

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2006 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

ISBN-13: 978-0-7356-2257-9
ISBN-10: 0-7356-2257-4
Library of Congress Control Number 2006928843

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 1 0 9 8 7 6

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press Inter-
national directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments
to mspinput@microsoft.com.

Microsoft, Microsoft Press, Active Directory, ActiveX, bCentral, BizTalk, Excel, FrontPage, IntelliSense,
Internet Explorer, Microsoft Dynamics, MSDN, Outlook, SharePoint, Visio, Visual C#, Visual SourceSafe,
Visual Studio, Windows, Windows Server, X++, and XAL are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries. Other product and company names men-
tioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain
name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided with-
out any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers,
or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly
by this book.

Acquisitions Editor: Ben Ryan
Project Editor: Maureen Williams Zimmerman
Technical Editor: David W. Robinson
Copy Editor: Crystal Thomas
Indexer: Brenda Miller

Body Part No. X12-41754

http:mspinput@microsoft.com

Contents at a Glance

Part I A Tour of the Development Environment

1 Architectural Overview .3

2 The MorphX Development Environment . 21

3 The MorphX Designers . 35

4 The MorphX Development Tools. 55

5 The X++ Programming Language. 91

Part II Developing with Microsoft Dynamics AX

6 Customizing Microsoft Dynamics AX . 121

7 Extending Microsoft Dynamics AX . 151

8 The Business Connector . 189

9 XML Document Integration . 213

Part III Under the Hood

10 The Enterprise Portal . 237

11 Configuration and Security . 275

12 The Database Layer . 301

13 Advanced MorphX Forms . 361

14 Reflection . 377

15 System Classes . 393

16 Unit Testing. 415

17 Performance . 427

18 Upgrade and Data Migration . 463

iii

iv Contents at a Glance
Part IV Appendixes

A Application Files . 483

B Microsoft SQL Server 2000, SQL Server 2005, and

Oracle Database 10g Comparison . 485

C Source Code Changes Required for Upgrade. 487

1

Table of Contents

Foreword . xvii

Introduction . xxi

Who Is This Book For? . xxi

The History of Microsoft Dynamics AX . xxi

Organization of This Book . xxii

Reading Guide . xxiii

Product Documentation. xxiii

Product Web Site. xxiii

Naming . xxiii

Code . xxiii

Glossary . xxiv

Special Legend. xxiv

System Requirements . xxiv

Pre-Release Software. xxv

Technologoy Updates . xxv

Code Samples . xxv

Support for This Book . xxv

Questions and Comments . xxvi

Acknowledgments. xix

Part I A Tour of the Development Environment

Architectural Overview .3

Introduction. 3

The Operations Environment . 7

The Application Development and Run-Time Environments . 8

Rich Client Application . 9

Web Client Application . 9

Integration Client Application . 10

The Enterprise Portal and Web Parts. 10

Application Modeling and Program Specification . 12

The Application Model Layering System . 13

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

v

vi Table of Contents
The Application Framework . 17

The RunBase Framework . 17

The Batch Framework . 17

The Dialog Framework . 17

The Operation Progress Framework . 17

The Number Sequence Framework . 18

The SysLastValue Framework . 18

The Application Integration Framework . 18

The Wizard Framework. 18

The Infolog Framework. 18

Chapter Summary . 19

2 The MorphX Development Environment . 21

Introduction . 21

Developing with MorphX . 21

Plan . 22

Design . 23

Implement . 23

Stabilize . 24

Release. 24

Application Model Elements . 25

Operational and Programming Model Elements . 25

Value Type, Database, and Data Association Model Elements 28

Class Model Elements . 31

Presentation Model Elements . 31

Chapter Summary . 34

3 The MorphX Designers . 35

Introduction . 35

The Application Object Tree. 36

Navigating the AOT. 36

Creating New Elements . 38

Modifying Elements . 39

Refreshing Elements . 39

Element Actions . 40

Element Layers . 41

The Project Designer . 41

Creating a New Project . 41

Automatically Generated Projects. 42

Project Types . 44

Table of Contents vii

The Property Sheet. 44

The X++ Editor . 46

Shortcut Keys . 47

Editor Scripts . 48

The Label Editor . 48

Creating a New Label . 50

Referencing Labels from X++. 51

The Form Visual Designer and Report Visual Designer . 51

The Form Visual Designer . 52

The Report Visual Designer . 53

Chapter Summary. 54

4 The MorphX Development Tools. 55

Introduction . 55

The Compiler . 56

The MorphX SDK . 58

The Best Practices Tool . 59

Understanding Rules . 59

Adding Custom Rules . 61

The Debugger . 62

Using the Debugger . 62

The Debugger Interface . 63

The Visio Reverse Engineering Tool . 66

Data Model . 66

Object Model . 68

The Table Browser Tool . 69

The Find Tool. 71

The Compare Tool . 73

Starting the Compare Tool . 73

Using the Compare Tool . 75

Compare APIs . 76

The Cross-Reference Tool . 77

The Version Control Tool . 80

Element Life Cycle . 81

Check-out . 82

viii Table of Contents
5

Undo Check-out. 82

Check-in . 82

Quality Checks . 83

Updating Source Code Casing. 83

Creating New Elements . 84

Renaming Elements. 84

Deleting Elements . 84

Labels. 84

Get Latest . 85

Synchronization . 85

Synchronization Log . 86

Show History . 86

Revision Comparison. 87

Pending Elements . 87

Build. 88

Integration with Other Version Control Systems . 88

Chapter Summary . 90

The X++ Programming Language. 91

Introduction . 91

Jobs . 92

The Type System . 92

Value Types . 92

Reference Types . 93

Type Hierarchies. 94

Syntax. 96

Variable Declarations. 96

Expressions . 98

Statements . 99

Macros . 114

Comments. 114

Classes and Interfaces . 115

Fields . 116

Methods . 117

Chapter Summary . 118

ix Table of Contents
Part II Developing with Microsoft Dynamics AX

6 Customizing Microsoft Dynamics AX . 121

Introduction. 121

Table and Class Customization . 122

Creating New Dimension Types . 122

Adding New Dimensions to a Table . 125

Enabling New Dimensions in Forms . 127

Customizing Other Tables . 129

Adding Dimensions to Queries . 129

Adding Lookup, Validation, and Defaulting X++ Code 130

Form Customization. 132

Displaying an Image . 133

Displaying an Image on a Form. 135

Report Customization . 140

Creating Promotional Materials . 140

Adding Promotional Materials to an Invoice Report . 141

Number Sequence Customization . 147

Chapter Summary. 150

7 Extending Microsoft Dynamics AX . 151

