
Paragon Decision Technology BV • Haarlem, The Netherlands • E-mail: info@aimms.com • Tel: +31.235.511.512 • Fax: +31.235.511.517

The AIMMS Interface to
Constraint Programming

Willem-Jan van Hoeve1, Marcel Hunting2, and Chris Kuip2

1 Tepper School of Business, Carnegie Mellon University

2 Paragon Decision Technology

Outline

• Motivation

• Language Extensions

– Basic CP Functionality

– Global Constraints

– Scheduling Problems

• Graphical Objects

• Search and Solver Interface

• Demo

Constraint Programming

• Origins in Artificial Intelligence, Logic Programming, and

Operations Research

• Modern CP (1994-)

– Modular approach to combinatorial problem solving

– Problem structure is modeled through high-level constraints

– Systematic search combined with inference methods

minimize max(i, End(i))

s.t. SequentialSchedule(i, Start(i), Dur(i), End(i))

(minimize makespan for disjunctive scheduling over activities i)

Why CP in AIMMS?

• CP has intuitive and expressive modeling syntax

– arbitrary logical and algebraic expressions

– constraints can be nonlinear, non-convex, non-continuous, …

– special ‘global constraints’ such as alldifferent, scheduling, …

• CP has powerful solving methodology

– particularly effective for highly combinatorial problems, e.g.,

rostering, scheduling, …

• Increased need for integrated methods (e.g., MIP+CP)

– constraint-based column generation

– logic-based Benders decomposition

– large neighborhood search

CP modeling examples

• Variables range over a finite domain:

 v  {a,b,c,d}, start  {0,1,2,8,9,10}

• Algebraic expressions:

 x3(y2 – z) ≥ 25 + x2∙max(x,y,z)

• Variables as subscripts:

 y = cost[x] (here y and x are variables, ‘cost’ is an array of parameters)

• Reasoning with meta-constraints:

 ∑i (xi > Ti) ≤ 5

• Logical relations in which (meta-)constraints can be mixed:

 ((x < y) OR (y < z))  (c = min(x,y))

• Global constraints (a.k.a. symbolic constraints):

 AllDifferent(x1,x2, ...,xn)

Why AIMMS for CP

• CP is popular among dedicated professionals, but

– considerable learning curve

– CP solvers typically have low-level interface (Prolog, C++, scripting)

• AIMMS offers more gentle access to CP technology

– modeling style is similar to existing AIMMS syntax

– AIMMS is solver (i.e., vendor) independent

– easy integration of MIP, QP, NLP, and now CP solvers

– AIMMS offers advanced graphical interface

Why CP for CAPD audience?

• Industrial design and operations problems often involve

– planning

– scheduling

– optimization

• CP/MILP Decomposition methods can be particularly effective

– column generation [Junker et al., 1999]

– logic-based Benders [Jain & Grossmann, 2001] [Hooker, 2007]

– multi-stage scheduling [Harjunkoski & Grossmann, 2002]

– …and many more (see, e.g., CPAIOR conference)

• AIMMS naturally facilitates the implementation of such hybrid

methods, now also including CP

Selected Related work

• Existing modeling languages from OR community

– AMPL: extension with CP [Fourer & Gay, 2002] (not released though)

– XPRESS Mosel: CP extension, but solver dependent (CP Kalis)

• Existing modeling languages/systems from CP community

– OPL: great for professionals, but solver dependent (IBM-ILOG), and

perhaps not as gentle as AIMMS

– Comet: CP, MIP and LS technology, but solver dependent

– Zinc: solver independent, no NLP, no graphical interface, academic

release

– SIMPL: mix between model and algorithm development, academic

release

Language Extensions

• Basic CP functionality

• Global constraints

• Scheduling problems

Basic CP functionality in AIMMS:
Variables

• Variable types

– continuous: not available for CP

– integer: available for MIP, MINLP, and CP

– element variables: new, available only for CP

ELEMENT VARIABLE:

 identifier : SupplyingWarehouse

 index domain : f

 range : Warehouses ;

