Then application of the recurrence relation (6) shows that

$$
f(x)=b_{0} p_{0}(x)+b_{1}\left\{p_{1}(x)+\alpha_{0} p_{0}(x)\right\} .
$$

C. W. Clenshaw

National Physical Laboratory
Teddington, Middlesex
England
This note is published with the permission of the Director of the National Physical Laboratory.
${ }^{1}$ C. W. Clenshaw, "Polynomial approximations to elementary functions," MTAC, v. 8, 1954, p. 143-147.
${ }^{2}$ NBS Applied Mathematics Series 9, Tables of Chebyshev Polynomials $S_{n}(x)$ and $C_{n}(x)$. U. S. Govt. Printing Office, Washington, 1952 .

Conjectures Concerning the Mersenne Numbers

Conjectures concerning the Mersenne numbers are appropriate since they were inaugurated with one. A conjecture [1] that seems likely to be false, but unlikely to be proved false, is that all numbers p_{n} are prime ($n=1,2,3, \cdots$), where, for example, p_{4} is

$$
2^{2^{2^{2^{2}-1}-1}-1}
$$

Recursively, $p_{1}=3, p_{n+1}=2^{p_{n}}-1$. The first four are $3,7,127$ and $2^{127}-1$, all known to be prime. Any factor of p_{5} is congruent to 1 modulo p_{4}, so p_{5} certainly has no factor less than 2^{127}. Similarly

$$
2^{2^{2881}-1}-1
$$

is not divisible by any known prime, if $2^{2281}-1$ is still the largest known prime [2]. One can try to argue about the probability that a number of the form $2^{p}-1$ is prime, when p is known to be prime. The probability that a whole number x is prime is about $1 / \log x$, and is close to

$$
\begin{equation*}
\frac{1}{2} e^{\gamma}\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{5}\right) \cdots\left(1-\frac{1}{q}\right) \tag{1}
\end{equation*}
$$

where $q \doteqdot \sqrt{x}$, so the factors $\left(1-\frac{1}{2}\right)$, $\left(1-\frac{1}{3}\right)$, etc., can be regarded as probabilities that are not far from independent. But if $x=2^{p}-1$, only every p th factor of (1) should be taken, and the probability apparently ought to be about the p th root of $1 / p \cdot \log 2$, which is approximately 1 when p is large. But this argument is also invalid, as we may see from the statistics of Mersenne primes [2]. We may see from these statistics (assuming them to contain no gaps), that, if m_{n} denotes the nth Mersenne prime ($m_{1}=3$), then

$$
2.18 \log \log m_{n}<n<2.72 \log \log m_{n} \quad(3 \leqslant n \leqslant 17)
$$

while
$2.31 \log \log m_{17}=17$.

It is reasonable to suppose that the number of Mersenne primes less than x, when x is large, is about $2.3 \log \log x$. This conjecture may be shown to be equivalent to the assertion that the probability of $2^{p}-1$ being prime, when p is known to be prime and is large, is about $1.6(\log p) / p$, and is perhaps asymptotically $\left(\log _{2} p\right) / p$. If so, the probability that p_{5} is prime is negligible, and we should be able to say with confidence that our original conjecture was the exact opposite of the truth.

I. J. Good

25 Scott House
Princess Elizabeth Way
Cheltenham, England
${ }^{1}$ E. Catalan, Nonu. Corresp. Math., v. 2, 1876, p. 96; cf. L. E. Dickson, History of the theory of numbers, v. 1, 1934, p. 22, ref. 116.
${ }^{2}$ D. H. Lehmer, MTAC, v. 7, 1953, p. 72.

REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS

55[A, F].-Horace S. Uhler, "Hamartiexéresis as applied to tables involving logarithms," Nat. Acad. Sci., Proc., v. 40, 1954, p. 728-731 [1].

Hamartiexéresis appears to be a technical term in theology, meaning the absolute removal of sin.

This paper contains in tabular form, the exponents of the prime factors $(2,3, \cdots, 997)$ in the product (1!) $(2!) \cdots(1000!)$.

This table was used to check the first thousand entries in the table of F. J. Duarte [2]. Two errors were found:
$\log 99!$: the seventh quartet should read 8029 instead of 8929.
$\log 266!$: the eighth quartet should read 1897 instead of 1987.
Later calculations indicate no (non-cancelling) errors in the range from $n=1001$ to $n=1200$.
J. T.
${ }^{1}$ See also Nat. Acad. Sci., Proc., v. 41, 1955, p. 183, for errata.
${ }^{2}$ F. J. Duarte, Nouvelles tables de $\log n$! à 33 décimales, depuis $n=1$ jusqu'à $n=3000$. Geneva and Paris, 1927.

56[C, D, E, K, L, S].-Cecil Hastings, Jr., Jeanne T. Hayward, \& James P. Wong, Jr. Approximations for Digital Computers. Princeton University Press, Princeton, N. J., 1955, viii +201 p., 25 cm . Price $\$ 4.00$.

This book contains rational approximations of the following functions with approximate precision as indicated (there are several approximations to each function and the approximate precision of each is shown):
$\log _{10} x, 10^{-\frac{1}{2}} \leq x \leq 10^{\frac{1}{2}}, 3 \mathrm{D}, 5 \mathrm{D}, 6 \mathrm{D}, 7 \mathrm{D} ; \varphi(x)=\left(1-e^{-x}\right) / x, 0 \leq x<\infty$, 3D, 4D, 5D ; $\arctan x,-1 \leq x \leq 1,3 D, 4 D, 5 D, 6 D, 7 D, 8 D ; \sin \frac{1}{2} \pi x$, $-1 \leq x \leq 1,4 \mathrm{~S}, 6 \mathrm{~S}, 8 \mathrm{~S} ; 10^{x}, 0 \leq x \leq 1,4 \mathrm{~S}, 6 \mathrm{~S}, 7 \mathrm{~S}, 9 \mathrm{~S} ; W(x)=e^{-x} /\left(1+e^{-x}\right)^{2}$, $-\infty<x<\infty, 3 \mathrm{D}, 4 \mathrm{D}, 5 \mathrm{D} ; E^{1}(x)=e^{-x^{2} / 2} / \sqrt{2 \pi},-\infty<x<\infty, 3 \mathrm{D}, 3 \mathrm{D}, 4 \mathrm{D} ;$ $K(n)=\left(n-2 n^{2}-2 n^{3}\right) \ln (1+2 / n)+\left(2 n+18 n^{2}+16 n^{3}+4 n^{4}\right)(2+m)^{-2}$, $0 \leq n<\infty, 3 \mathrm{D} ; \Gamma(1+x), 0 \leq x \leq 1,5 \mathrm{D}, 5 \mathrm{D}, 6 \mathrm{D}, 7 \mathrm{D} ; \Psi(x)=(\pi / 2$
$-\arcsin x)(1-x)^{-\frac{1}{2}}, 0 \leq x \leq 1,4 \mathrm{D}, 5 \mathrm{D}, 6 \mathrm{D}, 7 \mathrm{D}, 8 \mathrm{D} ; \log _{2} x, 2^{-\frac{1}{2}} \leq x \leq 2^{\frac{1}{2}}$,

