
medexter®

How to write Arden Syntax MLMs –y
An introduction

Karsten Fehre

Medexter Healthcare GmbH
Borschkegasse 7/5
A-1090 Vienna, Austria
www medexter com

11

www.medexter.com

medexter®

• Arden Syntax – General Information

Content

• General MLM Layout
– Maintenance Category
– Library Category
– Knowledge Category – Knowledge Category
– Resources Category

• Identify an MLM
• Data Typesata ypes
• Operators

– Basic Operators
– Curly Braces
– List Operators
– Logical Operators
– Comparison Operators
– String OperatorsString Operators
– Arithmetic Operators
– Other Operators

• Control Statements

22

• Call/Write Statements and Trigger

medexter®

d l k l d d

Arden Syntax – General Information I

• Medical knowledge in Arden Syntax is
arranged within Medical Logic Modules
(MLMs)

• Each MLM represents sufficient
knowledge to make a single decision

• One or more MLMs are stored within a file
that has the extension "mlm"

• Each MLM is well organized and
structured into categories and slots with
specific contentp

33

medexter®

An MLM works in close contact with a host system Ways of interaction are:

Arden Syntax – General Information II

• An MLM works in close contact with a host system. Ways of interaction are:

– Input: By calling an MLM, an input parameter can be committed.

Curly Brace Expressions: So called "curly brace expressions" implement a special kind – Curly Brace Expressions: So called "curly brace expressions" implement a special kind
of dynamic interaction between MLMs and host systems.

– Write Statements: Texts can be written to destinations which are maintained by the
host system.ost syste

– Output: Analogous to the input parameter, some data can be committed from the MLM
to the host system when the execution of the MLM is finished.

• To start the execution of an MLM, an engine is needed which handles communication with
the host system and knows which MLMs are available

• Ways to start running an MLM

– MLM call: an MLM is directly called

– Event call: any MLM which listens to a specific event is executed

44

medexter®

• An MLM is composed of slots grouped into four required
i i lib k l d d

General MLM Layout

categories: maintenance, library, knowledge, and
resources.

• A category starts with its name followed immediately by a
colon (e.g., maintenance:).

• Categories must appear in the correct order.
• Within each category is a set of slots.
• Slots must appear in the correct order, too.

I l MLM i d h • In general, an MLM is arranged such as:

maintenance:
slotname: slot-body;;
slotname: slot-body;;slotname: slot body;;
...

library:
slotname: slot-body;;
...

knowledge:
slotname: slot-body;;
...

eso ces <optional>

55

resources: <optional>
slotname: slot-body;;

medexter®

• Contains the slots that specify some general
information unrelated to the health knowledge in the

Maintenance Category

information unrelated to the health knowledge in the
MLM

• Slots are used for MLM knowledge base maintenance
and change control

• Contains the version of the Arden Syntax in use• Contains the version of the Arden Syntax in use

• Slots:
– Title

Mlmname (content required)– Mlmname (content required)
– Arden Syntax version (content required)
– Version (content required)
– Institution (content required)
– AuthorAuthor
– Specialist
– Date
– Validation (one of: production, research, testing, expired)

• Mlmname, Institution, and Version are used to identify
an MLM

66

medexter®

• Contains the slots pertinent to knowledge base
h l d h ' k l d

Library Category

maintenance that are related to the MLM's knowledge
• Slots provide health personnel with predefined

explanatory information and links to relevant health
literature

• Slots
– Purpose
– ExplanationExplanation
– Keywords
– Citations
– Links

77

medexter®

• Contains the slots that actually specify what the MLM
d

Knowledge Category

does
• Slots of the knowledge category define:

– The terms used in the MLM (data slot),
– The context in which the MLM should be evoked (evoke (

slot),
– The condition to be tested (logic slot),
– The action to be taken should the condition be true (action

slot).

