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Abstract—When software systems evolve, different amounts We propose to address this lack by creating and empiri-
and types of code modifications can be involved in different cally studyingadaptive regression testingART) strategies.
versions. These factors can affect the costs and benefits of ART strategies are approaches that operate across system
regression testing techniques in different ways, and thughere lifeti d att t to identifv th . tesi
may be no single regression testing technique that is the e Im_es, ana a e_mp 0 ldentiy the regres_smn esting
most cost-effective technique to use on every version. Towa  t€chniques that will be the most cost-effective for each
many regression testing techniques have been proposed, but regression testing session. ART strategies evaluatessigre
research has been done on the problem of helping practitions  testing techniques in terms of decision criteria such as
systematically choose appropriate techniques on new Vemis  cost and benefit factors and choose the best alternative

as systems evolve. To address this problem, we propose adapt techni ideri ization's situationks
regression testing (ART) strategies that attempt to idenfy the among techniques considering organization's situat a

regression testing techniques that will be the most costfeictive ~ feedback from prior regression testing sessions.
for each regression testing session considering organizam’s The problem of performing such evaluations is known as

situations and testing environment. To assess our approackve « . o . -
conducted an experiment focusing on test case prioritizadn the “multiple criteria decision making” (MCDM) problem,

techniques. Our results show that prioritization technigues and_ MCDM approach_es have been us_ed in many science,
selected by our approach can be more cost-effective than tke  engineering, and business areas that involve complex de-

used by the control approaches. cision problems, such as technology investment, resource
Keywords-Regression testing, adaptive regression testing @allocation, and layout design [7], [8]. To date, many MCDM
strategy, test case prioritization, Analytical Hierarchy Process  approaches have been proposed including the Weighted Sum
Model (WSM), the Weighted Product Model (WPM), the
|. INTRODUCTION Analytical Hierarchy Process (AHP), and other variants.
Among these MCDM methods, AHP has been one of the

Regression testing is an important and necessary activity,, o nonular methods, having been used by researchers and
that can maintain the quality of modified software systems, » itioners in various areas including software enginee
To date, many regression testing techniques have beqHg [9], [20], [11]

proposed. For instance, regression test selection teebsiq ] . o
(e.g., [1], [2], [3]) reduce testing costs by selecting testes Thgrefore, in th|s. researph, as an initial approach to
that are necessary to test a modified program. Test cag&€ating ART strategies, we investigated AHP method [7] to
prioritization techniques (e.g., [4], [5], [6]) reordesteases, S€€ Whether AHP can be effective for selecting appropriate
scheduling test cases with the highest priority according t '€9ression testing techniques across system lifetiméicpar
some criterion earlier in the testing process to yield bemefi Ularly focusing on test case prioritization techniques.doo
such as providing earlier feedback to testers and earlidr fa this, we have designed and conducted a controlled exper-
detection. iment using several Java programs with multiple versions
While this research has made considerable progress fPnsidering several selection strategies. The resultsuof o
regression testing areas, one important problem has be&¥Periment show that the prlorltl_zat|0n techniques sekéct
overlooked. As systems evolve, the types of maintenancBY AHP can be more cost-effective than those used by the
activities that are applied to them change. Differences beSontrol approaches.
tween versions can involve different amounts and types of In the next section, we describe background informa-
code modifications, and these changes can affect the codisn and related work relevant to prioritization technigue
and benefits of regression testing techniques in differenand regression testing strategies. Section Il descrilbes o
ways. Thus, there may be no single regression testingroposed approach, ART strategy. Section IV presents our
technique that is the most cost-effective technique to usexperiment setup, Section V presents results and analysis,
on every version. For instance, as we observed from ouand Section VI addresses threats to validity. Section VII
study, prioritization technique that works best changesssc  discusses our results, and Section VIII presents concigsio
versions. and future work.



