The AIMMS Interface to Constraint Programming

Willem-Jan van Hoeve¹, Marcel Hunting², and Chris Kuip²

¹ Tepper School of Business, Carnegie Mellon University ² Paragon Decision Technology

Paragon Decision Technology BV • Haarlem, The Netherlands • E-mail: info@aimms.com • Tel: +31.235.511.512 • Fax: +31.235.511.517

Outline

Motivation

- Language Extensions
 - Basic CP Functionality
 - Global Constraints
 - Scheduling Problems
- Graphical Objects
- Search and Solver Interface
- Demo

Constraint Programming

- Origins in Artificial Intelligence, Logic Programming, and Operations Research
- Modern CP (1994-)

THE MODELING SYSTEM

- Modular approach to combinatorial problem solving
- Problem structure is modeled through high-level constraints
- Systematic search combined with inference methods

minimize	max(i, End(i))
s.t.	SequentialSchedule(i, Start(i), Dur(i), End(i))

(minimize makespan for disjunctive scheduling over activities i)

Why CP in AIMMS?

- arbitrary logical and algebraic expressions
- constraints can be nonlinear, non-convex, non-continuous, ...
- special 'global constraints' such as alldifferent, scheduling, ...
- CP has powerful **solving** methodology
 - particularly effective for highly combinatorial problems, e.g., rostering, scheduling, ...
- Increased need for integrated methods (e.g., MIP+CP)
 - constraint-based column generation
 - logic-based Benders decomposition
 - large neighborhood search

CP modeling examples

- Variables range over a finite domain:
 v ∈ {a,b,c,d}, start ∈ {0,1,2,8,9,10}
- Algebraic expressions:

THE MODELING SYSTE

 $x^{3}(y^{2} - z) \ge 25 + x^{2} \cdot max(x,y,z)$

Variables as subscripts:

y = cost[x] (here y and x are variables, 'cost' is an array of parameters)

Reasoning with meta-constraints:

 $\Sigma_i (x_i > T_i) \leq 5$

Logical relations in which (meta-)constraints can be mixed:

 $((x < y) \text{ OR } (y < z)) \Rightarrow (c = min(x,y))$

Global constraints (a.k.a. symbolic constraints):
 AllDifferent(x₁,x₂, ...,x_n)

Why AIMMS for CP

- CP is popular among dedicated professionals, but
 - considerable learning curve

- CP solvers typically have low-level interface (Prolog, C++, scripting)
- AIMMS offers more gentle access to CP technology
 - modeling style is similar to existing AIMMS syntax
 - AIMMS is solver (i.e., vendor) independent
 - easy integration of MIP, QP, NLP, and now CP solvers
 - AIMMS offers advanced graphical interface

Why CP for CAPD audience?

- planning

- scheduling
- optimization
- CP/MILP Decomposition methods can be particularly effective
 - column generation [Junker et al., 1999]
 - logic-based Benders [Jain & Grossmann, 2001] [Hooker, 2007]
 - multi-stage scheduling [Harjunkoski & Grossmann, 2002]
 - ...and many more (see, e.g., CPAIOR conference)
- AIMMS naturally facilitates the implementation of such hybrid methods, now also including CP

Selected Related work

- AMPL: extension with CP [Fourer & Gay, 2002] (not released though)
- XPRESS Mosel: CP extension, but solver dependent (CP Kalis)
- Existing modeling languages/systems from CP community
 - OPL: great for professionals, but solver dependent (IBM-ILOG), and perhaps not as gentle as AIMMS
 - Comet: CP, MIP and LS technology, but solver dependent
 - Zinc: solver independent, no NLP, no graphical interface, academic release
 - SIMPL: mix between model and algorithm development, academic release

Language Extensions

- Basic CP functionality
- Global constraints
- Scheduling problems

Basic CP functionality in AIMMS: Variables

Variable types

THE MODELING SYSTEM

- continuous: not available for CP
- integer: available for MIP, MINLP, and CP
- element variables: new, available only for CP

ELEMENT VARIABLE:

- identifier : SupplyingWarehouse
- index domain : f

range

: Warehouses ;

