
DISINTEGRATION OF MEASURES

BEN HAYES

Definition 1. Let (X, M, λ), (Y, N, µ) be sigma-finite measure spaces and let T : X →
Y be a measurable map. A (T, µ)-disintegration is a collection {λy}y∈Y of measures
on M such that:

(i) each λy is a sigma-finite measure and λy({x ∈ X : T (x) 6= y}) = 0 for almost
every x.

and for each nonnegative measurable function on f on X : :
(ii) The function y →

∫
f(x) dλy(x) is µ-measurable and

(iii)
∫

X
f(x) dλ(x) =

∫
Y

(∫
X

f(x) dλy(x)
)
dµ(y).

Our aim is to establish the following:

Theorem 2. Let λ be a sigma-finite regular Borel measure on a metric space X
and let T be measurable map from X into (Y, M, µ), where µ is sigma-finite and

such that T∗λ << µ. If M is countably generated and contains all singletons, then λ
has a (T, µ) disintegration. If {λ′

y}, {λy} are two such disintegrations then λy = λ′
y

almost everywhere, further if T∗λ = µ, then λy is a probability measure for almost

every y.

Lemma 3. Let X be a compact metric space, then there exists a countable set C ⊆
C(X, [0,∞)) which is closed under addition and scaling by non-negative rational

numbers and contains the constant function 1, with the following property. If l : C →
[0,∞) satisfies l(f+g) = l(f)+l(g), and l(qf) = ql(f) for every q ∈ Q∩[0,∞), f, g ∈
C then there exists a unique positive regular Borel measure µ on X such that l(f) =∫

f dµ.

Proof. Since X is compact metric we know that C(X) and hence C(X, [0,∞))
is separable (since subsets of separable metric spaces are separable) and thus we
can find a countable dense subset of C(X, [0,∞)) which contains 1, let C be the
nonnegative functions in the Q-linear span of such a set. Then C is countable
and contained in C(X, [0,∞)), is closed under addition and positive scaling, and
the closed R-linear span of C is C(X, R). Suppose l : C → [0,∞) is additive and
l(qf) = ql(f) for q ∈ Q ∩ [0,∞). Extend l to C − C (which is the Q-linear span of
C) by

l(g − f) = l(g) − l(f)

for f, g ∈ C. If g − f = g′ − f ′, then g + f ′ = g′ + f and applying l gives

l(g) + l(f ′) = l(g′) + l(f)

subtracting
l(g) − l(f) = l(g′) − l(f ′)

so the extension is well-defined. It is easy to see that l is now Q-linear and additive.
We claim that there exists some constant A such that |l(f)| ≤ A‖f‖, for all f ∈ C
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(where the norm is the supremum norm). Indeed for fixed f ∈ C we can find q ∈ Q

such that ‖f‖ ≤ q ≤ 2‖f‖, then q − f is nonnegative. Since C is by construction
the nonnegative elements in its closed linear span we have that q − f ∈ C and so

0 ≤ l(q − f) = l(q) − l(f) = ql(1) − l(f) ≤ 2‖f‖l(1) − l(f)

thus 0 ≤ l(f) ≤ 2‖f‖l(1). It then follows that there exists a constant A (possibly
different than the first) so that |l(f)| ≤ A‖f‖ for all f ∈ C − C. This implies that
l is a uniformly continuous map from C − C into R, and thus by completeness of
R extends to a continuous map l : C(X, R) → R. Existence of µ now follows from
the Riesz Representation Theorem, and uniqueness is clear since the closed linear
span of C is C(X).

�

We now establish an easier version of Theorem 2, and reduce Theorem T : disint
to this case.

Theorem 4. Let λ be a regular Borel measure on a compact metric space X and

let T be measurable map from X into (Y, M, µ) wher µ is finite and such that

T∗λ << µ. If M is countably generated and contains all singletons, then λ has

a (T, µ) disintegration. If {λ′
y}, {λy} are two such disintegrations then λy = λ′

y

almost everywhere, further if µ is a probability measures and T∗λ = µ, then λy is a

probability measure for almost every y.

