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ABSTRACT OF THE THESIS

Applications of Reed-Solomon Codes
on Optical Media Storage

by
Johnny Phuong Nguyen

Master of Arts in Mathematics
San Diego State University, 2011

This work describes in some depth the applications of the theory of error-correcting
codes, in particular Reed-Solomon codes, for optical media storage, namely, CDs, DVDs and
Blu- ray discs. The objective was to collect in a single place the most relevant work in the
area, providing the reader with easy access to state-of-the-art technology. We cover the CIRC
code of the compact disc followed by the RSPC code of the DVD. Afterwards we discuss the
picket code that makes the Blu-ray error correcting system the most powerful error correcting
code to date. Lastly we touch upon how to make the Blu-ray picket code even better than the
original code.
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CHAPTER 1

INTRODUCTION

In Chapter 1, I will go over some basic ideas and processes of coding theory. Some
uses of Reed-Solomon codes will also be briefly covered as well as the contribution and
overview of this thesis.

1.1 BASICS OF CODING THEORY
Informally speaking, coding theory is about devising efficient and reliable ways of

transferring information from one place to another, in the presence of noise. A source sends
information to the encoder which in turn sends information through a channel. A channel is
the medium over which the information is transmitted or recorded, such as telephone lines and
compact discs. The receiver then gets the information from the channel and decodes it for the
user. Noise in the channel may cause information to be received incorrectly. Noise is
unpredictable, however it may be modeled according to some probability distribution. As
examples of noise, we can cite: Scratches on a disc, lightning, solar radiation, competing
transmitter, and so forth. Observe that without noise, there would be no need for the theory of
error-correcting codes.

Modern communication and storage systems that work with digitally represented data,
such as CD players, TV, fax machines, and mobile phones require error correcting codes
because in practice nearly all channels are noisy.

More specifically, all information (be it voice, video, pictures, data) is represented by a
long string of zeroes and ones, or bits. The encoder breaks down that string into information
blocks of fixed length, say, k bits. Each block is then encoded according to a certain
pre-specified rule (mapping), resulting in a codeword having n > k bits. Mathematically
speaking, encoding is an injective mapping from {0, 1}k to {0, 1}n.

Each codeword in turn is transmitted over the noisy channel. Upon receiving a noisy
version of the sent codeword, the decoder must convert it to the most likely sent codeword.
Mathematically speaking, decoding is a mapping from {0, 1}n to {0, 1}k.

A binary code C of length n is a subset of 0, 1n. Its elements are called codewords.
The information rate of C is defined as log2|C|

n
bits per block. The distance between any two

codewords is the number of coordinates in which they disagree. The minimum distance of C
is the minimum of the distances between any two distinct codewords.
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One of the main challenges in coding theory is to construct codes with high rates and
minimum distances. The rate of a code is related to its efficiency for transmitting information
whereas its minimum distance is related to its capability of correcting errors (i.e., its capacity
of providing reliability). Equally important challenges are to find codes whose encoding and
decoding processes are of low complexity. Informally speaking, a powerful code is one that
possesses a high rate and minimum distance, and can be easily implemented (i.e., the
encoding and decoding procedures are of low complexity).

Among the large class of the so-called linear codes, one can find codes that present a
good compromise when it comes to satisfying the above criteria. Reed-Solomon codes are
nonbinary linear codes (over the field GF (2n)) and they are the main object of this work.

1.2 REED-SOLOMON CODES AND THEIR USES
Reed-Solomon codes are very powerful error correcting codes. They were developed

by Irving Reed and Gus Solomon in their paper about these codes was published in June
1960. Their paper was entitled “Polynomial Codes over Certain Finite Fields”.
Reed-Solomon codes have applications from spacecraft in our solar system to compact discs,
DVDs and Blu-ray discs [16].

The first ever use is from the Voyager 2 spacecraft that was launched in 1977. On
April 5, 1985, the Voyager 2 captured the first image of Uranus from 200 million miles away.
This is the first ever RS encoded image ever transmitted from deep space [19]. On January 24,
1986, Voyager 2 transmitted more detailed photos and other data about Uranus as it came
about 50, 000 miles away from the planet [18]. Figure 1.1 [18] is a picture of Uranus from
about 600, 000 miles.

Figure 1.1. Uranus from
600,000 miles away.
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Reed-Solomon codes are used when the receiver needs to send information back to its
transmitter. This sort of application includes but not limited to mobile data transmission
systems, i.e. our cell phones, and military communication systems. RS codes also play a role
in developing high-speed super computers [19].

Many of the useful of RS codes is used in channels that have a significant amount of
noise. The use of fiber optics is increasing and RS codes could be used there. As stated in [19]
Reed-Solomon codes are best used in mobile environments as there is no other error control
system that can match the performance.

Perhaps the most well known application of Reed-Solomon codes is in optical disc
storage. Not many people can say that they’ve received pictures from outer space but most
people can say that they’ve listened to a compact disc (CD) or watched a movie on a digital
versatile disc (DVD) or Blu-ray disc (BD). Blu-ray discs are named after the blue-violet laser
that is used to read them as opposed to the red laser that reads CDs and DVDs. In 2010, DVD
and Blu-ray sales totaled $6.77 billion with an estimated 226 million units sold in the US alone
[7]. There were about 326.2 million CDs sold in the US in the year 2010 [3]. Combined that’s
more than half a billion CDs, DVDs and Blu-ray discs sold in the last year in the US alone!

1.3 CONTRIBUTION OF THIS THESIS
The main purpose was to collect, in a single work, the main applications of

Reed-Solomon codes that are usually not covered in depth in the coding theory classes
Math-525 and Math-625. The idea is that the reader or student can have prompt access to the
three main applications of Reed-Solomon codes. One other topic that is usually not covered is
the inversionless Berlekamp-Massey algorithm, which is widely used to decode RS codes,
especially in the above-mentioned applications. The algorithm is described and an example is
worked out.

1.4 OVERVIEW OF THESIS
Chapter 2 will introduce some background information about Reed-Solomon codes

and how they are formed. Interleaving and the inversionless Berlekamp-Massey algorithm
will be covered as well. Chapter 3 will focus on the cross interleaved Reed-Solomon code that
the CD employs to correct errors. A discussion of how the CD uses another method to further
its error correcting capabilities is also discussed. Chapter 4 will cover the Reed-Solomon
product code for usage in DVDs. In Chapter 5 the innovative picket code will be discussed.
The picket code is the powerful error correcting system used in Blu-ray discs and is
considered to be the best error correcting code used in optical disc media storage today.
Chapter 6 will be the conclusion. It will also briefly cover some future applications of
Reed-Solomon codes, mainly two methods of improving the Blu-ray picket code.
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CHAPTER 2

BACKGROUND

In this chapter I will cover the necessary background from cyclic codes and
Reed-Solomon codes to the ever important inversionless Berlekamp-Massey algorithm that
DVDs and Blu-ray discs use to decode their respective Reed-Solomon codes.

2.1 CYCLIC CODES
Let C be a subset of GF (q)n = GF (q)×GF (q)× · · · ×GF (q), n times where q is a

prime power and n is a positive integer. Let S be the set of all polynomials of degree less than
n with coefficients in GF (q). C is a cyclic code of length n if C is a subset of S and
v(x) ∈ C =⇒ x× v(x) mod xn − 1 ∈ C. A codeword in c ∈ C will be represented as either
(c0, c1, . . . cn−1) or c(x) = c0 + c1x+ · · ·+ cn−1x

n−1 which is its polynomial form.

2.2 ERRORS, ERASURES AND BURST ERRORS

When the magnitude and location is known for corrupted bits, it is just called an error.
An erasure is when the error location number is known but the magnitude of the error is
unknown. A burst error is an error that affects many digits that are close together as opposed
to randomly distributed errors that affect only one digit and not those around it [8].

2.3 BCH CODES
BCH codes, invented by Bose, Chaudhuri, and Hocquenghem, are cyclic q-ary codes

of length qm− 1 where q is a prime power and m is an integer > 0. A q-ary (n, k) cyclic code,
where n is the length and k is the dimension, has generator polynomial of degree n− k over a
Galois field, GF (q). If a code C has length n = qm − 1 then C is a primitive code. The
generator polynomial is defined as:

g(x) = g0 + g1x+ g2x
2 + · · ·+ gn−k−1x

n−k−1 + xn−k

where g0 6= 0, gn−k = 1 and gi ∈ GF (q), 0 ≤ i ≤ n− k. The generator polynomial is a factor
of xn − 1.

For any positive integer m, a Galois field GF (qm) with qm elements can be
constructed from GF (q). The construction of GF (qm) is based on a monic primitive
polynomial p(x) of degree m over GF (q). A polynomial p(x) is monic if the coefficient of
the highest power of x is 1. Let α be a root of p(x) then,

0, 1, α, α2, . . . , αq
m−2
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are all the elements of GF (qm) and αqm−1 = 1 [6]. An element α ∈ GF (qm) is primitive if
every non-zero word in GF (qm) can be expressed as a power of α. In other words, αj 6= 1 for
1 ≤ j < qm − 1 [8]. Every element β can be expressed as a polynomial in α,

β = α0 + α1α + α2α
2 + · · ·+ αm−1α

m−1

where αj ∈ GF (q) for 0 ≤ j < m. In this way, every element in GF (qm) has 3 forms of
representation: power (β0 = 1, β1, β2, . . . ), polynomial as seen from above, and vector form.
Take for example β = α0 + α1α + α2α

2 + · · ·+ αm−1α
m−1 as previously mentioned can be

represented as (α0, α1, . . . , αm) [6].
Let α be a primitive element in GF (qm). The generator polynomial g(x) of some

t-error correcting primitive q-ary BCH code is the polynomial of smallest degree over GF (q)

that has α, α2, . . . , α2t for roots. Let mi(x) be the minimal polynomial of αi where
1 ≤ i ≤ 2t. The generator polynomial is now defined as:

g(x) = lcm(m1(x),m2(x), . . . ,m2t(x)).

This q-ary BCH code with generator polynomial g(x) as described above has the following
properties:

1. The block length is n = qm − 1.

2. The number of parity check symbols is n− k ≤ 2mt.

3. The minimum distance of the code d ≥ 2t+ 1.

2.4 REED-SOLOMON CODES
Reed-Solomon (RS) codes form a special subclass of the q-ary BCH codes. RS codes

are BCH codes with m = 1. In the scope of this paper, q will always equal 2r for some integer
r. Take process just described above and apply it when m = 1. Since αi is an element in
GF (q), its minimal polynomial m1(x) is just x− α where i ∈ {1 . . . 2t}. Therefore
lcm(m1(x),m2(x), ,m2t(x)) is:

g(x) = (x+ α)(x+ α2) . . . (x+ α2t).

Thus, g(x) is the generator polynomial of some RS code.
A t-error correcting RS code has the following properties:

1. The block length is n = q − 1.

2. The number of parity check symbols is n− k = 2t.

3. The minimum distance of the code d = 2t+ 1.

4. The dimension k = q − 1− 2t.
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5. The number of codewords |C| = qk.