• Slots:
– Type (only "data-driven" available)
– Data
– Priority
– Evoke
– Logic (contains the actual logic of the MLM)
– Action (is executed if logic slot concludes true)Action (is executed if logic slot concludes true)
– Urgency

88

medexter®

• Contains a set of language slots that specify the textual
f h h h l l d h ld d

Resources Category

resources from which the localized operator should draw
to obtain message content in different languages

• Each language slot defines a set of key/value pairs which
represent text constants in one specific language

• At least one language slot is required

• Slots:
– Default (defines the default language to be used)– Default (defines the default language to be used)
– Language (one language slot for each language to be used)

• Example:
resources:resources:
default: de;;
language: en
'msg' : "The patient's BMI %.1f is not in the normal range and is
classified as ";

;;
language: de
'msg' : "Der BMI %.1f des Patienten ist nicht im normalen Bereich und
wird klassifiziert als ";

;;

99

medexter®

Sample MLM

• Most of the examples for operator and concept explanation are taken from the following • Most of the examples for operator and concept explanation are taken from the following
sample MLM which calculates the body mass index (BMI) of a patient

1010

medexter®

Sample MLM (cont.)

1111

medexter®

Sample MLM (cont.)

1212

medexter®

Sample MLM (cont.)

1313

medexter®

• An MLM is identified using the following 3 pieces of information:

Identify an MLM

• An MLM is identified using the following 3 pieces of information:

– Name, as given in the mlmname-slot
– Institution, as given in the institution-slot
– Version, as given in the version-slot, g

• Example:
The MLM with the following maintenance category

maintenance:
title: simple body mass index;;
mlmname: BMI;;
arden: Version 2.7;;
version: 1.00;;
institution: Medexter Healthcare GmbH;;;;
author: Karsten Fehre;;
specialist: ;;
date: 2010-09-09;;
validation: testing;;

 b dd d i th f ll i MLM d fi iti i th d t l tcan be addressed using the following MLM definition in the data-slot:

bmiMLM := MLM 'BMI' from institution "Medexter Healthcare GmbH";

Note: If there is more than one MLM with the same name and institution, the MLM with the

1414

Note: If there is more than one MLM with the same name and institution, the MLM with the
latest version number is used.

medexter®

General Language Expressions

• Statement: A statement specifies a logical constraint or an action to be performed All• Statement: A statement specifies a logical constraint or an action to be performed. All
statements except for the last statement in a slot must end with a semicolon (;).

let var1 be 0; // equal to: var1 := 0;

• Constant: Any data value represented explicitly is called a constant.

true
"this is a string"

• Variable: A variable is a placeholder for a data value or special constructs (event, MLM,
message, and destination) and represents this value in subsequent expressions. An
assignment statement is used to assign to a variable a value.

let var1 be 0; // equal to: var1 := 0;
var2 := MLM 'BMI' from institution "medexter";

• Operator: An expression may contain an operator and sub expressions called arguments• Operator: An expression may contain an operator and sub-expressions called arguments.

3 + 5 //where + is the operator, 3 and 5 are the arguments

• Primary Time: Each data value consists of a value part and a primary time part which

1515

• Primary Time: Each data value consists of a value part and a primary time part which
represents the time of creation or measurement of the value part.

medexter®

Data Types

N ll i l d t t th t i ifi k / t i t• Null: special data type that signifies unknown/uncertainty
• Boolean: includes two truth values, true and false; logical operators use tri-state logic by

using null to signify the third state, unknown/uncertainty
true
false

• Number: no distinction is made between integer and floating point numbers
77
7.34323

• Time: refers to points in time; times before 1800-01-01 are not valid
2011-07-12T00:00:12
2011-07-12

• Duration: signifies an interval of time
19.01 years
3 days 1 hours 2 minutes 54.6 seconds

• String: streams of characters

1616

String: streams of characters
"this is a string constant"

medexter®

Data Types (cont.)

• List: an ordered set of elements; each element can be an arbitrary data type• List: an ordered set of elements; each element can be an arbitrary data type
4, 3, 5
3, true, 5, null
,1
()()

• Object: may contain multiple named attributes, each of which may contain any valid data
type

M di ti D OBJECT [M di ti D St t]MedicationDose := OBJECT [Medication, Dose, Status];
dose := NEW MedicationDose with "Ampicillin", "500mg", "Active";
// dose refers to an object with the fields Medication, Dose, Status
"Ampicillin" := dose.Medication;

• Time-of-day: refers to points in time that are not directly linked to a specific date
23:20:00

• Day-of-week: special data type to represent specific days of the week; represented by
constants or integer

MONDAY (1)
TUESDAY (2)

1717

...