Il. BACKGROUND AND RELATED WORK identified several metrics characterizing these attribthat
correlate with prioritization effectiveness. The empitice-
Regression testing attempts to validate modified programsyts of their study provide insights into which prioritiizen
to see whether changes have produced unintended eﬁec%échnique is appropriate (or not appropriate) under sgecifi
Depending on various factors, such as the size and comMesting scenarios. Unlike our approach, these two studies
plexity of the program and its test suite, regression tgstin eyajuate techniques solely relied on software metrics and
process can be very expensive. Thus, many researcheggj not consider the notion of software evolution context.
have proposed numerous cost-effective regression testing gipce many factors can be involved in evolving systems,
techniques including regression test selection, teste SUitseIecting appropriate techniques for each version can be a
reduction/minimization, and test case prioritizatiort, here, multiple criteria decision making (MCDM) problem. Ana-
we limit to our discussion to test case prioritization, whic lytic Hierarchy Process (AHP) is one of the widely used
is directly related to our work. MCDM methods, and many areas that involve complex
Test case prioritization techniques (e.g., [12], [6]) re-decision problems, such as business, manufacturing,cgien
orders test cases in order to increase the chance of eally faund engineering. For instance, Kamal and Al-Harbi [21] use
detection using various types of information availablerfro  AHP in project management to determine the contractors’
software artifacts, such as the coverage of code achievagbmpetence or ability to participate in the project bid. AHP
by tests, code change information, or code complexity. FOhas also been used in determining the best manufacturing
example, one techniquégtal block coverage prioritization  system [22], layout design [23], and the evaluation of
simply sorts the test cases in the order of the number ofechnology investment decisions [24].
blocks they cover. One variation of this teChniqﬂéditional Recent|y AHP has been used in software engineering ar-
block coverage prioritizatioriteratively selects a test case egs. Barcusa and Montibellerb [25] use AHP to allocate soft-
that yields the greatest block coverage, then adjusts thgare developmentwork in distributed teams. They develop a
coverage information for the remaining test cases to ineica muylti-criteria decision model to support the distributedrn
their coverage of blocks not yet covered, and then repeatgork allocation decision by using decision conferencing
this process until all blocks coverable by at least one teshnd multi-attribute value analysis. Finnie et al. [26] use
case have been covered. AHP to prioritize software development productivity factp
To date, numerous test case prioritization techniques havgnd Karlsson et al. [9] and Perini et al. [27] compare
been proposed, and a recent paper by Yoo and Harman [13HP with other alternative method in prioritizing software
provides a comprehensive overview of these techniquesequirements. Yoo et al. [11] use AHP to improve test case
While the goal of the proposed techniques is to improveprioritization techniques by employing expert knowledge,
the effectiveness of regression testing, to be useful is-pra and compare the proposed approach with the conventional
tice, techniques should be applicable within various nesti coverage-based test case prioritization technique. Bnlik
environments and contexts. Recent research on test cagiteir study, in this paper, we utilize AHP to develop adagptiv
prioritization has employed empirical studies to evalubte  regressions testing strategy, which helps identify thé tess
cost-benefit tradeoffs among techniques considering wario case prioritization techniques across system lifetime.
factors and testing contexts [14], [15], [16], [17], [18].
For instance, Do et al. [14] and Walcott et al. [18] have !ll. ADAPTIVE REGRESSIONTESTING (ART) STRATEGY
studied the effects of time constraints imposed on regyassi  |n this section, we describe AHP method and how AHP
testing through empirical studies. Qu et al. [17] considefis used for creating ART strategy using an example.
prioritization in the context of configurable systems.
Studies such as these have allowed researchers and pr&- AHP Method
titioners to understand factors that affect the assessofent To use AHP, decision makers first define a hierarchy that
techniques and to compare techniques in terms of costdescribes the problem they want to solve. As shown in
and benefits relative to actual software systems. HoweveFigure 1.a, adapted from [7], an AHP hierarchy consists of a
studies to date have not considered strategies for sajectirgoal that they want to achieve, alternatives that are dvaila
appropriate techniques under particular circumstances de reach the goal, and criteria that are factors that may be
systems evolve. Only few studies [19], [20] have doneused in decision making about these alternatives. Theierite
on the problem of helping practitioners choose appropriatean be further partitioned into sub-criteria if necessary.
techniques under particular system and process constraint Once decision makers define an AHP hierarchy, two
Harrold et al. [20] present empirical results that demaistr types of pairwise comparisons are performed: between pairs
how code modifications can affect the choice of regresof criteria and between pairs of alternatives as shown in
sion test selection methods. Elbaum et al. [19] performFigure 1.b. When comparing pairs of criteria (the upper left
experiments exploring characteristics of program stmegtu table), decision makers assign relative importance weight
test suite composition, and changes on prioritization, ando criteria; for example, C1 is given importance 4 relative