Example: Take the 2-error correcting RS code with symbols from GF (23) constructed with
x3 + x+ 1. Here q = 23. The generating polynomial is:

g(x) = (x+ α)(x+ α2)(x+ α3) = α3 + αx+ α5x2 + α3x3 + x4.

This is the (7, 3, 5) RS code, with n = 7, k = 3, d = 5. The number of parity check symbols is
4 and the number of codewords is qk = (23)3 = 512. Here is the construction of GF (23)

using the primitive polynomial f(x) = x3 + x+ 1. We compute xi mod f(x) to get:

word ↔ xi mod f(x)

100 1

010 x

001 x2

110 x3 ≡ 1 + x

011 x4 ≡ x+ x2

111 x5 ≡ 1 + x+ x2

101 x6 ≡ 1 + x2

In addition, a Reed-Solomon code can correct t errors and v erasures if:

2t+ v < q − k + 1

Also, let C be a code of distance d. Then C can simultaneously correct t errors and e erasures
provided that d− 1 ≥ 2t+ e, see[6].

2.5 INTERLEAVING
Burst errors are errors that occur very close to each other i.e. a scratch on a disc will

produce burst errors. Interleaving is one technique to improve the burst error correcting
capability of a code. It involves rearranging the order in which the digits of a code are
transmitted. Messages are encoded into their corresponding codewords and then those
codewords are transmitted. Suppose now that the first j codewords are selected and the first
digits of those codewords are sent, and then the second digits are sent, then the third, etc.
Once all the nj digits from the first j codewords have been sent, then the proceeding set of j
codewords is sent, followed by the third set, and so on. This process is called interleaving to
depth j [8].

In order to interleave the codewords c1, c2, . . . to depth j, it is necessary that for
i = 0, 1, 2, . . . the digits in each codeword are sent in a certain order. In Table 2.1 [8], each
codeword is listed row by row but the digits are transmitted column by column.
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Table 2.1. Interleaving to Depth j

cij+1,1 cij+1,2 cij+1,3 . . . cij+1,n

cij+2,1 cij+2,2 cij+2,3 . . . cij+2,n
...

...
...

...
cij+j,1 cij+j,2 cij+j,3 . . . cij+j,n

Here is a small example. Suppose that codewords

c1 = 100110 c4 = 110011

c2 = 010101 c5 = 101001

c3 = 001011 c6 = 111000

are sent. If they are not interleaved, then they would be sent in order, i.e. c1, c2, . . . , c6. But
let’s say that these codewords are interleaved to depth 3. Then the first digits of the first three
codewords, c1, c2, and c3, are transmitted first, followed by their second digits and so on. The
digits from c1, c2, and c3 would be sent in this order:

100 010 001 110 101 011.

And the same would go for the remaining three codewords c4, c5, and c6. So what kind of
effect does interleaving to depth j have on the burst error correcting ability of a code? If the
first digit of a codeword is the ith digit sent, then its remaining digits will be in positions
i+ j, i+ 2j, . . . , i+ (n− 1)j where n is the length of each codeword. Suppose that C is a b
burst error correcting code. If C is interleaved to depth j then any burst of errors of length at
most bj will only make a burst error length of b in a codeword c, therefore c will be decoded
correctly. However, this is only true if only one burst error pattern affects c [8].

In practice, interleaving to depth j is not used because codewords need to be encoded
first before any of them are sent. This problem can be solved by doing j-frame delayed
interleaving. Table 2.2 [8] below illustrates how j-frame delayed interleaving works. Each
codeword ci has only one digit ci,k in row k for 0 ≤ i ≤ n and ci,k+1 is one row below and j
columns across from ci,k for 1 ≤ j ≤ n− 1.

Of course there must be n digits in each column so zeros are placed in any position
that has no digits. Here is an example of using 1-frame delayed interleaving. Let us take six
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Table 2.2. j-Frame Delayed Interleaving

c1,1 c2,1 . . . cj+1,1 cj+2,1 . . . c2j+1,1 . . . c(n−1)j+1,1 . . .
c1,2 c2,2 . . . cj+1,2 cj+2,2 . . . c2j+1,2. . . c(n−2)j+1,2 . . .

c1,3 c2,3 c3,3 . . . c(n−3)j+1,3 . . .
...
c1,n . . .

codewords and substitute them into Table 2.2 which will look like this:

1 0 0 1 1 1 . . .

0 0 1 0 1 0 1 . . .

0 0 0 0 1 0 1 1 . . .

0 0 0 1 1 0 0 0 0 . . .

0 0 0 0 1 0 1 1 0 0 . . .

0 0 0 0 0 0 1 1 1 1 0 . . .

The bolded zeros are the zeros that are added in to take place of any position that does not
have any codeword digits. So here the string of digits sent is:

1000000000001010001001 . . . .

The advantage of using j-frame delayed interleaving is that a b burst error correcting code C
will correct all burst errors of length b(jn+ 1). That is of course if at most one burst of errors
affects each codeword [8].

2.6 DECODING RS CODES WITH AN
INVERSIONLESS BERLEKAMP MASSEY

ALGORITHM
Here the inversionless Berlekamp-Massey algorithm will be detailed. There is another

algorithm that can be used to decode RS codes called the Euclidean algorithm. However it is
more efficient for a computer to use the inversionless Berlekamp-Massey algorithm. The two
algorithms are described in [10].

