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Abstract—A power grid has four segments: generation, trans-
mission, distribution and demand. Until now, utilities have been
focusing on streamlining their generation, transmission and
distribution operations for energy efficiency. While loads have
traditionally been a passive part of a grid, with rapid advances
in ICT, demand-side technologies now play an increasingly
important role in the energy efficiency of power grids. This paper
starts by introducing the key concepts of demand-side manage-
ment and demand-side load management. Classical demand-side
management defines six load shape objectives, of which “peak
clipping” and “load shifting” are most widely applicable and
most relevant to energy efficiency. At present, the predominant
demand-side management activity is demand response (DR). This
paper surveys DR architectures, which are ICT architectures
for enabling DR programs as well as load management. This
paper also surveys load management solutions for responding to
DR programs, in the form of load reduction and load shifting
algorithms. A taxonomy for “group load shifting” is proposed.
Research challenges and opportunities are identified and linked
to ambient intelligence, wireless sensor networks, nonintrusive
load monitoring, virtual power plants, etc.

Index Terms—Smart grid, energy efficiency, demand-side load
management, energy management, load shifting

I. INTRODUCTION

It is estimated that if power grids were 5% more efficient,

the energy savings would equate permanently eliminating

the fuel and greenhouse gas emissions from 53 million cars

[1]. Consequently, demand-side energy efficiency has been

receiving a lot of attention in addition to efficiency in genera-

tion, transmission and distribution. For example, Australia’s

technical energy-efficiency improvement between 1990 and

2004 was only about a third of the average amongst OECD

countries. The below-average performance has motivated Aus-

tralia to set a National Energy Efficiency Target to achieve

world-class saving by 2015.

Let us start by analysing from “first principle” how a power

grid can be made more energy-efficient from the demand

side. Line loss is proportional to the current squared, so it

is easily understandable that a grid is more energy-efficient

with low demand, and therefore load reduction is an obvious

way of improving a grid’s energy efficiency. Utilities may not

have incentives to reduce overall demand, but peak demand

reduction helps preventing grid instability.

Flattening the demand curve is another way of making a

grid more energy-efficient. To understand this, consider a load

that draws a current of 2i for half of the day, but no current

for the rest of the day, and thereby incurring a line loss that

is proportional to (2i)2 × 1
2day. Consider another load that

draws a current of i throughout the day, and thereby incurring

a line loss that is proportional to i2 × 1day. The latter load

which represents a flat demand incurs half as much line loss.

Therefore, a flat demand curve is better for energy efficiency,

and also better for infrastructure utilization. Naturally, a grid

will also be more energy-efficient if more consumers use

energy-efficient appliances.

While utilities have no direct control over their customers’

loads, a utility can perform demand-side management, i.e., “to

plan, implement and monitor activities designed to influence

customer uses of electricity in ways that will produce desired

changes in the utility’s load shape” [2]. Out of the six so-

called load shape objectives associated with classical demand-

side management, three are relevant to our energy efficiency

goal: (i) peak clipping: reduction of peak load; (ii) load
shifting: shifting of load from peak to off-peak periods; (iii)

strategic conservation: reduction of sales. Peak clipping and

load shifting coincide with the energy efficiency strategies we

have identified earlier. Peak clipping and load shifting reduce

network volatility by shaving local demand peaks, thereby

assisting constrained networks to cope with summer and

winter demand peaks, and reducing the need for investment

in grid-infrastructure reinforcement. Strategic conservation is

more relevant to the situation where energy resources are

scarce and will not be further pursued here.

Currently, the predominant demand-side management activ-

ity is demand response (DR). A DR program is “a tariff or

program established to motivate changes in electric use by end-

use customers in response to changes in the price of electricity

over time, or to give incentive payments designed to induce

lower electricity use at times of high market prices or when

grid reliability is jeopardized” [3]. The term demand-side load
management (equivalently, demand-side energy management,

or load management in short) refers loosely to the “adjustment

of demand to match supply” [4], and can be understood as

a client’s response to demand-side management, represented
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primarily by DR programs. Essentially, this paper surveys
DR architectures, and load management solutions for
meeting the peak clipping and load shifting objectives of
demand-side management, in the form of load reduction
and load shifting algorithms. The relations between the

concepts just discussed are visualized in Fig. 1.