Goa our exampleM is 3 andN is 5. Then, weighted sums of
the values per technique are calculated; these are shown
in the rightmost column (“global priorities”i). The global
priority is calculated by the following equatiorGP, =
Criterion 1 Criterion 2 Criterion 3 Criterion4 | | Criterion 5 25\]:1 (LPAkj) * (ij)), where GP, is a g|0ba| priority
for alternativek, N is the number of criteriaLPAy; is
a local priority of alternativek (1 < k < M, M is the
number of alternatives) for criteriofy LP; is a local priority
of criterion j. Based on the weighted sum values, decision
Allemalive Allemative 2 Allematve 3 makers can determine which alternative should be selected.

In this example;T2 (0.47) performs best antll (0.35) next
best, withT3 (0.18) far behind.

(@) An AHP hierarchy B. Applying AHP to Prioritization Strategy

Comparisons between criteria Comparisons between alternatives We now describe how AHP is applied to prioritization

it . strategy that we use in this work. While we describe this in
IEEEEEE

terms of test case prioritization using one of the programs
Y

1 1/3 0.247 _c terion 2 h I
FIE R —— we used in our study, the approach could be applied to any
@ 12 15 1 13 12 007 H 0.56 regression testing techniques and any system for which the
DR AB| 51|49 | GFB Priority Bl required information is available.
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e B B As outlined in the prior section, to apply AHP to priori-

) T e N tization strategy, the following steps are required:
I 1. Set a goal

2. ldentify alternatives that are available to reach thd goa
007 | 0387 | 007 | 0186 | 011 | Prormy 3. Identify evaluation criteria for alternatives
AL | 023 | 045 | 015 | 038 | 032 | 035 4. Pairwise comparisons: between pairs of criteria and
A2 | 067 | 036 | 037 | 04 | 056 | 047 between pairs of alternatives
A3 ] 01 | 019 ] 048 | 022 | 012 | 018 5. Obtain global priorities of alternatives

The following subsections describe each of these in detail.

(b) An AHP Example
1) Step 1: Set a Goal:Suppose that the goal of test

Figure 1. An AHP hierarchy and an example application of AHP.  engineers is to choose the most cost-effective test case
prioritization technique in application to a particulassm

to C4. After completing this matrix, the assigned values €"s1on:

are normalized and the local priority of each criterion is 2) Step 2: Identify AlternativesTo achieve this goal, test
produced, which is shown in the rightmost column of theengineers consider several different types of prioritizat
table (and in the top row of the bottom table in the figure).techniques as alternatives. For instance, test engineald ¢
The local priority is calculated by the following equation: consider traditional coverage-based test case pridiiiza
S (BWij) where LP; is a local priority of techniques, such as total block coverage based test case

LP, = iz
’ 121 2501 (RWi)) prioritization, and additional block coverage based tesec
prioritization.

criterion 4, RW-j is a relative weight of criteriori over
criterion j, and N is the number of criteria (The local
priorities of alternatives are calculated in the same way).  3) Step 3:ldentify Evaluation CriteriaiAs criteria, test
Similarly, matrices that show the relative importancee”gineers choose factors that are influential in evaluagisg
of alternatives for each criterion are constructed. In thisc@se prioritization techniques. For instance, test emgie
example, five matrices are constructed because there are figguld consider the cost factors that can affect the choice of
criteria (the upper right tables). Again, the assigned emlu t€chniques, such as the cost of applying test case prapritiz
are normalized for each matrix, and local priorities aretion technique or the cost of software artifact analysis.

produced for each alternative (the resulting local priesit 4) Step 4: Pairwise ComparisonsNext, two types of
appear in the bottom table in the figure). pairwise comparisons are performed: between pairs of cri-
After calculating the local priorities for criteria and al- teria and between pairs of techniques as we explained
ternatives, anM x N matrix is constructed, as shown in in Section IlI-A. To do so, test engineers assign relative
the bottom table in Figure 1.b, wheM is the nhumber of importance weights to criteria and techniques using thiesca
alternatives considered andl is the number of criteria. In  of weights they define. In this step, test engineers rely on



their experiences and history data regarding the perfocsan and analysis, in Section VI we address threats to validity,
of test case prioritization techniques. and in Section VII we discuss practical implications of the

