
Adaptive Regression Testing Strategy: An Empirical Study

Md. Junaid Arafeen∗ and Hyunsook Do∗
∗Department of Computer Science

North Dakota State University
Fargo, ND

{md.arafeen, hyunsook.do}@ndsu.edu

Abstract—When software systems evolve, different amounts
and types of code modifications can be involved in different
versions. These factors can affect the costs and benefits of
regression testing techniques in different ways, and thus,there
may be no single regression testing technique that is the
most cost-effective technique to use on every version. To date,
many regression testing techniques have been proposed, butno
research has been done on the problem of helping practitioners
systematically choose appropriate techniques on new versions
as systems evolve. To address this problem, we propose adaptive
regression testing (ART) strategies that attempt to identify the
regression testing techniques that will be the most cost-effective
for each regression testing session considering organization’s
situations and testing environment. To assess our approach, we
conducted an experiment focusing on test case prioritization
techniques. Our results show that prioritization techniques
selected by our approach can be more cost-effective than those
used by the control approaches.

Keywords-Regression testing, adaptive regression testing
strategy, test case prioritization, Analytical Hierarchy Process

I. I NTRODUCTION

Regression testing is an important and necessary activity
that can maintain the quality of modified software systems.
To date, many regression testing techniques have been
proposed. For instance, regression test selection techniques
(e.g., [1], [2], [3]) reduce testing costs by selecting testcases
that are necessary to test a modified program. Test case
prioritization techniques (e.g., [4], [5], [6]) reorder test cases,
scheduling test cases with the highest priority according to
some criterion earlier in the testing process to yield benefits
such as providing earlier feedback to testers and earlier fault
detection.

While this research has made considerable progress in
regression testing areas, one important problem has been
overlooked. As systems evolve, the types of maintenance
activities that are applied to them change. Differences be-
tween versions can involve different amounts and types of
code modifications, and these changes can affect the costs
and benefits of regression testing techniques in different
ways. Thus, there may be no single regression testing
technique that is the most cost-effective technique to use
on every version. For instance, as we observed from our
study, prioritization technique that works best changes across
versions.

We propose to address this lack by creating and empiri-
cally studyingadaptive regression testing(ART) strategies.
ART strategies are approaches that operate across system
lifetimes, and attempt to identify the regression testing
techniques that will be the most cost-effective for each
regression testing session. ART strategies evaluate regression
testing techniques in terms of decision criteria such as
cost and benefit factors and choose the best alternative
among techniques considering organization’s situations and
feedback from prior regression testing sessions.

The problem of performing such evaluations is known as
the “multiple criteria decision making” (MCDM) problem,
and MCDM approaches have been used in many science,
engineering, and business areas that involve complex de-
cision problems, such as technology investment, resource
allocation, and layout design [7], [8]. To date, many MCDM
approaches have been proposed including the Weighted Sum
Model (WSM), the Weighted Product Model (WPM), the
Analytical Hierarchy Process (AHP), and other variants.
Among these MCDM methods, AHP has been one of the
more popular methods, having been used by researchers and
practitioners in various areas including software engineer-
ing [9], [10], [11].

Therefore, in this research, as an initial approach to
creating ART strategies, we investigated AHP method [7] to
see whether AHP can be effective for selecting appropriate
regression testing techniques across system lifetime, partic-
ularly focusing on test case prioritization techniques. Todo
this, we have designed and conducted a controlled exper-
iment using several Java programs with multiple versions
considering several selection strategies. The results of our
experiment show that the prioritization techniques selected
by AHP can be more cost-effective than those used by the
control approaches.

In the next section, we describe background informa-
tion and related work relevant to prioritization techniques
and regression testing strategies. Section III describes our
proposed approach, ART strategy. Section IV presents our
experiment setup, Section V presents results and analysis,
and Section VI addresses threats to validity. Section VII
discusses our results, and Section VIII presents conclusions
and future work.



II. BACKGROUND AND RELATED WORK

Regression testing attempts to validate modified programs
to see whether changes have produced unintended effects.
Depending on various factors, such as the size and com-
plexity of the program and its test suite, regression testing
process can be very expensive. Thus, many researchers
have proposed numerous cost-effective regression testing
techniques including regression test selection, test suite
reduction/minimization, and test case prioritization, but here,
we limit to our discussion to test case prioritization, which
is directly related to our work.

Test case prioritization techniques (e.g., [12], [6]) re-
orders test cases in order to increase the chance of early fault
detection using various types of information available from
software artifacts, such as the coverage of code achieved
by tests, code change information, or code complexity. For
example, one technique,total block coverage prioritization,
simply sorts the test cases in the order of the number of
blocks they cover. One variation of this technique,additional
block coverage prioritizationiteratively selects a test case
that yields the greatest block coverage, then adjusts the
coverage information for the remaining test cases to indicate
their coverage of blocks not yet covered, and then repeats
this process until all blocks coverable by at least one test
case have been covered.

To date, numerous test case prioritization techniques have
been proposed, and a recent paper by Yoo and Harman [13]
provides a comprehensive overview of these techniques.
While the goal of the proposed techniques is to improve
the effectiveness of regression testing, to be useful in prac-
tice, techniques should be applicable within various testing
environments and contexts. Recent research on test case
prioritization has employed empirical studies to evaluatethe
cost-benefit tradeoffs among techniques considering various
factors and testing contexts [14], [15], [16], [17], [18].
For instance, Do et al. [14] and Walcott et al. [18] have
studied the effects of time constraints imposed on regression
testing through empirical studies. Qu et al. [17] consider
prioritization in the context of configurable systems.