Utility Client

Demand-side management Demand-side load management

Load shifting
Peak clippingLoad shape 

objectives
DR
programs

DR
architectureess

DR 
architectures Load shifting algorithms

Load reduction algorithms

Fig. 1. Relations between demand-side management and demand-side load
management concepts.

Our main contribution is that we clarify and make connec-

tions between essential concepts of demand-side management

and demand-side load management. Unlike recent surveys

on smart grid communications [5]–[9], we focus heavily on

DR architectures and algorithms in detail and with precision.

Our survey of load management algorithms is more extensive

and technically in-depth than [10], [11]. Additionally, our

taxonomy of group load shifting is new.

The paper is organized as follows. Table I lists frequently

used acronyms. Section II introduces DR programs, and

explains how they influence the design of DR architectures

and load management algorithms. Discussing architectures or

algorithms without the other tends to leave an incomplete pic-

ture. Therefore, Section III discusses DR architectures, before

Sections IV and V discuss load reduction and load shifting

algorithms respectively, together with the research challenges

and opportunities in these areas. Section VI concludes.

TABLE I
FREQUENTLY USED ACRONYMS IN ALPHABETICAL ORDER

AMI Advanced metering
infrastructure

CHP Combined heat and
power

DR Demand response
EMS Energy management

system

GLS Group load shifting
HAN Home area network
ISO Independent system

operator
NILM Nonintrusive load

monitoring
VPP Virtual power plant

II. DEMAND RESPONSE PROGRAMS

DR programs are either price-based or incentive-based.

Price-based DR programs are programs where the tariff

fluctuates according to the real-time cost of electricity. Ex-

amples are critical peak pricing and time-of-use pricing. In

critical peak pricing (aka dynamic peak pricing), customers

are notified in advance of critical peak times – limited to

several days per year – during which the tariffs will be much

higher than average. In time-of-use pricing, the tariff varies

with different time blocks of the day.

The downside of these schemes is the potential grid-

destabilizing rebound effect [12]–[14]. As observed during the

Californian pilot study of time-of-use and critical peak pricing

[15], a local demand peak, called the rebound peak, arises at

the end of a critical period when a large number of loads

are re-connected to the grid at roughly the same time. Load

management algorithm should be designed to avoid this effect.

Incentive-based DR programs are programs where a utility

rewards its customers for their participation. Examples include

peak-time rebate and direct load control. A peak-time rebate

program offers a credit or rebate to customers who reduce

usage during critical peak hours; the value of this peak-time

reduction is monetized in the wholesale market and returned

to retail customers by the DR provider (utility most likely)

[16]. The difference between peak-time rebate and dynamic

pricing programs such as time-of-use and critical peak pricing

is that the former rewards the customers if they reduce their

peak-time usage, but does not punish them for not changing

their usage. Direct load control is a program by which the

program operator remotely shuts down or cycles its customers’

appliances (e.g., electric water heaters) on short notice [3].

Peak-time rebate and direct load control programs are so far

the most widely implemented incentive-based DR programs.

III. DEMAND RESPONSE ARCHITECTURES

DR would not be possible without an advanced metering
infrastructure (AMI), i.e., a two-way communication infras-

tructure between a utility’s enterprise network and its smart

meters, whose purpose, besides automatic meter reading, is

providing up-to-date tariff information to customers. Multiple

AMI vendors designate the types of networks that constitute an

AMI as Neighborhood Area Network and Field Area Network.

In a Neighborhood Area Network, nodes called collectors
collect meter data from downstream smart meters and forward

the data upstream toward the backhaul network. These data are

encoded according to the IEEE standard P1377 (equivalently,

ANSI C12.19) and messaged using the IEEE standard P1703

(equivalently, ANSI C12.22). A Field Area Network is for

connecting field devices to a utility’s SCADA master.

Downstream, an AMI is connected to Home Area Networks
(HANs), Building Area Networks and Industrial Area Net-
works via smart meters. As the name implies, these networks

are for homes, buildings and industrial complexes respectively.

HAN devices are envisioned to communicate securely with

the smart meter, so that (i) devices like in-home displays can

securely retrieve and display tariffs, usage and other data; (ii)

the smart meter can send load control instructions to HAN

devices; (iii) the smart meter can measure the output of micro-

generation sources (e.g., solar panels and small wind turbines).

While there may be residential customers who prefer to manu-

ally monitor and adjust their appliances, automated DR is more

cost-effective, especially for business and industrial customers.

Automated DR algorithms are essentially load management
algorithms. A DR architecture is an ICT architecture that
supports the activation or deployment of load management
algorithms by a utility in a client’s designated appliances
as determined by the DR program the client subscribes to.
Existing DR architectures are surveyed below.
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OpenADR (Open Automated DR) [17] is an open specifi-

cation of communications data models designed to provide

interoperable DR signals to building and industrial control

systems (e.g., BACnet) that are pre-programmed to take au-

tomatic action based on the signals. It is also an architecture

(see Fig. 2(a)). The DR Automation Server (DRAS) is the

central component. Utilities access the server’s Utility or
ISO Operator Interface to manage DR programs and event,

perform automated bidding in the electricity market, manage

participant accounts, etc. Participants access the server’s Par-
ticipant Operator Interface to opt out of DR events, submit

feedback, perform automated bidding, etc.

Whirlpool Smart Device Network [18] is a HAN-centric

architecture (see Fig. 2(b)). The Whirlpool Integrated Service
Environment is a collection of web services providing inter-

faces – some of which similar to OpenADR’s DR Automation

Server – to utilities and consumers. The Smart Device Con-
troller hosts a set of proprietary load management algorithms

called the in-home energy management system, which can be

modified by the Whirlpool Integrated Service Environment.

The Australian HAN guideline [19] specifies that a HAN

can have two partitions: a Utility Private HAN and a Cus-
tomer HAN, bridged by a Premise EMS (Energy Management

System) (see Fig. 2(c)). The Utility Private HAN includes the

smart meter and HAN devices registered with the utility. The

Customer HAN includes HAN devices that do not have secure

connections with the smart meter. The Premise EMS plays a

similar role to Whirlpool’s Smart Device Controller.

PowerMatcher [20] is a multi-agent architecture explicitly

designed for supply and demand matching (see Fig. 2(d)).

An agent residing in every device bids and buys (or sells

if the device is a producer) in the electricity market. The

Home Energy Management Box implements a local energy

management strategy based on the user’s preference. The

Box and the Exchange Agent in effect act as two levels

of “supply and demand matchers” in a tree structure (with

Boxes constituting the leaves, Exchange Agent being the root),

attempting to match demand coming from below to supply

available above.

In all the architectures above, the smart meter plays a

passive role in automated DR, understandably because it lacks

upgradability and the bandwidth necessary to support fine-

grained load management. This renders LeMay et al.’s smart

meter-centric Meter Gateway Architecture [12] dated. The

division of load management tasks is such that the equivalents

of Smart Device Controller or Premise EMS are primarily

responsible for load shifting, while the loads themselves are

responsible for load reduction (energy efficiency).

As soon as AMIs unleash the possibilities of load man-

agement on a per-household basis, experts realize that similar

architectures should be in place to support cooperative load

management among a group of households, which has the po-

tential to mitigate the rebound effect. The IEEE standard 1888

serves just this purpose. The standard defines the ubiquitous
green community control network (UGCCNet) architecture

(see Fig. 3), consisting of four major logical components:
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Operator Interface

Participant Operator 
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Automation 
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(DRAS)

Utility

Gateway
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Smart 
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Bid

Price

Exchange agent
Energy plan
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Fig. 2. DR architectures: (a) OpenADR, (b) Whirlpool Smart Device
Network, (c) Australian HAN guideline, (d) PowerMatcher.
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Sensors and 
actuators

Gateway

Sensors and 
actuators

Registry

Storage Storage... Application Application...

...
Premise EMS

Utility private HAN

Smart meter

Customer HAN

Fig. 3. The UGCCnet architecture; and mapping of an Australian HAN
network to an IEEE 1888 sensor and actuator sub-network.

Registry, Gateway, Storage, and Application. The Registry

serves as a broker for other components. A Gateway provides

access to physical sensors and actuators in its sub-network.