5) Step 5: Obtain Global PrioritiesOnce test engineers results.

assign relative weights, global priorities are calculatsd A Opjects of Analysis

explained in Section IlI-A and this step can be automated . , .
by building an AHP tool. Based on global priorities, test. We considered five Java programs obtalned_ from the SIR
||nfrastructure [28] as our objects of analysimnt, xml-

engineers determine which technique they should use fo o ) .
the particular version of the program. seg:unty ngter, napoxmj and gall_leo. Antis a J:_;wa-based
build tool, jmeter is a load testing tool for client/server
Steps 2 and 3 are dependent on an organization’s testingpplication, anckml-securityprovides security functionality
practices and environment. Figure 2 summarizes steps #r XML data. Nanoxmlis a small XML parser for Java,
and 5 graphically. As we can see from the figure, the teshnd galileo is a Java bytecode analyzer. Several sequential
engineer examines history data and various softwareetdifa versions of each of these programs are available. The first
for the current version, and assigns relative weights fothree programs are provided with JUnit test suites, and
criteria and techniques. This process requires human judghe last two are provided with TSL (Test Specification
ment, so it is done manually. In practice, often organizetio |anguage) test suites [29].
rely on human experts’ opinions or experienced members’ Table | lists, for each of our objects of analysis, data
judgment when they make important technical decisionsn its associated “Versions” (the number of versions of the
(e.g., which tools or techniques should be used), so this igbject program), “Classes” (the number of class files in the
not an uncommon process in software industry. latest version of that program), “Size (KLOCs)” (the number
The rest of the processes can be automated. The AHB lines of code in the latest version of the program), and
tool takes relative weights of criteria and techniques, andTest Cases” (the number of test cases available for thetlate
produces matrices shown in Figure 1. Then, finally the tesyersion of the program). To study the research question we
engineer can decide which technique should be used basegquire fault data, so we utilized mutation faults provided
on global priorities that the tool produced. with the programs [30]. The rightmost column, “Mutation
Faults”, is the total number of mutation faults of the pragra

(summed across all versions).
History Data
From Previous Table |

E;?S;:::I EXPERIMENTOBJECTS ANDASSOCIATEDDATA

History Data Objects || Versions| Classes| Size Test | Mutation
from Prior (KLOCs) | Cases| Faults
ant 9 914 61.7 877 412
( Software metrics of ) jmeter 6 434 422 78 386
the current version xml-sec. 4 145 15.9 83 246
nanoxml 6 64 3.1 216 204
galileo 16 68 145 912 2494
Tester
lfe'e?‘ed B. Variables and Measures
echnique
1) Independent Variable:To investigate our research
\ Metrics ) question we manipulate one independent varialglst case
prioritization technique application mapping strategyhich
Figure 2. AHP Process assigns, to a specific sequence of versiénsS,;;,....S;

of systemS, specific test case prioritization techniques. As

test case prioritization techniques we utilize originatier

(Orig: the order in which test cases are executed in the
In this study, we address the following research questiongriginal testing scripts provided with the object programs

RQ: Is AHP effective for selecting appropriate test caserandom order (Rand: in our experiment, averages of runs of

prioritization techniques across system lifetime? 30 random orders), and two test case prioritization heosist

To investigate the research question, we performed a cortotal block coverage (Tcov) and additional block coverage

trolled experiment. The following subsections present, fo (Acov) prioritization techniques explained in Section I1)

this experiment, our objects of analysis, variables and-mea We consider five mapping strategies as follows:

sures, experiment setup and design, and threats to validity « Tcov-all: Use of the total coverage technique across

Following this presentation, in Section V we present ouadat versions (a control)

IV. EMPIRICAL STUDY



« Acov-all: Use of the additional coverage techniquecaptures are as follows: costs for applying regressiointgst

across versions (a second control) techniques, costs associated with missed faults, costs for
« Rand-all: Use of the random technique across versionartifact analysis, costs of delayed fault detection feekba
(a third control) and costs associated with obsolete tests.