Studies such as these have allowed researchers and prac-
titioners to understand factors that affect the assessmentof
techniques and to compare techniques in terms of costs
and benefits relative to actual software systems. However,
studies to date have not considered strategies for selecting
appropriate techniques under particular circumstances as
systems evolve. Only few studies [19], [20] have done
on the problem of helping practitioners choose appropriate
techniques under particular system and process constraints.
Harrold et al. [20] present empirical results that demonstrate
how code modifications can affect the choice of regres-
sion test selection methods. Elbaum et al. [19] perform
experiments exploring characteristics of program structure,
test suite composition, and changes on prioritization, and

identified several metrics characterizing these attributes that
correlate with prioritization effectiveness. The empirical re-
sults of their study provide insights into which prioritization
technique is appropriate (or not appropriate) under specific
testing scenarios. Unlike our approach, these two studies
evaluate techniques solely relied on software metrics and
did not consider the notion of software evolution context.

Since many factors can be involved in evolving systems,
selecting appropriate techniques for each version can be a
multiple criteria decision making (MCDM) problem. Ana-
lytic Hierarchy Process (AHP) is one of the widely used
MCDM methods, and many areas that involve complex
decision problems, such as business, manufacturing, science
and engineering. For instance, Kamal and Al-Harbi [21] use
AHP in project management to determine the contractors’
competence or ability to participate in the project bid. AHP
has also been used in determining the best manufacturing
system [22], layout design [23], and the evaluation of
technology investment decisions [24].

Recently AHP has been used in software engineering ar-
eas. Barcusa and Montibellerb [25] use AHP to allocate soft-
ware development work in distributed teams. They develop a
multi-criteria decision model to support the distributed team
work allocation decision by using decision conferencing
and multi-attribute value analysis. Finnie et al. [26] use
AHP to prioritize software development productivity factors,
and Karlsson et al. [9] and Perini et al. [27] compare
AHP with other alternative method in prioritizing software
requirements. Yoo et al. [11] use AHP to improve test case
prioritization techniques by employing expert knowledge,
and compare the proposed approach with the conventional
coverage-based test case prioritization technique. Unlike
their study, in this paper, we utilize AHP to develop adaptive
regressions testing strategy, which helps identify the best test
case prioritization techniques across system lifetime.

III. A DAPTIVE REGRESSIONTESTING (ART) STRATEGY

In this section, we describe AHP method and how AHP
is used for creating ART strategy using an example.

A. AHP Method

To use AHP, decision makers first define a hierarchy that
describes the problem they want to solve. As shown in
Figure 1.a, adapted from [7], an AHP hierarchy consists of a
goal that they want to achieve, alternatives that are available
to reach the goal, and criteria that are factors that may be
used in decision making about these alternatives. The criteria
can be further partitioned into sub-criteria if necessary.

Once decision makers define an AHP hierarchy, two
types of pairwise comparisons are performed: between pairs
of criteria and between pairs of alternatives as shown in
Figure 1.b. When comparing pairs of criteria (the upper left
table), decision makers assign relative importance weights
to criteria; for example, C1 is given importance 4 relative



(a) An AHP hierarchyC 1 C 2 C 3 C 4 C 5 L o c a lP r i o r i t yC 1 1 1 / 3 2 4 3 0 . 2 4 7C 2 3 1 5 3 2 0 . 3 8 7C 3 1 / 2 1 / 5 1 1 / 3 1 / 2 0 . 0 7C 4 1 / 4 1 / 3 3 1 4 0 . 1 8 6C 5 1 / 3 1 / 2 2 1 / 4 1 0 . 1 1 A 1 A 2 A 3 L o c a lP r i o r i t yA 1 1 1 / 2 3 0 . 3 2A 2 2 1 4 0 . 5 6A 3 1 / 3 1 / 4 1 0 . 1 2A 1 A 2 A 3 L o c a lP r i o r i t yA 1 0 . 4 5A 2 0 . 3 6A 3 0 . 1 9C r i t e r i o n 2 C r i t e r i o n 5A 1 A 2 A 3 L o c a lP r i o r i t yA 1 1 1 / 4 3 0 . 2 3A 2 4 1 5 0 . 6 7A 3 1 / 3 1 / 5 1 0 . 1C r i t e r i o n 1C o m p a r i s o n s b e t w e e n c r i t e r i a C o m p a r i s o n s b e t w e e n a l t e r n a t i v e s
C 10 . 2 4 7 C 20 . 3 8 7 C 30 . 0 7 C 40 . 1 8 6 C 50 . 1 1 G l o b a lP r i o r i t yA 1 0 . 2 3 0 . 4 5 0 . 1 5 0 . 3 8 0 . 3 2 0 . 3 5A 2 0 . 6 7 0 . 3 6 0 . 3 7 0 . 4 0 . 5 6 0 . 4 7A 3 0 . 1 0 . 1 9 0 . 4 8 0 . 2 2 0 . 1 2 0 . 1 8

(b) An AHP Example

Figure 1. An AHP hierarchy and an example application of AHP.

to C4. After completing this matrix, the assigned values
are normalized and the local priority of each criterion is
produced, which is shown in the rightmost column of the
table (and in the top row of the bottom table in the figure).
The local priority is calculated by the following equation:

LPi =
PN

j=1
(RWij)

P

N
i=1

P

N
j=1

(RWij)
, whereLPi is a local priority of

criterion i, RWij is a relative weight of criterioni over
criterion j, and N is the number of criteria (The local
priorities of alternatives are calculated in the same way).