Introduction. 151

Wizard Framework Extension . 151

Creating a New Wizard . 153

Creating Labels . 156

Adding Content to the Wizard. 157

Adding the Wizard to the Navigation Pane and Main Menu 164

Creating a Default Data Wizard . 164

RunBase Framework Extension. 165

Inheritance in the RunBase Framework . 165

The Property Method Pattern . 166

The Pack-Unpack Pattern . 167

Bike-Tuning Service Offers Example . 170

Adding Property Methods . 181

Adding Constructors . 182

Adding a Query . 183

Client/Server Considerations . 186

Chapter Summary. 187

x Table of Contents
8 The Business Connector . 189

Introduction . 189

Integration Technologies . 190

Inside the Business Connector . 191

The Logical Component Stack . 192

Run Time . 193

Web Interoperability . 194

Security . 196

Usage Scenarios . 197

Client . 197

Web . 199

Server. 199

Working with the .NET Business Connector . 200

Data Types and Mappings . 201

Managed Classes . 201

Request and Response Processing . 202

Exception Handling . 204

HelloWorld Example . 205

Accessing Data . 206

Invoking Business Logic . 207

CLR Interoperability . 208

Migrating Applications . 210

Chapter Summary . 211

9 XML Document Integration . 213

Introduction . 213

AIF Architectural Overview. 214

The XML Structure . 216

The AxdBase API. 217

The AxInternalBase API . 219

The Query . 225

The Axd Wizard . 226

Customizing an Existing XML Document. 227

The Entity Key Class . 230

The Send Framework. 230

Security . 232

Chapter Summary . 233

xi Table of Contents
Part III Under the Hood

10 The Enterprise Portal . 237

Introduction. 237

Inside the Enterprise Portal . 238

Page Processing . 239

The Web Framework . 242

Web Forms . 243

Reports and Web Reports . 247

Weblets . 251

Securing Web Elements. 253

Web Menu Items and Web Menus . 256

Web Parts and Web Part Pages . 257

Web Files . 263

The Import Page and Deploy Page Tools . 265

Record Context and Encryption . 266

Web Page Development Flow . 266

Content Management . 269

Common Search . 270

Security. 272

Chapter Summary. 274

11 Configuration and Security . 275

Introduction. 275

IntelliMorph. 276

Best Practices . 277

Working with IntelliMorph . 279

Licensing and Configuration. 281

The Configuration Hierarchy . 282

Configuration Keys. 283

Using Configuration Keys . 285

The Security Framework . 287

Organizing Security . 287

Applying Security . 290

Security Coding . 295

Chapter Summary. 299

12 The Database Layer . 301

Introduction. 301

xii Table of Contents
Transaction Semantics . 302

Transaction Statements . 302

Isolation Levels . 304

Concurrency Models . 308

Record Identifiers . 322

Allocation . 322

Administration . 324

Upgrade . 325

Company Identifiers . 326

Identification . 328

Changing the Company Account . 329

External Accessibility . 331

Unicode Support . 331

Databases . 332

The Application Runtime . 333

The MorphX Development Environment. 334

Files . 335

DLLs and COM Components . 335

Database Access. 336

Database Synchronization . 337

Table, Column, and Index Naming . 339

Left and Right Justification. 339

Placeholders and Literals . 341

The Dynamics AX Type System vs. the Database Type System. 343

The Database Log and Alerts. 344

Database-Triggering Methods . 346

The insert, update, and delete Methods . 346

Selecting Rows . 347

Validating Rows . 348

Changing the Default Behavior . 348

Set-Based DML Statements . 351

Temporary Tables . 351

Using Temporary Tables . 352

Design-Time Setting . 357

Configuration-Time Setting . 357

Application Runtime Setting . 358

Chapter Summary . 359

xiii Table of Contents
13 Advanced MorphX Forms . 361

Introduction. 361

Capturing Form Instantiation . 362

Adding Design Controls at Run Time . 365

Populating the Control . 366

Reacting to User Interface Events . 367

Form Opt Out . 368

The Final Result . 369

Chapter Summary. 374

14 Reflection . 377

Introduction. 377

Reflection System Functions . 378

Intrinsic Functions . 378

The TypeOf System Function . 380

The ClassIdGet System Function . 380

Reflection APIs . 382

The Table Data API . 382

The Dictionary API . 385

The Treenodes API . 388

Chapter Summary. 392

15 System Classes . 393

Introduction. 393

The Global Session Classes . 393

The Startup Sequence . 394

The Application Class . 395

The Info Class . 396

The ClassFactory Class . 396

The VersionControl Class . 397

The SysGlobalCache Class . 397

The Global Class . 398

The Collection Classes . 400

The Set Class . 400

The List Class . 402

The Map Class . 402

The Array Class . 403

The Struct Class. 404

Traversal . 406

xiv Table of Contents
Serialization . 408

Bringing It All Together. 410

Other Collection Classes . 412

Chapter Summary . 413

16 Unit Testing. 415

Introduction . 415

Test Cases . 416

Test Suites . 420

Test Projects . 422

The Test Toolbar . 423

Code Coverage. 423

Test Listeners. 424

Object Model . 425

Chapter Summary . 426

17 Performance . 427

Introduction . 427

Client/Server Performance . 428

Controlling the Execution of Logic . 428

Optimizing Client/Server Calls. 429

Parsing Parameters by Reference and Value . 431

Reports and Forms . 431

Transaction Performance . 432

Set-Based Data Manipulation Operators . 432

Restartable Jobs and Optimistic Concurrency. 442

Caching . 444

Limiting Field Lists . 453

Other Performance Considerations . 456

Dynamics AX Monitoring Tools . 457

Monitoring Client/Server Calls . 457

Monitoring Database Activity . 457

The Code Profiler Tool . 459

Chapter Summary . 461

18 Upgrade and Data Migration. 463

Introduction . 463

Upgrading from an Earlier Version . 464

Upgrade Planning . 464

Table of Contents xv

Backup of Code and Data . 466

Code Upgrade in a Development Environment . 467

Data Upgrade in a Test Environment . 470

Testing of Upgraded Code and Data. 471

Production Upgrade in the Live Environment . 472

Applying Service Packs and Hotfixes. 472

Service Packs . 472

Hotfixes . 473

Migrating Data . 473

Data To Be Migrated . 474

Data Migration Techniques. 475

Automated Data Migration . 479

Data Model . 479

Chapter Summary. 480

Part IV Appendixes

A	 Application Files . 483

B	 Microsoft SQL Server 2000, SQL Server 2005, and

Oracle Database 10g Comparison . 485

C	 Source Code Changes Required for Upgrade . 487

Code Changes . 487

Metadata Changes . 488

Table Modifications . 489

Glossary. 491

Index . 495

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

Foreword

In the course of our engagement with numerous partners and customers, and also in personal
experiences, we have come to realize two things.

