The Search and Construction of Nonlinear Feedback Shift Registers

Janusz Szmidt (joint work with Johannes Mykkeltveit)

Military Communication Institute Zegrze, Poland

> Magdeburg fq11 July 23, 2013

Construction of NLESR, n =

- Let 𝔽₂ = {0,1} denote the binary field and 𝔽ⁿ₂ the vector space of all binary *n*-tuples.
- A binary Feedback Shift Register (FSR) of order *n* is a mapping

$$\mathfrak{F}:\mathbb{F}_2^n\longrightarrow\mathbb{F}_2^n$$

of the form

$$\mathfrak{F}: (x_0, x_1, \dots, x_{n-1}) \longmapsto (x_1, x_2, \dots, x_{n-1}, f(x_0, x_1, \dots, x_{n-1}))$$
 (1)

where the *feedback function* f is a Boolean function of n variables.

• The FSR is called *non-singular* if the mapping \mathfrak{F} is one-to-one, i.e., \mathfrak{F} is a bijection on \mathbb{F}_2^n .

NLFSRs - Nonlinear Feedback Shift Registers, cont.

• It was proved that the FSR is non-singular iff its feedback function has the form

$$f(x_0, x_1, \dots, x_{n-1}) = x_0 + F(x_1, \dots, x_{n-1})$$
(2)

where F is a Boolean function of n-1 variables.

- The FSR is called linear (LFSR) if the feedback function *f* is linear one and nonlinear (NLFSR) if the function *f* is nonlinear; i.e., the function *f* has higher degree terms in its Algebraic Normal Form (ANF).
- Further, we will consider nonsingular and nonlinear feedback shift registers.

De Bruijn sequences

- **Definition 1.** A de Bruijn sequence of order *n* is a sequence of length 2^{*n*} of elements of \mathbb{F}_2 in which all different *n*-tuples appear exactly once.
- It was proved by Flye Sainte-Marie in 1894 and independently by de Bruijn in 1946 that the number of cyclically inequivalent sequences satisfying the Definition 1 is equal to

$$B_n = 2^{2^{n-1} - n} (3)$$

 Definition 2. A modified de Bruijn sequence of order n is a sequence of length 2ⁿ - 1 obtained from the de Bruijn sequence of order n by removing one zero from the tuple of n consecutive zeros.

Nicolaas Govert de Bruijn, Dutch mathematician, 9 July 1918 - 17 February 2012

Oberwolfach, 1960

Janusz Szmidt (joint work with Johannes Mykkeltveit) The Search and Construction of Nonlinear Feedback Shift Registers

Solomon Golomb and Guang Gong, SETA 2012

Janusz Szmidt (joint work with Johannes Mykkeltveit)

The Search and Construction of Nonlinear Feedback Shift Registers

Cross joint pairs

- Let $(s_t) = (s_0, s_1, \cdots, s_{2^n-2}, s_{2^n-1})$ be a de Bruijn sequence.
- We put S_i = (s_i, s_{i+1}, · · · , s_{i+(n-2)}), and write the de Bruijn sequence as (S_t) = (S₀, S₁, · · · , S_{2ⁿ-2}, S_{2ⁿ-1}). In the later representation each n 1-vector occurs exactly twice.
- **Definition 3.** Two elements $U, V \in \mathbb{F}_2^{n-1}$ constitute a cross joint pair if and only if it is possible to shift (S_t) cyclically such that the order they occur in is $U, \dots, V, \dots, U, \dots, V$.
- It follows that for the pairs of states α = (u, U), α̂ = (u, U) and β = (v, V), β̂ = (v, V), where u = u + 1 is a negation of a bit u, the order they occur in is α, β, α̂, β̂.

Cross joint pairs - an example

э

- E - E

De Bruijn sequences and NLFSRs

Theorem 1. Let (s_t) be a de Bruijn sequence. Then there exists a Boolean function $F(x_1, \dots, x_{n-1})$, such that

$$s_{t+n} = s_t + F(s_{t+1}, \cdots, s_{t+n-1}), \quad t = 0, 1 \cdots, 2^n - n - 1.$$
 (4)

(The proof is given in Golomb's book: *Shift Register Sequences*). *AN OLD PROBLEM*

Construct or describe Boolean functions F which give all de Bruijn sequences.

De Bruijn sequences and NLFSRs. cont.

A. Klapper, M. Goresky, *Algebraic Shift Register Sequences*. Cambridge University Press, 2012.

page 175 :

One of the long-standing unsolved problems in the theory of de Bruijn sequences is that of finding a simple prescription for those feedback functions f which produce de Bruijn and punctured de Bruijn sequences.

De Bruijn sequences and NLFSRs, cont.

The next theorem is a classical result.

