DISINTEGRATION OF MEASURES

BEN HAYES

Definition 1. Let (X, 9, \), (Y, M, ) be sigma-finite measure spaces and let T: X —
Y be a measurable map. A (T, p)-disintegration is a collection {\, },ey of measures
on M such that:

(1) each A, is a sigma-finite measure and A\, ({z € X : T(z) # y}) = 0 for almost
every .

and for each nonnegative measurable function on f on X: :

(ii) The function y — [ f(z)d\,(x) is p-measurable and

(it) [y f(2)dA(x) = [y ([ F(@) A, (2)) dpu(y).

Our aim is to establish the following:

Theorem 2. Let )\ be a sigma-finite regular Borel measure on a metric space X
and let T be measurable map from X into (Y, I, u), where u is sigma-finite and
such that T\ << p. If 9 is countably generated and contains all singletons, then A
has a (T, ) disintegration. If {\,},{\,} are two such disintegrations then \, = \,
almost everywhere, further if T, A = pu, then Ay is a probability measure for almost
every y.

Lemma 3. Let X be a compact metric space, then there exists a countable set C' C
C(X,[0,00)) which is closed under addition and scaling by non-negative rational
numbers and contains the constant function 1, with the following property. Ifl: C' —
[0, 00) satisfies I(f+g) = U(f)+I(g), and l(qf) = ql(f) for everyq € QN[0,00), f, g €
C' then there exists a unique positive reqular Borel measure p on X such that l(f) =
S fdp.
Proof. Since X is compact metric we know that C(X) and hence C(X,]0,00))
is separable (since subsets of separable metric spaces are separable) and thus we
can find a countable dense subset of C'(X,[0,00)) which contains 1, let C' be the
nonnegative functions in the Q-linear span of such a set. Then C is countable
and contained in C(X,[0,00)), is closed under addition and positive scaling, and
the closed R-linear span of C is C'(X,R). Suppose | : C' — [0, 00) is additive and
lgf) = ql(f) for ¢ € QN [0, 00). Extend | to C — C (which is the Q-linear span of
C) by
g — f)=1g) = IU(f)

for f,ge C.Ifg— f=¢ — f', then g+ f' = ¢’ + f and applying [ gives

1(g) +U(f) = Ug") + 1)
subtracting

g) — 1) = Ug) — U(f")
so the extension is well-defined. It is easy to see that [ is now Q-linear and additive.
We claim that there exists some constant A such that |I(f)| < Al f]|, for all f € C
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(where the norm is the supremum norm). Indeed for fixed f € C' we can find ¢ € Q
such that || f|| < ¢ < 2||f||, then ¢ — f is nonnegative. Since C' is by construction
the nonnegative elements in its closed linear span we have that ¢ — f € C and so

0<l(qg—f)=1Uq) =) =q) = UF) <2[fN1) = ()

thus 0 < I(f) < 2||f||i(1). It then follows that there exists a constant A (possibly
different than the first) so that |I(f)] < A|f|| for all f € C — C. This implies that
l is a uniformly continuous map from C' — C into R, and thus by completeness of
R extends to a continuous map I: C(X,R) — R. Existence of p now follows from
the Riesz Representation Theorem, and uniqueness is clear since the closed linear
span of C is C'(X).

O

We now establish an easier version of Theorem 2, and reduce Theorem T : disint
to this case.

Theorem 4. Let A be a reqular Borel measure on a compact metric space X and
let T be measurable map from X into (Y, M, n) wher p is finite and such that
T << p. If M is countably generated and contains all singletons, then X has
a (T,p) disintegration. If {\,},{\,} are two such disintegrations then A\, = X
almost everywhere, further if u is a probability measures and T\ = i, then Ay is a
probability measure for almost every y.

Proof. Define a measure v on B x 9 (here B denotes the Borel sets) by

V(E):/XXE(x,Tx)d)\(x)

using the monotone convergence theorem and that A is finite it is easy to that v is
a finite measure. By standard arguments,

/Xxyfd”(x’w = /Xf(x,Tx)d)\(x)

for any measurable h: X x Y — [0, 00).

Let T' = {(z,y) € X xY : y = T(z)} we claim that I" is measurable. To
see this, let 20 be a countable family which generates 9. Let B be the algebra
over QQ generated by {xa : A € 2A}. Replacing 2 with the collection of sets whose
characteristic function is in B, we see that we may assume that 2l is an algebra, i.e.
is closed under finite unions, complements and contains @ and Y. We claim that

(1) {y} = NpeayenB.

Indeed, let A be the set on the right-hand side. If A # {y}, let z € A\ {y},
then every set in 2 which contains y also contains z, but by taking complements it
also easy to see that every set in 2 which contains z must contain y. Thus J, and
%5y + %52 are two measures which agree on 2. Since 2 generates 91 as a sigma-
algebra, the uniqueness in Caratheodory’s theorem implies that §, = %5y + %52 on
M. But this is impossible since {y} € M. This establishes (1), thus

= (){(z,y): 2T (A),y €A}
Aed

Thus I' and hence I'“ is measurable and

v(T°) = /Xxpc(x,Tx) dA(z) = 0.