First, we have learned how much developers enjoy working with Microsoft Dynamics AX 4.0.
We love Dynamics AX, and our partners love its powerful set of development tools, which
provides an affordable adaptability story for ERP systems that is second to none. Some of the
examples that you will see in this book can be performed in 10 minutes or less, such as mak
ing and exposing custom data sets to external applications through a Web service. The very
same examples would take at least a week to complete in other ERP systems.

We have also realized how difficult it is to provide adequate information to developers
during their very first experiences with implementation and setup of the application. We are
painfully aware of the difficulties that we faced in the past in our efforts to provide developers
with initial resources to help them become proficient quickly in the Dynamics AX tool set. For
those of us who have had to learn Dynamics AX the hard way, it is a special pleasure to have
been able to convince (admittedly with some use of force) a group of application experts to
write this book. We believe that this book, which aims to provide good information on advanced
concepts to experienced developers, can make your entry into the powerful tool set for building
business applications a much smoother and more digestible learning experience. We hope
that this book will be received as an insightful resource for many people working with Dynamics
AX 4.0.

I wish you success with your implementation and customization of Microsoft Dynamics AX 4.0.

Hans J. Skovgaard
Product Unit Manager
Microsoft Corporation

xvii

Acknowledgments

We want to thank all the people who assisted us in making this book become a reality. The list
of people is long—if we inadvertently missed anyone, we apologize. A special thanks goes to
the following people on the Microsoft Dynamics product team:

■	 Mette Nyberg, who worked with authors, their idiosyncrasies, and non-native English to
get the book in a shape that would allow the Microsoft Press editors to actually start edit
ing. She also made sure that the deadlines were kept within a safe horizon.

■	 Hal Howard and Niels Bo Theilgaard, who sponsored the project.

■	 The product team reviewers, who provided valuable feedback that made the book more
accurate and a whole lot better:

Michael Costello	 Niels Sejer Pedersen

Ajay Aggarwal	 Jyoti Gawade

Hari Pulapaka	 Peter Villadsen

Kenneth Puggaard	 Jens Klarskov Jensen

Lachlan Cash	 Niels Erik Møller

Laurent Ricci	 David Aichele

Lei He	 Ramana Parimi

Mark B. Madsen	 Jeppe Oskar Meyer Larsen

Morten Jensen	 Hua Chu

Per Vikkelsøe	 Kim Moerup

Srikanth Avadhanam	 Anna Lomova

Sune Gynthersen	 David Pokluda

Uffe Kjall	 Jens Møller-Pedersen

Steen Sloth Christensen

■	 We would also like to thank our external reviewers, who took time out of their busy
schedules to add value to this book:

Martin Fruergaard Laursen

Anders Hauge

Oliver Morrison

Of course, we also want to thank the people at Microsoft Press who helped support us
throughout the book writing and publishing process:

■	 Ben Ryan, who championed the book project at Microsoft Press.
xix

xx Acknowledgments
■	 Maureen Zimmerman, who was the most patient project editor we could have asked for.
This was our first book project, so we had a lot of questions and probably made life a bit
more difficult for Maureen during the course of this project.

■	 David W. Robinson, the technical editor, who asked the authors all the painful (and
right) questions as he made his way through the numerous code examples in the book.
We owe him a lot for this effort.

■	 Crystal Thomas, who did a phenomenal job on our book. The life of an editor is never
easy, and we are fortunate that Crystal worked on our book.

In addition, we want to thank Ole Jauch from our partner, thy:development, for his support
and sponsorship of Chapter 18, “Upgrade and Data Migration.”

The Microsoft Dynamics AX author team

Top row from left to right: Palle Agermark, Karl Tolgu, Hans J. Skovgaard, Mey Meenakshisundaram,
Arthur Greef, Bjørn Møller Pedersen, Lars Dragheim Olsen. Front row from left to right: Per Baarsøe
Jørgensen, Michael Fruergaard Pontoppidan, Thomas Due Kay.

Introduction

We understand if you are a bit skeptical when we tell you that you are about to fall for a piece
of software. But you will love Microsoft Dynamics AX 4.0 by the time you finish reading this
book. We want you to know up front that our intention is to show you all the wonderful
and amazing benefits that Dynamics AX 4.0 has to offer your business.

Who Is This Book For?
This book delves into the technology and tools of Dynamics AX 4.0. New and experienced
developers are the intended target audience, and consultants will also benefit from reading
this book. The intention is not to give any guidance on application functionality, but rather
to offer as much technical information between the two covers as possible. It is also beyond
the scope of this book to include the details regarding installation, deployment, and sizing
of production environments. Please refer to the extensive installation and implementation
documentation supplied with the product for details on these topics.

To get full value from this book, you should have knowledge of common object-oriented
concepts from languages such as C++, C#, and Java. Knowledge of Structured Query
Language (SQL) is also an advantage. SQL statements are used to perform relational database
tasks such as data updates and data retrieval.

Note If you do not have the Dynamics AX license that provides developer rights, you will
not be able to perform most of the actions in this book. The current MSDN version comes
with developer rights for one developer.

The History of Microsoft Dynamics AX
Historically, Microsoft Dynamics AX envelops more than 20 years of experience in business
application innovation and developer productivity. The business knowledge represented in
the product stems from the predecessors XAL and C4. These products were developed
by a company called Damgaard Data; following a merger with Navision, the company was
acquired by Microsoft in 2002. To clarify a few aspects of this transition, the authors
contacted the people who participated in the early stages of the Dynamics AX development
cycle.

How was the idea of using X++ as the programming language for Dynamics AX
conceived?
xxi

xxii Introduction
“We had been working with an upgraded version of XAL for a while called OO XAL back in
1996/1997. At some point in time, we stopped and reviewed our approach and looked at
other new languages like Java. After working one long night, I decided that our approach had
to change to align with the latest trends in programming languages, and we started with X++.”

Erik Damgaard, co-founder of Damgaard Data

Of course, there were several perspectives among the developers on this breakthrough event.

“One morning when we came to work, nothing was working. Later in the morning, we
realized that we had changed programming languages! But we did not have any tools, so for
months we were programming in Notepad without compiler or editor support.”

Anonymous developer (but among the authors of this book!)

Many hypotheses exist regarding the origin of the original product name, Axapta (now AX).
However, it is a constructed name, and the only requirement was that the letter X be included,
to mark the association with the predecessor XAL. With the latest release, the product was
rebranded to Microsoft Dynamics AX 4.0.

Organization of This Book
Part I is mainly for people new to Dynamics AX. It describes the application architecture
from the perspective of development, deployment, and administration. Part I also provides
a tour of the internal Dynamics AX development environment to help new developers
familiarize themselves with designers, tools, the X++ programming language, and the
object-oriented application framework that they will use to implement their customizations,
extensions, and integrations.

