DISINTEGRATION OF MEASURES

BEN HAYES

Definition 1. Let $(X, \mathfrak{M}, \lambda), (Y, \mathfrak{N}, \mu)$ be sigma-finite measure spaces and let $T: X \to Y$ be a measurable map. A (T, μ) -disintegration is a collection $\{\lambda_y\}_{y \in Y}$ of measures on \mathfrak{M} such that:

(i) each λ_y is a sigma-finite measure and $\lambda_y(\{x \in X : T(x) \neq y\}) = 0$ for almost every x.

and for each nonnegative measurable function on f on X: : (ii) The function $y \to \int f(x) d\lambda_y(x)$ is μ -measurable and (iii) $\int_X f(x) d\lambda(x) = \int_Y \left(\int_X f(x) d\lambda_y(x)\right) d\mu(y)$. Our aim is to establish the following:

Theorem 2. Let λ be a sigma-finite regular Borel measure on a metric space Xand let T be measurable map from X into (Y, \mathfrak{M}, μ) , where μ is sigma-finite and such that $T_*\lambda \ll \mu$. If \mathfrak{M} is countably generated and contains all singletons, then λ has a (T, μ) disintegration. If $\{\lambda'_y\}, \{\lambda_y\}$ are two such disintegrations then $\lambda_y = \lambda'_y$ almost everywhere, further if $T_*\lambda = \mu$, then λ_y is a probability measure for almost every y.

Lemma 3. Let X be a compact metric space, then there exists a countable set $C \subseteq C(X, [0, \infty))$ which is closed under addition and scaling by non-negative rational numbers and contains the constant function 1, with the following property. If $l: C \to [0, \infty)$ satisfies l(f+g) = l(f)+l(g), and l(qf) = ql(f) for every $q \in \mathbb{Q} \cap [0, \infty)$, $f, g \in C$ then there exists a unique positive regular Borel measure μ on X such that $l(f) = \int f d\mu$.

Proof. Since X is compact metric we know that C(X) and hence $C(X, [0, \infty))$ is separable (since subsets of separable metric spaces are separable) and thus we can find a countable dense subset of $C(X, [0, \infty))$ which contains 1, let C be the nonnegative functions in the Q-linear span of such a set. Then C is countable and contained in $C(X, [0, \infty))$, is closed under addition and positive scaling, and the closed \mathbb{R} -linear span of C is $C(X, \mathbb{R})$. Suppose $l : C \to [0, \infty)$ is additive and l(qf) = ql(f) for $q \in \mathbb{Q} \cap [0, \infty)$. Extend l to C - C (which is the Q-linear span of C) by

$$l(g-f) = l(g) - l(f)$$

for $f, g \in C$. If g - f = g' - f', then g + f' = g' + f and applying l gives l(g) + l(f') = l(g') + l(f)

subtracting

$$l(g) - l(f) = l(g') - l(f')$$

so the extension is well-defined. It is easy to see that l is now \mathbb{Q} -linear and additive. We claim that there exists some constant A such that $|l(f)| \leq A||f||$, for all $f \in C$

Date: December 16, 2010.

BEN HAYES

(where the norm is the supremum norm). Indeed for fixed $f \in C$ we can find $q \in \mathbb{Q}$ such that $||f|| \leq q \leq 2||f||$, then q - f is nonnegative. Since C is by construction the nonnegative elements in its closed linear span we have that $q - f \in C$ and so

$$0 \le l(q - f) = l(q) - l(f) = ql(1) - l(f) \le 2||f||l(1) - l(f)$$

thus $0 \leq l(f) \leq 2||f||l(1)$. It then follows that there exists a constant A (possibly different than the first) so that $|l(f)| \leq A||f||$ for all $f \in C - C$. This implies that l is a uniformly continuous map from C - C into \mathbb{R} , and thus by completeness of \mathbb{R} extends to a continuous map $l: C(X, \mathbb{R}) \to \mathbb{R}$. Existence of μ now follows from the Riesz Representation Theorem, and uniqueness is clear since the closed linear span of C is C(X).

We now establish an easier version of Theorem 2, and reduce Theorem T: disint to this case.

Theorem 4. Let λ be a regular Borel measure on a compact metric space X and let T be measurable map from X into (Y, \mathfrak{M}, μ) wher μ is finite and such that $T_*\lambda \ll \mu$. If \mathfrak{M} is countably generated and contains all singletons, then λ has a (T, μ) disintegration. If $\{\lambda'_y\}, \{\lambda_y\}$ are two such disintegrations then $\lambda_y = \lambda'_y$ almost everywhere, further if μ is a probability measures and $T_*\lambda = \mu$, then λ_y is a probability measure for almost every y.

Proof. Define a measure ν on $\mathcal{B} \times \mathfrak{M}$ (here \mathcal{B} denotes the Borel sets) by

$$\nu(E) = \int_X \chi_E(x, Tx) d\lambda(x)$$

using the monotone convergence theorem and that λ is finite it is easy to that ν is a finite measure. By standard arguments,

$$\int_{X \times Y} f \, d\nu(x, y) = \int_X f(x, Tx) d\lambda(x)$$

for any measurable $h: X \times Y \to [0, \infty)$.