Let n be the block length of an (n, k) Reed-Solomon code over GF (2m) where k is
the number of m-bit message symbols. Also, let d be the minimum distance of the code,
where d− 1 is the number of parity symbols. Then, k = n− (d− 1). We will define the errata
vectors as û = e+ µ = (ûn−1, ûn−2, . . . , û0),where e = (en−1, en−2, . . . , e0) and
µ = (µn−1, µn−2, . . . , µ0) are the error and erasure vectors, respectively. Next, we represent
the received vector r = (rn−1, rn−2, . . . , r0) = c+ û, where c = (cn−1, cn−2, . . . , c0) is the
codeword vector.
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Suppose that s erasures and v errors occur in the received vector r, and assume that
s+ 2v ≤ d− 1. Then, the syndromes are:

Sk =
n−1∑
i=0

riα
ik =

s∑
i=1

WiZ
k
i +

v∑
i=1

YiX
k
i for 1 ≤ k ≤ d− 1, (2.1)

where α is a primitive element in GF (2m). Wi is the ith erasure value, Zi is the ith known
erasure location, Yi is the ith error value, and Xi is the ith error location. From (2.1), let the
syndrome polynomial be defined as:

S(x) =
d−1∑
k=1

Skx
k. (2.2)

The erasure polynomial is defined as:

Λ(x) =
s∏
j=1

(1 + Zjx) =
s∑
j=0

Λjx
j, (2.3)

where Λ0 = 1. Λ(x) is the polynomial with zeros at the inverse erasure locators.
The inversionless Berlekamp-Massey algorithm is outlined as follows:

1. Initially define µ(0)(x) = Λ(x), λ(0)(x) = Λ(x), λ(0) = 0, k = 0, γ(0) = 1 if k ≤ 0.

2. Set k = k + 1. If k ≥ d− 1− s, stop. Otherwise, define:

δ(x) =
d−1∑
j=0

µ
(k−1)
j Sk+s−j. (2.4)

3. Use this algorithm:

µ(k)(x) = γ(k−1)µ(k−1)(x)− δ(k)λ(k−1)(x)x,

λ(k)(x) =


xλ(k−1)(x), if δ(k) = 0

or if 2λ(k−1) > k − 1
µ(k−1)(x), if δ(k) 6= 0 and λ(k−1) ≤ k − 1,

λ(k) =

{
λ(k−1), if δ(k) = 0 or 2λ(k−1) > k − 1
k − λ(k−1), if δ(k) 6= 0 and 2λ(k−1) ≤ k − 1,

γ(k) =

{
γ(k−1), if δ(k) = 0 or 2λ(k−1) > k − 1
δ(k), if δ(k) 6= 0 and 2λ(k−1) ≤ k − 1.

4. Return to step 2.
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The errata locator polynomial is now defined as:

τ(x) = σ(x)Λ(x) =
µ(d−1−s)(x)

β
=

s+t∑
j=0

τix
j, (2.5)

where β = µ(d−1−s)(0) is a field element in GF (2m). Now that τ(x) is known we can
compute the errata locator polynomial and the errata values. The errata locator polynomial is:

βA(x) ≡ S(x)(βτ(x)) mod xd. (2.6)

The errata values are given as:

W̃j =
βA(Z̃−1

j )

Z̃−1
j βτ ′(Z̃−1

j )
=

βA(Z̃−1
j )

Z̃−1
j µ(d−1−s)′(Z̃−1

j )
, (2.7)

where τ ′(Z̃−1
j ) is the derivative of µ(d−1−s)(x) with respect to x evaluated at x = Z̃−1

j .
Now I will outline the five step decoding process of RS codes for both errors and

erasures using the inversionless Berlekamp-Massey algorithm initialized with the erasure
locator polynomial and the syndromes.

1. Compute the syndrome values S1, S2, . . . , Sd−1 from (2.1). If Si = 0 for 1 ≤ i ≤ d− 1,
the received word is a codeword, thus as usual, we assume that no errors occurred.

2. Compute the erasure locator polynomial given in (2.3). If s = d− 1 or d− 2 then set
the error locator polynomial σ(x) = 1 and go to step 5. Else, go to step 3.

3. If 0 ≤ s < d− 2 use the inversionless BM algorithm (described above) initialized with
the erasure locator polynomial to determine the modified errata locator polynomial
Θ(x) from the known syndrome values for 1 ≤ i ≤ d− 1.

4. Compute the roots of Θ(x) using Chien search. The roots of Θ(x) make up the set
{Z̃−1

1 , Z̃−1
2 , . . . , Z̃−1

s+v}, which are the inverse locations of the s erasures and v errors.

5. Compute the errata evaluator polynomial and the errata values from (2.6) and (2.7).

Once all error values are calculated, they are used to make the error polynomial:

ê(x) =
s+v∑
i=1

W̃iZ̃
k
i for 1 ≤ k ≤ d− 1.

And the decoded polynomial v(x) = ê(x) + r(x).
Example: Here the elements of GF (24) are generated by the primitive polynomial

p(x) = 1 + x+ x4. Let us take C = (15, 9) RS code over GF (24) with a minimum distance
of d = 7. So t = 3. A combination of s erasures and v errors must satisfy 2v + s ≤ d− 1 = 6

in order for the RS code to correct all errors. The generator polynomial g(x) of C is:

g(x) = (x+ α)(x+ α2) . . . (x+ α2t) = (x+ α)(x+ α2) . . . (x+ α6)

= x6 + α10x5 + α14x4 + α4x3 + α6x2 + α9x+ α6.
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Assume the message vector to be encoded is:

I = (α10, α12, α8, α5, α6, α14, α13, α11, α9)

and the codeword vector c, which is a multiple of g(x), is:

c = (α10, α12, α8, α5, α6, α14, α13, α11, α9, α0, α1, α2, α6, α12, α8).

Also assume that the erasure vector is:

u = (0, 0, 0, 0, 0, 0, 0, ?, 0, 0, 0, 0, 0, 0, 0)

and the error vector is:

e = (0, 0, 0, 0, α11, 0, 0, 0, 0, 0, 0, α7, 0, 0, 0).

The errata vector is:

û = u+ e = (0, 0, 0, 0, α11, 0, 0, ?, 0, 0, 0, α7, 0, 0, 0).

The received vector is:

r = c+ û = (α10, α12, α8, α5, α, α14, α13, ?, α9, α9, α0, α1, α12, α6, α12, α8).

We can replace the ? with α9 and then proceed to decode. In theory the ? can be
replaced by any value and the algorithm will still work. By (2.1) the syndromes are:

S1 = 1 S4 = α11

S2 = α13 S5 = α

S3 = α14 S6 = 0.

So then the syndrome polynomial is:

S(x) = x+ α13x2 + α14x3 + α11x4 + αx5.

The erasure locator polynomial is:

Λ(x) = 1 + α7x.

The inversionless Berlekamp-Massey algorithm is now applied to the syndromes for
1 ≤ k ≤ 6. This is accomplished using step 3 in the previous five step process. This is
illustrated in Figure 2.1 [10].

We see from Figure 2.1 that the computation ends at k = d− 1− s = 5. And thus:

µ(5)(x) = α5 + α7x+ αx2 + α10x3.
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Figure 2.1. An example of the use of the inversionless BM algorithm.

From (2.5) we see that µ(5)(x) = βτ(x) and β = µ(5)(0) = α5. Let us set µ(5)(x) = Θ(x). We
need to find the roots of Θ(x). This is done through and exhaustive search called Chien search
which will look for all the elements of GF (16) that are roots of Θ(x). Doing so will yield
{α3, α7, α10} as the roots of Θ(x).

Next we need to find the derivative of Θ(x) which is Θ′(x) = α7 + α10x2. Therefore
the errata evaluator polynomial is:

βA(x) ≡ S(x)(βτ(x)) mod xd

≡ S(x)Θ(x) mod x7 = α5x+ α4x2 + α10x3

And the errata value for Z̃3 = α3:

W̃3 =
βA(Z̃−1

3 )

Z̃−1
3 βτ ′(Z̃−1

3 )
=

βA(Z̃−1
3 )

Z̃−1
3 Θ′(x)(Z̃−1

3 )

= α5(α−3)+α4(α−3)2+α10(α−3)3

α−3(α7+α10(α−3)2)
= α7.

Similarly, W̃7 = α2 and W̃11 = α11.
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CHAPTER 3

AUDIO CD ERROR CORRECTING CODE

In this chapter we will go over the application of Reed-Solomon codes in an audio
CD. Chapter 3 will also cover some background on the development of the audio CD and how
a CD can further improve on its error correcting capabilities through the use of a technique
called interpolation.

3.1 DEVELOPMENT OF CDS
The Compact Disc digital audio system has the standard components of a

communication system - a transmitting and a receiving end connected by a channel, and as is
usual in a communication system, many of the operations at the receiving end are the inverses
of those at the transmitting end. The two audio signals that originate from the stereo input are
converted from analog to digital and are recorded digitally on a magnetic tape. The channel
encoder adds parity bytes, each byte consisting of eight bits, derived from two Reed Solomon
Codes [17]. After this, digital control and display information containing music related data
and a table of contents on the disc are added to the encoded data. The output from the channel
encoder goes through a modulator before it is conveyed to the master disc. Modulation caters
for requirements like reducing inter symbol interference, and so on. Next, the CD
standardized format is optically recorded on the surface of a glass disc which is coated with
photoresist, called the master disc. The information is transferred in the form of pits to a
transparent plastic disc via a nickel shell called a stamper. After receiving a reflective
aluminum coating protected by lacquer, the CD is ready for playing [17].

Channel errors can come from several areas. They can come from foreign particles, air
bubbles in the plastic material, inaccuracies in the pits due to stamper errors [17] or in the
coating and cutting of the disc [8]. These will cause errors when the information is optically
read out. These commonly occur as random errors and smaller length error patterns.
However, burst errors caused by fingerprints and scratches on the surface of the disc result in
errors affecting several consecutive bits [17].

3.2 CROSS-INTERLEVED REED-SOLOMON CODE
There are many error correcting codes used in practice today but the most commonly

used method is cross-interleaved Reed-Solomon code or CIRC for short [11]. Recording in
stereo requires 2 amplitude measurements taken 44, 100 times per second. One sample is
taken from the left and the other from the right [8]. In the encoding process, each binary word
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of length 16 corresponds to an amplitude measurement which is represented by 2 field
elements in GF (256) [8]. Each element is referred to as a byte. When recording in stereo, 4

bytes are produced at each “tick”. A tick is 1
44,100

of a second. The amplitude measurements
from 6 consecutive ticks are formed together to make a message of length 24. After 4 parity
bytes are added, this message is encoded to a codeword using C1, a (28, 24, 5) Reed-Solomon
code over GF (256) [8]. The codewords in C1 are then 4-framed delay interleaved.

An additional 4 parity bytes are added and the codewords in C1 are then encoded
using C2 , a (32, 28, 5) RS code over GF (256). Afterwards, an additional byte is added to
each codeword in C2 for control and display purposes and the length of each codeword is now
33 [8]. The code C2 is then 1-framed delay interleaved [17].

3.3 THE DECODING AND ERROR CORRECTING
PROCESS

The decoding process as well as the error correcting process will now be described.
Since encoding and decoding are inverse operations, received codewords are first passed
through C2 and then to C1. C2 is used to correct single errors and C1 can be used to correct up
to 4 erasures. Each code has four redundancy symbols with a minimum distance of 5, and is
hence capable of correcting either 2 symbol errors or 4 symbol erasures. This code can also be
used to simultaneously correct one error and detect three errors, or correct a single error and
two erasures [17].

First, the effect of interleaving to depth 1 is removed and all parity check symbols are
also removed from received codewords. If C2 detects no errors, it will pass on the 28

information symbols to C1 with all the erasure indications off [17]. If there is a single error,
C2 will correct this. If C2 detects more than one error, it will set erasure flags on all 28 bits
indicating that they are all unreliable [17]. The effect of the 4-frame delay applied earlier in
the encoding process is now removed and the received word is now sent to C1. A received
word will be decoded correctly by C1 if there are no more than 4 flagged digits, that is,
assuming that C2 detected all errors in the previous step. C1 then corrects up to 4 erasures,
treating all flagged bytes as erasures and the unflagged ones as correct [8].

Notice that the only way C2 can fail at decoding a received word is if that word is
within distance 1 of a codeword in C2 that is not the correct codeword. How many are there
exactly? There are (28)28 or 2224 codewords in C2, only one of which is the correct word. The
remaining 2224− 1 codewords is within distance 1 of 1 + 32(28− 1) words of length 32. So of
all the (28)32 binary error patterns that could affect a codeword in C2 only (2224 − 1)(1 + 32)

(28 − 1)) of them result in a codeword within distance 1 of a different codeword in C2. This
turns out to be about 1 in 219 [8]. The code C2 is good enough to correct bursts of length up to
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4000 bits [13]. That corresponds to 16 consecutive uncorrectable words in C1 and a track
length of about 2.5mm [17].

3.4 INTERPOLATION
There is another operation in the encoding process than can be used to further the

chances of correcting errors within the C1 code. The bytes within codewords in C1 are
reorganized. Every codeword contains information from the left and the right, L1 to L6 and
R1 to R6 respectively. There are two parity symbols added on as well in the encoding process,
P1 and P2. These bytes are arranged in this order: L1L3L5R1R3R5P1P2L2L4L6R2R4R6. The
bytes are arranged as such so that if several consecutive bytes are still flagged after decoding,
they can be treated as unreliable information. If this is the case, any unreliable value, Li, can
be replaced by averaging the amplitudes of the adjacent values Li−1 and Li+1 if those samples
are reliable. This technique is called interpolating values [8]. If this interpolating technique is
used, then correcting up to 4 erasures is not used. This strategy allows up to two-erasure
correction, and up to single error correction [17]. The maximum interpolatable burst length is
around 12, 300 bits which corresponds to a track length of about 7.7mm. A deliberately
scratched CD or even a CD with holes drilled into it can be played without loss of music. An
audible click will be heard for an undetected erroneous sample [17] or if even interpolation
fails to correct an error than the clicking sound will be muted so the listener cannot hear it [9].
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CHAPTER 4

DVD ERROR CORRECTING CODE

Like a CD, DVDs suffer from a combination of random and burst errors. However,
DVDs need a more powerful error correction system because the higher physical density
means that any physical imperfection will affect proportionally more bits [9]. In other words,
physically a DVD and CD are the same size, but data wise a DVD contains more data space.
A DVD has a data capacity of 4.7 GB whereas a CD only has 700 MB. Since the system
margins are much tighter, the random error rate of a DVD is larger than that of a CD. Also,
decoded data must be more reliable therefore we cannot rely on the concealment techniques
used in an audio CD [9].

4.1 THE REED-SOLOMON PRODUCT CODE
CIRC, which Compact Disc has adopted, regards data as a successive data stream, and

this is a kind of linear error-correction system. However, it is different from RSPC (Reed
Solomon Product Code) which is adopted by DVD. RSPC treats data as block or array.
Though it needs twice as much buffer storage as a CD, the efficiency is ten times better than a
CD. CIRC can correct about 500 bytes successive error, whereas RSPC can correct about
2200 bytes [9].

The RSPC code used in a DVD is graphically illustrated in Figure 4.1 [4]. Thirty-two
KB of data are stored in a 192 x 172 matrix. Each row of data in this matrix is encoded into a
(182, 172, 11) Reed-Solomon (RS) code word. All columns are encoded into a (208, 192, 17)
RS codewords [4]. Since all codewords are stored on the disc row by row, all bursts of errors
are oriented in the direction of the rows [4].

4.2 DECODING WITH THE RSPC
Decoding consists of two steps. First, row correction is performed. Up to 5 byte errors

can be corrected in each row. Recall that the error correcting capability of a code is
b(d− 1)/2c, where d is the distance of a code. In other words, almost all random errors are
corrected. However, rows affected by bursts of errors normally have too many errors to
correct [4]. In this case, row correction results either in an erroneous correction or a detection
of 6 or more errors. The latter is called a decoding failure. A decoding failure most likely
indicates the location of a burst of errors affecting the corresponding row [4]. Thus erasures
are assigned to the bytes in such rows. With this knowledge, column correction is performed
in the second step of decoding. As the column code has minimum distance of 17, if a column
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Figure 4.1. The RSPC code used in DVDs.

has e erasures (because of decoding failures) and t errors (because of erroneous corrections),
then this column is correctable if and only if 2t+ e ≤ d− 1 [4].

The decoding process will now be described in further detail. Since error correcting is
done at the same time as decoding, that process will also be detailed here. The most popular
RS decoder architecture today can be summarized into four steps:

1. Calculating the syndromes from the received codeword.

2. Computing the error locator polynomial σ(x) and the error evaluator polynomial Ω(x).

3. Finding the error locations.

4. Computing error values.

Once a codeword is received, its syndromes are calculated as stated above. Next, a
inversionless Berlekamp-Massey (BM) algorithm is used to find the error locator polynomial
σ(x) and the error evaluator polynomial Ω(x) from the syndrome information obtained from
step 1. To find the error locations, Chien search is used. Finally, Forney’s algorithm is used to
compute the error values [2].

Recall that in the decoding process, row correction is performed first. Thus, the
previously described algorithm applies to row decoding only. Also recall that row correction
only corrects random errors and not erasures. When decoding in the column direction, the
algorithm is slightly modified. Instead of just finding the error locator polynomial Ω(x), an
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erasure locator polynomial Γ(x) is also found. With both of these locator polynomials, they
are combined to create an errata locator polynomial Ψ(x), where Ψ(x) is defined as:

Ψ(x) = σ(x)Γ(x)

where σ(x) is the error locator polynomial.
Consequently, instead of computing the error evaluator polynomial Ω(x), the errata

evaluator polynomial Λ(x) is computed. The inversionless BM algorithm is still used to find
the errata locator and errata evaluator polynomial. Chien search is still used to find the errata
locations and the modified Forney algorithm is used to compute the error and erasure values
[15].

4.3 COMPARING CORRECTING ABILITIES OF
THE DVD TO THE CD

As stated earlier the maximum correctable burst length is approximately 500 bytes
which is about 2.4mm for CIRC, while it is 2200 bytes, approximately 4.6mm for RSPC.
RSPC is capabIe of reducing a random input error rate of 2 x 10−2 to a data error rate of
10−15, which is a factor of 10 better than in a CD [9].
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CHAPTER 5

BLU-RAY ERROR CORRECTING CODE

Recall that in optical recording roughly two types of errors can be distinguished:
single or random errors and burst errors. Single errors are caused by noise in combination
with other sources of signal deterioration such as tilt of the disc or defocus of the laser spot on
the disc [1]. They are called single errors because they only affect one or two bytes. Burst
errors are caused by defects on the disc surface like scratches, dust, fingerprints etc[1].

5.1 DESIGN FOR BLU-RAY ERROR CORRECTING
CODE

An error correction system should be adapted to the physical properties of the medium
on which the data is stored. Blu-ray Discs are more sensitive to burst errors because of its
small laser spot, the thin cover layer and the high numerical aperture than the CD and DVD
system. Errors on Blu-ray Discs will corrupt more data bits than on a CD or DVD disc.
Therefore, the error correction system of Blu-ray Discs should be able to deal with long burst
errors with little trouble [1].

Compared to DVD, the laser spot size on the entrance surface of the disc is reduced
from approximately 0.5mm in diameter to about 0.14mm. This results in increased sensitivity
to dust and scratches on the disc surface which may cause burst errors, on top of the usual
random errors during readout of the recording layer. The so-called picket code is a new error
detection and correction method that uses two correction mechanisms to handle these errors
effectively: a long distance code (LDC) combined with a burst indicator subcode (BIS) [14].

5.2 THE PICKET CODE
In a Reed Solomon Product Code (RSPC), the row code is used for correcting random

errors and detecting bursts of errors. Since Blu-ray Discs are more sensitive to burst errors,
much of the horizontal parity is squandered in a sense that the horizontal parity does not have
any correctional capabilities since it is only used for detection of burst errors. In the picket
code, no row code exists [4]. All redundancy is put into column Reed-Solomon codes (See
Figure 5.1). There are two distinguished columns: picket columns and normal columns. The
collection of normal columns makes up the LDC and the collection of picket columns makes
up the BIS. The picket columns have stronger error correcting capabilities when compared to
the normal columns due to the fact that the picket columns contain more redundancy.
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Figure 5.1. Blu-ray picket code.

The LDC has 304 (248, 216, 32) Reed-Solomon (RS for short) codewords. This LDC
contains 64 kilobytes (KB) of user data [4]. One 64 KB block of user data is called an error
correction block (ECC block). “These codewords are interleaved two by two in the vertical
direction such that a block of 152 bytes by 496 bytes is formed” [1] as shown in the Figure 5.1.
The LDC has sufficient parity symbols and interleaving length for correcting random errors,
multiple long bursts and short bursts of errors. The burst error correction capability is strongly
enhanced by using erasure correction on the erroneous symbols flagged by the BIS code.

The BIS has 24 (62, 30, 32) RS codewords. The BIS codewords are interleaved into
three columns of 496 bytes each [1]. The address and control information in one ECC block is
strongly protected by these BIS RS codewords. The BIS code “can be properly decoded with
extremely high probability i.e. all of its errors can be corrected” [4]. The location of its
corrected bytes and erroneous synchronization patterns serve as “pickets” indicating the likely
position of a long burst errors in the LDC data between these pickets; when subsequent
pickets have “fallen”, it is highly likely that all the data located physically in between these
pickets was corrupted by a burst of errors.

5.3 DECODING WITH THE PICKET CODE
Picket columns are corrected first in the decoding process. Since both the LDC and the

BIS codes have the same number of parity symbols per code word, there is only one RS
decoder needed to decode them both [1]. This correction information is then used to locate
any occurring burst errors in the normal columns. Afterwards, the symbols with errors at
these locations are flagged as erasure that is these erroneous bytes are erased [1]. An erasure
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and error decoding algorithm of RS codewords in the normal columns makes use of this
erasure information to correct these bursts together with random errors.