Part II is largely devoted to illustrating how developers use the Dynamics AX application
framework. Through code samples written for a fictitious bicycle sales and distribution
company, this part describes how to customize and extend Dynamics AX. The examples show
how the fictitious company customizes, extends, and integrates the application to support its
online make-to-order sales, distribution, and service operations. Part II also explains how
developers deploy and administer their Dynamics AX solutions.

Unlike the first two parts, Part III takes a close look under the hood of Dynamics AX 4.0, and
it consists of chapters that can be read separately and in random order. The chapters cover
areas such as the Enterprise Portal, configuration and security mechanisms, and the database
transaction layer. Part III also explains how you can use advanced features such as reflection,
system classes, and unit testing. With special focus on enhancing customer and partner
experiences, this part provides deep insight into improving performance in customizations
for Dynamics AX. The last chapter is devoted to upgrading and data migration. We asked a
partner (the company thy:development) to write this chapter because this is, after all, where
partners feel at home and are the experts in the product.

Introduction xxiii
Reading Guide

If you are an experienced Dynamics AX developer, you might want to skip the tour of
the development environment after reading Chapter 1, “Architectural Overview,” and
move straight to Part II. However, before you move on, you might just want to take a look
at two new additions to Dynamics AX 4.0 that are described in Chapter 4, “The MorphX
Development Tools”: the Visio Reverse Engineering tool and the Version Control tool.
Also, the interoperability with the Microsoft .NET CLR system described in Chapter 5, “The
X++ Programming Language,” is interesting reading.

Obviously, seasoned software developers and development managers will benefit most from
reading Part III, which discusses advanced technical subjects.

Product Documentation

In addition to this book, you can read thousands of topic pages of product documentation on
application and system issues in the online Help. Exhaustive documentation on installation
and implementation is available in the Microsoft Dynamics AX SDK and the Microsoft
Dynamics AX Implementation Guide, both supplied with the product. You can also find the
product documentation on MSDN. And if you have an installation of Dynamics AX 4.0, you
have access to the following topic areas on the Help menu: Administrator Help, Developer
Help, and User Help.

Product Web Site

This new user portal for the Dynamics AX product encompasses product and purchase
information, as well as guidelines on how to use the product. For more information,
visit the site:

http://www.microsoft.com/dynamics/ax

Naming

With the latest version of the application, the name of the product changed to Microsoft
Dynamics AX 4.0. The previous product version was called Microsoft Axapta, but you might
find some marketing material that uses the name Microsoft Dynamics AX 3.0. For easier
reading, this book refers to the 4.0 version of the product as Dynamics AX and makes
specific reference to earlier versions where appropriate.

Code

All relevant code examples are available for download. For details on the Web site,
see the section later in this Introduction called “Code Samples.” Note that the code
samples might need some degree of modification to be executed; this is described either

http://www.microsoft.com/dynamics/ax

xxiv Introduction
in the .xpo files themselves or in the readme file associated with the code samples on the
Web site.

Glossary

Like all software, Dynamics AX involves the use of many abbreviations, acronyms, and technical
expressions. Much of this information is available in a glossary that you will find at the end of
the book. For a more exhaustive list of terms and abbreviations, refer to the glossary provided
with the product documentation.

Special Legend

To distinguish between SQL and X++ statements, this book uses the common practice for
SQL keywords, which is to display them in all capital letters. The following code shows an
example of this in connection with nested transactions, where a transaction is started in X++
and later sent to a SQL server.

boolean b = true;

;

ttsbegin; // Transaction is not initiated here

update_recordset custTable

setting creditMax = 0; // set implicit transactions on

if (b == true)

ttscommit; // COMMIT TRANSACTION

else

ttsabort; // ROLLBACK TRANSACTION

System Requirements
You will need the following hardware and software to build and run all the code samples for
this book:

■	 Microsoft Dynamics AX 4.0: Business Connector .NET, Microsoft Dynamics AX 4.0 Rich
Client, AOS (up and running)

■	 Microsoft Windows XP with Service Pack 2, or Windows 2000, or Microsoft Windows
Server 2003 with Service Pack 1 (for Microsoft Dynamics AX 4.0 Rich Client)

■	 Microsoft Windows Server 2003 with Service Pack 1 (AOS Server)

■	 Microsoft SQL Server 2000, SQL Server 2005, or Oracle Database 10g

■	 Microsoft Windows SharePoint Services Service Pack 2 (to run the Enterprise Portal)

■	 Microsoft Visual Studio 2005

■	 Minimum 600-MHz Pentium or compatible processor (1-GHz Pentium recommended)

Introduction xxv
■ 1 GB RAM or more recommended

■ Video: at least 1024 × 768 High Color 16-bit

■ CD-ROM or DVD-ROM drive

■ Microsoft mouse or compatible pointing device

Pre-Release Software
This book was reviewed and tested against the April 2006 Virtual Machine pre-release version
of Dynamics AX 4.0. The April pre-release was the last preview before the final release of
Dynamics AX 4.0. This book is expected to be fully compatible with the final release of
Dynamics AX 4.0. If there are any changes or corrections to this book, they will be collected
and added to a Microsoft Knowledge Base article. For details, see the “Support for This Book”
section in this Introduction.

Technology Updates
As technologies related to this book are updated, links to additional information will be added
to the Microsoft Press Technology Updates Web site. Visit this site periodically for updates on
Visual Studio 2005 and other technologies:

http://www.microsoft.com/mspress/updates/

Code Samples
All code samples discussed in this book can, where relevant, be downloaded from the book’s
companion content page at the following address:

http://www.microsoft.com/mspress/companion/0-7356-2257-4/

Support for This Book
Every effort has been made to ensure the accuracy of this book and the companion
content. As corrections or changes are collected, they will be added to a Microsoft
Knowledge Base article. To view the list of known corrections for this book, visit the
following article:

http://support.microsoft.com/kb/922316

Microsoft Press provides support for books and companion content at the following
Web site:

http://www.microsoft.com/learning/support/books/

http://www.microsoft.com/mspress/updates/
http://www.microsoft.com/mspress/companion/0-7356-2257-4/
http://support.microsoft.com/kb/922316
http://www.microsoft.com/learning/support/books/

xxvi Introduction
Questions and Comments
If you have comments, questions, or ideas regarding the book or the companion content, or
questions that are not answered by visiting the sites mentioned earlier, please send them to
Microsoft Press via e-mail:

mspinput@microsoft.com

You may also send your questions via postal mail to

Microsoft Press

Attn: Inside Dynamics AX 4.0 Project Editor

One Microsoft Way

Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through these addresses.

mailto:mspinput@microsoft.com

Part I
A Tour of the Development
Environment

In this part:

Chapter 1: Architectural Overview .3

Chapter 2: The MorphX Development Environment.21

Chapter 3: The MorphX Designers .35

Chapter 4: The MorphX Development Tools .55

Chapter 5: The X++ Programming Language .91

Chapter 1

Architectural Overview

In this chapter:

Introduction . 3

The Operations Environment . 7

The Application Development and Run-Time Environments 8

The Enterprise Portal and Web Parts . 10

Application Modeling and Program Specification . 12

The Application Model Layering System . 13

The Application Framework . 17

Chapter Summary . 19

The objectives of this chapter are to:

■	 Introduce the Microsoft Dynamics AX 4.0 architecture.