VARIABLE:

identifier : SupplyCost

definition : sum(f, SupplyCost(f, SupplyingWarehouse(f))) ;

set-based type checking for element variables

Basic CP functionality in AIMMS: Constraints

- Existing AIMMS syntax
 - standard arithmetic, logical, and set related operators
 - for MIP, these can be applied to condition an index set
- CP extension

THE MODELING SYSTEM

- semantic change: allow variables to appear in these expressions
- minimal change to the AIMMS user

CONSTRAINT:

identifier : MyTableConstraint

definition : (Var1, Var2, Var3) in MyThreeDimRelation ;

MyThreeDimRelation represents a set of allowed tuples (this is called a 'Table' constraint)

Global Constraints in AIMMS

- Global constraint catalog contains 354 global constraints from the literature...
- AIMMS offers all common global constraints (plus specific constraints for scheduling)

```
cp::AllDifferent
cp::BinPacking
cp::Cardinality
cp::Channel
cp::Count
```

THE MODELING SYSTEM

cp::Lexicographic

cp::ParallelSchedule

cumulative

cp::Sequence

cp::SequentialSchedule Unary

CONSTRAINT: identifier : DifferentColors definition : cp::AllDifferent(i, ColorOfItem(i)) ;

Representing Scheduling Problems

North In

THE MODELING SYSTEM	A ZEMA	
<u>File Edit View Data Run Setting</u>		
	👫 🔂 🐹 🕅	
Model Explorer: Schedulin 4 ×	noTasksCanOverla	
Main SchedulingExample	Туре	Constraint - 🏘 🔂 🔂 🕹 💤 🗸 🖾
S Tasks	Identifier	noTasksCanOverlap
Duration(t)	Index domain 🔰	
EndTime(t)	Text	
MainInitialization	Unit 🙎	
MainExecution MainTermination	Property 🛛 🛛	
Predeclared Identifiers [read	Definition	cp::SequentialSchedule(
		jobDomain : t,
		<pre>jobStart : StartTime(t),</pre>
		jobDuration : Duration(t),
		jobEnd : EndTime(t))

Representing Scheduling Problems: Advanced Models

- Advanced functionality
 - Activities: objects that must be scheduled
 - **Resources**: are impacted by the execution of activities
- Activities

THE MODELING SYSTEM

- Each activity Act has automatically associated variables
 - Act.Begin
 - Act.End
 - Act.Length
 - Act.Size
 - Act.Present

- These can be used as normal variables elsewhere in the model

Resource Representation

File Edit View Data Run Settings Tools Window Help	
🔳 🗊 🌡 🖻 🛍 🗙 🛤 🛤 💽 🐹 🔡 陰 🏭 🎫 鶲 🗰 🛃 💦	
Model Explorer: CAPD_exa 4 × Budget	
Main CAPD examples	
Type Resource All All All All All All All All All Al	
TimeHorizon Identifier Budget	
■ S WorkActivities Usage Parallel ← Usage: Parallel or Se	quential
DepositActivities Index domain	
Act(a) Text DepositAct(d) Schedule domain TimeHori zon	
- P AmountDeposited(d)	
Activities Act (a), DepositAct (d)	
Profit(a) Property	
R Budget Unit	
P MainInitialization Level range {0100}	
P MainExecution Initial level 0 P MainTermination Level change	
Predectared identifiers [read- Begin change DepositAct(d) : AmountDeposited(d), Act(a) : ActCost(a)	
End change Act (a) : Profit (a)	
Comment	
Axii Model Ex 🛱 Page Ma	
Messages / Errors	
CAPD_examples.prj Act.Case: ✓ READY	

Global Scheduling Constraints

 For advanced scheduling models, AIMMS offers the following global constraints

cp::BeginAtBegin	cp::EndBeforeBegin
cp::BeginAtEnd	cp::EndBeforeEnd
cp::BeginBeforeBegin	cp::Alternative
cp::BeginBeforeEnd	cp::Span
cp::EndAtBegin	cp::Synchronize
cp::EndAtEnd	