medexter®

Operators – Basic Statements I

• Assignment: places the value of an expression into a variable• Assignment: places the value of an expression into a variable

<identifier> := <expression>;
LET <identifier> be <expression>;

• Write: sends text or coded message to a destination

write dose.Medication || " with " || dose.Dose;
write "this is an email alert" AT email_dest;

• Include: includes object, MLM, event, interface, and resource definitions from an external
MLM

mlm2 := MLM 'my_mlm2.mlm' FROM INSTITUTION "my institution";
INCLUDE mlm2;

1818

medexter®

Operators – Basic Statements I – Example

• First is an assignment, assigning the reference to the MLM
interface_birthday_definition to the variable mlmImport

• Second is an include statement which imports all object, MLM, event, interface, and resource
definitions from the MLM mlmImport (interface_birthday_definition)

• Concatenates the calculated BMI and its classification to a string and sends this message to
the default destination

1919

medexter®

Operators – Basic Statements II

• If-Then: permits conditional execution based on the value of an expression• If-Then: permits conditional execution based on the value of an expression
– 3 different types of if-then statements:

If-Then: If-Then-Else: If-Then-ElseIf:
block1 is executed block1 is executed if block1 is executed if
if condition is true condition is true, otherwise condition1 is true, if

(if condition is false or condition2 is true block2
anything other than true) is executed, in all other
block2 is executed cases block3 is executed

IF <cond> THEN IF <cond> THEN IF <cond1> THENIF <cond> THEN IF <cond> THEN IF <cond1> THEN
<block1> <block1> <block1>

ENDIF; ELSE ELSEIF <cond2> THEN
<block2> <block2>

ENDIF; ELSE
<block3>

ENDIF;

2020

medexter®

Operators – Basic Statements II – Example

• This is an If-Then-ElseIf statement

• If the age of the current patient is less than 19 years, null is assigned to the classification
variable (the BMI specification is only valid for persons over 19 years)

• Otherwise, if the calculated BMI is less than 18.5, the localized string for underweight is
i d t th l ifi ti i blassigned to the classification variable

• Otherwise, if the calculated BMI is less than 25 (this means between 18.5 and 25), null is
assigned to the classification variable (no alert is required if the patient is in normal BMI)

• Otherwise (i.e., all BMIs greater than 25), the localized string for overweight is assigned to
the classification variable

2121

medexter®

Operators – Basic Statements III

• Loops• Loops
– While Loop: loops as long the condition is equal to true

WHILE <condition> DO
<block>

ENDDO;

– For Loop: loops over the elements of a list
FOR i IN (1 seqto 10) DO

... // i can be used inside of the loop
ENDDO;

• Conclude: ends execution in the logic slot; if the conclude statement has a single true as • Conclude: ends execution in the logic slot; if the conclude statement has a single true as
argument then the action slot is executed immediately; otherwise the MLM terminates
immediately

f• Argument: if a calling instance passes parameters to the called MLM, the MLM retrieves the
parameters via the argument statement

• Return: returns the provided parameter to the calling instance (which may be another MLM

2222

Return: returns the provided parameter to the calling instance (which may be another MLM
or an external instance)

medexter®

Operators – Basic Statements III – Example

• Conclude statement

" l l ifi i i " ill l t t if th l ifi ti i bl • "result.classification is present" will evaluate to true, if the classification variable
does not refer to null

• If "result.classification is present" evaluates to true, the execution of the logic slot
stops immediately and the execution of the action slot will start stops immediately and the execution of the action slot will start

• If "result.classification is present" evaluates to false, the execution of the logic slot
also stops immediately but the action slot will not be executed and the evaluation of the MLM
terminates

• Argument statement which assigns all incoming parameters to the variable patientIDg g g p p

• Returns the object result to the calling instance (if the MLM is called from an other MLM, it

2323

Returns the object result to the calling instance (if the MLM is called from an other MLM, it
will be returned to the calling MLM)

medexter®

Operators – Object Statements

• Object: assigns an object declaration to a variable (objects are the only data types in Arden• Object: assigns an object declaration to a variable (objects are the only data types in Arden
Syntax which are first declared and then "instantiated")

MedicationDose := OBJECT [Medication, Dose, Status];

• New: causes a new object to be created (based on the used object declaration)• New: causes a new object to be created (based on the used object declaration)
dose1 := NEW MedicationDose; //empty object
dose2 := NEW MedicationDose with "Ampicillin", "500mg", "Active";

• Dot: selects an attribute from an object based on the name following the dot
"John" := patient.Name.FirstName;
NameType := object [FirstName, LastName];
/ i i i 2 j //* Assume namelist contains a list of 2 NameType objects */
("John", "Paul") := namelist.FirstName;

2424

medexter®

Operators – Object Statements – Example

• The first creates an object declaration with two fields and assigns this declaration to the • The first creates an object declaration with two fields and assigns this declaration to the
variable bmiResult

• The second creates an empty instance of the bmiResult object and assigns this to the
variable result

• Concatenates the content of the field bmi and the content of the field classification of the
object result to a string and sends this message to the default destination

• The dot operator (". ") is used to access the fields of an object

• The field BMI of the object result will be filled with the formatted text containing the
calculated BMI

2525

calculated BMI

medexter®

Curly Braces (Mapping Clauses)

U d i th d t l t t i if i tit ti ifi d fi iti h d t b i• Used in the data slot to signify institution-specific definitions such as database queries

• Read statement:
var1 := READ {select potassium from results where specimen = 'serum'};var1 : READ {select potassium from results where specimen serum };

• Event statement: defines an event; an event can be used to call MLMs
event1 := EVENT {storage of serum potassium};

• Message statement:
message1 := MESSAGE {increased body temperature};

• Destination statement:
destination1 := DESTINATION {email: user@cuasdf.bitnet};

• Interface statement:
func_drugint := INTERFACE {char* API:Interaction (char*,char*) };

2626

medexter®

Curly Braces (Mapping Clauses) – Example

• Assignment statement which assigns the result from the read statement (using mapping
clause "SELECT measured_weight FROM DB WHERE patID = patientID") to the variable
weights

• patientID is a variable which contains the current used patient ID and is substituted before
execution of the mapping clause

• After evaluation of this statement, the variable weights refers to the result which is a list of After evaluation of this statement, the variable weights refers to the result which is a list of
all measured weights of the patient with the given patient ID

• Assignment statement which assigns the event getBMI to the variable userEvent

• Using the event variable in the evoke slot means that this MLM is always executed if this
event occurs

2727

medexter®

Operators – List Operators

C t ti d t li t t i l l t i t li t f l th• Concatenation: appends two lists or turns a single element into a list of length one
(4,2) := 4, 2;

(,3) := , 3;

• Merge: appends two lists, appends a single item to a list, or creates a list from two single
items; then sorts the result in chronological order based on the primary times of the
elements

/* data1 has data value 2 and primary time 2011 01 02T00:00:00 and data2/* data1 has data value 2 and primary time 2011-01-02T00:00:00, and data2
has data values 1 and 3 and primary times 2011-01-01T00:00:00 and 2011-01-
03T00:00:00 */
(1, 2, 3) := data1 MERGE data2
null := (4,3) MERGE (2,1) // no primary time -> result is null

• Sort: reorders a list based on either the element values (keyword data) or the primary
times (keyword time); default keyword is datatimes (keyword time); default keyword is data

(1, 2, 3, 3) := SORT (1,3,2,3);
(10, 20, 30) := SORT DATA data1;
(30, 20, 10) := REVERSE (SORT DATA data1);

2828

(30, 20, 10) := SORT TIME data1;

medexter®

Operators – Logical Operators

A d f th l i l j ti f it t t if ith t i f l (• And: performs the logical conjunction of its two arguments; if either argument is false (even
if the other is not Boolean), the result is false; if both arguments are true, the result is true;
otherwise null is the result

false := true AND false
null := true AND null
false := false AND null

• Or: performs the logical disjunction of its two arguments; if either argument is true (even if• Or: performs the logical disjunction of its two arguments; if either argument is true (even if
the other is not Boolean) the result is true; if both arguments are false, the result is false;
otherwise null is the result

true := true OR false
false := false OR false
true := true OR null
null := false OR null
null := false OR 3 4null := false OR 3.4

• Not: true becomes false, false becomes true, and anything else becomes null
true := NOT false