Similarly, matrices that show the relative importance
of alternatives for each criterion are constructed. In this
example, five matrices are constructed because there are five
criteria (the upper right tables). Again, the assigned values
are normalized for each matrix, and local priorities are
produced for each alternative (the resulting local priorities
appear in the bottom table in the figure).

After calculating the local priorities for criteria and al-
ternatives, anM x N matrix is constructed, as shown in
the bottom table in Figure 1.b, whereM is the number of
alternatives considered andN is the number of criteria. In

our example,M is 3 andN is 5. Then, weighted sums of
the values per technique are calculated; these are shown
in the rightmost column (“global priorities”i). The global
priority is calculated by the following equation:GPk =∑N

j=1(LPAkj) ∗ (LPj)), whereGPk is a global priority
for alternativek, N is the number of criteria,LPAkj is
a local priority of alternativek (1 ≤ k ≤ M, M is the
number of alternatives) for criterionj, LPj is a local priority
of criterion j. Based on the weighted sum values, decision
makers can determine which alternative should be selected.
In this example,T2 (0.47) performs best andT1 (0.35) next
best, withT3 (0.18) far behind.

B. Applying AHP to Prioritization Strategy

We now describe how AHP is applied to prioritization
strategy that we use in this work. While we describe this in
terms of test case prioritization using one of the programs
we used in our study, the approach could be applied to any
regression testing techniques and any system for which the
required information is available.

As outlined in the prior section, to apply AHP to priori-
tization strategy, the following steps are required:

1. Set a goal
2. Identify alternatives that are available to reach the goal
3. Identify evaluation criteria for alternatives
4. Pairwise comparisons: between pairs of criteria and

between pairs of alternatives
5. Obtain global priorities of alternatives

The following subsections describe each of these in detail.

1) Step 1: Set a Goal:Suppose that the goal of test
engineers is to choose the most cost-effective test case
prioritization technique in application to a particular system
version.

2) Step 2: Identify Alternatives:To achieve this goal, test
engineers consider several different types of prioritization
techniques as alternatives. For instance, test engineers could
consider traditional coverage-based test case prioritization
techniques, such as total block coverage based test case
prioritization, and additional block coverage based test case
prioritization.

3) Step 3:Identify Evaluation Criteria:As criteria, test
engineers choose factors that are influential in evaluatingtest
case prioritization techniques. For instance, test engineers
could consider the cost factors that can affect the choice of
techniques, such as the cost of applying test case prioritiza-
tion technique or the cost of software artifact analysis.

4) Step 4: Pairwise Comparisons:Next, two types of
pairwise comparisons are performed: between pairs of cri-
teria and between pairs of techniques as we explained
in Section III-A. To do so, test engineers assign relative
importance weights to criteria and techniques using the scale
of weights they define. In this step, test engineers rely on



their experiences and history data regarding the performance
of test case prioritization techniques.

5) Step 5: Obtain Global Priorities:Once test engineers
assign relative weights, global priorities are calculatedas
explained in Section III-A and this step can be automated
by building an AHP tool. Based on global priorities, test
engineers determine which technique they should use for
the particular version of the program.

Steps 2 and 3 are dependent on an organization’s testing
practices and environment. Figure 2 summarizes steps 4
and 5 graphically. As we can see from the figure, the test
engineer examines history data and various software artifacts
for the current version, and assigns relative weights for
criteria and techniques. This process requires human judg-
ment, so it is done manually. In practice, often organizations
rely on human experts’ opinions or experienced members’
judgment when they make important technical decisions
(e.g., which tools or techniques should be used), so this is
not an uncommon process in software industry.

The rest of the processes can be automated. The AHP
tool takes relative weights of criteria and techniques, and
produces matrices shown in Figure 1. Then, finally the test
engineer can decide which technique should be used based
on global priorities that the tool produced.H i s t o r y D a t aF r o m P r e v i o u sE m p i r i c a lS t u d i e sH i s t o r y D a t aF r o m P r i o rR e l e a s e sS o f t w a r e m e t r i c s o ft h e c u r r e n t v e r s i o nC l a s s e sT e s t sC h a n g eM e t r i c sP r o g r a mS i z e F i n a lD e c i s i o n

A H PT o o l
S e l e c t e dT e c h n i q u eT e s t e r

Figure 2. AHP Process

IV. EMPIRICAL STUDY

In this study, we address the following research question:

RQ: Is AHP effective for selecting appropriate test case
prioritization techniques across system lifetime?

To investigate the research question, we performed a con-
trolled experiment. The following subsections present, for
this experiment, our objects of analysis, variables and mea-
sures, experiment setup and design, and threats to validity.
Following this presentation, in Section V we present our data

and analysis, in Section VI we address threats to validity,
and in Section VII we discuss practical implications of the
results.

A. Objects of Analysis

We considered five Java programs obtained from the SIR
infrastructure [28] as our objects of analysis:ant, xml-
security, jmeter, nanoxml, andgalileo. Ant is a Java-based
build tool, jmeter is a load testing tool for client/server
application, andxml-securityprovides security functionality
for XML data. Nanoxml is a small XML parser for Java,
and galileo is a Java bytecode analyzer. Several sequential
versions of each of these programs are available. The first
three programs are provided with JUnit test suites, and
the last two are provided with TSL (Test Specification
Language) test suites [29].

Table I lists, for each of our objects of analysis, data
on its associated “Versions” (the number of versions of the
object program), “Classes” (the number of class files in the
latest version of that program), “Size (KLOCs)” (the number
of lines of code in the latest version of the program), and
“Test Cases” (the number of test cases available for the latest
version of the program). To study the research question we
require fault data, so we utilized mutation faults provided
with the programs [30]. The rightmost column, “Mutation
Faults”, is the total number of mutation faults of the program
(summed across all versions).