DISINTEGRATION OF MEASURES 3

Let C C C(X,[0,00)) be as in Lemma 3. For fixed f € C' we have a measure vy
on I where

mm:/ﬂmm@www:LﬂMUGMMw.
If u(E) = 0 then we have

vi(E) < |If] /XXE(TSC) dAg = || FI(TA)(E) = 0

since T A << p. Let A} f be the value of the Radon-Nikodym derivative of vy with
respect to p at y. Since C' is countable we may choose a co-null subset Yy of Y such
that f — A, f is additive and A, (qf) = g\, f for all ¢ € QN [0,00) and y € Y.
Thus by the Lemma, for y € Yj there exists a unique measure Ay on X such that

/ﬂ@ﬁﬂﬂzkﬁ-

In particular on Yy we have that
- dl/l dT*)\

!/
Ay(X) =1 = T
which is 1 if dT4\ = du. So Ay is a probability measure if T\ \ = p.
Setting A, = 0 off Yy we claim that {\,}ycy is the desired disintegration. We
show a more general version of (ii) namely we show that for f: X — [0,00),9: Y —

[0, 00) measurable that

(i1) /X f(x)g(y) dry (x) du(y) is measurable

and
WWALKMMMMMszéyﬂM@M@w

Let us first verify that (#4)" and (#¢)’ hold for f continuous. By linearity, and our
choice of C, we see that it suffices to show (i)’ and (i%7)" for f in C. For f € C,
and almost every y

(Af@h@ﬂ%@ﬂzﬂ@%f

and is thus measurable. Further for f € C|
dv f

ALKW@MNMMFAﬂw@@W@:ANMMMZ

/fwmwwww.
X

This verifies (i7) and (ii3)" for f € C(X).

We now verify (i)’ and (ii7)" for characteristic functions of Borel sets. Let 91
be the class of Borel sets in X satisfying (i)’ and (i) for all g: Y — [0, 00)
measurable. We have that X,@ € 91 since we verified (i)', (#4¢)" for constant
functions. By linearity and the monotone convergence theorem we have that 91 is
closed under differences and disjoint unions so 1 is a sigma-algebra. Thus we only
have to verify (i7)" and () for xy, where U C X is open, in fact since X is a
compact metric space and thus second countable. We only have to verify (i4)" and
(ii1)" for X p(s,c) where 2 € X and € > 0. Since X is compact by Uryshon’s Lemma

we can find a sequence (fy)n>1 in C(X) such that 0 < f, < 1’f"’B(m o = 1 and
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Jn = 0 outside B(z,e +1/n). Then f,, — xB(c,») pointwise and is dominated by 1
thus a double use of the dominated convergence theorem implies (i) and (ii7)’ for
B(e,x). An entirely similar argument using that B ® 9t is generated by sets of the
form A x B, A € B, B € 9 establishes the stronger claim that

/Xxyf(x,y):/Y/Xf(x,y)d/\y(x)du(y)

for f non-negative and B ® 9 measurable. In particular by what we saw earlier

0=00) = [ [ xrelw) i@ dut) = [ Ao T@) # ) duto)

so that A\y({z : T(z) # y}) = 0 for p-almost every y.
Finally we have to establish uniqueness. If {\,}, {\,} are two disintegrations,
by symmetry it suffices to show that A, > A, almost everywhere. Fix f € C, and

let A CY be measurable. Since Ay, A, are concentrated on {z € X : T(z) = y} we
have

//fdAdu //fXAmxdu //fxﬂ%MUWU
/f )xA(Tx) dA(z //f o

/fdA /fd)\

for p almost all y. Since there are countably many f € C we can find a conull
Yo C Y such that the above holds for all y € Yy and f € C. Since the closed linear
span of C' is C'(X) we have that

/fdA /fd)\

for all y € Yp. So)\y:)\y for all y € Yp. O

So

We are now in a position to prove Theorem 2.

Proof of Theorem 2. First assume that p is finite. In this case, by regularity and
since A is sigma-finite we can find a null set N in X and countably many disjoint
compact sets K7, Ko, ... such that

X =U2,K,UN

applying Theorem 4 to each K, gives a disintegration, add them all together to
get a disintegration for X. Applying uniqueness to each K, gives uniqueness of the
disintegration as well. The sigma-finite case is similar, just reduce it to the finite
case.

For the last part, assume that T, A = p. We have for all A CY that

u) = [ adtaw) = [ i = [ [ o)

since A, is concentrated on {z : T'(x) = y} the above is

//m@%MW@Z/Mmm@W@:/MﬂW@
Y JX Y A
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Thus A, (X) have the same integral over any set and thus are equal almost every-
where. O