Let $\Gamma = \{(x, y) \in X \times Y : y = T(x)\}$ we claim that Γ is measurable. To see this, let \mathfrak{A} be a countable family which generates \mathfrak{M} . Let B be the algebra over \mathbb{Q} generated by $\{\chi_A : A \in \mathfrak{A}\}$. Replacing \mathfrak{A} with the collection of sets whose characteristic function is in B, we see that we may assume that \mathfrak{A} is an algebra, i.e. is closed under finite unions, complements and contains \emptyset and Y. We claim that

(1)
$$\{y\} = \cap_{B \in \mathfrak{A}, y \in B} B.$$

Indeed, let A be the set on the right-hand side. If $A \neq \{y\}$, let $z \in A \setminus \{y\}$, then every set in \mathfrak{A} which contains y also contains z, but by taking complements it also easy to see that every set in \mathfrak{A} which contains z must contain y. Thus δ_y and $\frac{1}{2}\delta_y + \frac{1}{2}\delta_z$ are two measures which agree on \mathfrak{A} . Since \mathfrak{A} generates \mathfrak{M} as a sigmaalgebra, the uniqueness in Caratheodory's theorem implies that $\delta_y = \frac{1}{2}\delta_y + \frac{1}{2}\delta_z$ on \mathfrak{M} . But this is impossible since $\{y\} \in \mathfrak{M}$. This establishes (1), thus

$$\Gamma = \bigcap_{A \in \mathfrak{A}} \{ (x, y) : x \in T^{-1}(A), y \in A \}.$$

Thus Γ and hence Γ^c is measurable and

$$\nu(\Gamma^c) = \int_X \chi_{\Gamma^c}(x, Tx) \, d\lambda(x) = 0$$

Let $C \subseteq C(X, [0, \infty))$ be as in Lemma 3. For fixed $f \in C$ we have a measure ν_f on \mathfrak{M} where

$$\nu_f(E) = \int f(x)\chi_E(y)\,d\nu(x,y) = \int_X f(x)\chi_E(Tx)\,d\lambda(x).$$

If $\mu(E) = 0$ then we have

$$\nu_f(E) \le \|f\| \int_X \chi_E(Tx) \, d\lambda_x = \|f\|(T_*\lambda)(E) = 0$$

since $T_*\lambda \ll \mu$. Let $\lambda'_y f$ be the value of the Radon-Nikodym derivative of ν_f with respect to μ at y. Since C is countable we may choose a co-null subset Y_0 of Y such that $f \to \lambda_y f$ is additive and $\lambda_y(qf) = q\lambda_y f$ for all $q \in \mathbb{Q} \cap [0, \infty)$ and $y \in Y_0$. Thus by the Lemma, for $y \in Y_0$ there exists a unique measure λ_y on X such that

$$\int f(x)d\lambda_y(x) = \lambda'_y f.$$

In particular on Y_0 we have that

$$\lambda_y(X) = \lambda'_y 1 = \frac{d\nu_1}{d\mu} = \frac{dT_*\lambda}{d\mu}$$

which is 1 if $dT_*\lambda = d\mu$. So λ_y is a probability measure if $T_*\lambda = \mu$.

Setting $\lambda_y = 0$ off Y_0 we claim that $\{\lambda_y\}_{y \in Y}$ is the desired disintegration. We show a more general version of (ii) namely we show that for $f: X \to [0, \infty), g: Y \to [0, \infty)$ measurable that

$$(ii)' \int_X f(x)g(y) d\lambda_y(x) d\mu(y)$$
 is measurable

and

$$(iii)' \int_{Y} \int_{X} f(x)g(y) \, d\lambda_y(x) d\mu(y) = \int_{X \times Y} f(x)g(y) \, d\nu(x,y)$$

Let us first verify that (ii)' and (iii)' hold for f continuous. By linearity, and our choice of C, we see that it suffices to show (ii)' and (iii)' for f in C. For $f \in C$, and almost every y

$$\int_X f(x)g(y)d\lambda_y(x) = g(y)\lambda'_y f$$

and is thus measurable. Further for $f \in C$,

$$\int_{Y} \int_{X} f(x)g(y)d\lambda_{y}(x)d\mu(y) = \int_{Y} g(y)\frac{d\nu_{f}}{d\mu}(y)d\mu(y) = \int_{Y} g(y)d\nu_{f}(y) = \int_{X} f(x)g(y)d\nu(x,y).$$

This verifies (ii)' and (iii)' for $f \in C(X)$.