■	 Provide an overview of the operations environment.

■	 Explain the design of the Enterprise Portal.

■	 Describe how Dynamics AX applications are developed through application modeling
and program specification.

■	 Provide an overview of the application model layering system.

■	 Provide an overview of the application framework.

Introduction
Dynamics AX 4.0 is an extremely productive development and run-time environment for
enterprise resource planning (ERP) application developers. Much of this productivity is
enabled by a software design methodology that is based on developing a model of an
application, rather than programming the specification of an application. This model-based
methodology is part of the Dynamics AX architecture that helps application developers focus
more attention on meeting domain requirements and less attention on meeting
technology requirements. For example, the Dynamics AX architecture can help you spend
your time meeting financial, production, and logistics domain requirements rather than meet
ing user interface, client/server, and database access technology requirements.
3

4 Part I A Tour of the Development Environment
Dynamics AX makes this possible by satisfying technology requirements for the following
core set of application developer tasks:

■	 Connect database and calculated data to user forms and reports.

■	 Connect user-entered data and calculated data to database tables.

■	 Navigate users between forms and reports in response to menu item selections.

■	 Exchange database and calculated data with external applications.

The following scenario illustrates how productive you can be when you use tools that support
a model-based architecture. Suppose you need to implement a feature to edit and batch
print account number and account name data. MorphX, the Dynamics AX integrated develop
ment environment (IDE), allows quick definition of the required application model using
nothing more than mouse clicks.

In this scenario, you first use MorphX to define a database table with two fields that will store
account number and account name data by following these steps:

1.	 Open the Application Object Tree (AOT) modeling designer (one click).

2.	 Navigate to the Tables node and add a table element and two field elements (four clicks).

3.	 Navigate to the Extended Data Types node (two clicks).

4.	 Drag extended data types onto the previously defined field elements (three clicks).
The table elements in the application model are automatically synchronized with the
database schema when it is saved.

Then you define a rich client form that hosts a grid control, as described in the following
steps. The data in the grid control is bound to the fields in the previously defined table.

1.	 Navigate to the Forms node (two clicks).

2.	 Add a new form element (two clicks).

3.	 Add the previously defined table element to the form’s data source element (two clicks).

4.	 Add a grid control to the form design element (four clicks).

5.	 Drag table field elements onto the grid control columns (seven clicks).

This task can be completed with approximately 27 mouse clicks, which illustrates an unpar
alleled strength of Dynamics AX.

Rich client forms have a built-in reporting feature that sends the form data to a screen view,
a printer, or an e-mail account. The rich client reporting feature also has a built-in batching
capability. These built-in features and the AOT allow you to fulfill the domain requirements of
the scenario without having to spend any time on the technology requirements.

5 Chapter 1 Architectural Overview
Figure 1-1 illustrates the key functional areas of the Dynamics AX architecture that enable a
high level of productivity.

C
om

m
un

ic
at

io
ns

W
in

d
ow

s
In

te
g

ra
te

d
 S

ec
ur

ity

M
or

p
hX

 d
ev

el
op

m
en

t
en

vi
ro

nm
en

t

Li
ce

ns
in

g
 a

nd
 c

on
fig

ur
at

io
n

Database layer

Ro
le

-b
as

ed
 s

ec
ur

ity

Po
rt

al
 r

un
tim

e

M
od

el
 la

ye
ri

ng

Rich client and Web client
presentation elements

Po
rt

al
 d

ev
el

op
m

en
t

en
vi

ro
nm

en
t

A
p

p
lic

at
io

n
fr

am
ew

or
ks

Lo
g

ic
 e

le
m

en
ts

D
at

a
el

em
en

ts

Microsoft Dynamics AX runtime

Microsoft
SQL Server

File system Oracle

Application elements Application development and runtime environment

Application frameworks Microsoft platform and Oracle database components

Figure 1-1 The Dynamics AX architecture.

You specify the structure and configurable behavior of an ERP application by defining rich
client and Web client presentation elements, business logic elements, and data model
elements using MorphX. You program the domain-specific and customer-specific behavior of
an application in X++, an object-oriented programming language native to MorphX. These
model elements and the X++ source code that comprises an object’s definition are called
application elements, and they are managed with the development tool known as the
Application Object Tree (AOT). The AOT is a user control in the MorphX environment that
manages a dictionary of application elements, including object definitions, license and config
uration keys, resources, references, menus, and jobs.

Note The name Application Object Tree is something of a misnomer. Application objects are
actually only instantiated by the Dynamics AX runtime, and their definitions are developed
with the help of the AOT. The tree also contains resources and references in addition to
application object definitions. This book uses the abbreviation AOT to refer to the tree control,
but it describes the nodes in the tree as mapping to application elements contained in a
dictionary.

6 Part I A Tour of the Development Environment
An X++ application framework provides built-in technology capabilities such as batching,
number sequence generation, and error logging. An application model can also be read by
application objects using the built-in model reflection capability of the X++ programming
language and the model dictionary API. Reflection is the ability of an application to inspect
and query its own structure. Refer to Chapter 14, “Reflection,” for a discussion of this topic.
This capability makes it possible to validate the application model before it is used by the
run-time system. For example, the Best Practices development tool can validate that the fields
in a primary index are set to mandatory by querying the application model to retrieve the table
field primary index properties and subsequently test them for the mandatory condition.

The Dynamics AX run-time environment and the portal run-time environment execute the
ERP application defined by the application model elements. The Dynamics AX run-time
environment has model-driven features that are required for the support of user interaction
with ERP database applications. For example, specifying that a column model element on a
user interface grid control requires mandatory data entry causes the Dynamics AX runtime to
ensure that users enter data for a cell in that particular column.

The Dynamics AX application model also has a unique layering feature that supports very
fine-grained partner and customer customizations and extensions. The MorphX development
environment manages the application elements that exist in multiple layers of the model, and
the run-time environment assembles the application elements from different layers so that
application object instances can be created with customized and extended structure and
behavior.

User and external application interactions are authenticated by the Microsoft Windows
Integrated Security system before any application features can be accessed. After authentica
tion, the Active Directory directory service associates a Microsoft Windows user with a
Dynamics AX user. Dynamics AX provides role-based security for authorizing Dynamics AX
user and user group access to menu items and database data.