2929

null := NOT null

medexter®

Operators – Comparison Operators

< > < > <> l t t i ll t d t t h• <,>,<=,=>,=, <>: as usual, except one argument is null or types do not match; can
handle any data type

• Is within … to …: checks if the first argument is within the range specified by the secondg g p y
and third argument (inclusive)

true := 3 IS WITHIN 2 TO 5
false := 3 IS WITHIN 5 TO 2

• Is within … following …: checks if a time is within a defined time period
false := 2011-03-08T00:00:00 IS WITHIN 3 days FOLLOWING 2011-03-
10T00:00:00

• Is in: checks membership of the first argument in the second argument (list)
false := 2 IS IN (4,5,6)
(false,true) := (3,4) IS IN (4,5,6)

• Is string|number|null etc.: returns true if the argument is of the given type

3030

medexter®

Operators – Comparison Operators – Example

• "less than" is a synonym to <y y

• "the age is less than 19 years" clearly returns true if the age is strictly under 19

3131

medexter®

Operators – String Operators I

C t ti t it t i t t i d th t t th• Concatenation: converts its arguments into strings and then concatenates them
"null3" := null || 3

"45" := 4 || 5

"list=(1 2 3)" := "list=" || (1 2 3)list (1,2,3) : list || (1,2,3)

• Formatted with: formats a string with a given pattern (like printf in ANSI C)
"The result was 10.61 mg"

:= 10.60528 FORMATTED WITH "The result was %.2f mg"

"The date was Jan 10 2011"

2011 01 10T17 25 00 FORMATTED WITH "The date as % 2t":= 2011-01-10T17:25:00 FORMATTED WITH "The date was %.2t"

• Localized: returns a string that has been previously defined in the language slot of the
MLM’s resources category using a given or the current system’s languageg y g g y g g

"Caution, the patient ..." := LOCALIZED 'msg' by "en_US";
"Achtung, der Patient ..." := LOCALIZED 'msg' by "de";

i i //

3232

"Caution, the patient ..." := LOCALIZED 'msg'; //use system language

medexter®

Operators – String Operators I – Example

• The concatenation operator concatenates the string referred by the BMI field of the object
result with the string referred by the classification field of the object result and theresult with the string referred by the classification field of the object result and the
string "."

• "localized 'msg'" will return the format pattern in the current system language

The formatted with operator will then apply this pattern to the calculated BMI• The formatted with operator will then apply this pattern to the calculated BMI

• The result (a string) is assigned to the BMI field of the object result

• Assuming the calculated BMI is 29.4324 and the system language is English, the result of
this formatted with expression is "The patient’s BMI 29.4 is not in the normal range
and is classified as"

3333

medexter®

Operators – String Operators I – Example

• The localized operator will return that string which is assigned to the term 'over' in the
resources category

• The operator will obtain the string from the language slot which matches the current
language of the system the engine is running on

• If there is no language slot for the current system language the defined default language is• If there is no language slot for the current system language, the defined default language is
used

• Assuming English as the current system language, the whole statement will assigng g y g g , g
"Overweight" to the field classification of the object result

3434

medexter®

Operators – String Operators II

U L t ll h t f i t i t l /• Uppercase, Lowercase: converts all characters of a given string to lowercase/uppercase

"EXAMPLE STRING" := UPPERCASE "Example String";

"example string" := LOWERCASE "Example String";example string : LOWERCASE Example String ;

• Substring: returns a substring of characters from a given string

"ab" := SUBSTRING 2 CHARACTERS FROM "abcdef";

"def" := SUBSTRING 3 CHARACTERS STARTING AT 4 FROM "abcdef";

M t h tt d t i if t i t h tt (i il t LIKE i SQL)• Matches pattern: determine if a string matches a pattern (similar to LIKE in SQL)
true := "fatal heart attack" MATCHES PATTERN "%heart%";

false := "fatal heart attack" MATCHES PATTERN "heart";

• Length: returns the length of a given string
7 := LENGTH OF "Example";

3535

medexter®

Operators – Arithmetic Operators

+ * / ** l t t i ll t d t t h• +, -, *, /, **: as usual, except one argument is null or types do not match
2 days := 6 days / 3;

9 := 3 ** 2;

• Cosine, Sine: calculates the cosine (resp. sine) of its argument
1 := COSINE 0;