« Orig-all: Use of the original technique across versions
(a fourth control; it is used as a baseline strategy) _

« AHP: Evolutionary adaptation of techniques following To measure costs of delayed fault detection feedback
the AHP method described in Section Ill. The AHP and costs for applying regression testing techniques, we
method selects the best technique among four priorirequired olbject programs contai_ning faults. Similar tolour
tization techniques (Tcov, Acov, Rand, and Orig) for early studies [14], [32], to obtain the fault data required
each version based on the criteria we identifies andO investigate our research question, for each version of

expert's opinion. More details on how we applied AHP €ach program we randomly selectedraitant groupfrom
are described in Section IV-C. the set of that version’s mutation faults. Each mutant group

contained at most 10 mutants.

2) Dependent Variable and Measure©ur dependent  To apply AHP, we followed steps described in Section Il
variable is aelative cost-benefit valueroduced by applying As a human tester, one graduate student who has three
EVOMO economic model presented in [31], using a furtheryears of software industry experience performed the AHP
calculation described below (Equation 1). The cost androcesses. The student considered the following criteria t
benefit components are measured in dollars. To determingvaluate prioritization techniques:

C. Experiment Setup and Procedure

the relative cost-_benefit)f prioritization techniqueT Wit_h « Cost of applying test case prioritization technique: the
respect to baseline techniqliase we use the following time required to run a test case prioritization algorithm
equation: « Cost of software artifact analysis: the costs of instru-
(Benefity — Costr) — (Benefitpgse — Costpase) (1) menting programs and collec_ting test ex.e.cutio.n traces
) o . - o « Cost of delayed fault detection: the waiting time for
When this equation is applied, positive values indicatéTha each fault to be exposed while executing test cases
is beneficial compared tlmse, and negative values indicate under a test case prioritization technique

otherwise. We used the original technique as a baseline , cost of missed fault: the time required to correct missed
in this experiment. This means that the Orig-all strategy faults

functions as a baseline strategy when we consider the cost-

beE\e/fCl;&glngs alcrOSfWaII ver3|tpns of thﬁ prograEm. i 2the scale of weights as shown in Table I, which has been
INVOIVES tWo equations as shown in Equations commonly used by others [7], [11]. When the student as-

and_3: one that captures costs _related_to the salaries of tl}el’gned relative weights, he utilized history data regaydire
engineers who perform regression testing (to translate tim

performance of test case prioritization techniques oleskrv

spgnt into monetary values), and one that captures revenYm previous several empirical studies [14], [15], [333].
gains or losses related to changes in system release time toTO support the rest of the processes, we implemented a

translate time-to-release into monetary values). Java Swing-based AHP tool. The AHP tool takes relative

Next, the student performed pairwise comparisons using

n weights of criteria and techniques, and produces local and
Cost = salary*Z(setup(i) + obsoleteTests(i) global priorities based on the AHP algorithm [7]. Finally
i=2 the student determined which technique should be used for
+ resultValidation(i) + missedFaults(i)) (2)  each version of the program using global priorities.
Benefit = revenue * Z(deliveryTime(i) Table 11
i=2 SCALE OF WEIGHTS
— (setup(i) + obsoleteTests(i) + analysis(i — 1) Weight || Definition of Weight

+ runTechinique(i) + test Execution (i)
+ resultsValidation(i) + faultDetectionDelay(z))) (3)

equally important
moderately important
strongly important
very strongly important]
extremely important

©| N O1f W|

Significantly, the model accounts for costs and benefits
across entire system lifetimes, rather than on snapshots
(i.e. single releases) of those systems, through equations Often software companies have time pressure with the

thatt calcu:ate c;)_shts anq benef:tsross entlretz Stehql:eg\igsM(g product release, due to the constraint budgetary problem
system releaseshe major cost components tha and competitive software market. In practice, situatiams i

LHere we just summarize each equation briefly. See [31], [@2Jiétailed which time c_onstraints interyene to affect p_roduct release
descriptions. are frequent in the software industry, and typically sofeva