The Dynamics AX database layer supports both Microsoft SQL Server and Oracle database
systems. The portal development environments are Microsoft Windows SharePoint Services
and Microsoft Visual Studio, and the Microsoft technology platform provides the communica
tion infrastructure.

The Microsoft Windows XP and Microsoft Windows Server operating systems provide
the technologies that components use to communicate. Communication technologies of
importance to ERP application developers are the Microsoft remote procedure call (RPC)
technology and the Microsoft ASP.NET Web service technology. Developers must understand
how these technologies can affect the performance of their applications. For details about
performance, see Chapter 17, “Performance.” Microsoft platform communication technolo
gies for platform services such as the file and database systems are of secondary importance to
application developers.

7 Chapter 1 Architectural Overview
The Operations Environment
Dynamics AX is a three-tiered client/server application that is typically deployed in operations
environments configured to meet the needs of customers. Figure 1-2 illustrates a typical
deployment scenario for a company using all Dynamics AX capabilities and many Microsoft
platform components.

COM

Application servers
(including cluster support)

Rich
clients

RPC

RPC

RPC

Exchange
Server

Report
client

Web services

File server

Batch server

Microsoft
BizTalk Server

Application databases SQL Server Reporting Services

Dynamics AX
Enterprise

Portal
Web client

Web client

Web client

Microsoft
Office

External application
(integration via Dynamics AX
Business Connector)

Web services

Application
Integration
Framework server

MSMQ

(including cluster support) SQL Server Analysis Services

Figure 1-2 A Dynamics AX deployment scenario.

8 Part I A Tour of the Development Environment
The Dynamics AX Application Object Server (AOS) can be hosted on one machine, but it
can also scale out to many machines when more concurrent user sessions or dedicated batch
servers are required. The server can also access one database or a scaled-out database cluster
if the database becomes a processing bottleneck.

Dynamics AX rich clients communicate with the AOS by using the Microsoft RPC technology.
For example, the Microsoft Office Excel component hosted on a rich client form
communicates directly with SQL Server Analysis Services via Web services. Microsoft SQL
Server Reporting Client communicates directly with Microsoft SQL Server Reporting
Services via Web services. The application database servers update the SQL Server Analysis
Services databases, and SQL Server Reporting Services reads data from the application data
bases. Dedicating one or more batch servers for batch processing jobs is common.

The Dynamics AX Enterprise Portal is typically hosted on its own machine or many scaled-out
machines that also host Microsoft Internet Information Services (IIS), Microsoft Office Share-
Point Portal Server, and Windows SharePoint Services. The portal communicates with the
Dynamics AX server via Web services and the Dynamics AX Business Connector that commu
nicates with the application servers by using Microsoft RPC technology.

Dynamics AX uses the Application Integration Framework (AIF) to interoperate with
Microsoft BizTalk Server, Microsoft Message Queuing (MSMQ), and the file system. The AIF
also hosts Web services that respond to requests for data from external applications. Dynam
ics AX can also interoperate with Microsoft Component Object Model (COM)
components and Microsoft .NET components via the COM and Microsoft common
language runtime (CLR) interoperability technologies.

Microsoft Office clients can interoperate directly with the AOS via the Dynamics AX Business
Connector, and the Dynamics AX application servers can interoperate natively with Microsoft
Exchange Server.

The Application Development and Run-Time
Environments

The Dynamics AX development and run-time environments support the following three ERP
application configurations, as illustrated in Figure 1-3:

■ Rich client application

■ Web client application

■ Integration client application

9 Chapter 1 Architectural Overview
Rich client

Application
server

Database

Web services

Business
Connector

Database

Web client

SharePoint
Portal Server

Application
server

Rich client
application

Web client
application

Communications

Business
Connector

Communications

External
application

Application
server

Database

Integration client
application

Web service
message queue
file system

Figure 1-3 Dynamics AX application configurations.

Rich Client Application

You develop a rich client application configuration by using only the MorphX development
environment. The rich client application is hosted by the Dynamics AX runtime. Rich clients
communicate with the AOS by using the Microsoft RPC communication technology.

Caution All X++ business logic should be written so that it is application server–centric. This
prevents duplication of business logic when business transactions must be supported on rich
client, Web client, and integration client applications.

Web Client Application

You develop a Web client application configuration by using both the MorphX development
environment and the Windows SharePoint Services tools. A Web client application is hosted
by the Dynamics AX runtime and the Windows SharePoint Services runtime. SharePoint
components communicate via the Dynamics AX .NET Business Connector.

Caution You can think of the Business Connector as a rich client without a user interface.
When writing programs, remember that the potential latency in communication between
client objects and business objects could affect the performance of your Web client
application.

10 Part I A Tour of the Development Environment
Integration Client Application

An integration client application configuration is mostly developed using only the MorphX
development environment. You might require Visual Studio with ASP.NET Web services tools
in situations in which you must call from X++ to Web services hosted by an external applica
tion. Integration client applications are mostly hosted by the Dynamics AX runtime. ASP.NET
Web services and IIS are required for hosting Web services.

Note The Dynamics AX application has a set of class elements whose names are table
element names prefixed with Ax, such as AxSalesTable. These elements should be used by
integration client applications because they allow field updates in any sequence while preserv
ing the data default logic historically developed into rich client presentation controls. For
details, see Chapter 9, “XML Document Integration.”

The Enterprise Portal and Web Parts
A portal is a Web site that provides a consolidated overview of information from many
systems and serves as a starting point for locating other resources. Portals generally provide
personalization capabilities that allow users to define their own views across many systems to
accommodate the way they work and contribute to the business.

As the Web has become the predominant platform for electronic work, portals have taken on
a significant role in business systems, and the Enterprise Portal (EP) is thus a key asset in the
Web strategy for Dynamics AX. It enables customers, vendors, business partners, and employ
ees to access relevant business information directly and conduct business transactions with
Dynamics AX through personalized, role-based Web portals.

The EP is built on Windows SharePoint Services, and it brings all the rich content and collab
oration functionality of an unstructured SharePoint site together with the structured business
data in Dynamics AX. It provides a single touch point for users to view, share, collaborate,
transact, search, and make decisions. Moreover, it serves as the platform for front-end applica
tion integration and business processes.

On an intranet, the EP could primarily target an internal information worker audience. On an
extranet, it could target mobile employees, authenticated external partners, and customers.
Or it could target customers on the Internet.