Theorem 2. Let (s_t) be a de Bruijn sequence satisfying (4) and let us assume that there is a cross joint pair U, V for the sequence (s_t) . Let the Boolean function $G(x_1, \dots, x_{n-1})$ be obtained from $F(x_1, \dots, x_{n-1})$ by complementing F(U), F(V), then $G(x_1, \dots, x_{n-1})$ also generates a de Bruijn sequence (u_t) , say.

We say that (u_t) is obtained from (s_t) by the cross joint pair operation. **Proof**

Complementing F(U) will split the de Bruijn sequence into two sequences, and complementing F(V) will join these two sequences again, since U, V is a cross joint pair.

Theorem 3. (J. Mykkeltveit and J. Szmidt)

Let (u_t) , (v_t) be two de Bruijn sequences of degree *n*. Then (v_t) can be obtained from (u_t) by repeated application of the cross joint pair operation.

Proof.

- We observe that the cross joint pair operation is an equivalence relation.
- We order the functions F in (2) lexicographically and let us denote this ordered set S. We choose the ordering in such a way that $F(0, 0, \dots, 0)$ is the most significant digit.
- Let T_1 be the equivalence class containing the lexicographical largest de Bruijn sequence.
- Suppose that the theorem is false.

• Then there must exist an non empty equivalence class T_2 different from T_1 and let H be the truth table for the lexicographical largest de Bruijn sequence in T_2 . H has the following two properties:

1 It is not the lexicographical largest de Bruijn sequence.

Any cross joint pair operation which is possible to apply to *H* will result in a truth table less than *H*.

Define

$$S_1 = \{ F \in S : F \leqslant H \}$$
(5)

$$S_2 = \{F \in S : F > H\}$$

$$\tag{6}$$

We are done if we can prove that H does not exist.

- Let $K \in S_2$. Let (z_1, \dots, z_{n-1}) be the smallest (n-1)-vector such that $H(z_1, \dots, z_{n-1})$ is different from $K(z_1, \dots, z_{n-1})$.
- Since H < K we have that $H(z_1, \dots, z_{n-1}) = 0$ and $K(z_1, \dots, z_{n-1}) = 1$ and the choice of (z_1, \dots, z_{n-1}) implies that if

$$(u_1, \cdots, u_{n-1}) < (z_1, \cdots, z_{n-1})$$
 (7)

then

$$H(u_1,\cdots,u_{n-1})=K(u_1,\cdots,u_{n-1}).$$

• Let H1 be obtained from H by putting $H1(z_1, \dots, z_{n-1}) = 1$ and keeping H1 = H for all other function arguments. Clearly this change will split the de Bruijn sequence such that H1 generates two sequences C_1 and C_2 , say.

We have that

$$H1(z_1, \cdots, z_{n-1}) = K(z_1, \cdots, z_{n-1})$$
 (8)

which implies $(z_0, z_1, \dots, z_{n-1})$ and $(z_1, \dots, z_{n-1}, z_0 + \mathcal{K}(z_1, \dots, z_{n-1}))$ either both belong to C_1 or both belong to C_2 .

2 It is no restriction to assume rhat they both belong to C_1 .

Since K generates a de Bruijn sequence it exists n-tuple (v₀, · · · , v_{n-1}) such that

$$(v_0, v_1, \cdots, v_{n-1}) \in C_1$$

and

$$(v_1, \cdots, v_{n-1}, v_0 + K(v_1, \cdots, v_{n-1}) \in C_2,$$

and since H1 generates C1 we have

$$(v_1, \cdots, v_{n-1}, v_0 + H1(v_1, \cdots, v_{n-1}) \in C_1.$$

• Because of the assumption 2 after (8) we may also assume that

$$(z_0,\cdots,z_{n-1})\neq (v_0,\cdots,v_{n-1}).$$

• Let H2 be obtained from H1 by putting

$$H2(v_1,\cdots,v_{n-1})=K(v_1,\cdots,v_{n-1})$$

and keeping H2 = H1 for all other function arguments.

- H2 will generate a de Bruijn sequence, since the later operation (H1 changed to H2) corresponds to joining C_1 and C_2 .
- H < H2 since we have (7)

$$(u_1,\cdots,u_{n-1})<(v_1,\cdots,v_{n-1})$$

i.e. the de Bruijn sequence generated by H^2 is obtained from the one generated by H by the cross joint pair operation.