companies cut back on testing activities in order to ensure The third subtable shows the results fanl-security As
timely release of their product. Further, the degree of timehe results show, the AHP strategy was more cost-effective
constraints can vary as systems evolve. For instance, for than the two control strategies (Tcov-all and Rand-all},ibu
certain release, a company could suffer more time constrainwas not better than the Acov-all strategy. Unlike the result
compared to other releases due to the complex feature addin ant andjmeter, Tcov-all produced better results than the
tion or the technical personnel loss. Thus, in this expemime baseline strategy.
we consider the situation with time constraints that vary The fourth subtable shows the results famoxml Over-
with each version when we evaluate test case prioritizatiorll, the AHP strategy outperformed all control strategies
techniques. except for one case (Acov-all in run 2 was better than AHP).
To simulate this situation, for each of the test caseSimilar to the results orxml-security Tcov-all produced
prioritization techniques, we randomly assigned the lefel better results than the baseline strategy.
time constraints (25%, 50%, or 75%) for each version, and The last subtable shows the result f&lileo. The results
foreshortened the test execution process for each versishow that the AHP strategy was more cost-effective than
by the assigned time constraint level. We ran four sets ofontrol strategies except for one case (Acov-all in run 3
random assignments across all versions for each programas better than AHP). Tcov-all produced worse results than
applied the AHP processes we just explained, and collectethe baseline strategy in all cases.
cost-benefit values for all strategies. The total cost savings across all versions are one mea-
sure that shows the effectiveness of the strategies, bsit thi
measure can be misleading because abnormal cost-benefit
In this section, we present the results of our study. Wevalues for particular version could affect the entire onteo
summarize the data in Table Ill. Table 11l shows experimentThus, we examined how often the strategies produce the best
results that were collected by running four sets of randomresults across all versions.
assignments (run 1 through run 4 in the table) of three time Figure 3 presents bar graphs of the results. The figure
constraint levels for each version of the program. Since theontains five subfigures that present results for each of the
Orig-all strategy is the baseline used in our relative costobject programs, and each subfigure contains bar graphs
benefit calculation, results for that strategy are not showror four prioritization strategies showing the total numbe
explicitly in the tables. versions that produced the best results by those strategies
Table Il contains five subtables, and each subtable corfor the given object program and four runs. For instance,
responds to the results of each program. All of the data irin run 1 for ant, Tcov-all performed best for one version
these tables shows the relative cost-benefit value in dollafversion 1 in Table Ill) and Acov-all performed best for two
with respect to the baseline technique (Orig) as defined iwversions (versions 2 and 4 in Table IlI).
Section IV-B2. Higher values indicate greater cost-besefit Overall, the AHP strategy produced the best results (16
Within each subtable in the tables, columns are labeled witlout of 20 cases were better than the control strategies — in
four runs, for each run listing four test case prioritizatio total, we have the 20 observed data points.) and the Acov-all
testing strategies. Rows are labeled with versions of thetrategy performed relatively well compared to other aaintr
program and the last row (“Total”) shows the sum of thestrategies (9 out of 20 cases performed best), but the trend
cost-benefit values for all versions . Now, we describe eachlaried across programs.
of these subtables. In the cases ofnt and nanoxm] the AHP strategy was
The first subtable shows the results famt. The results consistently better than all three strategies across als ru
vary across versions, but the total cost-benefit valuesateli with one exception. In the case afml-security Acov-all
that the prioritization techniques selected by AHP wereanor was slightly better than AHP.
cost-effective than those used by the control strategiespx Comparing the control strategies, Rand-all outperformed
for one case (Rand-all in run 3 was better than AHP).others inant, and it was even better than AHP for one case
In particular, the cost-benefit value gap between the AHRrun 3). However, in other cases, Rand-all did not perform
strategy and the two control strategies (Tcov-all and Acovwell. In particular, in the case ofml-security Rand-all did
all) is large, and Tcov-all was even worse than the baselin@ot produce any single best result. Similar to the results we
strategy in some cases (run 1 and run 4). Among the contrabserved in Table Ill, Tcov-all performed worst. Only in
strategies, Rand-all produced the best results. three programsapt, jmeter, and xml-security, it produced
The second subtable shows the resultgfoeter Similar  the best result for one version for six out of 12 cases. In
to the results omant, the AHP strategy was more cost- other programs, it did not produce any single best result.
effective than the control strategies except for run 2. Agron  Overall, the trends we observed from this figure are
the control strategies, Acov-all produced the best resultsconsistent with those we observed from Table IIlI, but we also
Rand-all performed relatively well, but Tcov-all was evenfound some differences. While AHP outperformed 15 out
worse than the baseline strategy in most cases. 20 cases when we considered the total cost-benefit values,