• Log: returns the natural logarithm of its argument
0 := LOG 1;

• Abs: returns the absolute value of its argument
1.5 := ABS (-1.5);

C ili t th ll t i t t th l t it t• Ceiling: returns the smallest integer greater than or equal to its argument
-3 := CEILING (-3.9);

• Truncate: removes any fractional part of a number

3636

• Truncate: removes any fractional part of a number
-1 := TRUNCATE (-1.5)

medexter®

Operators – Arithmetic Operators – Example

• The BMI is calculated by dividing the current weight of the patient through the square of the
current size

• The result is assigned to the field BMI of the object result

• The current age of the patient is calculated by subtracting the birthday from the current time

• The keyword currenttime is used to refer to the current system time

Ass ming that the bi thda is 1977 12 12 and the c ent time is 2011 06 12T00 00 00• Assuming that the birthday is 1977-12-12 and the current time is 2011-06-12T00:00:00,
after evaluating the statement the variable age will refer to the duration 33.5 years

3737

medexter®

Operators – Temporal Operators

• After, Before: addition/subtraction of a duration and a time

2011-03-15T00:00:00 := 2 days AFTER 2011-03-13T00:00:00y

2011-03-11T00:00:00 := 2 days BEFORE 2011-03-13T00:00:00

• Time of day: extracts the time-of-day from a time

14:23:17.3 := TIME OF DAY OF 2011-01-03T14:23:17.3
/* let time of data0 be 2011-01-01T12:00:00 */
12:00:00 := TIME OF DAY OF (TIME OF data0)12:00:00 := TIME OF DAY OF (TIME OF data0)

• Day of week: returns a positive integer from 1 to 7 that represents the day of the week of a
specified time

5 := DAY OF WEEK OF 2011-08-27T13:20:00

1 := DAY OF WEEK OF now

3838

medexter®

Operators – Aggregation Operators I

C t t th b f it f li t• Count: returns the number of items of a list
4 := COUNT (12,13,14,null);

• Exist: returns true if there is at least one non-null item in a listExist: returns true if there is at least one non null item in a list
true := EXIST (12,13,14)
false := EXIST null

• Average: calculates the average of a number, time, or duration list
14 := AVERAGE (12,13,17)

04:10:00 := AVERAGE (03:10:00, 05:10:00)

• Sum: calculates the sum of a number or duration list
39 := SUM (12,13,14)

7 days := SUM (1 day, 6 days)7 days : SUM (1 day, 6 days)

• Median: calculates the median value of a number, time, or duration list
13 := MEDIAN (12,17,13)

3939

3 days := MEDIAN (1 hour, 3 days, 4 years)

medexter®

Operators – Aggregation Operators II

V i t th l i f i li t• Variance: returns the sample variance of a numeric list
2.5 := VARIANCE (12,13,14,15,16)

• Min Max: returns the smallest/largest value in a homogeneous list of an ordered type• Min, Max: returns the smallest/largest value in a homogeneous list of an ordered type
14 := MAXIMUM (12,13,14)

• Last, First: returns the value at the end/beginning of a list
14 := LAST (12,13,14)

• Latest, Earliest: returns the value with the latest /earliest primary time in a list

• Seqto: generates a list of integers in ascending order
(2,3,4) := 2 SEQTO 4

(3 2 1) (3) SEQTO (1)(-3,-2,-1) := (-3) SEQTO (-1)

() := 4 SEQTO 2

• Reverse: generates a new list with the elements in the reverse order

4040

Reverse: generates a new list with the elements in the reverse order
(3,2,1) := reverse (1,2,3)

medexter®

Operators – Aggregation Operators II – Example

• After evaluating the read statement, the variable weights refers to a list containing all
weights ever measured for the specific patient

• For calculating the BMI only the latest measured weight is relevant

• The latest operator extracts the weight with the latest primary time (each result item from• The latest operator extracts the weight with the latest primary time (each result item from
the read statement has both a value and a primary time which denotes the time when the
value was measured or inserted into the database)

• The latest weight is assigned to the variable weight

4141

medexter®

Operators – Time and Object Operators

• Time: returns the primary time of the provided parameter

2011-03-15T15:00:00 := TIME OF data0;2011 03 15T15:00:00 : TIME OF data0;

