hc and Tc of either Al or Pb, what would be the diameter of a wire
such that UB = 10Tc? (This is based on a rough notion that e−10 is large enough to
give an important phase slip rate; obviously, to be quantitative, one needs the attempt
frequency, which is harder.)

Hints: (i) you can get |Fcond| from the Hc. (ii) for units: (Tesla)2/8π = 10−7J/m3.
(b). If the wire shows a voltage of 1µV, how many phase slips per second are

occurring? (Hint: you don’t need any dimensions or material parameters.)