Proof. Define a measure ν on B × M (here B denotes the Borel sets) by

ν(E) =

∫

X

χE(x, Tx)dλ(x)

using the monotone convergence theorem and that λ is finite it is easy to that ν is
a finite measure. By standard arguments,∫

X×Y

f dν(x, y) =

∫

X

f(x, Tx)dλ(x)

for any measurable h : X × Y → [0,∞).
Let Γ = {(x, y) ∈ X × Y : y = T (x)} we claim that Γ is measurable. To

see this, let A be a countable family which generates M . Let B be the algebra
over Q generated by {χA : A ∈ A}. Replacing A with the collection of sets whose
characteristic function is in B, we see that we may assume that A is an algebra, i.e.
is closed under finite unions, complements and contains ∅ and Y. We claim that

(1) {y} = ∩B∈A,y∈BB.

Indeed, let A be the set on the right-hand side. If A 6= {y}, let z ∈ A \ {y},
then every set in A which contains y also contains z, but by taking complements it
also easy to see that every set in A which contains z must contain y. Thus δy and
1
2δy + 1

2δz are two measures which agree on A . Since A generates M as a sigma-

algebra, the uniqueness in Caratheodory’s theorem implies that δy = 1
2
δy + 1

2
δz on

M . But this is impossible since {y} ∈ M . This establishes (1), thus

Γ =
⋂

A∈A

{(x, y) : x ∈ T−1(A), y ∈ A}.

Thus Γ and hence Γc is measurable and

ν(Γc) =

∫

X

χΓc(x, Tx) dλ(x) = 0.
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Let C ⊆ C(X, [0,∞)) be as in Lemma 3. For fixed f ∈ C we have a measure νf

on M where

νf(E) =

∫
f(x)χE(y) dν(x, y) =

∫

X

f(x)χE(Tx) dλ(x).

If µ(E) = 0 then we have

νf(E) ≤ ‖f‖

∫

X

χE(Tx) dλx = ‖f‖(T∗λ)(E) = 0

since T∗λ << µ. Let λ′
yf be the value of the Radon-Nikodym derivative of νf with

respect to µ at y. Since C is countable we may choose a co-null subset Y0 of Y such
that f → λyf is additive and λy(qf) = qλyf for all q ∈ Q ∩ [0,∞) and y ∈ Y0.
Thus by the Lemma, for y ∈ Y0 there exists a unique measure λy on X such that

∫
f(x)dλy(x) = λ′

yf.

In particular on Y0 we have that

λy(X) = λ′
y1 =

dν1

dµ
=

dT∗λ

dµ

which is 1 if dT∗λ = dµ. So λy is a probability measure if T∗λ = µ.
Setting λy = 0 off Y0 we claim that {λy}y∈Y is the desired disintegration. We

show a more general version of (ii) namely we show that for f : X → [0,∞), g : Y →
[0,∞) measurable that

(ii)′
∫

X

f(x)g(y) dλy (x) dµ(y) is measurable

and

(iii)′
∫

Y

∫

X

f(x)g(y) dλy (x)dµ(y) =

∫

X×Y

f(x)g(y) dν(x, y)

Let us first verify that (ii)′ and (iii)′ hold for f continuous. By linearity, and our
choice of C, we see that it suffices to show (ii)′ and (iii)′ for f in C. For f ∈ C,
and almost every y ∫

X

f(x)g(y)dλy (x) = g(y)λ′
yf

and is thus measurable. Further for f ∈ C,∫

Y

∫

X

f(x)g(y)dλy (x)dµ(y) =

∫

Y

g(y)
dνf

dµ
(y) dµ(y) =

∫

Y

g(y)dνf (y) =

∫

X

f(x)g(y) dν(x, y).