• Attime: constructs a time value from two time and time-of-day argumentsy g

2011-06-20T15:00:00 := now ATTIME 15:00:00;
2001-01-01T14:30:00 := TIME OF intuitive_new_millenium ATTIME 14:30:00;

• Clone: returns a copy of its argument (used for objects)

2011-03-15T15:00:00 := CLONE OF 2011-03-15T15:00:00;

4242

medexter®

Operators – Time and Object Operators – Example

• The condition of the If-Then-Else statement uses the time operator to access the primary
time of the variable weightg

• It is checked whenever the primary time is 6 months before the current system time

• If the primary time is not within the last 6 months the MLM concludes false

4343

medexter®

Call Statements

MLM ll h th MLM ll t t t i t d th t MLM i i t t d d • MLM calls: when the MLM call statement is executed, the current MLM is interrupted, and
the named MLM is called; parameters are passed to the named MLM

/* Define find_allergies MLM */
find_allergies := MLM 'find_allergies';_ _

(allergens, reactions):= call find_allergies with patientID;

• Event calls: when the event call statement is executed, the current MLM is interrupted, and
ll th MLM h k l t f t th d t t d t all the MLMs whose evoke slots refer to the named event are executed; parameters are

passed to the named MLMs
allergy_found := EVENT {allergy found};

reactions := call allergy found with allergy, patientID;gy_ gy, p

• Interface calls: when the interface call statement is executed, the current MLM is
interrupted, and the interface is executed; parameters are passed to the interface

/ //* Define find_allergies external function*/
find_allergies := INTERFACE
{\\RuleServer\AllergyRules\my_institution\find_allergies.exe};

(allergens, reactions):= call find allergies with patientID;

4444

(g ,) _ g p ;

medexter®

Nested MLMs

• MLM calls are used to externalize
blocks of calculation which may
be used be several MLMs or are
also used in other knowledge bases

• The call statement in the MLM1 immediately invokes the MLM2 (the execution of the MLM1
suspends)suspends)

• The parameter (parameter1) is passed to the MLM2 and is accessed with the argument
expression

• The passed parameter is assigned to the variable id

• When MLM2 is completed the result of MLM2 is passed back to MLM1 and assigned to the

4545

• When MLM2 is completed, the result of MLM2 is passed back to MLM1 and assigned to the
variable size

medexter®

Call Statements – Example

• The MLM statement assigns a reference to the MLM read_Size_MLM to the variable
mlmForReadSize

• This variable is used in the call statement to call the MLM referred to

• The call statement passes the content of the variable patientID (the patient ID which is The call statement passes the content of the variable patientID (the patient ID which is
the context of the current MLM) to the MLM read_Size_MLM

• The execution of the current MLM is suspended while the called MLM is evaluated

• The return value of the called MLM is assigned to the variable size

4646

medexter®

Trigger

Si l T i t i t t t ifi t t f t h f th • Simple Trigger: a trigger statement specifies an event or a set of events; when any of the
events occurs, the MLM is triggered; they occur only in the evoke slot

data:
penicillin_storage := event {store penicillin order}_
cephalosporin_storage := event {store cephalosporin order}

;;
evoke:
penicillin_storage OR cephalosporin_storage;;

• Delayed Trigger: permits the MLM to be triggered some time after an event occurs
MONDAY ATTIME 13:00 AFTER TIME OF penicillin storage;MONDAY ATTIME 13:00 AFTER TIME OF penicillin_storage;

• Constant Time Trigger: permits the MLM to be triggered at a specific time
2011-01-01T00:00:00

• Periodic Event Trigger: permits the MLM to be triggered at specified time intervals after an
event occurs

every 2 hours for 1 day starting today at 12:00 after time of event3

4747

every 2 hours for 1 day starting today at 12:00 after time of event3
every 1 day for 14 days starting 2011-01-01T00:00:00

medexter®

Trigger – Example

• The event statement assigns the reference to the event getBMI to the variable userEvent

• This variable is used in the evoke slotThis variable is used in the evoke slot

• The MLM is triggered immediately after the event referred to occurs

• If the evoke slot is changed to the above version, the MLM is triggered on the next Monday
at 13:00 after the occurrence of the referred event

4848

medexter®

THE END THE END

4949