Table I
EXPERIMENT OBJECTS ANDASSOCIATEDDATA

Objects Versions Classes Size Test Mutation
(KLOCs) Cases Faults

ant 9 914 61.7 877 412
jmeter 6 434 42.2 78 386
xml-sec. 4 145 15.9 83 246
nanoxml 6 64 3.1 216 204
galileo 16 68 14.5 912 2494

B. Variables and Measures

1) Independent Variable:To investigate our research
question we manipulate one independent variable:test case
prioritization technique application mapping strategy, which
assigns, to a specific sequence of versionsSi ,Si+1 , . . .Sj

of systemS, specific test case prioritization techniques. As
test case prioritization techniques we utilize original order
(Orig: the order in which test cases are executed in the
original testing scripts provided with the object programs),
random order (Rand: in our experiment, averages of runs of
30 random orders), and two test case prioritization heuristics
(total block coverage (Tcov) and additional block coverage
(Acov) prioritization techniques explained in Section II).

We consider five mapping strategies as follows:

• Tcov-all: Use of the total coverage technique across
versions (a control)



• Acov-all: Use of the additional coverage technique
across versions (a second control)

• Rand-all: Use of the random technique across versions
(a third control)

• Orig-all: Use of the original technique across versions
(a fourth control; it is used as a baseline strategy)

• AHP: Evolutionary adaptation of techniques following
the AHP method described in Section III. The AHP
method selects the best technique among four priori-
tization techniques (Tcov, Acov, Rand, and Orig) for
each version based on the criteria we identifies and
expert’s opinion. More details on how we applied AHP
are described in Section IV-C.

2) Dependent Variable and Measures:Our dependent
variable is arelative cost-benefit valueproduced by applying
EVOMO economic model presented in [31], using a further
calculation described below (Equation 1). The cost and
benefit components are measured in dollars. To determine
the relative cost-benefitof prioritization techniqueT with
respect to baseline techniquebase, we use the following
equation:

(BenefitT − CostT ) − (Benefitbase − Costbase) (1)

When this equation is applied, positive values indicate that T

is beneficial compared tobase, and negative values indicate
otherwise. We used the original technique as a baseline
in this experiment. This means that the Orig-all strategy
functions as a baseline strategy when we consider the cost-
benefit values across all versions of the program.

EVOMO1 involves two equations as shown in Equations 2
and 3: one that captures costs related to the salaries of the
engineers who perform regression testing (to translate time
spent into monetary values), and one that captures revenue
gains or losses related to changes in system release time (to
translate time-to-release into monetary values).

Cost = salary ∗

n
X

i=2

(setup(i) + obsoleteT ests(i)

+ resultV alidation(i) + missedFaults(i)) (2)

Benefit = revenue ∗

n
X

i=2

(deliveryT ime(i)

− (setup(i) + obsoleteT ests(i) + analysis(i − 1)

+ runTechinique(i) + testExecution(i)

+ resultsV alidation(i) + faultDetectionDelay(i))) (3)

Significantly, the model accounts for costs and benefits
across entire system lifetimes, rather than on snapshots
(i.e. single releases) of those systems, through equations
that calculate costs and benefitsacross entire sequences of
system releases. The major cost components that EVOMO

1Here we just summarize each equation briefly. See [31], [32] for detailed
descriptions.

captures are as follows: costs for applying regression testing
techniques, costs associated with missed faults, costs for
artifact analysis, costs of delayed fault detection feedback,
and costs associated with obsolete tests.

C. Experiment Setup and Procedure

To measure costs of delayed fault detection feedback
and costs for applying regression testing techniques, we
required object programs containing faults. Similar to our
early studies [14], [32], to obtain the fault data required
to investigate our research question, for each version of
each program we randomly selected amutant groupfrom
the set of that version’s mutation faults. Each mutant group
contained at most 10 mutants.

To apply AHP, we followed steps described in Section III.
As a human tester, one graduate student who has three
years of software industry experience performed the AHP
processes. The student considered the following criteria to
evaluate prioritization techniques:

• Cost of applying test case prioritization technique: the
time required to run a test case prioritization algorithm

• Cost of software artifact analysis: the costs of instru-
menting programs and collecting test execution traces

• Cost of delayed fault detection: the waiting time for
each fault to be exposed while executing test cases
under a test case prioritization technique

• Cost of missed fault: the time required to correct missed
faults

Next, the student performed pairwise comparisons using
the scale of weights as shown in Table II, which has been
commonly used by others [7], [11]. When the student as-
signed relative weights, he utilized history data regarding the
performance of test case prioritization techniques observed
from previous several empirical studies [14], [15], [32], [33].

To support the rest of the processes, we implemented a
Java Swing-based AHP tool. The AHP tool takes relative
weights of criteria and techniques, and produces local and
global priorities based on the AHP algorithm [7]. Finally
the student determined which technique should be used for
each version of the program using global priorities.

Table II
SCALE OF WEIGHTS

Weight Definition of Weight
1 equally important
3 moderately important
5 strongly important
7 very strongly important
9 extremely important

Often software companies have time pressure with the
product release, due to the constraint budgetary problem
and competitive software market. In practice, situations in
which time constraints intervene to affect product release
are frequent in the software industry, and typically software



companies cut back on testing activities in order to ensure
timely release of their product. Further, the degree of time
constraints can vary as systems evolve. For instance, for a
certain release, a company could suffer more time constraints
compared to other releases due to the complex feature addi-
tion or the technical personnel loss. Thus, in this experiment,
we consider the situation with time constraints that vary
with each version when we evaluate test case prioritization
techniques.