V. DATA AND ANALYSIS



Table 1lI
Experiment Results: Relative Cost-Benefit Values (dollars

ant
Run 1 Run 2 Run 3 Run 4
Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP
-all -all -all -all -all -all -all -all -all -all -all -all
vl 135 7 -40 -40 367 232 102 102 -19 -70 -98 -98 135 7 -40 -40
v2 205 209 139 209 205 209 139 209 207 209 79 209 55 326 161 326
v3 -58 -62 48 48 -151 92 49 49 -58 -62 48 48 -59 91 46 46
v4 -66 14 0 14 -155 =72 -58 -58 12 13 42 13 -66 14 0 14
v5 -99 -133 26 26 -157 -191 18 18 -99 -133 26 26 -145 -179 32 32
v6 -142 -180 7 7 -142 -180 7 7 -37 -113 87 -37 337 407 560 407
v7 -160 -201 32 32 275 234 324 324 -142 -183 48 48 -160 -201 32 32
v8 -107 -248 146 146 -107 -248 146 146 143 116 292 292 -128 115 215 215
Total -292 -524 358 442 135 76 727 797 7 -223 524 501 -31 650 1006 1032
jmeter
Run 1 Run 2 Run 3 Run 4
Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP
-all -all -all -all -all -all -all -all -all -all -all -all
vl 15 17 50 17 a7 135 180 135 15 17 50 50 -73 116 97 116
v2 -51 153 93 153 -85 -85 -6 -85 -51 153 93 153 -51 153 93 153
v3 130 266 277 277 130 266 277 277 -66 22 -36 22 -66 22 -36 22
v4 121 31 5 121 -64 -65 -142 -64 35 274 5 274 35 274 5 274
v5 -196 -196 -135 -196 -174 -144 -136 -174 -174 -144 -136 -174 -196 -196 -135 -196
Total 19 271 290 372 -146 107 173 89 -241 322 -24 325 -351 369 24 369
xml-security
Run 1 Run 2 Run 3 Run 4
Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP
-all -all -all -all -all -all -all -all -all -all -all -all
vl 177 274 88 274 37 38 6 38 268 331 203 331 37 38 6 38
v2 26 117 -44 117 26 117 -44 117 -48 14 -190 14 26 117 -44 117
v3 170 170 71 170 499 546 315 546 170 170 71 170 499 546 315 499
Total 373 561 115 561 562 701 277 701 390 515 84 515 562 701 277 654
nanoxml
Run 1 Run 2 Run 3 Run 4
Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP
-all -all -all -all -all -all -all -all -all -all -all -all
vl 931 966 975 975 928 962 860 860 -59 -23 -15 -15 931 966 975 975
v2 468 778 596 778 565 790 683 790 565 790 683 790 468 778 596 778
v3 -43 40 -27 40 -43 40 -27 40 163 657 525 657 509 563 482 563
v4 -48 -50 1 -48 -48 -50 1 -48 -48 -50 1 -50 -48 -50 1 -48
vb -27 39 -40 39 451 541 453 541 -27 39 -40 39 451 541 453 541
Total 1281 1773 1505 1784 1853 2283 1970 2183 594 1413 1154 1421 2311 2798 2507 2809
galileo
Run 1 Run 2 Run 3 Run 4
Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP
-all -all -all -all -all -all -all -all -all -all -all -all
vl 172 691 580 691 -51 461 401 461 -125 715 515 715 172 691 580 691
v2 -115 366 297 366 -114 368 251 368 -114 368 251 368 -115 366 297 366
v3 235 526 381 526 51 242 187 187 -75 452 318 452 235 526 381 526
va 168 309 380 380 =71 168 309 309 5 56 13 13 5 56 13 13
v5 -3 56 9 -3 667 700 565 667 667 700 565 667 -3 56 9 -3
v6 -115 344 283 344 -115 344 283 344 -49 228 246 228 -40 272 262 -40
v7 -186 216 130 216 -98 224 170 224 -76 285 250 285 -186 216 130 216
v8 -75 379 289 379 -126 364 246 364 -126 364 246 364 -75 379 289 379
v9 -311 204 118 204 -249 224 146 224 -76 469 374 469 -311 204 118 204
v10 =77 456 151 456 =77 456 151 456 -74 405 256 405 -74 405 256 405
vil -4 575 528 575 -174 579 462 579 -174 579 462 579 -174 579 462 579
v12 -105 148 154 148 -3 136 177 136 -84 228 232 228 -105 148 154 148
v13 =72 112 250 250 =72 112 250 250 -85 -57 120 120 -85 -57 120 120
v14 -86 -251 -249 -86 -83 -216 -124 -83 -122 273 188 -122 -86 -251 -249 -86
v15 -80 211 293 211 -80 211 293 211 -111 -125 64 64 -111 -125 64 64
Total -654 4342 3594 4657 -595 4373 3767 4697 -619 4940 4100 4835 -953 3465 2886 3582
it outperformed 16 out of 20 cases when we considered the VI. THREATS TOVALIDITY