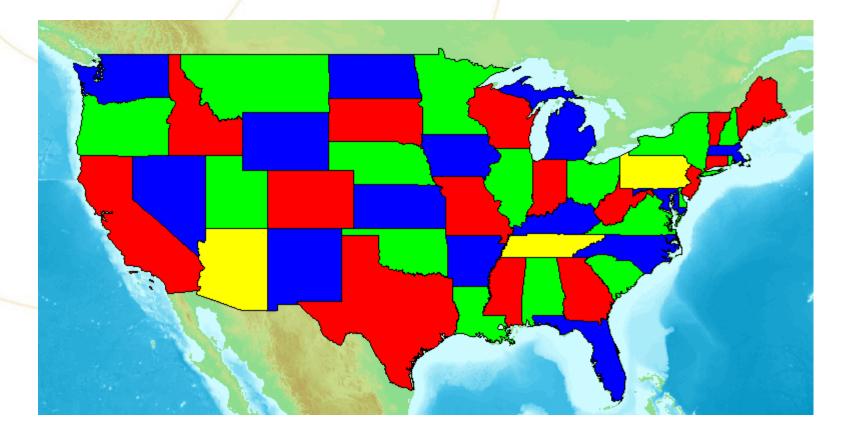
Allows to build complex 'hierarchical' scheduling problems

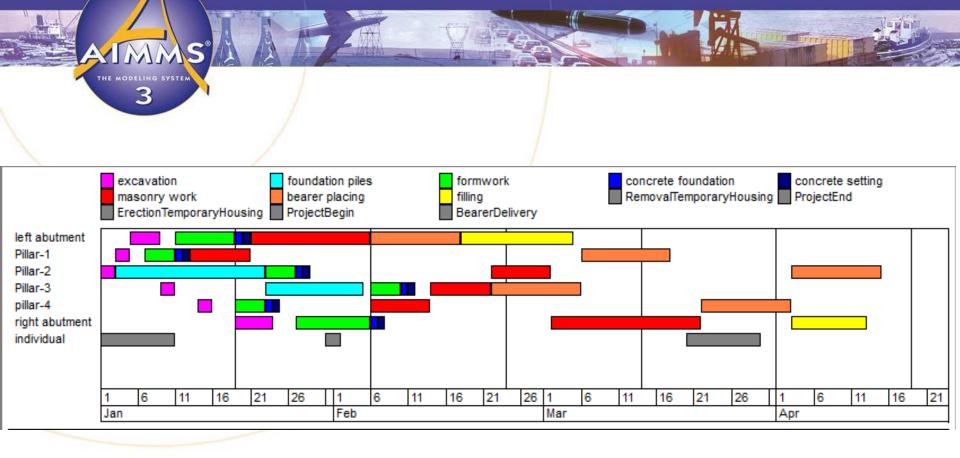
Graphical Objects

AIMMS offer graphical user interface

- display solution
- what-if analysis (change data and resolve from output page)
- end-user application (deployable)
- Also CP objects can be directly linked to graphical objects
- Examples:

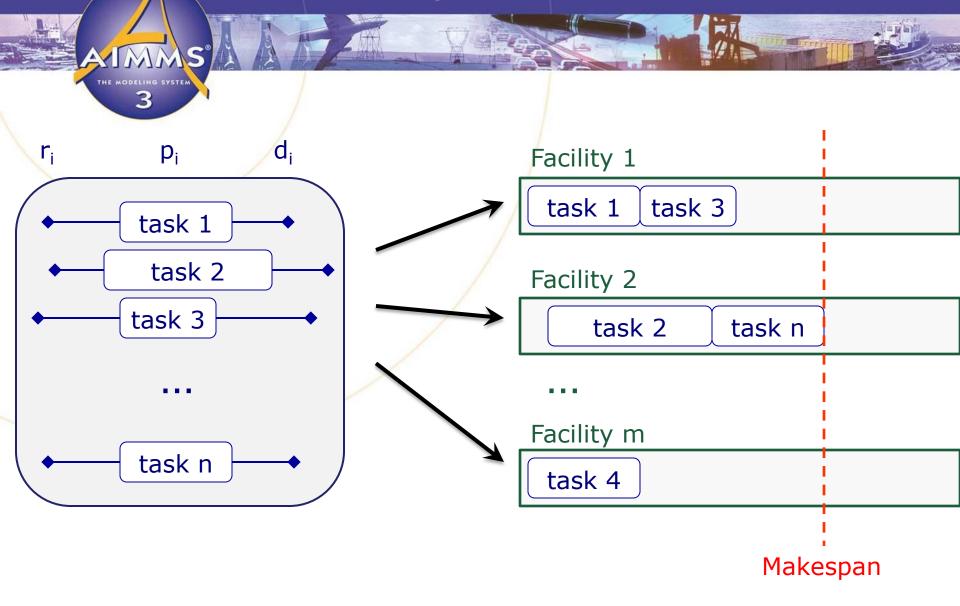
- Pivot tables
- Network objects
- Gantt charts