To simulate this situation, for each of the test case
prioritization techniques, we randomly assigned the levelof
time constraints (25%, 50%, or 75%) for each version, and
foreshortened the test execution process for each version
by the assigned time constraint level. We ran four sets of
random assignments across all versions for each program,
applied the AHP processes we just explained, and collected
cost-benefit values for all strategies.

V. DATA AND ANALYSIS

In this section, we present the results of our study. We
summarize the data in Table III. Table III shows experiment
results that were collected by running four sets of random
assignments (run 1 through run 4 in the table) of three time
constraint levels for each version of the program. Since the
Orig-all strategy is the baseline used in our relative cost-
benefit calculation, results for that strategy are not shown
explicitly in the tables.

Table III contains five subtables, and each subtable cor-
responds to the results of each program. All of the data in
these tables shows the relative cost-benefit value in dollar
with respect to the baseline technique (Orig) as defined in
Section IV-B2. Higher values indicate greater cost-benefits.
Within each subtable in the tables, columns are labeled with
four runs, for each run listing four test case prioritization
testing strategies. Rows are labeled with versions of the
program and the last row (“Total”) shows the sum of the
cost-benefit values for all versions . Now, we describe each
of these subtables.

The first subtable shows the results forant. The results
vary across versions, but the total cost-benefit values indicate
that the prioritization techniques selected by AHP were more
cost-effective than those used by the control strategies except
for one case (Rand-all in run 3 was better than AHP).
In particular, the cost-benefit value gap between the AHP
strategy and the two control strategies (Tcov-all and Acov-
all) is large, and Tcov-all was even worse than the baseline
strategy in some cases (run 1 and run 4). Among the control
strategies, Rand-all produced the best results.

The second subtable shows the results forjmeter. Similar
to the results onant, the AHP strategy was more cost-
effective than the control strategies except for run 2. Among
the control strategies, Acov-all produced the best results,
Rand-all performed relatively well, but Tcov-all was even
worse than the baseline strategy in most cases.

The third subtable shows the results forxml-security. As
the results show, the AHP strategy was more cost-effective
than the two control strategies (Tcov-all and Rand-all), but it
was not better than the Acov-all strategy. Unlike the results
on ant and jmeter, Tcov-all produced better results than the
baseline strategy.

The fourth subtable shows the results fornanoxml. Over-
all, the AHP strategy outperformed all control strategies
except for one case (Acov-all in run 2 was better than AHP).
Similar to the results onxml-security, Tcov-all produced
better results than the baseline strategy.

The last subtable shows the result forgalileo. The results
show that the AHP strategy was more cost-effective than
control strategies except for one case (Acov-all in run 3
was better than AHP). Tcov-all produced worse results than
the baseline strategy in all cases.

The total cost savings across all versions are one mea-
sure that shows the effectiveness of the strategies, but this
measure can be misleading because abnormal cost-benefit
values for particular version could affect the entire outcome.
Thus, we examined how often the strategies produce the best
results across all versions.

Figure 3 presents bar graphs of the results. The figure
contains five subfigures that present results for each of the
object programs, and each subfigure contains bar graphs
for four prioritization strategies showing the total number
versions that produced the best results by those strategies,
for the given object program and four runs. For instance,
in run 1 for ant, Tcov-all performed best for one version
(version 1 in Table III) and Acov-all performed best for two
versions (versions 2 and 4 in Table III).

Overall, the AHP strategy produced the best results (16
out of 20 cases were better than the control strategies – in
total, we have the 20 observed data points.) and the Acov-all
strategy performed relatively well compared to other control
strategies (9 out of 20 cases performed best), but the trend
varied across programs.

In the cases ofant and nanoxml, the AHP strategy was
consistently better than all three strategies across all runs
with one exception. In the case ofxml-security, Acov-all
was slightly better than AHP.

Comparing the control strategies, Rand-all outperformed
others inant, and it was even better than AHP for one case
(run 3). However, in other cases, Rand-all did not perform
well. In particular, in the case ofxml-security, Rand-all did
not produce any single best result. Similar to the results we
observed in Table III, Tcov-all performed worst. Only in
three programs (ant, jmeter, andxml-security), it produced
the best result for one version for six out of 12 cases. In
other programs, it did not produce any single best result.

Overall, the trends we observed from this figure are
consistent with those we observed from Table III, but we also
found some differences. While AHP outperformed 15 out
20 cases when we considered the total cost-benefit values,



Table III
Experiment Results: Relative Cost-Benefit Values (dollars)

ant
Run 1 Run 2 Run 3 Run 4

Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP
-all -all -all -all -all -all -all -all -all -all -all -all

v1 135 77 -40 -40 367 232 102 102 -19 -70 -98 -98 135 77 -40 -40
v2 205 209 139 209 205 209 139 209 207 209 79 209 55 326 161 326
v3 -58 -62 48 48 -151 92 49 49 -58 -62 48 48 -59 91 46 46
v4 -66 14 0 14 -155 -72 -58 -58 12 13 42 13 -66 14 0 14
v5 -99 -133 26 26 -157 -191 18 18 -99 -133 26 26 -145 -179 32 32
v6 -142 -180 7 7 -142 -180 7 7 -37 -113 87 -37 337 407 560 407
v7 -160 -201 32 32 275 234 324 324 -142 -183 48 48 -160 -201 32 32
v8 -107 -248 146 146 -107 -248 146 146 143 116 292 292 -128 115 215 215

Total -292 -524 358 442 135 76 727 797 7 -223 524 501 -31 650 1006 1032

jmeter
Run 1 Run 2 Run 3 Run 4

Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP
-all -all -all -all -all -all -all -all -all -all -all -all

v1 15 17 50 17 47 135 180 135 15 17 50 50 -73 116 97 116
v2 -51 153 93 153 -85 -85 -6 -85 -51 153 93 153 -51 153 93 153
v3 130 266 277 277 130 266 277 277 -66 22 -36 22 -66 22 -36 22
v4 121 31 5 121 -64 -65 -142 -64 35 274 5 274 35 274 5 274
v5 -196 -196 -135 -196 -174 -144 -136 -174 -174 -144 -136 -174 -196 -196 -135 -196

Total 19 271 290 372 -146 107 173 89 -241 322 -24 325 -351 369 24 369

xml-security
Run 1 Run 2 Run 3 Run 4

Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP
-all -all -all -all -all -all -all -all -all -all -all -all

v1 177 274 88 274 37 38 6 38 268 331 203 331 37 38 6 38
v2 26 117 -44 117 26 117 -44 117 -48 14 -190 14 26 117 -44 117
v3 170 170 71 170 499 546 315 546 170 170 71 170 499 546 315 499

Total 373 561 115 561 562 701 277 701 390 515 84 515 562 701 277 654

nanoxml
Run 1 Run 2 Run 3 Run 4

Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP
-all -all -all -all -all -all -all -all -all -all -all -all

v1 931 966 975 975 928 962 860 860 -59 -23 -15 -15 931 966 975 975
v2 468 778 596 778 565 790 683 790 565 790 683 790 468 778 596 778
v3 -43 40 -27 40 -43 40 -27 40 163 657 525 657 509 563 482 563
v4 -48 -50 1 -48 -48 -50 1 -48 -48 -50 1 -50 -48 -50 1 -48
v5 -27 39 -40 39 451 541 453 541 -27 39 -40 39 451 541 453 541

Total 1281 1773 1505 1784 1853 2283 1970 2183 594 1413 1154 1421 2311 2798 2507 2809

galileo
Run 1 Run 2 Run 3 Run 4

Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP Tcov Acov Rand AHP
-all -all -all -all -all -all -all -all -all -all -all -all

v1 172 691 580 691 -51 461 401 461 -125 715 515 715 172 691 580 691
v2 -115 366 297 366 -114 368 251 368 -114 368 251 368 -115 366 297 366
v3 235 526 381 526 51 242 187 187 -75 452 318 452 235 526 381 526
v4 168 309 380 380 -71 168 309 309 5 56 13 13 5 56 13 13
v5 -3 56 9 -3 667 700 565 667 667 700 565 667 -3 56 9 -3
v6 -115 344 283 344 -115 344 283 344 -49 228 246 228 -40 272 262 -40
v7 -186 216 130 216 -98 224 170 224 -76 285 250 285 -186 216 130 216
v8 -75 379 289 379 -126 364 246 364 -126 364 246 364 -75 379 289 379
v9 -311 204 118 204 -249 224 146 224 -76 469 374 469 -311 204 118 204
v10 -77 456 151 456 -77 456 151 456 -74 405 256 405 -74 405 256 405
v11 -4 575 528 575 -174 579 462 579 -174 579 462 579 -174 579 462 579
v12 -105 148 154 148 -3 136 177 136 -84 228 232 228 -105 148 154 148
v13 -72 112 250 250 -72 112 250 250 -85 -57 120 120 -85 -57 120 120
v14 -86 -251 -249 -86 -83 -216 -124 -83 -122 273 188 -122 -86 -251 -249 -86
v15 -80 211 293 211 -80 211 293 211 -111 -125 64 64 -111 -125 64 64

Total -654 4342 3594 4657 -595 4373 3767 4697 -619 4940 4100 4835 -953 3465 2886 3582

it outperformed 16 out of 20 cases when we considered the
total number of versions that performed best. In the case
of jmeter, the total cost-benefit of Acov-all was higher than
that of AHP, but it did not perform better than AHP when
we compared the number of versions that produced the best
results by Acov-all and AHP.

VI. T HREATS TOVALIDITY

This section describes the construct, internal and external
validity threats to the validity of our study.

Construct Validity: Two issues involve threats to con-
struct validity. (1) We identified four evaluation criteria
to apply the AHP method mainly considering the costs



00 . 5 11 . 5 22 . 5 33 . 5 44 . 5
R u n 1 R u n 2 R u n 3 R u n 4

00 . 511 . 522 . 533 . 544 . 5
R u n 1 R u n 2 R u n 3 R u n 4

n a n o x m l
j m e t e r

T ot al numb erof versi ons
th at prod uced th eb est resul t s

T ot al numb erof versi ons
th at prod uced th eb est resul t s

T ot al numb erof versi ons
th at prod uced th eb est resul t s

0246
81 01 2

R u n 1 R u n 2 R u n 3 R u n 4
00 . 5 11 . 5 22 . 5 33 . 5

R u n 1 R u n 2 R u n 3 R u n 4
012345
678

R u n 1 R u n 2 R u n 3 R u n 4
a n t

x m l / s e c u r i t y
g a l i l e o

Figure 3. Experiment Results: The Total Number of Versions That Produced the Best Results by Prioritization Testing Strategies

that are associated with test case prioritization techniques.
Other evaluation criteria, such as risks for estimated cost-
benefit factors, applicability of a technique to a certain type
of software artifact, and relevance to the specific testing
process, could be considered. (2) The pairwise comparison
value in AHP is subject to human judgment (in our case,
a graduate student) and thus the results can be biased by
personnel’s knowledge and experience.