The picket columns use the same algorithm as described in the DVD section for the
decoding of the rows [12] [15]. Although Blu-ray decoding does not decode row wise, it still
uses the same algorithm. Also the picket code performs error only decoding not erasure [12].
The LDC performs error and erasure decoding like the column decoding process of the DVD
[12] [15]. Note that the Blu-ray picket code has twice as many parity bytes than the RSPC of
the DVD thus the picket code is much better at correcting errors.

The maximum number of errors that can be corrected depends on the number of parity
symbols added. For each two parity symbols added, one error can be corrected. This is
assuming that nothing is known beforehand about the error. If the location of an error within
the code word is known beforehand, only the erased value of the error has to be calculated [1].
For each parity symbol added, one erased value can be calculated, i.e. one erasure can be
corrected. So it is advantageous for the error corrector to use prior knowledge of the error
locations in the decoding process. Due to the nature of the errors, this is not possible for
random errors, but it is very well possible for burst errors. It requires a burst indicator
mechanism that can detect bursts of errors before the correction starts which is what the BIS
code does [1].
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Here I will summarize the differences among the three media types. Mainly, I will
compare the different error correcting codes: CIRC, RSPC, and the conventional picket code.

As explained in Chapter 3, the audio CD uses the crossed interleaved RS code, CIRC,
which regards data as a successive data stream and this is a kind of linear error-correction
system. However, it is different from RSPC (Reed Solomon Product Code) which is adopted
by DVD. RSPC treats data as a block or an array [13]. The disadvantage of a product code
structure relative to a CIRC structure is that RSPC requires twice as much memory capacity
[9]. But nowadays this is not really a problem as technology has advanced enough to handle
this memory obstacle.

6.1 COMPARING THE ERROR CORRECTING
CODES

The maximum correctable burst length is approximately 500 bytes which is about
2.4mm for CIRC, while it is 2200 bytes, approximately 4.6mm for RSPC. RSPC is capable
of reducing a random input error rate of 2 x 10−2 to a data error rate of 10−15, which is a
factor of 10 better than in a CD [9]. When comparing the error rates after correction of the
RSPC and the picket code, consider this experiment from [14]. A dust sprayed disc was
exposed to an office environment. That disc had a byte error rate of 4 x 10−3. The errors
included many long and short burst errors. After error correction, the BIS code error rate was
found to be below 10−25. The LDC was able to reduce the error rate to 1.5 x 10−18. Compared
to the RSPC of a DVD, the error rate was only reduced to 5.7 x 10−8. Conclusively, the picket
code is much more powerful than the RSPC.

6.2 IMPROVING ON THE PICKET CODE IN THE
FUTURE

It turns out that a product code is stronger for correcting random errors only. However,
in practice, burst errors turn out to limit the actual performance of an ECC system in optical
recording. Compared to Blu-ray, DVD achieves a factor 2 higher random byte error
probability if no bursts are present, and compared to DVD, Blu-ray achieves a factor 10
higher burst error rate if no random byte errors are present [4].

As strong as the picket code is for the Blu-ray disc, it is not perfect. Here are 3 main
drawbacks as described in [12]. Figure 6.1 from [12] illustrates the problems as well.
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Figure 6.1. Illustration of the main drawbacks of the
conventional picket code.

Case 1: BIS is composed of important information such as addressing and control
data, which are required for accessing data on disk, and just performs the error-only decoding
because erasure information is not supplied from the outside. Thus, if the number of byte
errors in a BIS codeword exceeds 16 errors, information included in the picket columns will
be compromised. If BIS can perform error and erasure decoding, more errors can be corrected.

Case 2: Under the conventional picket code, if there are errors in consecutive BIS
columns in the same row, then the BIS assigns all bytes located between picket columns as
erasure. In this case, it is possible that a few bytes of normal columns are erroneous.
Accordingly, erasure information generated by the BIS is inaccurate and the LDC performs
the error and erasure decoding based on imprecise information. Consequently, the error
correction may result in reducing the error-correction efficiency of picket code. The
improvement of the drawback can enhance error correction power of picket code.

Case 3: One byte of a picket column and a few bytes of the adjacent normal columns
have errors. Under the conventional picket code, these errors are not considered as erasure
because only one picket column is in error. This will result in a reduction in efficiency of the
picket code. If LDC can perform the error and erasure decoding without the help of BIS, the
problem may be solved. If the above cases mentioned frequently happen, subsequently the
error-correction efficiency of the picket code will be reduced.
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A new error correcting system proposed by [12] performs error and erasure decoding
using the only erasure information supplied from a modulation code decoder that fixes all 3 of
the above problems that the current picket code has.

Another solution to making the picket code more powerful is suggested in [5]. This
patent suggests that the BIS bytes are spread out among each 64 Kb block. Each 64 Kb block
can be considered as a 496 x 155 matrix. Each of the 496 rows is called a recording frame.
One recording frame has 155 bytes. Normally each frame has 152 bytes that comprise the
long distance code (LDC), and 3 bytes for the burst indicator code (BIS). Typically, the BIS
bits are grouped into 3 bytes. But according to [5] the 24 BIS bits can be spread out into each
frame. The BIS bits still do the same job as they did before. If two consecutive bits are found
to be in error in the same frame, then the bytes in between them are marked as erasure. Since
the BIS bits are much more spread out, more errors can be corrected.
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