VARIABLE:

 identifier : SupplyCost

 definition : sum(f, SupplyCost(f, SupplyingWarehouse(f))) ;

set-based type checking for

element variables

Basic CP functionality in AIMMS:
Constraints

• Existing AIMMS syntax

– standard arithmetic, logical, and set related operators

– for MIP, these can be applied to condition an index set

• CP extension

– semantic change: allow variables to appear in these expressions

– minimal change to the AIMMS user

 CONSTRAINT:

 identifier : MyTableConstraint

 definition : (Var1, Var2, Var3) in MyThreeDimRelation ;

 MyThreeDimRelation represents a set of allowed tuples

 (this is called a ‘Table’ constraint)

Global Constraints in AIMMS

• Global constraint catalog contains 354 global constraints from the

literature…

• AIMMS offers all common global constraints (plus specific

constraints for scheduling)

 cp::AllDifferent cp::Lexicographic

 cp::BinPacking cp::ParallelSchedule

 cp::Cardinality cp::Sequence

 cp::Channel cp::SequentialSchedule

 cp::Count

 CONSTRAINT:

 identifier : DifferentColors

 definition : cp::AllDifferent(i, ColorOfItem(i)) ;

cumulative

unary

Representing Scheduling Problems

• Basic functionality: use the common global constraints

– cp::ParallelSchedule

– cp::SequentialSchedule

Representing Scheduling Problems:
Advanced Models

• Advanced functionality

– Activities: objects that must be scheduled

– Resources: are impacted by the execution of activities

• Activities

– Each activity Act has automatically associated variables

• Act.Begin

• Act.End

• Act.Length

• Act.Size

• Act.Present

– These can be used as normal variables elsewhere in the model

Resource Representation

Usage: Parallel or Sequential

Global Scheduling Constraints

• For advanced scheduling models, AIMMS offers the following

global constraints

 cp::BeginAtBegin cp::EndBeforeBegin

 cp::BeginAtEnd cp::EndBeforeEnd

 cp::BeginBeforeBegin cp::Alternative

 cp::BeginBeforeEnd cp::Span

 cp::EndAtBegin cp::Synchronize

 cp::EndAtEnd

• Allows to build complex ‘hierarchical’ scheduling problems

Graphical Objects

• AIMMS offer graphical user interface

– display solution

– what-if analysis (change data and resolve from output page)

– end-user application (deployable)

• Also CP objects can be directly linked to graphical objects

• Examples:

– Pivot tables

– Network objects

– Gantt charts

– …

Pivot Table for Crew Scheduling

Network Object for Map Coloring

Gantt Chart for Construction
Project Scheduling

Search Strategies

• Several CP solvers offer the possibility to declare a search

strategy in the model

• At the modeling level, AIMMS supports search phases

– ‘priority’ field for a variable (similar to MIP)

– first branch on group of variables with the first priority

• Furthermore, all common search strategies can be selected as

‘solver option’

– depth-first, random restarts, impact-based, …

Demo: Logic-Based Benders for
Task-Facility Allocation

task 1

ri di pi

task 2

task 3

task n

Facility 1

Facility 2

Facility m

task 1 task 3

task 2 task n

task 4

… …

Makespan

Benders Decomposition

Find schedule

for each facility f

(CP)

Assign tasks to

facilities (MIP)

min Makespan

s.t. all tasks are assigned

 Makespan ≥

 totalLoad(f)/Capacity(f) for all f

task assign-

ments T(f)

Benders

cuts

min Max(EndOf(T(f)))

s.t. ParallelSchedule(T(f), Capacity(f))

[Hooker, 2007]

Benders cuts; LBs and feasibility

Summary

• The AIMMS interface to Constraint Programming offers gentle

access to state-of-the-art CP technology

• Minimal changes to existing syntax

• Basic and extended CP functionality

– global constraints, scheduling algorithms, …

• CP objects can be directly displayed in graphical interface

• Wide range of other solvers readily available

– allows to easily integrate with MIP, NLP, …

• Free academic license available

• http://www.aimms.com/operations-research/mathematical-

programming/constraint-programming