The EP is a complete SharePoint site. It comes with a site definition that includes hundreds of
standard Web pages, content, and collaboration elements. The EP Web Parts constitute the
front-end user interface elements that connect to Dynamics AX through the .NET Business
Connector, and they render the HTML generated by the EP Web framework. The Web Parts

11 Chapter 1 Architectural Overview
are used in EP Web Part Pages together with other Windows SharePoint Services Web Parts.
These pages, along with page templates and Windows SharePoint Services elements, are pack
aged as a SharePoint site definition. All the content and collaboration functionality comes
from Windows SharePoint Services, and the EP Web Parts expose the business data from
Dynamics AX.

You author Web pages by using the Windows SharePoint Services page designer tools. The
pages define the layout and host the Web Parts and their properties. The Windows SharePoint
Services Web Parts connect to the Windows SharePoint Services database for content and
collaboration functionality. The EP Web Parts connect to Dynamics AX via the .NET Business
Connector, and the EP Web framework runtime renders HTML based on the Web element
defined in the AOT and pointed to by the EP Web Part and its properties. The page definition
from Windows SharePoint Services Web pages is imported into the AOT so that those pages
will be created at site creation time.

The Web elements in the AOT can be categorized into three groups:

■	 Content definition elements, including Weblets, Web forms, reports, Web reports,
and Web content. They define the data source, the business logic, the UI elements, and
security.

■	 Navigation definition elements, including the Web menu and Web menu items.

■	 Files and definitions used to deploy the EP site and components to the Web server.

Here is an example that describes how to display a customer list in the EP:

1.	 In the AOT, a Web form is created with a data source that points to the table and the
user interface elements and logic defined.

2.	 In the AOT, Web content is created that refers to this Web form and optionally has a
security key assigned.

3.	 In Windows SharePoint Services, a Web page is created with an EP Web Part used for
rendering Web forms (in this case, the Web Form Web Part), and the property of the
Web Part points to the Web content created in the preceding step.

4.	 In the AOT, a Web menu item is created that points to the URL of the Web page created
in the preceding step, with an optional security key.

5.	 In the AOT, this Web menu item is included in the Web menu so that any Web page that
uses it will render the new link in its navigation section.

The preceding steps define the navigation, and the elements created are placed under the
navigation group of Web nodes (the Web Menu Items and Web Menus nodes, respectively) in
the AOT. See Figure 1-4.

12 Part I A Tour of the Development Environment
Figure 1-4 Web elements in the AOT.

When a user browses to the URL, the Web Part connects to the Web framework through the
.NET Business Connector and gets the Web content. The Web content security key setting is
checked and, depending on the user’s permission, the Web form generates the HTML to be
rendered by the Web Part.

The EP uses Integrated Windows authentication for authorization, and it leverages Dynamics
AX user groups and security models for the business data and uses SharePoint site groups for
the content and collaboration data. Web content, Web menu items, and Weblets are secured
with Dynamics AX security keys. Users are granted permission to these objects based on their
Dynamics AX user groups. Windows SharePoint Services document libraries and lists are
secured with SharePoint site groups. Users are granted permission to these objects based on
their site groups.

The EP provides a common integrated search across the business data contained in Dynamics
AX and Windows SharePoint Services. The Dynamics AX Data Crawler indexes application
data, and Windows SharePoint Services indexes the document libraries and lists. The EP
search uses both indexes to provide a combined search result.

Application Modeling and Program Specification
The MorphX development environment provides a set of application modeling and program
ming tools for developing and extending Dynamics AX applications. Application modeling is
a method of declaratively specifying the structure and behavior of an application that is faster,
less error-prone, and more precise than programming. Specifying that data is mandatory for a
field in a database record, for example, is easy in the Dynamics AX application model because

13 Chapter 1 Architectural Overview
the Dynamics AX runtime ensures that the condition is true in all parts of the application that
manipulate data in the table. This prevents the programming effort that would otherwise be
required to maintain data integrity throughout the application.

The Dynamics AX business logic is specified by the X++ programming language. X++ is an
object-oriented language, much like C# and Java, that supports inheritance, encapsulation,
and polymorphism. The language also includes a syntax for writing program statements
much like those found in the SQL database manipulation language. The following is an X++
program specification that uses the X++ SQL syntax. The language combines the simplicity of
data lookup from SQL with the expressive power of object-oriented programming. You can
invoke a method call directly on an object retrieved from the database.

while select customer

where customer.zipcode == campaignZipCode

{

customer.sendEmail(campaignId);

}

For more details on the X++ programming language, refer to Chapter 5, “The X++ Program
ming Language.”

The Application Model Layering System
Application model layering is the architectural principle in Dynamics AX that allows
very granular customizations and extensions to model element definitions and hence to the
structure and behavior of applications. When a version of Dynamics AX is released that is not
country specific or region specific, all model elements that define the application reside in the
lowest layer of an element layering stack. The Dynamics AX runtime, however, does not use
only these element definitions when it instantiates application objects. Rather, the runtime
assembles an element definition from model elements at all levels of the element layering
stack. Elements defined at higher levels of the element layering stack override elements
defined at lower levels of the stack. The object that the runtime eventually instantiates is thus
an instance of a dynamic type definition composed of model elements at multiple layers of the
element layering stack.

Figure 1-5 illustrates the components in the model layering system. Model elements are
stored in a separate file on each layer whenever they are saved from the MorphX development
environment client. Element definitions are read from these files and dynamically composed
by the Dynamics AX runtime. Object instances are created on either the server or the client
based on the model element definition. The client can be the MorphX development environ
ment, the rich client, or the Business Connector client.

14 Part I A Tour of the Development Environment
Clients

Application
server

Model element
file

Figure 1-5 The application model layering system components.

Figure 1-6 shows the element layers in the application model layering system.

USR

CUS

VAR

BUS

LOS

DIS

GLS

SYS

Figure 1-6 The model element layers.

15 Chapter 1 Architectural Overview
Table 1-1 contains a description of each element layer, including ID ranges.

Table 1-1 Layer Descriptions

Layer Description ID range

USR User 50001–60000

Individual companies or companies within an enterprise can
use this layer to make customizations unique to customer
installations.

CUS Customer 40001–50000

Companies and business partners can modify their installa
tions and add the generic company-specific modifications to
this layer.

The layer is included to support the need for in-house
development without jeopardizing modifications made by
the business partner.

VAR Value-added reseller 30001–40000

Business partners use this layer, which has no business restric
tions, to add any development done for their customers.

BUS Business solution 20001–30000

Business partners develop and distribute vertical and hori
zontal solutions to other partners and customers. Solutions in
this layer can be protected with license keys with a signed
agreement for the Dynamics AX Add-On Solutions program.

LOS Local solution 18001–20000

The Dynamics AX solutions offices certify and distribute
strategic local solutions developed in-house.

DIS Distributor 16001–18000

The Dynamics AX Sustained Engineering team delivers critical
hotfixes using the DIS layer.

GLS Global solution 8001–16000

The Dynamics AX Global Development and Localization team
provides a set of GLS layers that contain country-specific
functionality for regions in which Dynamics AX is released.

