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Summary

We examine the issue of population stratification in as-
sociation-mapping studies. In case-control studies of as-
sociation, population subdivision or recent admixture of
populations can lead to spurious associations between
a phenotype and unlinked candidate loci. Using a model
of sampling from a structured population, we show that
if population stratification exists, it can be detected by
use of unlinked marker loci. We show that the case-
control-study design, using unrelated control individu-
als, is a valid approach for association mapping, pro-
vided that marker loci unlinked to the candidate locus
are included in the study, to test for stratification. We
suggest guidelines as to the number of unlinked marker
loci to use.

Introduction

Association mapping is used to identify chromosomal
regions containing disease-susceptibility loci or loci in-
volved in other phenotypic traits of interest. A powerful
technique, it has been advocated as the method of choice
for mapping complex-trait loci (Risch and Merikangas
1996). The basic approach is to identify marker loci at
which some alleles are more frequent among affected
individuals (cases) than among unaffected individuals
(controls). A statistical association between genotypes at
the marker locus and the phenotype is usually thought
to imply physical linkage between the marker locus and
a disease locus.

This conclusion is reasonable in a randomly mating
population, since linkage disequilibrium between un-
linked markers breaks down very rapidly over time.
However, when population subdivision is present, it is
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possible to find statistical associations between a disease
phenotype and arbitrary markers that have no physical
linkage to causative loci (e.g., see Lander and Schork
1994; Ewens and Spielman 1995). Such associations oc-
cur because population subdivision (or any other form
of nonrandom mating) permits marker-allele frequencies
to vary among segments of the population, as the result
of genetic drift or founder effects (Slatkin 1991). A dis-
ease that is most prevalent in one subpopulation will be
associated with any alleles that are in high frequency in
that subpopulation. Of course, nothing is special about
the disease in this regard. Any marker locus that has
different allele frequencies in the different subpopula-
tions will be in “linkage” disequilibrium with other
markers from throughout the genome.

In this article, we use the term “spurious association”
to describe an association between a phenotype and a
marker locus when the marker is unlinked to any caus-
ative loci. Spurious associations as a result of population
subdivision can occur when the sampling is done with-
out regard to ethnicity and the resulting case and control
samples contain different frequencies of each ethnic
group. We present a model in which disease frequencies
differ among subpopulations, causing some subpopu-
lations to be overrepresented in the affected group. In
some situations it may be easy to detect this form of
stratification, simply by asking each member of the sam-
ple to identify his or her ethnicity. However, it is an open
question as to whether relatively fine distinctions should
be of concern: for example, is stratification in a sample
of Irish Americans, Italian Americans, and Jewish Amer-
icans likely to produce spurious associations? As dis-
cussed below, the severity of the problem of spurious
association increases with sample size; thus, perhaps
such stratification will be an issue in the large studies
that will be necessary to identify disease loci with low
relative risks.

Spurious associations can also arise in recently ad-
mixed populations. For example, association studies of
type II diabetes in Pima Indians (who have high rates of
diabetes) were flawed because Pima individuals with a
high degree of Caucasian ancestry had lower diabetes
susceptibility. Hence, any marker loci that were at higher
frequency in the Pima than in Caucasians were “asso-
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ciated” with the disease (Lander and Schork 1994). Ew-
ens and Spielman (1995) describe a model of admixed
populations in which spurious associations can arise
whenever the frequency of the disease allele differs
among the parent populations. Of course, random mat-
ing and recombination break down false associations
within just a few generations of the initial admixture.

In response to the problem of spurious associations
(Falk and Rubinstein 1987; Thomson et al. 1989), Spiel-
man et al. (1993) proposed the transmission disequilib-
rium test (TDT), which uses the genotypes of parents of
affected individuals. The TDT checks for a difference in
the transmission probabilities of the candidate alleles
from heterozygous parents. Although this approach
takes advantage of population-level associations, the
TDT is not susceptible to spurious associations that re-
sult from stratification.

Although very elegant, the TDT design is usually more
labor intensive than a simple case-control design that
uses affected individuals and unrelated controls. It may
take considerable effort, or may even be impossible, to
collect DNA samples from the parents of probands, par-
ticularly for late-onset diseases. It may also be difficult
to collect DNA from other relatives of probands for
which TDT-like statistics have been proposed (Boehnke
and Langefeld 1998; Lazzeroni and Lange 1998; Spiel-
man and Ewens 1998).