• This means that *H* does not exist, since by definition it should not be possible to obtain a de Bruijn sequence greater than the one generated by *H* by the cross joint pair operation (applied to the one generated by *H*). QED

The list of all NLFSR, n = 4

- 1: $x_0 + x_1$
- 2: $x_0 + x_3$
- 3: $x_0 + x_1 + \overline{x_1}x_2x_3 + \overline{x_1}x_2\overline{x_3} = x_0 + x_1 + x_2 + x_1x_2$
- 4: $x_0 + x_3 + \overline{x_1}x_2x_3 + \overline{x_1}x_2\overline{x_3} = x_0 + x_2 + x_3 + x_1x_2$
- 5: $x_0 + x_1 + (\overline{x_1}x_2x_3 + \overline{x_1}x_2\overline{x_3}) + (x_1x_2\overline{x_3} + x_1\overline{x_2}x_3) = x_0 + x_1 + x_2 + x_1x_3$
- 6: $x_0 + x_3 + (\overline{x_1}x_2x_3 + \overline{x_1}x_2\overline{x_3}) + (x_1x_2\overline{x_3} + x_1\overline{x_2}x_3) = x_0 + x_2 + x_3 + x_1x_3$
- 7: $x_0 + x_3 + \overline{x_1}x_2\overline{x_3} + \overline{x_1}x_2x_3 = x_0 + x_2 + x_1x_2 + x_1x_3$
- 8: $x_0 + x_1 + \overline{x_1}x_2\overline{x_3} + \overline{x_1x_2}x_3 = x_0 + x_1 + x_2 + x_3 + x_1x_2 + x_1x_3$
- notation: $\overline{x_i} = x_i + 1$

4 3 6 4 3 6

The list of all NLFSR, n = 4

• 9: $x_0 + x_1 + x_1x_2\overline{x_3} + \overline{x_1}x_2\overline{x_3} = x_0 + x_1 + x_2 + x_2x_3$ • 10: $x_0 + x_3 + x_1x_2\overline{x_3} + \overline{x_1}x_2\overline{x_3} = x_0 + x_2 + x_3 + x_2x_3$ • 11; $x_0 + x_1 + \overline{x_1}x_2x_3 + x_1x_2\overline{x_2} = x_0 + x_1 + x_1x_2 + x_2x_3$ • 12: $x_0 + x_1 + x_1\overline{x_2x_3} + \overline{x_1x_2}x_3 = x_0 + x_3 + x_1x_2 + x_2x_3$ • 13: $x_0 + x_1 + x_1\overline{x_2x_3} + \overline{x_1x_2}\overline{x_3} = x_0 + x_2 + x_1x_3 + x_2x_3$ • 14: $x_0 + x_3 + x_1\overline{x_2x_3} + x_1\overline{x_2}x_3 = x_0 + x_1 + x_2 + x_3 + x_1x_3 + x_2x_3$ • 15: $x_0 + x_1 + x_1\overline{x_2x_3} + \overline{x_1x_2}\overline{x_3} = x_0 + x_1 + x_2 + x_1x_2 + x_1x_3 + x_2x_3$ • 16: $x_0 + x_3 + x_1\overline{x_2}x_3 + \overline{x_1x_2}\overline{x_3} = x_0 + x_2 + x_3 + x_1x_2 + x_1x_3 + x_2x_3$

First graph of NLFSRs construction for n = 4

Second graph of NLFSRs construction for n = 4

A NLFSR, n = 5

 $x_{0} + x_{2} + x_{3} + x_{4} + \frac{1}{x_{1}x_{2}x_{3}x_{4} + x_{1}x_{2}x_{3}x_{4}} + \frac{1}{x_{1}x_{2}x_{3}x_{4}} + \frac{1}{x_{1}x_{2}x_{3}x_{4}} + \frac{1}{x_{1}x_{2}x_{3}x_{4}} + \frac{1}{x_{1}x_{2}x_{3}x_{4}} + \frac{1}{x_{1}x_{2}x_{3}x_{4}} = x_{0} + x_{2} + x_{1}x_{3} + x_{1}x_{4} + x_{2}x_{3} + x_{2}x_{4}$

(*) = (*) = (*)

3

Special form NLFSRs of order n

- n = 27, $x_0 + x_1 + x_2 + x_4 + x_8 + x_{10} + x_{11} + x_{14} + x_{17} + x_{19} + x_{21} + x_6 x_{10}$
- n = 28, $x_0 + x_4 + x_5 + x_6 + x_8 + x_{11} + x_{14} + x_{18} + x_{19} + x_{21} + x_{22} + x_{26} + x_{27} + x_8 x_{27}$
- n = 29, $x_0 + x_3 + x_5 + x_6 + x_{11} + x_{12} + x_{16} + x_{19} + x_{22} + x_{23} + x_{27} + x_{20}x_{28}$

4 3 6 4 3 6

Thank you

Janusz Szmidt (joint work with Johannes Mykkeltveit) The Search and Construction of Nonlinear Feedback Shift Registers

< A ▶

B 1 4 B