total number of versions that performed best. In the case

of jmeter, the total cost-benefit of Acov-all was higher than ~ This section describes the construct, internal and externa

that of AHP, but it did not perform better than AHP when Validity threats to the validity of our study.

we compared the number of versions that produced the best Construct Validity: Two issues involve threats to con-

results by Acov-all and AHP. struct validity. (1) We identified four evaluation criteria
to apply the AHP method mainly considering the costs
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Figure 3. Experiment Results: The Total Number of VersiohatTProduced the Best Results by Prioritization Testingt&gies

that are associated with test case prioritization teclesqu different cost-benefit tradeoffs. We used mutation faults
Other evaluation criteria, such as risks for estimated-costgenerated by our mutation tool, but there is some evidence
benefit factors, applicability of a technique to a certaipety that mutation faults can be representative of real faul®§, [3
of software artifact, and relevance to the specific testing34]. Control for these threats can be achieved only through
process, could be considered. (2) The pairwise comparisoadditional studies with wider populations of programs and
value in AHP is subject to human judgment (in our casefaults, and different prioritization techniques.
a graduate student) and thus the results can be biased by
personnel’s knowledge and experience. VIl. DISCUSSION

Internal Validity: The inferences we made about the
effectiveness of AHP could have been affected by potential We now draw on the results of our analyses, together
faults in our experiment tools. To control this threat, we with additional consideration of our data, to derive preaiti
validated our AHP tool using several examples. Other tooldmplications of these results.
were from SIR [28], and they have been validated through ART strategy resultsOur results indicate that the prioriti-
numerous experiments. zation techniques selected by AHP across the entire system

External Validity: Three issues limit the generalization of lifetime can be more cost-effective than those used by the
our results. (1) MCDM approach and test case prioritizatiorcontrol approaches with the exception of some cases.
technique representativeness. In this study, we consldere Through the empirical study, we observed the following
only one type of MCDM approaches and two conventionaltrends. Overall, the AHP strategy’s performance was stable
test case prioritization techniques, so our results cabaot across all programs for all runs, and the Acov-all strategy
generalized because they are not representative of MCDMIso produced better results compared to other contraéstra
approaches and test case prioritization techniques. (BcDb gies, and in some cases (run 4xml-securityand run 3 in
program and mutation fault representativeness. The objecfalileo), it even outperformed the AHP strategy. However, it
programs are of small and medium size. Complex industrialvas not as stable as the AHP strategy. For instancanon
programs with different characteristics may be subject tdor all runs, the Acov-all strategy was worse than all other



strategies, and ojmeter, it was close to the worst case for to investigate whether different types of approaches help
half of the cases. improve ART strategies.

In the case of the Rand-all strategy, it was better than Second, in this study, we used only 4 evaluation criteria,
the Tcov-all strategy in most cases (except for all casebut in order to limit threats to validity as we addressed
in xml-security. However, since our results for the randomin Section VI, we intend to investigate ART strategies
technique involve averages of multiple runs, individual-ra considering other types of evaluation criteria.
dom orders may vary widely in performance. The Tcov-all Third, we considered only two test case prioritization
strategy was not worst for all cases, but overall perforreancheuristics, but we intend to investigate ART strategies tha
is not preferable to others. In particular, in several cdtses ~ employ other types of prioritization techniques including
runs inant, three runs imeter, and all runs ingalileo), it other regression testing techniques, such as regressbn te
was even worse than the baseline strategy. selection techniques. Also, we intend to develop new regres

Practical implications of the resultsSo far we have dis- Sion testing techniques so that we can improve our chances
cussed our major findings and the results of our experimen@f detecting faults under time-constrained situations.

Now, we discuss practical implications of our results. Acknowledgments
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