For this reason the simple case-control approach
would often be an attractive study design, were it not
for the problem of spurious associations due to popu-
lation stratification. In the remainder of this article, we
argue that the case-control design can be a valid test for
association, provided that it includes an explicit test for
stratification.

Detection of Stratification

It is well known that allele frequencies at random
marker loci may differ among ethnic groups (reviewed
at length by Cavalli-Sforza et al. 1994). For this reason,
if the cases and controls in a gene-mapping study contain
different mixtures of ethnic groups, we should expect to
find a consistent pattern of allele-frequency differences
between cases and controls, at many loci throughout the
genome. By contrast, if the cases and controls are well
matched, significant allele-frequency differences should
be located near disease-susceptibility loci only.

At this time, most association studies examine only a
few candidate loci. With use of that approach, if one or
more markers show statistical associations, the possi-
bility that the associations are due to population strat-
ification cannot be eliminated.

However, it would be possible to detect stratification
by typing additional unlinked markers. If stratification
is present, then the unlinked markers should also show
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associations with the phenotype. This idea forms the
basis of our test for stratification.

In this article we describe samples as “stratified” if
the cases and controls are mismatched; that is, they con-
tain different proportions of each ethnic group, or, in
the case of admixture, they contain different fractions
of ancestry from each ancestral subpopulation. We
would not consider a sample to be stratified if its cases
and controls contain equal proportions of each of a se-
ries of ethnic groups, since such a situation would not
be expected to lead to an excessive rate of false positives.

Study Design

We envision a study design comprising two random
samples of unrelated individuals: one sample composed
of affected individuals and one sample composed of un-
affected individuals. Ideally, these samples should be eth-
nically matched, as well as possible, in advance.

In the next section, we focus on a situation in which
markers are chosen at a few candidate loci. The allele
frequencies at those markers are tested for association
with the phenotype. If one or more of the candidates
are significantly associated with the phenotype, we ad-
vocate typing an additional set of random markers un-
linked to any candidate loci, to test for stratification. If
the unlinked markers do not indicate stratification, then
the associations can be considered valid. We discuss how
many markers should be used.

It seems likely that the recent development of mi-
croarray technology for rapid screening of single-nucle-
otide variation will soon permit a second genotyping
strategy: fine-scale genome screens for association,
without prespecified candidate loci (Wang et al. 1998).
In the Discussion, we also consider tests for stratification
in this context.

Tests of Association by Use of Unrelated Controls

Consider a case-control experiment with 7 healthy
individuals and 7z, diseased individuals. All individuals
are unrelated. We wish to test whether a particular allele,
A, at the candidate locus, is associated with the disease
phenotype (table 1), in the sense that the probability of
carrying allele A is not independent of case-control
status. This can done with the usual Pearson x* test
statistic, in the form

~ ~ mym,
x* = (Qd_qh)zgf’”#, (1)

R
where g, and g, are the estimated frequencies of A alleles,
among affected and healthy individuals, respectively; m

is the total number of individuals sampled; and 7, and
n,. are the total numbers of A alleles and non-A alleles
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Table 1

Contingency Table of the Observed Frequencies of A Alleles and
non-A Alleles in Diseased and Healthy Individuals

FREQUENCY OF ?
Q ToTAL No.

ALLELES A A* OF ALLELES"

Diseased s 1-4, 2my

Healthy n 1-gq, 2my,
Total no. of alleles n, My 2m

@ A* denotes non-A alleles; g, and g, are the observed frequencies
of A alleles among diseased and healthy individuals, respectively; and
n, and 7,. denote the numbers of A and non-A alleles.

" 2m, and 2m, denote the numbers of alleles in diseased and healthy
individuals.

observed (Sokal and Rohlf 1995, eq. [17.13]). The factor
of 8 arises because m, m,, and m, are numbers of in-
dividuals, not numbers of alleles. Under the null hy-
pothesis of no association, E(g, — ¢,) = 0, and X? has
a x; distribution. As described in the example below,
this expectation may not be 0 if there is population
structure.

We describe a method for determining whether an
inferred association may have arisen as the result of sam-
pling from a structured population. To make the dis-
cussion concrete, we introduce a model of stratified
sampling.

A Model of Stratified Sampling

Suppose that each individual sampled is actually a
member of one of # subpopulations but that we select
individuals without regard to their origin. Let the prob-
ability of sampling an individual from subpopulation i
be v, (where X7_, v, = 1), and let the frequency of the
disease in the ith subpopulation be p, Then, with use
of Bayes’ rule, the probability (f;) that an affected in-
dividual is from the ith subpopulation is

YiDi
=—_—. 2
f: 27:1 YD 2)

The probability (g;) that a healthy individual is from the
ith subpopulation is

Y1 = p)

—Jh__fr 3
27:17/'(1 _pj) )

&=

which, for a rare disease (i.e., a small p, in each popu-
lation), is ~v,.

Now, let g; be the frequency of A in population 7. If
A is statistically independent of the disease (i.e., unas-
sociated) within each subpopulation, it follows that
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vl = p)g;
z7=1 'Y/(l - P/) ’

2viPig,
B = -

2V

or, in the special case of just two populations,

E(Eld - é’h) = (P, — ) — q)

< { YiY2 }
['Y1P1 + 'szz“%(l —p) (1 - Pz)]

Hence, if both p; and g, vary across subpopulations,
it is possible to have E(g, — q,) # 0. In that case, with
a sufficiently large sample size, we can expect to find a
(spurious) association between the candidate and the
disease. Notice that the reason for the differences in dis-
ease frequencies among subpopulations—whether be-
cause of frequency differences at disease loci or differ-
ences in environmental factors—is not important in this
model. A general feature of this type of model (implicit
also in eq. [5] of Ewens and Spielman 1995) is that
population structure is only an issue if the frequencies
of both the disease and the marker alleles vary across
subpopulations.

A second but less serious problem with population
structure arises if the candidate locus is not in Hardy-
Weinberg proportions, in which case the alleles within
each individual are correlated. On its own, this would
not cause the expectation of g, — g, to be different from
0. However, in this case the test should use the two-allele
genotypes (AA, AA", and A"A”) to obtain a proper x>
distribution under the null hypothesis. Use of two-allele
genotypes would result in a 3 x 2 contingency table,
and the test statistic could be computed as by Sokal and
Rohlf (1995). We will not consider this issue further.

Relationship to relative risk.—Recall that f; and g; are
the probabilities of a case and a control individual, re-
spectively, being sampled from population i. Using the
sampling model presented above, we can relate these
probabilities to the relative risk of disease. We do this
for the special case of two subpopulations; thus, f and
g will denote the probabilities of sampled individuals
coming from population 1. Using equations 2 and 3, we

can write
(59 - ) 6=5)
1=fI\ g p ) \1 =p,) °
which, for a rare disease, is ~ p,/p,, the relative risk of

disease in the two subpopulations. Expressing f in terms
of g and the relative risk, RR, we obtain

f= (%RR) (1 + %RR)1 . (4)
g l-¢
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As we shall show, the probability of spurious associa-
tions increases rapidly with the relative risk.

Testing for Stratification

We now describe a procedure for testing whether the
case and control samples are ethnically mismatched, us-
ing a series of unlinked markers. We will assume the
sampling scheme described above.

Consider a study in which samples of unrelated cases
and controls have been collected and in which it is un-
known whether population structure should be a con-
cern. To test whether the samples are ethnically matched,
a set of L unlinked marker loci are typed in all the
individuals in the original samples. Assume that the
markers are chosen at random, so that it is improbable
that any are tightly linked to disease loci. We want to
know whether these markers indicate that the case and
control samples are mismatched as a result of population
subdivision. The null hypothesis is that the allele fre-
quencies at each of the marker loci are the same in the
case and control groups.

One way to test this is to construct contingency tables,
as in table 1, that classify by case/control status and by
allele or genotype at the marker locus. A ¥’ statistic can
be computed for each of these tables; if biallelic markers
are used, each test has the form of equation (1). Since
we are interested in whether the loci show allele-fre-
quency differences as a group, one natural test for strat-
ification uses the sum of the test statistics from each
locus. That is, we compute an overall test statistic, Xy,
such that

L
X2 = X2,
i=1

where X is the x* test statistic computed at the ith
marker locus. Under the null hypothesis of no difference
between the samples, X5 is x> distributed, with the num-
ber of df equal to the sum of the number of df of the
individual loci.