The Storage components archive data, whereas the Appli-

cation components provide user interfaces, access sensors

and actuators via Gateways, as well as request data from or

store data in Storage components. Fig. 3 shows a potential

mapping of an Australian HAN to an IEEE 1888 sensor

and actuator sub-network. In this mapping, a Premise EMS

acts as a Gateway and hosts a copy of a load management

Application designed to optimize energy usage cooperatively.

A building automation and control network implementing

BACnet (ASHRAE/ANSI standard 135-1995, ISO standard

16484-5) can also be extended to serve as an IEEE 1888 sensor

and actuator sub-network.

IV. LOAD REDUCTION ALGORITHMS

The DR architectures discussed in the previous section serve

as platforms for load management algorithms. It is conceivable

that consumers often use more energy than they really need

to, e.g., indoor air-conditioning is often colder/warmer than

necessary in summer/winter. While meeting the peak clipping

objective entails only load reduction at demand peaks, it is in
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the consumers’ interest to match usage closely to requirement

at all times, to reduce overall energy bills. For this, load

reduction algorithms are used and are discussed in this section.

Load reduction is especially important for buildings be-

cause in the US and EU [21], buildings account for 40% of

energy consumption; whereas in Australia, the energy used

by buildings accounts for approximately 20% of Australia’s

greenhouse gas emissions, split roughly evenly between homes

and commercial buildings.

For businesses in Australia, heating, ventilation and air

conditioning (HVAC) typically accounts for up to 40% of

energy bills, and is the biggest electricity consumer. Lighting is

the second largest electricity consumer. Lighting control can be

quite simple, and thanks to the proliferation of ZigBee-based

wireless sensors, can be low-cost too. For example, magnetic

reed switches on doors, passive infrared motion sensors, and

a simple heuristic are sufficient to detect room occupancy

(see [22] and [23] for sample testbeds). Upon detection of

room occupancy, ambient light sensors can be used to check

if current illumination is below 500 lux, in which case the

system should activate additional lighting following safety and

health regulations [24]. Requiring every occupant to wear an

electronic badge to ease detection may not be practical but

does enable occupants’ preferences for illumination level and

so on to be taken into account [25].

HVAC control is more challenging. HVAC mainly con-

ditions temperature and CO2. Conventional HVAC control

strategies (such as [26]) focus on maintaining the temper-

ature level using as little energy as possible, but (i) waste

energy on unoccupied rooms, and (ii) do not optimize the

ventilation rate. While we can improve these strategies by

sensing room occupancy, optimizing CO2 ventilation rate

requires knowledge of the number of occupants. Standard 62.1

of the American Society of Heating, Refrigerating and Air-

Conditioning Engineers (ASHRAE) specifies the minimum

ventilation rate of a breathing zone to be

RpPz +RaAz,

where Rp is the minimum airflow rate per person, Pz is the

number of people in the zone, Ra is the minimum airflow rate

per zone area, and Az is the zone area [27]. Optimal HVAC

control thus requires knowledge of the number of occupants

in a room. Measuring CO2 level is problematic because CO2

sensors are slow to detect CO2 buildup [28]. An array of

passive infrared sensors deployed above a doorway can be

used for counting people passing through the doorway [29].

However, this method requires sensors to be deployed above

every doorway and is only applicable to confined spaces.

Worse, a miscount will result in a permanent error. Most other

methods for people counting are based on machine vision.

Vision-based human detection and tracking has been studied

for decades, but it is only recently that lightweight tech-

niques using low-cost wireless camera sensor networks start

appearing. So-called address-event imagers selectively extract

and output a small number of features of interest such as

motion, direction of motion, etc. from every image, instead

of the image itself [30]. Processing these features not only

requires less computational power, storage and bandwidth

than processing the original images, but is also less privacy-

infringing. Teixeira and Savvides’ solution [31] is an example

of using address-event imagers for people counting. Using

their solution, camera sensor nodes with wide-angle lenses are

mounted on the ceiling, in enough number so that an entire

room can be captured. The cameras detect moving occupants

by frame differencing: after subtracting the previous frame

from the current one, the resulting pixels that are above a

certain intensity threshold represent objects that have moved,

among which objects of a certain pre-determined size are then

classified as humans. Due to noise, simple frame differencing

may result in “smeared” or “disconnected” blobs; furthermore,

frame differencing by definition filters out static and slow-

moving occupants. To overcome these problems, Teixeira and

Savvides’ solution consists of algorithms for making frame

differencing robust, and for tracking moving objects. Overall,

their solution performs well for less than 5 occupants. See [32],

[33] for description of similar systems for people counting, but

the detection rates of these systems have not been published.