Internal Validity: The inferences we made about the
effectiveness of AHP could have been affected by potential
faults in our experiment tools. To control this threat, we
validated our AHP tool using several examples. Other tools
were from SIR [28], and they have been validated through
numerous experiments.

External Validity: Three issues limit the generalization of
our results. (1) MCDM approach and test case prioritization
technique representativeness. In this study, we considered
only one type of MCDM approaches and two conventional
test case prioritization techniques, so our results cannotbe
generalized because they are not representative of MCDM
approaches and test case prioritization techniques. (2) Object
program and mutation fault representativeness. The object
programs are of small and medium size. Complex industrial
programs with different characteristics may be subject to

different cost-benefit tradeoffs. We used mutation faults
generated by our mutation tool, but there is some evidence
that mutation faults can be representative of real faults [30],
[34]. Control for these threats can be achieved only through
additional studies with wider populations of programs and
faults, and different prioritization techniques.

VII. D ISCUSSION

We now draw on the results of our analyses, together
with additional consideration of our data, to derive practical
implications of these results.

ART strategy results:Our results indicate that the prioriti-
zation techniques selected by AHP across the entire system
lifetime can be more cost-effective than those used by the
control approaches with the exception of some cases.

Through the empirical study, we observed the following
trends. Overall, the AHP strategy’s performance was stable
across all programs for all runs, and the Acov-all strategy
also produced better results compared to other control strate-
gies, and in some cases (run 4 inxml-securityand run 3 in
galileo), it even outperformed the AHP strategy. However, it
was not as stable as the AHP strategy. For instance, onant
for all runs, the Acov-all strategy was worse than all other



strategies, and onjmeter, it was close to the worst case for
half of the cases.

In the case of the Rand-all strategy, it was better than
the Tcov-all strategy in most cases (except for all cases
in xml-security). However, since our results for the random
technique involve averages of multiple runs, individual ran-
dom orders may vary widely in performance. The Tcov-all
strategy was not worst for all cases, but overall performance
is not preferable to others. In particular, in several cases(two
runs inant, three runs injmeter, and all runs ingalileo), it
was even worse than the baseline strategy.

Practical implications of the results:So far we have dis-
cussed our major findings and the results of our experiment.
Now, we discuss practical implications of our results.

From several prior empirical studies of prioritization [14],
[15], [32], [33]), we learned that typically prioritization
heuristics are more cost-effective compared to control tech-
niques, but we also learned that various factors related to
software, its associated artifacts (e.g., program size, test
suite size, test suite granularity, and the amount of change
between versions), and organization’s testing environment
could affect the relationships between techniques. Thus,
adopting different types of test case prioritization techniques
considering such factors is potentially a practical approach
for organizations who have time pressure with the product
release, due to the constraint budgetary problem and com-
petitive software market.

To our knowledge, our study is the first attempt to
investigate the effectiveness of adaptive regression testing
strategy. Our proposed strategy produced promising results,
and we believe that our empirical methodology and findings
from our study provide insights into how such investigation
can be performed and what types of MCDM approaches and
evaluation criteria can be considered.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we have investigated an adaptive regression
testing (ART) strategy that utilizes one of the multiple
criteria decision making (MCDM) approaches, Analytic
Hierarchy Process (AHP), and presented an empirical study
assessing the ART strategy. Our results show that our ART
strategy can assist researchers and practitioners in choosing
cost-effective techniques across system lifetime.

As with all empirical studies, our study also has several
limitations as we discussed in Section VI. These limitations
can be addressed only through further studies of additional
artifacts and regression testing techniques. For future work,
we intend to investigate ART strategies further considering
several aspects.

First, in this study, we chose the AHP method to imple-
ment an ART strategy, but there are many other MCDM
approaches available including Weighted Sum Model and
modified AHP methods. Thus, the next natural step is

to investigate whether different types of approaches help
improve ART strategies.

Second, in this study, we used only 4 evaluation criteria,
but in order to limit threats to validity as we addressed
in Section VI, we intend to investigate ART strategies
considering other types of evaluation criteria.

Third, we considered only two test case prioritization
heuristics, but we intend to investigate ART strategies that
employ other types of prioritization techniques including
other regression testing techniques, such as regression test
selection techniques. Also, we intend to develop new regres-
sion testing techniques so that we can improve our chances
of detecting faults under time-constrained situations.

Acknowledgments

This work was supported in part by NSF under Awards
CNS-0855106 and CCF-1050343 to North Dakota State
University.

REFERENCES

[1] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing
to large software systems,” inProceedings of the International
Symposium on Foundations of Software Engineering, Nov.
2004.

[2] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chi-
anti: A tool for change impact analysis of Java programs,”
in Proceedings of the International Conference on Object-
Oriented Programming Systems, Languages, and Applica-
tions, Oct. 2004, pp. 432–448.

[3] G. Rothermel and M. J. Harrold, “A safe, efficient regression
test selection technique,”ACM Transactions on Software
Engineering and Methodologies, vol. 6, no. 2, pp. 173–210,
Apr. 1997.

[4] S. Elbaum, A. Malishevsky, and G. Rothermel, “Prioritizing
test cases for regression testing,” inProceedings of the
International Symposium on Software Testing and Analysis,
Aug. 2000, pp. 102–112.

[5] A. Srivastava and J. Thiagarajan, “ Effectively prioritizing
tests in development environment,” inProceedings of the
International Symposium on Software Testing and Analysis,
Jul. 2002, pp. 97–106.