Pivot Table for Crew Scheduling

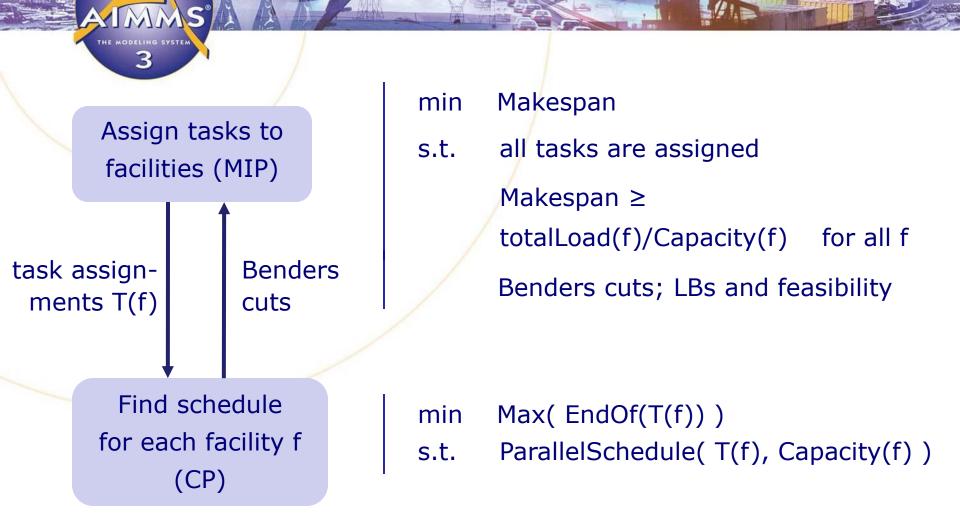

* L		->									
L	tf	Flight-01	Flight-02	Flight-03	Flight-04	Flight-05	Flight-06	Flight-07	Flight-08	Flight-09	Flight-10
Identifier	st_m]									
CrewOnFlight 🖃	david										
>	jeremy										
	ron										
	joe										
	bill										
	fred										
	bob										
	mario										
	ed										
	Count	1	3	2			2	4	2		4
RequiredCrew		1	1	1	2	3	1	1	1	2	3
CrewOnFlight 🖃											
	carol										
	janet										
	tracy										
	marilyn										
	carolyn										
	cathy inez										
	jean heather										
	juliet										
	Count	3	2	3	3	4	2	1	4	3	2
RequiredCrew	count	1	1	1	2			1	1	2	3

Network Object for Map Coloring

Gantt Chart for Construction Project Scheduling



Search Strategies


- Several CP solvers offer the possibility to declare a search strategy in the model
- At the modeling level, AIMMS supports search phases
 - 'priority' field for a variable (similar to MIP)

- first branch on group of variables with the first priority
- Furthermore, all common search strategies can be selected as 'solver option'
 - depth-first, random restarts, impact-based, ...

Demo: Logic-Based Benders for Task-Facility Allocation

Benders Decomposition

[Hooker, 2007]

Summary

- The AIMMS interface to Constraint Programming offers gentle access to state-of-the-art CP technology
- Minimal changes to existing syntax

- Basic and extended CP functionality
 - global constraints, scheduling algorithms, ...
- CP objects can be directly displayed in graphical interface
- Wide range of other solvers readily available
 - allows to easily integrate with MIP, NLP, ...
- Free academic license available
- http://www.aimms.com/operations-research/mathematicalprogramming/constraint-programming