This verifies (ii)′ and (iii)′ for f ∈ C(X).
We now verify (ii)′ and (iii)′ for characteristic functions of Borel sets. Let N

be the class of Borel sets in X satisfying (ii)′ and (iii)′ for all g : Y → [0,∞)
measurable. We have that X, ∅ ∈ N since we verified (ii)′, (iii)′ for constant
functions. By linearity and the monotone convergence theorem we have that N is
closed under differences and disjoint unions so N is a sigma-algebra. Thus we only
have to verify (ii)′ and (iii)′ for χU , where U ⊆ X is open, in fact since X is a
compact metric space and thus second countable. We only have to verify (ii)′ and
(iii)′ for χB(x,ε) where x ∈ X and ε > 0. Since X is compact by Uryshon’s Lemma

we can find a sequence (fn)n≥1 in C(X) such that 0 ≤ fn ≤ 1, fn

∣∣
B(x,ε)

= 1 and
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fn = 0 outside B(x, ε + 1/n). Then fn → χB(ε,x) pointwise and is dominated by 1
thus a double use of the dominated convergence theorem implies (ii)′ and (iii)′ for
B(ε, x). An entirely similar argument using that B ⊗M is generated by sets of the
form A × B, A ∈ B, B ∈ M establishes the stronger claim that

∫

X×Y

f(x, y) =

∫

Y

∫

X

f(x, y)dλy(x)dµ(y)

for f non-negative and B ⊗ M measurable. In particular by what we saw earlier

0 = ν(Γc) =

∫

Y

∫

X

χΓc(x, y) dλy(x) dµ(y) =

∫

Y

λy({x : T (x) 6= y}) dµ(y)

so that λy({x : T (x) 6= y}) = 0 for µ-almost every y.

Finally we have to establish uniqueness. If {λy}, {λ̃y} are two disintegrations,

by symmetry it suffices to show that λy ≥ λ̃y almost everywhere. Fix f ∈ C, and

let A ⊆ Y be measurable. Since λy, λ̃y are concentrated on {x ∈ X : T (x) = y} we
have∫

A

∫

X

f(x) dλy(x)dµ(y) =

∫

Y

∫

X

f(x)χA(y) dλy(x) dµ(y) =

∫

Y

∫

X

f(x)χA(Tx) dλy(x) dµ(y) =

∫

X

f(x)χA(Tx) dλ(x) =

∫

A

∫

X

f(x) dλ̃y(x).

So ∫

X

f(x) dλy(x) =

∫

X

f(x)dλ̃y(x)

for µ almost all y. Since there are countably many f ∈ C we can find a conull
Y0 ⊆ Y such that the above holds for all y ∈ Y0 and f ∈ C. Since the closed linear
span of C is C(X) we have that

∫

X

f(x) dλy(x) =

∫

X

f(x)dλ̃y(x)

for all y ∈ Y0. So λy = λ̃y for all y ∈ Y0. �

We are now in a position to prove Theorem 2.

Proof of Theorem 2. First assume that µ is finite. In this case, by regularity and
since λ is sigma-finite we can find a null set N in X and countably many disjoint
compact sets K1, K2, . . . such that

X = ∪∞
n=1Kn ∪ N

applying Theorem 4 to each Kn gives a disintegration, add them all together to
get a disintegration for X. Applying uniqueness to each Kn gives uniqueness of the
disintegration as well. The sigma-finite case is similar, just reduce it to the finite
case.

For the last part, assume that T∗λ = µ. We have for all A ⊆ Y that

µ(A) =

∫

Y

χA(y)dT∗λ(y) =

∫

X

χA(Tx) dλ(x) =

∫

Y

∫

X

χA(Tx) dλy(x)dµ(y)

since λy is concentrated on {x : T (x) = y} the above is
∫

Y

∫

X

χA(y) dλy(x) dµ(y) =

∫

Y

λy(X)χA(y) dµ(y) =

∫

A

λy(X) dµ(y).
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Thus λy(X) have the same integral over any set and thus are equal almost every-
where. �


