BPEL Remote Objects: Integrating BPEL Processes into
Object-Oriented Applications

Marvin Ferber, Thomas Rauber

Department of Computer Science

University of Bayreuth, Germany
Email: {marvin.ferber,rauber } @uni-bayreuth.de

Abstract—Service-orientation and object-oriented
design are common practice in the field of busi-
ness application development. Business process ex-
ecution languages help to facilitate the orchestra-
tion of Web services in service-oriented architec-
tures (SOA). However, using business processes
from within object-oriented and event-driven appli-
cations is difficult as asynchronous event handling
is missing in workflow-based business process mod-
eling languages. The present article presents an ap-
proach for integrating BPEL business processes into
object-oriented applications. We propose BPEL re-
mote objects (BPELROs) that can be accessed asyn-
chronously in an object-oriented manner. We present
a method how state-based business processes can be
implemented using BPELROs. It is shown how to
apply BPELROs for software modernization tasks
and we also evaluate the performance of BPELROs
on different BPEL engines.

I. INTRODUCTION

Object-oriented programming languages are standard
in application development. They facilitate a modular
development, which is supported by a variety of tools
for modeling and verification of object-oriented software
designs. Languages like Java and C# are very popular
for the development of business applications.

On the other hand, the service-oriented architecture
(SOA) has evolved, which provides support for dis-
tributed software development. Web service technology
is a prominent approach for implementing SOA. Appli-
cation modules are exposed as Web services to collabo-
rate over the Internet. The interface of a Web service
is defined in the Web Service Description Language
(WSDL) [1]. Message exchange between Web services
is usually done using the Simple Object Access Protocol
(SOAP) [2]. Business process execution languages and
engines have been developed to orchestrate such Web
services [3]. Prominent examples are the XML Process
Definition Language (XPDL) [4] and the Business Pro-
cess Execution Language (BPEL) [5].

iThis work was supported by a fellowship within the post-
doctoral program of the German Academic Exchange Service
(DAAD).

Sascha Hunold?
International Computer Science Institute
Berkeley, California, USA
Email: sascha@icsi.berkeley. edu

Object-oriented programming and SOA development
are difficult to connect as they are based on different
technologies [6]. SOA is based on message-oriented Web
services and object-oriented programming is based on
objects that provide attributes and methods. Although
a business process can provide an internal state simi-
lar to classes in object-oriented programming, only a
set of unrelated interface methods is provided by the
WSDL document of the process. There is no information
whether the invocation of an interface method creates
a new process instance or not. Furthermore, a process
has no unique reference. The corresponding WSDL doc-
ument only provides a service URL, which is shared by
all instantiated processes of the same type. Thus, an
object-oriented access to business processes would ease
their integration into object-oriented applications.

The modeling of an object-oriented access to business
processes requires a business process execution language
to be capable of handling asynchronous events. We focus
on BPEL as target language, since it is broadly accepted
and offers asynchronous event handling. Furthermore,
the modeling of business processes has to be adapted
to provide an object-like behavior. For this purpose,
we focus on a modeling of business processes based on
finite state machines (FSMs). An FSM is able to handle
asynchronous events because a transition to each state
is always available, whereas a workflow-like modeling
would provide message exchange only on certain points
in the process definition.

As an example, an object-oriented access to BPEL
processes can facilitate the integration of legacy software
into a SOA landscape. To achieve that, business logic
and graphical user interface (GUI) have to be divided in
order to execute business logic, encapsulated as BPEL
processes, on a separate execution engine. The exter-
nalization of business logic has been proposed in [7] as
a step in the incremental transformation process from
a legacy software to a modern distributed application.
One important reason for reintegrating legacy code into
the modernized software is to preserve the graphical user
interface in order to facilitate the transition to a new
version of the program.

<definitions = cie>

<vprop:property = = />
<vprop:propertyAlias = =

= ><vprop:query>ns:id</vprop:query>
</vprop:propertyAlias>

<types><xs:schema ... >
<xs:element = ><xs:complexType><xs:sequence>
= /><t— id —>
/>
/>

</xs:sequence></xs:complexType></xs:element>

<xs:element

<xs:element

<xs:element

</xs:schema></types>
<message = >

<ns:part = = />
</message>

<portType = >
<operation >...</operation><!— initialize —>
<operation </operation><!— addItem —_—>
<operation > </operation><!— destroy —>

[
v

</portType>
<binding ... >...</binding>
<service = ><port ... >
<soap:address = el />
<!— serviceURL —>
</port></service>
</definitions>

Fig. 1: Example of an object-oriented WSDL interface.

The contribution of this article is to present a novel
modeling approach for BPEL processes (BPELROs)
that facilitates the integration of BPELROs into object-
oriented programming languages like Java or C#. We
show how to obtain a WSDL interface that supports
object-like interaction with BPEL processes. The BPEL-
ROs can be used to express the behavior of state-based
business processes. Thus, our approach makes it easier
to embed business processes, modeled in BPEL, into
object-oriented applications. In contrast to other remote
object technologies, BPELROs target the integration of
business processes from a SOA landscape into a object-
oriented programming language.

The remainder of the article is organized as follows.
An object-aware WSDL interface is presented in Sec-
tion II. Section IIT introduces BPELROs and Section IV
describes how they can be accessed from object-oriented
programming languages. We show how state-based busi-
ness processes can be mapped to BPELROs in Section V.
The proposed method is applied in Section VI, and the
performance of BPELROs is investigated for different
BPEL engines. Sections VII discusses related work and
Section VIII concludes the article.

II. OBJECT-ORIENTED INTERFACE WITH WSDL

The communication interface to a BPEL process is
described in a WSDL document. To provide an object-
oriented access to the BPEL process, an object interface
has to be modeled in WSDL. The WSDL definition
only provides a set of methods which together form a
service. We define a service that represents an object
interface in the object-oriented WSDL document. Hence,
all service methods become member methods of the
corresponding object. As a convention, we define two

mandatory methods of the WSDL object interface to
be used as constructor (initialize()) and destructor
(destroy()), although there can be additional con/de-
structors.

Normally, a WSDL document defines stateless Web
services, but BPELROs are stateful resources that com-
bine a set of Web service methods to a self-contained
object. A common way to address such behavior is to
strictly separate the Web service from the underlying
object (resource). This means that a resource is refer-
enced by a unique ID in addition to the regular Web
service URL.

In the WS-Resource Framework (WSRF) specifica-
tion, the corresponding object ID is normally added to
the SOAP header of a method invocation [8]. However,
the BPEL standard does not support the WSRF, but
BPEL provides correlation sets to distinguish method
invocations on different objects. Similar to WSRF, each
underlying object is assigned a unique object reference
ID, which is part of a specific XML namespace in
the WS-BPEL v2.0 specification. We add this ID as a
parameter to all service methods in the WSDL docu-
ment. A object-oriented WSDL interface showing the ID
parameter and the con/destructor is presented in Fig. 1.

The unique object reference ID parameter in all
method definitions lets the underlying engine forward
method invocations to the corresponding object. When
BPELROs are used in a Web service context, an object
can be uniquely referenced by its URL and its object
ID. We use this combined object reference later to
assign wrapper classes in object-oriented languages to
BPELROs.

As a consequence, each BPELRO must own a unique
ID on the particular BPEL engine. Similar to the WS-
Resource factory, unique IDs can be obtained from
an ID generator that is integrated into the software
system. The object reference ID can be obtained from
the constructor of the BPELRO and returned to the
calling object that requested the instantiation of a new
BPELRO. The ID generator could be a Web service,
which resides on the same host as the BPEL engine. All
BPEL engines provided in a software system must use
the same ID generator to prevent failure.

III. BPEL REMOTE OBJECTS

In order to treat BPELROs as remote objects as found
in other technologies (CORBA or RMI), a mapping
of object attributes to BPEL processes has to be de-
fined. This includes a mapping of member variables and
methods and a mapping of constructors and destructors.
An interface definition and an object reference ID has
already been specified in the object-oriented WSDL
definition of the BPELRO. Additionally, the processing
instructions (e.g., business logic) have to be added to

® WSDL interface

WSDL

ProcessObject @ object reference id

-String: varl

initialize
-Integer: var2 0

® object variables

(D interface
definition @

BPEL main process
@ <receive> ‘String: varl @

— | Integer: var2 —
|

constructor @

|BPEL variables: BPEL event handler
(method?2)

BPEL event handler
(methodl) @

|BPEL correlation »([) <on_method1>

method1(String id,...) <

method2(String id,...) -t

+ProcessObject() @ object methods

+methodi(...)
+method?2(...)
+~ProcessObject()

destroy(String id)

WL

code sets:
‘ ® method1
linitialize.out.id code | ®
v |methodl.in.id
method2.in.id
- ~— <reply> | destroy.in.id ml *

destructor |

® con-/destructor @ ® ; ® |

|

® o \ |
algortihm in BPEL

<reply> |

) I
@ <receive> @ <reply>

4

Fig. 2: Mapping of an abstract object to a BPELRO definition.

the BPELRO member methods to complete the business
process. BPEL offers a comprehensive set of constructs
regarding control flow, including asynchronous event
and fault handler, as well as activities for document
processing, message exchange, and many more.

A. Engineering BPEL Remote Objects

The mapping of the mentioned object attributes to
a standard BPEL process can be performed by the
following six steps. See Fig. 2 for an illustration.
(1) WSDL interface definition: As described in
Section II, the BPELRO’s WSDL document contains the
interface definition of the BPELRO. It contains a service
that exposes all member methods of the BPELRO.
Furthermore, methods must always return a value, since
the behavior of void functions in a (message-oriented)
network context is not defined. Void functions could
return before the whole execution is completed, because
the receiver can close the communication after it has
received the whole incoming message.
(2) Object reference mapping: On a BPEL engine
all process instances share the same interface (WSDL).
An object reference ID parameter is added to each
member method in the object-oriented WSDL interface.
Through BPEL correlation sets, this object reference ID
can be used to enable the BPEL engine to distinguish
between different process instances. Therefore, it has to
be marked as correlating parameter in the BPEL process
definition. Hence, a method invocation can be forwarded
to the corresponding BPEL process instance.
(3) Member variable mapping: Member variables
have to be defined as BPEL variables in the scope of
the main process to make them accessible for attached
subprocesses (e. g., event handlers).

(4) Member method mapping: Each member
method of the BPELRO, except the con/destructor, is
mapped to a separate event handler in the corresponding
BPEL process definition. Event handlers can be exe-
cuted decoupled from the main process. Parameters are
received by the event handler’s entry activity <onEvent>
and the return value can finally be sent by a <reply>
activity at the end of the event handler definition.
Between those two communication activities, processing
instructions can be defined.

(5) Con/Destructor mapping: An object lives from
the time a constructor is called until a corresponding
destructor is called. A BPEL object lives as long as
the control flow in the main process is not terminated.
Therefore, constructor and destructor of the BPELRO
are mapped into the main process of the BPEL defi-
nition. Both are invoked by a <receive> activity (or
<pick> for multiple con/destructors) followed by pro-
cessing instructions and a trailing <reply> activity. A
constructor invocation creates a new process instance
and a new unique object reference ID is obtained and
assigned to the new BPELRO instance. The object refer-
ence ID is returned to the calling object as a constructor
return value. The <receive> activity of the destructor
suspends the execution of the process and keeps it alive
until the destructor is invoked. After the destructor has
terminated, the main process ends and the BPELRO will
be destroyed by the engine.

(6) Algorithm mapping: The definition of processing
instructions in BPEL is supported by a variety of tools
and graphical editors, e.g., as plugins for NetBeans or
Eclipse. Processing instructions have to be added to the
member methods (event handlers) and the constructor
and destructor of the BPELRO. By doing this, the
unrestricted set of BPEL constructs can be utilized.

NonPersistentClass

-ServiceWrapper : service
-String : id

non-persistent
object instance
mapping 1:1

+NonPersistentClass()
+addItem(...)
+abort(...)

+book(...)

+pay(...)

+delete(...)
+~NonPersistentClass()

ServiceWrapper

-String: serviceURL

automatically
generated
from WSDL

+initialize()
+addltem(String id, ...)
+abort(String id, ...)
+book(String id, ...)
+pay(String id, ...)
+delete(String id, ...)
+destroy(String id)

PersistentClass

-ServiceWrapper : service
-String : id

+PersistentClass()
+initialize()
+addltem(...)
+abort(...)
+book(...)

+pay(...)
+delete(...)
+destroy()
+~PersistentClass()

persistent
(shared)
object instance
mapping n:1

Fig. 3: Deriving wrapper classes for a 1:1 mapping and a
n:1 mapping from a BPELRO’s WSDL interface.

B. Restrictions of BPEL Remote Objects

The use of BPEL entails several restrictions for mod-
eling and accessing BPELROs:

e Member variables cannot be accessed from other ob-
jects directly (private access). Access can be provided
by implementing getter and setter methods.

e All member methods are public.

e A BPELRO cannot invoke member methods of itself,
since it cannot invoke an event handler of itself. A
workaround could be to copy and inline the desired
member method into the calling method.

Furthermore, the object-oriented WSDL interface and
the SOAP communication require additional restrictions
when accessing BPELROs:

e Fach member method must return a value due to
message-orientation (no void functions).

e BPEL only accepts XML documents as parameters
(SOAP). Simple types can be taken from the XML
schema definition. Complex data structures must be
passed to the method as XML tree.

e Member methods must not be long blocking. They
must return immediately to avoid network timeouts
during their invocation.

BPELRO methods and variables have to be pro-
tected from unwanted side effects through concurrent
access. Therefore, BPEL offers the <scope> attribute
isolated="yes". Isolated scopes will be executed se-
quentially. Thus, concurrent access to variables can be
avoided.

IV. INTEGRATING BPEL REMOTE OBJECTS INTO
OBJECT-ORIENTED LANGUAGES

For an easy integration of BPELROs into object-
oriented languages, it is desirable to have wrapper classes
that represent the BPELRO at client side. Such wrap-
per classes are derived in a two-step process from the
corresponding object-oriented WSDL interface.

Since BPELROs are accessed through SOAP, in a
first step, an object wrapper class A is generated that
hides all the necessary marshaling and network proto-
col handling from the programmer. There is rich tool
support for deriving such wrapper classes in a variety of
object-oriented programming languages like Java, C++,
or C# [9], [10]. Even common complex data structures
like lists can be marshaled automatically.

In a second step, the generated wrapper class A is
wrapped again to create an object-like class represen-
tative B for the BPELRO on client side. To hide the
internal object reference ID from the programmer, the
ID parameter becomes a dedicated member variable of
class B. Class A also becomes a member variable of
B. So, B internally forwards each method invocation
to A using the corresponding object reference ID pa-
rameter. Additionally, con/destructor of the BPELRO
are mapped to the con/destructor of B. The mapping
of a BPELRO to an object-oriented wrapper class is
illustrated in Fig. 3. The obtained wrapper class B
(proxy) encapsulates the remote method calls of A and
can therefore be used like any regular object.

In contrast to most other remote object technologies,
BPELROs can be executed on different execution en-
gines, which makes BPELROs more portable. Further-
more, BPELROs can be shared among different client
applications, because a BPELRO can be reassigned to a
client wrapper class by providing the Web service URL
and the BPELRO reference ID.

When mapping con/destructor from BPELROs to
a class B in an object-oriented language, there can
be a non-persistent 1:1 mapping and a persistent n:1
mapping. In either case, the wrapper class B represents
the BPELRO by providing an interface to its member
methods. For a non-persistent mapping, constructor and
destructor methods of the BPELRO are mapped 1:1 to
the wrapper class B (see NonPersistentClass in Fig. 3).
If the remote object is non-persistent, it only exists as
long as the wrapper class instance of B is alive on client
side. This mapping can be used to implement a session
between an application and a remote business process.

BPELROs can also be modeled persistently, and
thus can be shared among different wrapper classes.
Therefore, con/destructor of the BPELRO have to be
called separately from the con/destructor of the wrapper
class B (see PersistentClass in Fig. 3). A new instance of

BPEL Invoice
Process Object

initialize
created
initialize()

add Item add Item

generate
BPEL stub
from FSM

book (automatically)

booked modified

addItem(String id, ...)
abort(String id, ...)
book(String id, ...)
pay(String id, ...)

pay abort destroy(String id)
\ \
(balanced j (aborted j add method
parameters
and code
delete delete (human expert)

InvoiceClass {
InvoiceInterface invAxis;

String id;

InvoiceClass (String serviceurl,String id){
.invAxis = InvoiceImplementation(serviceurl);
.id = id;

generate

Java wrapper
from WSDL

Integer initialize ()
RemoteException{
.id = invAxis.initialize ();
id;

Integer addItem(String name, Integer prize)
WrongTransitionException,
RemoteException{

invAxis.addItem(id, name, prize);

Integer destroy ()
RemoteException{
invAxis.destroy(id);

Fig. 4: Modeling state-based business processes with BPELROs. A Java wrapper class for an object-oriented

integration is shown on the right.

a wrapper class B can be linked to an existing BPELRO
by assigning the Web service URL and the object ref-
erence ID to the wrapper class. This n:1 behavior can
be used to give a number of clients access to a remote
document, e.g., if several clients want to access the
status of a booking process.

V. BUSINESS PROCESS MODELING WITH
BPEL REMOTE OBJECTS

Development of complex business processes is mostly
done with graphical editors since high level business
process modeling has evolved in recent years. High level
modeling languages are the Business Process Modeling
Notation (BPMN) [11], Event-driven Process Chains
(EPC) [12], or UML2 state machines. Such high level
descriptions are rather abstract and normally not ex-
ecutable. Since BPELROs are BPEL processes that
are modeled in a novel way, the modeling of business
processes that should be expressed with BPELROs has
to be adapted, too. In this section, we present how high
level business process definitions, modeled as finite state
machines, can be mapped to BPELROs.

A. Need for state-based business processes

Common business process execution engines require a
workflow-like modeling of business processes, i.e., con-
trol flow is modeled by activities and transitions between
them. Most business process execution engines support
user interaction by human task activities that can be
connected to a language-specific user management. User
data can often be passed to running processes by a
proprietary Web interface that is provided by the specific
business process execution engine. Although this is an
easy-to-use approach for developing new applications,
it has some drawbacks when legacy code should be

reused, e. g., when an existing GUI should be connected.
Customized communication between a business process
and other program modules can be realized by exporting
and accessing standardized interfaces like SOAP Web
services. However, from a programmer’s point of view,
such a set of unrelated remote procedure calls is often
difficult to handle, because a certain message exchange
can only be invoked in a certain state of the workflow-
like process (synchronous communication).

A solution to avoid these difficulties can be the state-
based modeling of business processes together with
an object-oriented access to these processes. A state-
based process is capable of offering asynchronous event
handling because a transition to each state is always
available. Although most business process technologies
only support activity-based modeling (workflow), busi-
ness processes can normally be expressed in both direc-
tions [13]. This is supported by our own experience with
legacy business applications that often include state-
based business processes.

B. Mapping of FSMs to BPEL Remote Objects

A state-based business process can be expressed as
a finite state machine (FSM) as shown in Fig. 4. The
FSM representation of the business process is used to
generate source code that represents the FSM in BPEL.
Abstract business process definitions (e.g., as a state
machine) are not executable, because mandatory map-
ping information (e.g., communication port, variables,
etc.) is missing. Thus, only the stub of the BPELRO can
be created from a state-based business process definition.
In a subsequent step, the generated BPEL stub has to be
implemented to become executable on a BPEL engine.

In the following we describe how business processes,

modeled with a FSM, can be transformed into a
BPELRO. The goal of the transformation is to assign
each interaction that can be performed on the state
machine to a member method of the BPELRO, see
Fig. 4 (middle). To save the state of the state machine,
a dedicated member variable state is added to the
BPELRO. Because methods can be executed on objects
in arbitrary order, we have to filter out transitions that
do not exist in the FSM to preserve correctness. This is
done by checking the current state at the beginning of
each member method. In case of an incompatible input
and state combination, the method throws an exception.
Exceptions can also be transmitted by SOAP to signal
a wrong behavior to the calling object on client side,
see Fig. 4 (right). Furthermore, we have to ensure that
only one member method can be executed at each point
in time as multiple transitions at the same time to
different states are not permitted. The destructor of the
BPELRO plays a special role, because it can be called
in each state of the FSM. A transition to the final state,
which means the destruction of the object, is always
possible (for the sake of clarity those edges are not shown
in Fig. 4). Finally, the abstract object needs at least
one constructor, but all constructors must set the state
variable initially.

The resulting BPEL stub can automatically be derived
from a high level FSM definition and includes a broad
control flow definition of the business process. To com-
plete the BPELRO definition, the following subsequent
refinement steps have to be performed manually to add
business logic:

1) Method parameters, return values, and the corre-
sponding datatypes have to be added to the object
interface definition;
2) Member methods have to be completed to process
parameters and generate return values according to their
interface definition.

VI. EXPERIMENTAL EVALUATION

BPELROs can be used in scenarios where processes
are accessed in an unpredictable way, e.g., the synchro-
nization of processes, the shared Web access to a docu-
ment, or the connection of a user interface to a business
process. In this section, we consider a scenario in which
BPELROs are used to support the modernization of
a monolithic object-oriented legacy application into a
distributed application.

The investigated scenario is illustrated in Fig. 5. The
legacy application is a stand-alone GUI application for
accounting in middle sized companies. It consists of a fat
client that is connected to a database. We use an incre-
mental transformation process to divide the monolithic
code into business logic and the graphical user interface.
In a second step, the application modules derived should

Legacy Software System

(Terminalserver '\

(Fat Client Platform)

Fat Client
hicy

Modular Software System

BPEL Server

BPEL
Remote Object.

E L

»
VNC Business
Partner
Terminal = Thin
Client = Client b |
___ Costumer _/ N costmer _/

Fig. 5: Example of a software transformation into a SOA
using BPELROs.

be enabled for a client/server-based utilization. The
main goal of the transformation process is to increase
the scalability of the application by putting all business
logic into business processes and to connect a thin client
to the processes. This thin client only represents the
original GUI. For the purpose of a better business to
business integration, BPEL is used as target language for
business processes. Moreover, the object-oriented GUI
should be reintegrated into the transformed application.
This is the point where BPELROs come into play.
BPELROs build the bridge between SOA integration
and (object-oriented) legacy module reuse. Furthermore,
the legacy business logic is implemented in state-based
format. Hence, a straight-forward mapping to BPELROs
is possible.

To examine the performance of BPELROs on open
source BPEL engines, we used an invoice process, which
is represented by a BPELRO. See Fig. 4 for an il-
lustration. We used a Java application on the client
side to utilize BPELROs on the BPEL engines. The
wrapper classes for accessing the Web service interface
on the server side were created using Apache Axis tools.
The generated set of methods has been wrapped into
a real object as described in Section IV. We used two
BPEL engines for testing: the activeBPEL community
engine (5.0.2) on an Apache Tomcat application server
(5.0.28) and the BPELSE engine (2.5.1) of the openESB
project on a Glassfish application server (2.1.1). Both
application servers were executed on a 16 core Intel Xeon
MP system with 16 GB memory. The test client was
executed on an Intel Core2 Duo system with 4 GB of
memory. Client and server were running a 64-bit Linux.

In a first test, an increasing number of BPELROs
should be instantiated simultaneously to examine the
maximum capacity of the considered BPEL engines.
Therefore, a client application instantiates new BPEL-

ROs through a persistent wrapper class. After each
instantiation, it calls a member method (addItem())
of all BPELROs that were instantiated until now. This
procedure is repeated until either the instantiation of
a new BPELRO or a method invocation fails due to
memory restrictions on the server side. We were able
to safely instantiate around 30000 invoice BPELROs
on all engines. However, the sequential instantiation of
30000 objects took more than 90 minutes on the Sun
BPEL engine (180 ms average) and only 13 minutes on
the ActiveBPEL engine (26 ms average). Furthermore,
an increasing memory consumption on the ActiveBPEL
engine could be observed when invoking a BPELRO’s
method. This is possibly a logging issue and was not
found on the Sun BPEL engine.

Performance is related to the question of how the
massive utilization of correlation sets influences the
response time of BPELRO member methods with an
increasing number of parallel invocations. A low latency
is important to use BPELROs in GUI applications. The
latency mainly depends on the network used (WiFi,
Ethernet, etc.) and the cwrrent network utilization.
Therefore, we only measure the BPEL engine’s part
of the response time by ensuring a high bandwidth
(1Gbit) and a very low round trip time between the
server and the client machine (< 1ms). The tests are
performed by instantiating a number of invoice processes
on the engine. Afterwards a subset of 1000 processes
is utilized simultaneously, but not concurrently, by a
certain number of threads. Each thread processes its
invoice objects sequentially, adding 10 items to each
(addItem()) and finally performing a call to calculate
the total amount of the invoice (book()). We measured
the response time of each call to addItem() and book(),
and compute the average response time over all calls.

Our results only show a very brief evaluation of the
capability of BPEL engines to support BPELROs. Fig. 6
shows the average response time of method invocations
on BPELROs over an increasing number of threads, i.e.,
parallel method invocations. As expected, the response
time increases with an increasing number of processes
as well as with an increasing number of parallel method
invocations. With a low parallel utilization (<4) all
engines offer an acceptable response time for using
BPELROs with graphical interfaces. Assuming an addi-
tional network latency of 100 ms, which is a pessimistic
assumption, the graphical user interface responds within
500 ms. This would probably seem as an almost fluent
reaction. However, due to possible Java garbage collec-
tion on the server side, while a method invocation is
performed, some response times can be four times higher
than the average. The relatively poor performance with
a huge number of parallel invocations could be observed
for all engines. However, this is only an issue under heavy

10000 T T T T T T
F activeBPEL (10000 procs)
b BPELSE (10000 procs)
I wmmm activeBPEL (30000 procs)
r BPELSE (30000 procs)

1000

100 |

average reponse time [ms]

1 2 4 8 16 32 64
number of simultaneous method invocations

Fig. 6: Latency of simultaneous method invocations for
different engines and BPELRO instances.

load and when using BPELROs in GUI applications.
One solution for this problem would be to use a cluster of
engines to distribute BPELROs among different engines.

VII. RELATED WORK

The modeling of business processes has been studied
intensively during the last years. In [14], an overview
of different modeling techniques for business processes
is given. This article distinguishes between graph-based
modeling and block structured modeling. A compari-
son between BPMN, BPEL, EPC, and the Windows
Workflow Foundation (WWTF) is given. Business pro-
cesses models can also be divided into state-based mod-
els and workflow-based models. The pros and cons of
both modeling approaches have been studied in [15]
and the necessity of state-based modeling is discussed
in [13]. An example of bringing together state-based
business processes and object-oriented programming is
Microsoft’s WWF [16]. They developed an embeddable
workflow engine that is part of the .NET framework.
Since this is more a domain specific approach, it lacks
interoperability. A summary of object-oriented workflow
modeling is presented in [17]. However, BPEL was not
considered. How the life cycle of objects can be expressed
by a finite state machines is shown in [18].

The transformation of abstract description languages
into BPEL is desirable. In [19], BPEL is stated to be an
expressive language that can be used to model complex
behavior like common programming languages and a
mapping from Workflow Nets to BPEL is presented.
The Unified Modeling Language (UML) is used to define
business processes in [20] and a mapping from UML 2
activity diagrams to BPEL is presented. Furthermore,
it has been shown how to transform FSMs into BPEL

for the domain of event-driven processes for human
interaction in [21].

An extensive overview of the modeling of user in-
teraction in business processes is presented in [22].
Human activities can be integrated into BPEL pro-
cesses through the BPEL Extensions for People [23]
and Human Tasks [24]. However, those extensions do
not add the capability of event-driven human interac-
tions to BPEL. An event-driven approach was proposed
in [25], where BPEL processes are divided into the
actual business processes and processes dedicated to
user interactions. This method introduces asynchronous
communication to a workflow-based BPEL process, but
it does not provide an object-oriented access to the
business process.

VIII. CONCLUSIONS

In this article, we have shown how asynchronous
communication can be applied to BPEL processes by
defining BPELROs. BPELROs can be used like regular
objects of object-oriented languages, similar to remote
object technologies like RMI or CORBA. Beyond that,
BPELROs can be persistent on a BPEL engine, i.e.,
they can be reassigned to wrapper classes on client side
or can be shared among different client applications.
It has been shown how these object-oriented concepts,
such as constructors, destructors, or method calls, can
be expressed by using a WSDL interface. The article also
summarizes the necessary requirements and limitations
of a language binding for accessing BPELROs from
languages like Java or C#. The experimental results have
shown that the latency of method calls on BPELROs,
executed on an open source BPEL engine, are small
enough to be used in practice. We also discuss how
BPELROs can help to modernize legacy applications,
e.g., by connecting service-oriented business processes
with a complex legacy GUI.

REFERENCES

[1] “Web Services Description Language,” 2001. [Ounline]:
http://www.w3.org/TR/wsdl/

[2] “Simple Object Access Protocol (SOAP) 1.1,” 2000.
[Online]: http://www.w3.org/ TR /soap/

[3] J. Pasley, “How BPEL and SOA are changing Web
services development,” IEEFE Internet Computing, vol. 9,
no. 3, pp. 60-67, 2005.

[4] “XML Process Definition Language Specification,”
2005. [Online]: http://www.wfmc.org/xpdl.html

[5] “WS-BPEL 2.0 Specification,” 2007. [Online]:
http://docs.oasis-open.org/wsbpel/2.0/OS /wsbpel-v2.
0-OS.html

[6] H. He, “What is Service-Oriented architecture,” 2003.
[Online]: http://www.xml.com/pub/a/ws/2003/09/30/
soa.html

[7] T.Rauber and G. Riinger, “Incremental Transformation
of Business Software,” in Proc. of the 9th Int. Conf. on
Enterprise Information Systems (ICEIS 2007), 2007, pp.
81-94.

[8] “Web Service Resource Framework (WSRF) v1.2)”
2006. [Online]: http://www.oasis-open.org/committees/
tc__home.php?wg__abbrev=wsrf

[9] “Apache Axis” [Online]: http://ws.apache.org/axis/

[10] Microsoft Corporation, “Web services description
language tool,” 2007. [Online]: http://msdn.microsoft.
com/en-us/library /Th3ystb6.aspx

[11] Object Management Group, “Business Process Modeling
Notation.” [Online]: http://www.bpmn.org/

[12] G. Keller, M. Niittgens, and A. W. Scheer, “Semantis-
che Prozefmodellierung auf der Grundlage Ereignisges-
teuerter Prozeiketten (EPK),” in German, Saarbriicken,
Tech. Rep. 89, 1992.

[13] P. Indurkar, “Why state machine workflows,” 2005. [On-
line]: http://blogs.msdn.com/pravin__indurkar/archive/
2005,/09/25/473826.aspx

[14] O. Kopp, D. Martin, D. Wutke, and F. Leymann, “On
the Choice Between Graph-Based and Block-Structured
Business Process Modeling Languages,” in Modellierung
betrieblicher Informationssysteme (MobIS 2008), ser.
Springer LNI, vol. 141, 2008, pp. 59-72.

[15] D. Green, “Which Style of Workflow When?”
2005. [Online]: http://blogs.msdn.com/davegreen/
archive/2005/10,/20/483309.aspx

[16] D. Chappell, “The Workflow Way: Understanding
Windows Workflow Foundation,” 2009. [Online]: http:
//msdn.microsoft.com/en-us/library /dd851337.aspx

[17] J. Pamplin, S. Pellicer, and D. X. Hu, “Object-Oriented
workflow modeling,” 2005. [Online]: http://www.
jasonpamplin.com/research/writings/Workflow.pdf

[18] J. J. Odell, Advanced Object-Oriented Analysis and De-
sign Using UML. Cambridge University Press, 1998.

[19] W. M. van der Aalst and K. B. Lassen, “Translat-
ing unstructured workflow processes to readable BPEL:
theory and implementation,” Information and Software
Technology, vol. 50, no. 3, pp. 131-159, 2008.

[20] M. Zhang and Z. Duan, “From Business Process Models
to Web Services Orchestration: The Case of UML 2.0
Activity Diagram to BPEL,” in Proc. of the 6th Int.
Conf. on Service-Oriented Computing (ICSOC 2008),
ser. Springer LNCS, vol. 5364, 2008, pp. 505-510.

[21] W. Shi, J. Wu, and Z. Wu, “Using State Machine to
Integrate Human Activity into BPEL in Dartflow,” in
Proc. of the 3rd Int. Conf. on Services Computing (SCC
2006), 2006, p. 517.

[22] K. Harrison-Broninski, Human Interactions: The Heart
And Soul Of Business Process Management: How People
Reallly Work And How They Can Be Helped To Work
Better. Meghan-Kiffer Press, Feb. 2005.

[23] A. Agrawal, M. Amend et al., WS-BPEL Eztension for
People (BPEL/People), version 1.0, 2007.

[24] A. Agrawal, M. Amend et al., Web Services Human Task
(WS-HumanTask), version 1.0, 2007.

[25] W. Shi, J. Wu et al., “Facilitating the Flexible Modeling
of Human-Driven Workflow in BPEL,” in Proc. of the
22 Int. Conf. on Advanced Information Networking and
Applications - Workshops, 2008, pp. 1615-1624.