How many loci?—1t is clear that the power to detect
stratification will depend on the number of loci used for
the test. For this reason, it is important to choose a value
for L large enough to ensure that the test has sufficient
power to detect moderate stratification. For a given sam-
pling scheme from a given population, let 7, be the prob-
ability that a false association will be observed at a can-
didate locus (significant at the o level). Also, let 7, be
the probability of detecting stratification, with use of L
unlinked marker loci, at the 5% level—say, conditional
on the presence of an association at the candidate locus.
The values of 7, and r, depend on a number of factors
that are not fully known to the investigator: the degree
to which the cases and controls are mismatched, the
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degree of differentiation between subpopulations, and
the precise details of the population history (which de-
termine the distribution of allele frequencies across loci).
The values of 7, and , also depend on L, «, and the
sample sizes, which are, of course, determined by the
investigator.

We are interested in the overall type I error rate for
the experiment—that is, the probability of finding an
association at the candidate locus but failing to detect
stratification. Let R be the overall type I error rate for
a given experiment; thus, R = r,(1 —r,). Ideally, we
would like to choose L in such a way that R is, at most,
a, and is close to 0 if extreme stratification is present.
In the case in which there is in fact no population sub-
division, R = .95« and thus is mildly conservative. In
the presence of stratification, r, and r, are larger than o
and .05, respectively.

There are two types of random variation that affect
the probability that a spurious association will be found
and the probability that stratification will be detected.
One is the sampling variance associated with the use of
finite samples of cases and controls to estimate allele
frequencies. The second is the difference, between pop-
ulations, in allele frequencies, which may vary greatly
from one locus to another. This variation is due to ran-
dom sampling in the evolution of the populations. To
model the second type of randomness, it is necessary to
use an explicit evolutionary model of the populations.
Detailed simulation results on the distribution of allele-
frequency differences between populations have been
published previously (Bowcock et al. 1991; Beaumont
and Nichols 1996). Under certain conditions the differ-
ences can be modeled as the difference of two -distrib-
uted random variables (Bowcock et al. 1991).

We have explored the properties of R in a series of
simulations. These simulations assume that neither the
candidate nor any of the other markers are linked to
disease-susceptibility loci, but they permit spurious as-
sociations between the phenotype and the markers as
the result of population structure.

Simulation Procedure

We assumed that case and control individuals were
sampled from a structured population, according to the
model described in “A Model of Stratified Sampling,”
with two subpopulations. We considered two models for
the evolutionary divergence of the subpopulations. The
results presented assume a standard model of population
divergence without migration. That is, we assumed that
a single ancestral population of effective population size
(N,) split, at some time (#) in the past, to produce two
subpopulations, each of size N,. The ancestral popula-
tion was at mutation-drift equilibrium at the time of the
split. We could adjust the degree of differentiation be-
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tween subpopulations in this model by changing the
amount of population divergence, tau, defined as #N,.
We have also obtained similar results (not shown) with
regard to choice of L, using a standard island-migration
model (Wright 1951), despite the fact that the evolu-
tionary-sampling process is quite different in these two
cases.

In each replicate simulation, case individuals were
sampled from subpopulation 1 with probability f and
from subpopulation 2 with probability 1 — f. Control
individuals were sampled from subpopulations 1 and 2
with probabilities g and 1 — g, respectively. Thus, the
numbers of cases and controls from each subpopulation
were binomially distributed random variables. There
were equal numbers of cases and controls. Individuals
were diploid.

Each replicate simulation included a candidate locus
and a series of additional test loci. For each locus, we
used a standard coalescent algorithm (Hudson 1990) to
simulate a single ancestral genealogy, with the appro-
priate number of case and control chromosomes from
each subpopulation. In the time between ¢ and the pre-
sent, chromosomes could only coalesce with other mem-
bers of their own subpopulation; before time #, any pair
of chromosomes could coalesce. Since we were simulat-
ing the case in which the disease phenotype is indepen-
dent of the candidate and test loci, the choice of chro-
mosomes joined at each coalescent event did not depend
on phenotype. The number of cases and controls from
each subpopulation was held constant within each rep-
licate, but otherwise the genealogies were generated
independently.

We considered two types of markers: microsatellites
and biallelic markers. In the results shown, the candidate
and the additional test loci were either all microsatellites
or all biallelic markers. We modeled microsatellite mu-
tation, using a pure stepwise unbiased mutation process
without range constraints (Goldstein et al. 1995). In this
kind of model, it is not necessary to specify the popu-
lation size and mutation rate separately; instead, the mu-
tation rate was specified in terms of 2N,u. The latter
quantity is easily estimated for microsatellites, because
it is equal to the expected variance in repeat scores under
a stepwise model. We assumed a value of 2N, u = 8.0,
which is typical of dinucleotide markers (Feldman et al.
1999). Variation at biallelic markers was generated by
use of a low mutation rate (usually 2N,u = 0.1), and
markers were selected only if the sample frequencies of
both alleles was >.2. This threshold was chosen to ap-
proximate the likely characteristics of single-nucleotide-
polymorphism surveys (Wang et al. 1998).

The statistical tests of association were performed as
follows: the biallelic markers gave rise to 2 x 2 contin-
gency tables, as in table 1. For each marker, we com-
puted the x> test statistic (see eq. [1]). The null distri-
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bution at the candidate locus was taken as being x;. To
test for association, using the L unlinked marker loci,
we computed the sum of the L-test statistics, obtained
from equation (1). The null distribution of the sum was
taken as being x;.

When the candidate locus was a microsatellite, we
tested individual alleles for association with the phe-
notype. Alleles were tested only if their frequency ex-
ceeded a prespecified threshold (usually 10%). Each of
the k alleles with frequencies above the threshold pro-
duced a 2 x 2 table, as in table 1. The candidate locus
was considered to show a significant association if the
largest test statistic for any allele exceeded a critical
value. We obtained the critical value by approximating
that the k-test statistics calculated were independent
(each with a x; distribution). We computed the critical
values, using Sidak’s multiplicative inequality (Rohlf and
Sokal 1995, table E), with k tests and 1 df. In simulations
(lowest lines in fig. 1A and B), we found that, because
of the typically large numbers of alleles, this approxi-
mation was only very slightly conservative under the null
model.

We used the L unlinked marker loci to test for strat-
ification, as follows. Rare alleles (<10% frequency) were
pooled either with each other or with the next rarest
allele, if the pooled frequency was also <10%. For each
locus, the & allelic classes that remained after pooling
generated a 2 x k contingency table, from which a x*
test statistic was computed (Sokal and Rohlf 1995). The
test statistics were summed across the L loci; the null
distribution of the sum was determined to be x*, with
( 5:1 ki) — L df.

To test the applicability of the model used to generate
our simulated data, we also performed a series of sim-
ulation experiments, using genetic data from Jorde et al.
(1995, 1997). These data included genotypes at 60 mi-
crosatellite loci from individuals from a number of hu-
man populations. There were 72 individuals of African
origin (Biaka Pygmy, Mbuti Pygmy, Nguni, San, Sotho,
or Tswana), and 120 individuals of European origin
(British, Finnish, French, or Polish). Significant allele-
frequency differences between the two groups were pre-
sent at 75% of the loci.

We used the following procedure to simulate mis-
matched case-control samples from these populations.
We drew (with replacement) two samples of 70 individ-
uals from among the 192 individuals in the Jorde et al.
data set. For one sample, the probability that each in-
dividual would be from the African group was .20, and
for the other sample it was .20, .33, .50, and .66 in
successive experiments (corresponding to relative risks
of 1, 2, 4, and 8, respectively, with use of eq. [4]).

We then picked one locus at random, to be designated
as a candidate locus. Using the selected individuals, plus
their genotype data at the candidate locus, we performed
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Figure 1 Probability that a spurious association will be detected

at a microsatellite candidate locus (at the .05 significance level). The
X axis (population divergence) is given in units of 2N, generations;
according to effective population size estimates in the work of Feldman
et al. (1999), 1.0 corresponds to ~400,000 years, when a generation
time of 20 years is assumed. Thus, the divergence between Africans
and non-Africans is probably in the range .25-.40, and the divergence
between non-African groups is probably <.20 (e.g., see Goldstein et
al. 19935). Population relative risks in the range of 2-7 are typical of
several common diseases, including non—insulin-dependent diabetes
and hypertension (McKeigue 1997). The parameter values used were
g =.10; f = .10, .18, .31, and .47, corresponding to relative risks of
1,2, 4, and 8, respectively (see eq. [4]); and 2Nu = 8.0. A, Total sample
size m = 200 individuals. B, Total sample size m = 1,000 individuals.

a test of association at the candidate locus, using the
procedure described above. Then, if the candidate was
significant at the 5% level, we picked an additional set
of L marker loci (sampling from the remaining 59 loci
with replacement). We used the additional markers to
test for stratification between the two samples. We re-
corded the number of replicates in which the candidate
locus was significant but in which the additional markers
failed to indicate stratification.

Results

In figure 1A and B, we show the probability that a
spurious association will be detected at a microsatellite
candidate locus, as a function of several key parameters.
The relative risk (RR) was computed from equation (4),
under the assumption of a rare disease. When the relative
risk is 1, with no sampling bias, the probability of de-
tecting a spurious association is ~5%, regardless of the
degree of population divergence. Otherwise, the prob-
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ability that a spurious association will be detected in-
creases with the relative risk, degree of population di-
vergence, and sample size. For the smaller sample size
(100 cases and 100 controls), the increase in false pos-
itives is negligible unless the relative risk in the two pop-
ulations is >2. For the larger sample size (500 cases and
500 controls), the rate of false positives climbs more
quickly for the small relative-risk groups. Results for
biallelic candidate loci are similar (not shown).

Figure 2 shows the probability that stratification will
be detected at the 5% level, with use of unlinked mi-
crosatellite markers. As expected, when tau = .0, so that
there is no stratification, the probability of wrongfully
inferring stratification is .05. Otherwise, when there is
stratification, the power to detect stratification increases
steadily with the number of marker loci used in the test
and with the degree of stratification. Results obtained
with other parameter values or biallelic markers are
qualitatively similar.

As stated in “Testing for Stratification,” what we
would like to know is the probability R of obtaining a
spurious association at the candidate locus and not de-
tecting stratification, when an additional set of L un-
linked marker loci is used. The probability of a spurious
association increases with the degree of stratification (fig.
1), but so does the power to detect stratification (fig. 2).

In figure 3, we plot the overall type I error rate, R
(defined as 7, [1 — 7, ]), for a range of parameter values
and for microsatellite and biallelic markers. Ideally, we
would like to select the number of unlinked markers to
ensure that the overall probability of believing a false
association is no more than ~ .05. The degree of diver-
gence in figure 3A and C is approximately as much as
that observed between African and non-African popu-
lations; the degree of divergence in figure 3B and D is
about as much as that observed between closely related

—PRR=2tau= 0
—&—RR =2 tau= 2|
——RR=2tau= 4‘
—0—RR=4,fau= .o‘
AT ——RAR=4tau= 2
—&—RR=4,tau= 4

Probability
wm
}

0 + t + u + 1

0 5 10 15 20 25 30

Number of unlinked markers

Figure 2 Probability that stratification will be detected, with use
of unlinked microsatellite markers (at the .05 significance level). The
parameter values are the same as in figure 1, with a total sample size
of 200 individuals. The two lines at tau = .0 are on top of one another.
As before, population divergence (tau = .2) corresponds to ~80,000
years.
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Probability that spurious association will be obtained at a candidate locus (at the .05 level) and nof detecting stratification (at

the .05 level), with use of unlinked marker loci. A, Microsatellite markers; tau = .25. B, Microsatellite markers; tau = .025. C, Biallelic markers;
tau = .25. D, Biallelic markers; tau = .025. Recall that tau = .25 corresponds to a population divergence of ~100,000 years. Parameter values
are as follows: sample size 7 = 200 individuals; g = .1; 2N = 8.0 for microsatellites and .1 for biallelic markers.

ethnic groups but is more than that between most Eu-
ropean populations (Cavalli-Sforza et al. 1994; Gold-
stein et al. 1995).

Ironically, when there is strong stratification, the over-
all risk of believing a false association is very low, even
with small numbers of unlinked markers (fig. 3A and
C). In that case, the power to detect stratification with
a small number of markers is very high, which more
than compensates for the high probability of detection

Z2
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Figure 4 Probability that spurious association will be obtained

at a candidate locus (at the .05 level) and not detecting stratification
(at the .05 level), with use of unlinked marker loci estimated with
microsatellite data collected by Jorde et al. (1995, 1997). The case and
control groups were composed of different selections of Africans and
Europeans, as described in the text.

of a spurious association at the candidate locus. More
problematic is the situation with slight stratification (fig.
3B and D). In that case, the probability of a spurious
association is only slightly greater than that in the un-
stratified case (.05); however, the power to detect strat-
ification is also very low.

We have run simulations, using a range of parameter
values (i.e., varying the sample size, the degree of pop-
ulation divergence, and the relative risk). The upper lines
in figure 3B and D are representative of the worst-case
situations that we found. Those plots suggest that
~15-20 microsatellite loci are sufficient to test for strat-
ification, which brings the overall type I error rate equal
to the target rate of .05, even in the worst case. With
biallelic markers, more loci are necessary. For the worst
case, plotted in figure 3D, the overall type I error rate
is .06, with 30 unlinked markers. This slight excess
might be considered acceptable; if not, the requirement
of a slightly more stringent cutoff at the candidate locus
(i.e., a smaller o value) could be used as an alternative
to the typing of more markers. For example, requiring
significance at the .04 level at the candidate locus would
reduce the overall probability of error to ~.05 in that
worst case.

In figure 4 we show a summary of our results from
the simulation experiments, which are based on the mi-
crosatellite data of Jorde et al. (1995, 1997). These re-
sults are consistent with the results that we obtained by
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using simulated data (fig. 3) and support the estimate
that 15-20 microsatellite loci are sufficient to bring the
overall probability of error to no more than ~ 5%.

Discussion

Although the case-control-study design is often easier
to implement than alternative approaches using the
TDT, it is frequently criticized because of the potential
for spurious associations resulting from population
stratification. The case-control approach has generally
been considered suspect, even if there is no prior reason
to suspect the possibility of stratification. In response to
this problem we show that population stratification can
be detected by use of unlinked marker loci. In particular,
strong stratification can be detected with high proba-
bility, with use of only a few markers.

In general, we have found that microsatellite markers
provide more power to detect stratification than do bial-
lelic markers. We recommend that case-control studies
include =15-20 unlinked microsatellites to test for strat-
ification. If biallelic markers are used, more loci are
needed to bring the overall type I error rate to <5%,
under the model considered. With 30 biallelic markers,
the error rate can be as much as 6%. If this error rate
is considered unacceptable, a slightly more stringent cut-
off criterion could be used for the initial acceptance of
an association at the candidate locus.

These guidelines were obtained by use of a pair of
evolutionary models of population divergence (popula-
tion splitting and island migration). We also presented
similar results by using simulations done on the basis of
human microsatellite data. A realistic concern is that
exceptional loci might show unusually strong patterns
of ethnic differentiation as the result of selection. When
positive selection seems particularly likely (as in the ma-
jor-histocompatibility-complex region), it would prob-
ably be wise to use more than the suggested number of
markers to test for stratification. With the advent of
genome screens, this issue should disappear, since the
power to detect stratification with use of large numbers
of markers will become very high.

We have focused on the situation in which there is no
prior reason to suspect population structure, because
case-control studies have often been criticized under such
circumstances. However, when it is known that partic-
ular ethnic groups might have contributed to the sample
(i.e., in admixed populations), it is appropriate to choose
markers known to exhibit allele-frequency differences
across the relevant populations, since this will clearly
improve the power to detect stratification. In this case,
fewer markers would be necessary (Shriver et al. 1997).
Furthermore, it may be that particular microsatellite mo-
tifs tend to show more population differentiation than
others (J. Pritchard, unpublished data). Even when there
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is little prior information about possible admixture, it
might be sensible to use such markers preferentially in
the test for stratification.

In the situation described above, we assumed that
there was a candidate locus plus a series of markers used
to test for stratification. In such a situation, there is a
small, but non-0, probability that some of the test mark-
ers are actually linked to disease-susceptibility loci. Such
an event would obviously increase the probability that
stratification could be inferred, even when there is none
(which makes the overall test conservative).

Strictly speaking, our results are concerned with the
case in which only a single candidate locus is tested for
association. However, these results should apply (ap-
proximately) in the case in which a small number of
candidates are tested (with a Bonferroni correction). If
many candidates are tested, then it may be that some-
what more loci are needed to test for stratification, to
achieve the overall target error rate. In this case, a short-
cut to reduce genotyping costs would be to include the
candidate loci themselves in the test for stratification.

In particular, in a study testing large numbers of es-
sentially random markers, such as in a genome screen,
the frequency of markers that are in (nonspurious) link-
age disequilibrium with disease genes is likely to be
small. In that situation, it seems that a reasonable strat-
egy is to use the genotyped markers themselves to test
for stratification, so that no extra genotyping is neces-
sary. In this case, given the large number of markers,

the power to detect stratification will be very high
indeed.
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