[6] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal, “A
study of effective regression testing in practice,” inProceed-
ings of the International Symposium on Software Reliability
Engineering, Nov. 1997, pp. 230–238.

[7] T. L. Saaty,The Analytic Hierarchy Process. McGraw-Hill,
1980.

[8] E. Triantaphyllou and K. Baig, “The impact of aggregating
benefit and cost criteria in four MCDA methods,”IEEE
Transactions on Engineering Management, vol. 25, no. 2, pp.
213–226, Feb. 2005.

[9] B. R. J. Karlsson, C. Wohlin, “An evaluation of methods for
prioritizing softawre requirements,”Information and Software
Technology, vol. 39, pp. 939–947, 1998.



[10] J. E. Steiguer, J. Duberstein, and V. Lopes, “The analytic
hierarchy process as a means for integrated watershed man-
agement,” in Interagency Conference on Research on the
Watersheds, Oct. 2003, pp. 736–740.

[11] S. Yoo, M. Harman, P. Tonella, and A. Susi, “Clustering test
cases to achieve effective and scalable prioritisation incorpo-
rating expert knowledge,” inProceedings of the International
Conference on Software Testing and Analysis, Jul. 2009, pp.
201–212.

[12] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold, “Prior-
itizing test cases for regression testing,”IEEE Transactions
on Software Engineering, vol. 27, no. 10, pp. 929–948, Oct.
2001.

[13] S. Yoo and M. Harman, “ Regression testing minimisation,
selection and prioritisation : A survey,”Software Testing,
Verification, and Reliability, Mar. 2010.

[14] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “The
effects of time constraints on test case prioritization: A series
of controlled experiments,”IEEE Transactions on Software
Engineering, vol. 26, no. 5, Sep. 2010.

[15] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test
case prioritization: A family of empirical studies,”IEEE
Transactions on Software Engineering, vol. 28, no. 2, pp.
159–182, Feb. 2002.

[16] A. Malishevsky, G. Rothermel, and E. S., “Modelig the cost-
benefits tradeoffs for regression testing techniques,” inConf.
Softw. Maint., Oct. 2002, pp. 204–213.

[17] X. Qu, M. Cohen, and R. G., “Configuration-aware regression
testing: An empirical study of sampling and prioritization,”
in Proceedings of the International Conference on Software
Testing and Analysis, Jul. 2008, pp. 75–86.

[18] A. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos,
“Time-aware test suite prioritization,” inProceedings of the
International Conference on Software Testing and Analysis,
Jul. 2006, pp. 1–12.

[19] S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky,
“Selecting a cost-effective test case prioritization technique,”
Software Quality Journal, vol. 12, no. 3, 2004.

[20] M. J. Harrold, D. Rosenblum, G. Rothermel, and E. Weyuker,
“Empirical studies of a prediction model for regression
test selection,”IEEE Transactions on Software Engineering,
vol. 27, no. 3, pp. 248–263, Mar. 2001.

[21] K. M. A.-S. Al-Harbi, “Application of the AHP in project
management,”International Journal of Project Management,
vol. 19, pp. 19–27, Jan. 2001.

[22] R. N. Wabalickis, “Justification of fms with the analytic hier-
archy process,”IEEE Transactions on Software Engineering,
vol. 7, pp. 175–182, 1988.

[23] K. E. Cambron and G. W. Evans, “Layout design using
the analytic hierarchy process,”Computers and Industrial
Engineering, vol. 20, pp. 221–229, 1991.

[24] T. O. Boucher and E. L. MacStravic, “Multiattribute evalua-
tion within a present value framework and its relation to the
analytic hierarchy process,”The Engineering Economist, pp.
55–71, 1990.

[25] A. Barcusa and G. Montibeller, “Supporting the allocation
of software development work in distributed teams with
multi-criteria decision analysis,” inMultiple Criteria Decision
Making for Engineering, Jun. 2008, pp. 464–475.

[26] G. E. W. Gavin R. Finnie and D. I. Petkov, “Prioritizing
software development productivity factors using the analytic
hierarchy process,”Journal of Systems and Software, vol. 22,
pp. 129–139, Aug. 1993.

[27] A. S. Anna Perini, Filippo Ricca, “Tool-supported require-
ments prioritization: Comparing the AHP and CBRank meth-
ods,” Information and Software Technology, vol. 51, pp.
1021–1032, Jun. 2009.

[28] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact,”International Journal on Empirical
Software Engineering, vol. 10, no. 4, pp. 405–435, 2005.

[29] T. Ostrand and M. J. Balcer, “The category-partition method
for specifying and generating functional tests,”Comm. ACM,
vol. 31, no. 6, Jun. 1988.

[30] H. Do and G. Rothermel, “On the use of mutation faults in
empirical assessments of test case prioritization techniques,”
IEEE Transactions on Software Engineering, vol. 32, no. 9,
pp. 733–752, Sep. 2006.

[31] ——, “Using sensitivity analysis to create simplified eco-
nomic models for regression testing,” inProceedings of the
International Conference on Software Testing and Analysis,
Jul. 2008, pp. 51–62.

[32] ——, “An empirical study of regression testing techniques
incorporating context and lifecycle factors and improved
cost-benefit models,” inProceedings of the ACM SIGSOFT
Symposium on Foundations of Software Engineering, Nov.
2006.

[33] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold, “Test
case prioritization: An empirical study,” inInt’l. Conf. Softw.
Maint., Aug. 1999, pp. 179–188.

[34] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation
an appropriate tool for testing experiments?” inInt’l. Conf.
Softw. Eng., May 2005, pp. 402–411.