We now verify (ii)' and (iii)' for characteristic functions of Borel sets. Let \mathfrak{N} be the class of Borel sets in X satisfying (ii)' and (iii)' for all $g: Y \to [0, \infty)$ measurable. We have that $X, \emptyset \in \mathfrak{N}$ since we verified (ii)', (iii)' for constant functions. By linearity and the monotone convergence theorem we have that \mathfrak{N} is closed under differences and disjoint unions so \mathfrak{N} is a sigma-algebra. Thus we only have to verify (ii)' and (iii)' for χ_U , where $U \subseteq X$ is open, in fact since X is a compact metric space and thus second countable. We only have to verify (ii)' and (iii)' for $\chi_E(x,\varepsilon)$ where $x \in X$ and $\varepsilon > 0$. Since X is compact by Uryshon's Lemma we can find a sequence $(f_n)_{n\geq 1}$ in C(X) such that $0 \leq f_n \leq 1, f_n|_{B(x,\varepsilon)} = 1$ and

 $f_n = 0$ outside $B(x, \varepsilon + 1/n)$. Then $f_n \to \chi_{B(\varepsilon,x)}$ pointwise and is dominated by 1 thus a double use of the dominated convergence theorem implies (ii)' and (iii)' for $B(\varepsilon, x)$. An entirely similar argument using that $\mathcal{B} \otimes \mathfrak{M}$ is generated by sets of the form $A \times B, A \in \mathcal{B}, B \in \mathfrak{M}$ establishes the stronger claim that

$$\int_{X \times Y} f(x, y) = \int_Y \int_X f(x, y) d\lambda_y(x) d\mu(y)$$

for f non-negative and $\mathcal{B} \otimes \mathfrak{M}$ measurable. In particular by what we saw earlier

$$0 = \nu(\Gamma^c) = \int_Y \int_X \chi_{\Gamma^c}(x, y) \, d\lambda_y(x) \, d\mu(y) = \int_Y \lambda_y(\{x : T(x) \neq y\}) \, d\mu(y)$$

so that $\lambda_y(\{x: T(x) \neq y\}) = 0$ for μ -almost every y.

Finally we have to establish uniqueness. If $\{\lambda_y\}, \{\widetilde{\lambda_y}\}\)$ are two disintegrations, by symmetry it suffices to show that $\lambda_y \geq \widetilde{\lambda_y}\)$ almost everywhere. Fix $f \in C$, and let $A \subseteq Y$ be measurable. Since $\lambda_y, \widetilde{\lambda_y}\)$ are concentrated on $\{x \in X : T(x) = y\}\)$ we have

$$\int_{A} \int_{X} f(x) d\lambda_{y}(x) d\mu(y) = \int_{Y} \int_{X} f(x)\chi_{A}(y) d\lambda_{y}(x) d\mu(y) = \int_{Y} \int_{X} f(x)\chi_{A}(Tx) d\lambda_{y}(x) d\mu(y) = \int_{X} \int_{X} f(x)\chi_{A}(Tx) d\lambda(x) = \int_{A} \int_{X} f(x) d\widetilde{\lambda_{y}}(x).$$
So
$$\int_{X} f(x)\chi_{A}(Tx) d\lambda(x) = \int_{A} \int_{X} f(x) d\widetilde{\lambda_{y}}(x).$$

$$\int_X f(x) \, d\lambda_y(x) = \int_X f(x) d\widetilde{\lambda_y}(x)$$

for μ almost all y. Since there are countably many $f \in C$ we can find a conull $Y_0 \subseteq Y$ such that the above holds for all $y \in Y_0$ and $f \in C$. Since the closed linear span of C is C(X) we have that

$$\int_X f(x) \, d\lambda_y(x) = \int_X f(x) d\widetilde{\lambda_y}(x)$$

for all $y \in Y_0$. So $\lambda_y = \widetilde{\lambda_y}$ for all $y \in Y_0$.

We are now in a position to prove Theorem 2.

Proof of Theorem 2. First assume that μ is finite. In this case, by regularity and since λ is sigma-finite we can find a null set N in X and countably many disjoint compact sets K_1, K_2, \ldots such that

$$X = \bigcup_{n=1}^{\infty} K_n \cup N$$

applying Theorem 4 to each K_n gives a disintegration, add them all together to get a disintegration for X. Applying uniqueness to each K_n gives uniqueness of the disintegration as well. The sigma-finite case is similar, just reduce it to the finite case.

For the last part, assume that $T_*\lambda = \mu$. We have for all $A \subseteq Y$ that

$$\mu(A) = \int_{Y} \chi_A(y) dT_* \lambda(y) = \int_{X} \chi_A(Tx) \, d\lambda(x) = \int_{Y} \int_{X} \chi_A(Tx) \, d\lambda_y(x) d\mu(y)$$

since λ_y is concentrated on $\{x : T(x) = y\}$ the above is

$$\int_Y \int_X \chi_A(y) \, d\lambda_y(x) \, d\mu(y) = \int_Y \lambda_y(X) \chi_A(y) \, d\mu(y) = \int_A \lambda_y(X) \, d\mu(y).$$

Thus $\lambda_y(X)$ have the same integral over any set and thus are equal almost everywhere.