A. Research challenges and opportunities

The algorithms just discussed fall easily under the frame-

work of intelligent buildings, the research on which actu-

ally dates back to decades ago. In the advent of wireless

sensor networks, building intelligence evolved into ambient

intelligence, and the energy efficiency aspect started getting

more attention following the push on smart grids. Ambient

intelligence algorithms are generally based on the multi-agent

paradigm, and are primarily designed for learning, predicting

and supporting user lifestyles in a single-user environment

[34]. These algorithms need to be extended to support multi-

user environments, with energy efficiency being one of the

optimization objectives. Effective sensing is a fundamental

challenge. In particular, sensing and estimating occupancy in

order to match ventilation rate to the number of people in

an area for maximum HVAC energy efficiency is an open

problem. Wireless camera sensor networks provide a low-

cost mean for people counting, but the best implementation

known cannot correctly count more than 5 occupants. More

efficient address-event imagers, heterogeneous sensing, and

sensor fusion are expected to provide improvement.

Although HVAC is known to be the biggest energy con-

sumer, energy audits are useful for identifying other poten-

tial sources of wastage in a building. These audits often

require single-point measurements to be disaggregated into

individual appliance’s power consumption figures, using a

procedure called nonintrusive load monitoring (NILM) [35].

However, NILM products that are cost-effective (requires

cheap hardware and installation) and easy to use (requires little

calibration) have yet to appear. Survey [36] discusses the latest

research challenges and opportunities in this area.
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V. LOAD SHIFTING ALGORITHMS

When consumption cannot be reduced, cost savings can

be achieved by shifting the load to a cheaper billing period.

Load shifting assumes the possibility of remotely scheduling

an appliance, as opposed to locally scheduling an appliance

by (say) setting the timer on the appliance. A day is divided

into slots (e.g., [37], [38] use 1-hour slots, whereas [39] uses

6-minute slots), during each of which electricity price remains

constant, and load shifting is determining which of these time

slots to turn on a particular appliance. For discussion of load

shifting, we use the notation below:

τ denotes the length of a time slot;

m denotes the number of time slots per day;

U denotes the set of users;

Au denotes user u’s set of appliances;

pu,a(t) denotes the power / load profile of user u’s appliance a,

where t = 0 is the time when a is turned on,

and pu,a(t) = 0, ∀t < 0;

xu,a denotes the time slot when user u’s appliance a is

turned on;

lu,a denotes the number of time slots during which user

u’s appliance a is required to be turned on;

Ci denotes the price per unit energy at the ith time slot;

eu,a,i denotes the energy consumed by user u’s appliance

a for the ith time slot;

Emax
i denotes the maximum energy consumed per household

for the ith time slot.

By “user”, we mean an entity, such as an entire household or

business unit, controlling a set of appliances. We can express

eu,a,i as a function of xu,a, i.e.,

eu,a,i(xu,a) =∫ (i+1)τ

t=iτ

u[(xu,a + lu,a)τ − t]pu,a(t− xu,aτ)dt,
(1)

where u() is the Heaviside step function. Notice the integration

in (1) is “terminated” at time t = (xu,a + lu,a)τ , because

u[(xu,a + lu,a)τ − t] =

{
1, t ≤ (xu,a + lu,a)τ,

0, t > (xu,a + lu,a)τ.

For user u, the objective is solving the optimization problem:

min
∑
a∈Au

m−1∑
i=0

Ci · eu,a,i(xu,a), (2)

s.t.
∑
a∈Au

eu,a,i(xu,a) ≤ Emax
i , ∀i = 0, . . . ,m− 1.

The inequality constraint in (2) is used to prevent all users

from scheduling all their appliances at the same time (when

Ci is lowest). This inequality constraint is absent in Kishore

and Snyder’s first load shifting scheme [40, (1)], which unsur-

prisingly is plagued by the rebound peak problem.

Many load shifting schemes (e.g., [37], [40], [41]) employ

an artificial discomfort / inconvenience / waiting cost to model

the cost incurred for the delay between the instance when

a user turns on an appliance and the instance when the

appliance is turned on according to schedule. Due to the

lack of an objective way of quantifying inconvenience and

compelling scenarios where there is an economic need to

quantify inconvenience caused by load shifting, (2) does not

include such an artificial cost.

Instead of inconvenience cost, Pedrasa et al. [42] introduce

the cost metric “perceived benefit” bu,a,i(eu,a,i), which mea-

sures the price u is willing to pay for the service level that a
will provide if it consumes eu,a,i energy during the ith time

slot. The optimization objective becomes

min
∑
a∈Au

m−1∑
i=0

(Cieu,a,i − bu,a,i(eu,a,i)) . (3)

In (3), eu,a,i is not a function of xu,a as in (2), but is itself

the optimization variable. When eu,a,i fluctuates from slot to

slot, so does the power, in a way that deviates arbitrarily from

the load profile. While this may be acceptable for energy-

dependent appliances, power-dependent appliances may per-

form sub-optimally, or not at all, or even be damaged as a

result. Another problem with (3) is that there is no universally

accepted way of quantifying perceived benefits in monetary

values.

Mohsenian-Rad et al. [37] assign an exact, predicted total

usage amount Ea to every appliance a, besides capping the

usage for each time slot i at Emax
i . Their formulation, omitting

any waiting cost, is as follows:

min
∑
a∈Au

m−1∑
i=0

Ci

(∑
a∈Au

eu,a,i

)
· eu,a,i, (4)

s.t. αu,a ≤ eu,a,i ≤ βu,a, ∀i = 0, ...,m− 1, ∀a ∈ Au, (5)

m−1∑
i=0

eu,a,i = Ea, ∀a ∈ Au,

∑
a∈Au

eu,a,i ≤ Emax
i , ∀i = 0, . . . ,m− 1.

The differences between (4) and (2) are:

• Ci in (4) is a function that increases with the total energy

consumed by the appliances during time slot i. This is to

simulate the inclining block rates pricing scheme.

• eu,a,i in (4) is not a function of xu,a, but is itself the

optimization variable constrained by (5), where αu,a and

βu,a represent the lower and upper energy limits per time

slot characterizing appliance a respectively. The caveat of

using this optimization variable has been discussed.

Erol-Kantarci et al. [43] propose to schedule appliances

sequentially, but this temporal constraint may actually lead

to higher electricity bills.

Xiao et al. [44] propose a heuristic based on the Longest

Processing Time algorithm that tries to minimize the maximum

bill for each time slot, rather than the daily bill. The effect is

that although the user’s daily bill is not minimized, the user’s
demand curve is effectively flattened.
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All the load shifting schemes discussed so far are individual-

oriented. When users in a neighborhood collaborate to de-

termine the optimal energy allocation for each time slot, the

system’s demand curve can be flattened more effectively. We

call this kind of scheme group load shifting (GLS). GLS can

be centralized, in which case the utility alone dictates the

load schedule for each user, by considering all users in a

neighborhood as a group. Some vendors are already providing

centralized GLS solutions although they are not necessarily

labelled as such (e.g., GE’s Grid IQ Demand Optimization

System DR1000). GLS can also be distributed, in which case

each user coordinates with one another directly and does not

require any more than a pricing signal from the utility. GLS

can also be hierarchical, in which case each user coordinates

with a “global planner” to derive the optimal schedule based

on input from all the users in the neighborhood. The following

subsections survey distributed and hierarchical GLS schemes.

A. Distributed group load shifting schemes
Kishore and Snyder [40] propose a distributed

“neighborhood-level load scheduling” protocol, where

users in a neighborhood contend for energy from a finite

energy resource for every time slot. The protocol is heuristic

and assumes the “energy management controllers” in a

neighborhood are one hop away from each other, which is a

severe limitation. Other issues include: packet collisions are

not handled; no countermeasures against selfish controllers

(e.g., controllers that do not wait for a random delay before

requesting for energy).
Mohsenian-Rad et al. [38], [45] propose a distributed

scheme where each user u in group U aims to minimize the

daily bill of U , by changing their single-user formulation (4)

to:

min
∑
u∈U

∑
a∈Au

m−1∑
i=0

Ci

(∑
u∈U

∑
a∈Au

Ea

)
· eu,a,i, (6)

s.t. αu,a ≤ eu,a,i ≤ βu,a, ∀i = 0, ...,m− 1, ∀a ∈ Au,

∀u ∈ U , (7)

m−1∑
i=0

eu,a,i = Ea, ∀a ∈ Au, ∀u ∈ U . (8)

Ci in (6) is a function that increases with the total energy

consumed by the group during time slot i, such that the cost

function in (6) is strictly convex. Real-world pricing models

however rarely lead to a strictly convex cost function, e.g., BC

Hydro’s pricing model [45]. (8) means that every appliance is

assigned an exact, pre-determined total usage amount, which

implies that every user u has a pre-determined usage amount,

which further implies that his/her daily bill is a constant
fraction of the group’s daily bill. Thus, by minimizing the

group’s daily bill, every user essentially minimizes his/her own

daily bill. According to n-person game theory, a unique Nash

equilibrium exists where all users adhere to the strategy of

minimizing the group’s daily bill.
For communication efficiency, these schemes can be imple-

mented on top of UGCCNet (see Section III) or comparable

architectures. Distributed GLS schemes have the advantage

that users do not need to surrender control of their appliances

to their utilities, but do expose the users to security and privacy

risks. None of the above schemes have been designed with

security in mind. Defending these schemes against malicious

users will significantly increase their complexity.

B. Hierarchical group load shifting schemes

Due to the limited information flow between users, hierar-

chical GLS is potentially more secure than distributed GLS.

However, the viability of both distributed and hierarchical GLS

understandably hinges on how much savings users can make

from using these technologies. In this respect, hierarchical

GLS schemes is also potentially more advantageous, due to

the possibility of realizing the virtual power plant / producer
(VPP) concept using these schemes. There are several defini-

tions of VPP [46] but basically, a VPP is a group of energy

producers and consumers acting as though they are a single

energy producer with stable, defined hourly output that is

tradable on the spinning reserve market. The idea of a fleet

of distributed but interconnected micro CHP (combined heat

and power) generators and storages appearing on the energy

market as a single VPP has been around for a while. Recently,

several hierarchical GLS schemes have been proposed for

managing micro CHP generators alongside energy-consuming

appliances, so that participating users can collectively operate

as a VPP [20].

To this end, Molderink et al. [39], [47] propose a hierarchi-

cal GLS scheme consisting of three steps:

Step 1 – Local prediction: Each user predicts his/her heat

demand for the next day using neural networks, using data

from preceding weeks and local outdoor temperatures as input.

Based on the heat demand and the required micro CHP output

in fulfillment of the user’s role in the VPP, a local electricity

production plan is derived and sent to the global planner.

Step 2 – Global planning: The global planner has to solve

the micro CHP scheduling problem: given m time slots, n
micro CHPs with their own production plans for each time

slot, which micro CHPs should be turned on at each time slot

to meet the VPP production goal for every time slot?

The problem is non-trivial because each micro CHP has

its own constraints, e.g., its production plan, its maximum

output power, the minimum durations it must keep running for

each run and stay off after each run to minimize wearing, the

startup and shutdown delays of its micro CHP, etc. In fact, (a

simplified version of) the problem is shown to be NP-complete

in the strong sense [48].

For this reason, a heuristic is used to adjust the local plans

by minimizing the mismatch between the local plans with

the global (VPP production) plan. An earlier version of the

heuristic [49] applies different electricity prices to different

houses, which is not realistic.

Step 3 – Local scheduling: An appliance’s load profile is

modeled to consist of power ranges, i.e., user u’s appliance

a’s power consumption takes a value between αPR 1
u,a and βPR 1

u,a ,

or between αPR 2
u,a and βPR 2

u,a , and so on; where the superscript
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“PR r” represents the rth power range, and αPR r
u,a ≤ βPR r

u,a .

Note the case αPR r
u,a = βPR r

u,a , and the case αPR r
u,a ≤ βPR r

u,a ≤
0 (when a actually generates electricity) are possible. Local

scheduling for each time slot is expressed as the optimization

problem (9)–(12):

min
∑
r

Costrunning · pPR r
u,a + Coststartup · xPR r

u,a , (9)

s.t. xPR r
u,a ∈ {0, 1},

∑
r

xPR r
u,a = 1, (10)

xPR r
u,a αPR r

u,a ≤ pPR r
u,a ≤ xPR r

u,a βPR r
u,a , ∀r, (11)

τ
∑
a∈Au

∑
r

pPR r
u,a = local heat, electricity demand

+ demand from global plan.
(12)

The idea of this formulation is to select one power range for

each appliance (constraint (10)), and within the selected range

select a power value (constraint (11)), that satisfies the heat

and electricity demand (constraint (12)) and gives the lowest

cost. The cost has two components: a running cost that is

proportional to pPR r
u,a , and a constant startup cost associated

with the power range r.

C. Research challenges and opportunities

Modeling: Accurate modeling of load profiles is desired.

As a result of extensive metering, it is now understood that

appliances can be modeled as either finite state machines

(FSMs) or continuously variable appliances [35]. FSMs op-

erate on discrete power levels, e.g., washing machines. Con-

tinuously variable appliances operate on a continuous range

of power levels, e.g., dimmer lights. Some appliances that can

be modeled as FSMs, e.g., dishwashers, behave in part like

continuously variable appliances. Yet some other appliances

that can be modeled as FSMs, e.g., plasma TVs, fluctuate quite

a bit in power consumption depending on their workload and

user activities. No existing schemes have endeavored to model

appliances accurately. Results from the NILM literature should

provide input to this modeling challenge. Additionally, NILM

measurements provide training data for the prediction of local

demand, as required by many load shifting schemes.

Security: Distributed GLS schemes involve exchanging of

power usage information among the participants. The IEEE

standard 1888 has identified some broad security requirements,

but has not discussed potential attacks and countermeasures in

detail. Privacy invasion and false data injection are among the

threats that need to be addressed in depth. Key to these issues

is the establishment of a suitable access control structure and

associated key management scheme.

Reliability: So that a VPP can provide spinning reserve

services, the reliability of the relevant electrical as well as

communication networks needs to be ensured. In this regard,

the global planner should leverage the redundancy inher-

ent in a large fleet of microgenerators, by monitoring and

tracking individual microgenerators, and devising the global

plan correspondingly. Less reliable microgenerators should

be assigned a lower target and therefore a lower share of

the profit. Opportunities exist for the design of a real-time

control scheme to monitor for and counterbalance possible

undersupply or oversupply by any of the microgenerators.

A significant challenge lies in the communication efficiency

necessary to achieve real-time response.
Economics: Missing from existing hierarchical GLS

schemes is a specification of the global planner’s market strat-

egy for maximizing the VPP’s profit. Together with microgrid,

VPP has been identified as one of two main strategies for

integrating distributed generation into a power grid. Creation

of market models and negotiation strategies for microgrids and

VPPs is thus an important issue (see review [50]). Also miss-

ing from existing hierarchical GLS schemes is a specification

of the users’ demand response strategy when the VPP suffers

a supply deficit. Both market models for VPPs and demand

response can be designed and analyzed using game theory.

VI. CONCLUSION

Driven by sustainability initiatives and advances in ICT in-

frastructures, demand-side management is supplanting supply-

side management (increasing generators to meet demand).

Classical demand-side management defines six load shape

objectives, of which “peak clipping” and “load shifting” are

most widely applicable and most relevant to energy efficiency.

At present, the predominant demand-side management activity

is demand response (DR). This paper surveys DR architec-

tures, which are ICT architectures for enabling DR programs

as well as load management. This paper also surveys load

management solutions for responding to DR programs, in

the form of load reduction and load shifting algorithms. For

load reduction, multi-agent ambient intelligence technologies,

wireless camera sensor networks, heterogeneous sensing, and

sensor fusion are expected to provide significant energy ef-

ficiency improvements to conventional HVAC control. For

load shifting, this paper proposes a taxonomy for group load

shifting, whose objective is to flatten the system’s demand

curve more effectively than traditional load shifting. Research

challenges and opportunities for load shifting are identified to

be in the areas of appliance modeling, economic modeling, se-

curity, reliability, and communications. To the development of

both load reduction and load shifting algorithms, nonintrusive

load monitoring can provide useful input.
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