SYS System 1–8000

This is the lowest model element layer and the location of the
standard Dynamics AX application. Only Microsoft has access
to the element definitions at this layer.

The lowest layer is the system layer (SYS), and the highest layer is the user layer (USR). You
use the client configuration utility to specify the layer at which you want to customize and
extend the Dynamics AX application. When the MorphX environment is launched, it adds or
modifies elements at this layer, the working layer, of the model layering system. It cannot,
however, modify a model element defined at a higher model layer.

16 Part I A Tour of the Development Environment
Note The Dynamics AX runtime always composes model elements starting with the user
layer, regardless of the layer in which you are working.

When you modify a model element at a layer lower than the working layer, it is copied to the
working model element layer. A class header or method element, for example, is copied to the
working layer when it is modified. A table header, field, field group, index, or method element
is copied to the working layer when modified. An entire form or report element is copied,
however, if any of its members are modified. For example, if you add a button to a form, the
entire form is copied to the current layer. If you delete the model element from the working
layer, the model element at a lower layer is used instead. In this way, you can undo modifica
tions and easily return to the original model element definitions. You can also compare
objects from two different layers by using the MorphX Comparison tool.

Each of the model element layers shown in Figure 1-6 has an associated patch layer. Patch
layers handle patches, minor updates, service packs, and hotfixes. Logically, a patch layer is
placed directly above the layer that it is patching. A patch layer’s name contains the first two
characters of the element layer’s name, postfixed with the letter P. For example, the first three
patch layers are named SYP, GLP, and DIP. As a best practice, you should move the content of
the patch layer into the main layer with each release of the application.

Most model elements have a unique identifier (ID) that is represented as an unsigned 16-bit
integer. To avoid conflict, each layer has a range of available IDs, as shown in Table 1-1.

Model element IDs should never be changed. When an element is deprecated, the IDs can be
reused. The IDs must not be changed because they are used as business data and in element
definitions. In business data, IDs are typically used to model polymorphic relationships. In
element definitions, they are used as references between elements and to relate class and table
members across layers. Changing an element ID after it is deployed to an operations environ
ment would result in data inconsistency and require model element ID scrubbing. Because
this is highly undesirable, you must ensure that you use the appropriate layer when deploying
application customizations and extensions to operations environments.

A model element can be moved between layers and retain its ID. This process can be used
to free up a layer, but it puts limitations on the freed layer because IDs are still used, even if
it is in another layer. This process can be applied if both layers can be fully controlled. For
example, Microsoft successfully moved all model elements from the Microsoft Axapta 3.0 GLS
layer to the Dynamics AX 4.0 SYS layer. Keeping the element IDs from the GLS layer provides
consistency for business data and element definitions, but it prevents Microsoft from reusing
the IDs of the moved model elements in future GLS layers.

17 Chapter 1 Architectural Overview
Note Two new features in Dynamics AX 4.0 make ID management easier. A model element
ID generator for version control ensures that unique IDs are allocated across multiple devel
oper application installations. Also, new best practice rules detect whether a model element ID
value has changed, providing an early warning that can help you solve potential problems
before the application is deployed to operations environments.

The Application Framework
The Dynamics AX application framework is a set of model elements that provide most of the
technology requirements for ERP applications. You can incorporate these frameworks into
your features so that you can focus on meeting the domain requirements. These frameworks
also provide a consistent user experience across all existing and new features. Presenting all
the Dynamics AX application frameworks in this book would be impossible, so only the most
commonly used frameworks are described in this section.

The RunBase Framework

The RunBase application framework runs or batches an operation. An operation is a
unit of work, such as the posting of a sales order or calculation of a master schedule. The
RunBase framework uses the Dialog framework to prompt a user for data input. It uses the
SysLastValue framework to persist usage data and the Operation Progress framework to show
operation progress.

The Batch Framework

The Batch application framework creates batch entries in the Dynamics AX batch queue.
These entries execute at time intervals specified by a user interacting with a dialog box
provided by the framework. The RunBaseBatch framework extends the RunBase framework,
and X++ classes that extend this framework can have their operations enlisted in the batch
queue.

The Dialog Framework

The Dialog application framework creates a dynamic dialog box that is not defined in the
AOT. You can customize the dialog box by setting the caption and adding fields, field groups,
menu items, text, and images. You would typically use the Dialog framework to create dialog
boxes when data input is required from the user.

The Operation Progress Framework

The Operation Progress application framework displays a dialog box that shows the progress
of a processing task. You can customize the framework by setting the total number of steps

18 Part I A Tour of the Development Environment
in the operation and by setting the dialog box caption and animation type. You control the
progress by incrementing the progress value in derived classes. Best practices include setting
the total step count only if it is known (or if it can be accessed rapidly), partitioning the
process task into as many steps as possible, and insuring that steps have similar durations. If
you use multiple progress bars, the first bar should show overall progress. The framework
automatically calculates the time remaining for an operation.

The Number Sequence Framework

The Number Sequence application framework creates a new sequential number for uniquely
identifying business transaction records in database tables. You can specify whether the
numbers are sequential or allow gaps in the generated sequences. You can also specify the
number format by using a specification string.

The SysLastValue Framework

The SysLastValue application framework stores and retrieves user settings or usage data
values that persist between processes. You use this framework to save, retrieve, and delete a
container of usage data.

The Application Integration Framework

The Application Integration Framework (AIF) sends business transactions to external appli
cations and responds to requests from external applications. The framework comprises XML
document classes, message queue management, Web services, and data mapping features. For
details on how to use this framework to build integration applications, refer to Chapter 9.

The Wizard Framework

The Wizard application framework helps users configure application features. You can use
the Wizard Wizard to generate a set of default classes that extend the Wizard framework.
(See Chapter 7, “Extending Microsoft Dynamics AX,” for more information about the Wizard
Wizard.) The resulting wizard provides start and finish pages and a user-defined number of
empty pages in between. You customize the generated classes by populating the wizard pages
with controls and controlling the page flow.

The Infolog Framework

You use the Infolog application framework when business transaction status logging is
required. The information log form control displays the logged message. The Infolog frame
work is also the default exception handler, so any exception not caught by application code is
caught by the Infolog framework. You can extend this framework to provide customized log
ging features.

19 Chapter 1 Architectural Overview
Chapter Summary
This chapter provided an overview of the Dynamics AX operations environment and the
components in the Dynamics AX model-based architecture. The architecture comprises
client and server components that scale to support many concurrent users who integrate
with external applications and interoperate with many Microsoft platform technologies.
This architecture comprises a layered application model and the X++ programming lan
guage supported by the MorphX development environment and executed by the Dynamics
AX run-time environment. The Dynamics AX architecture also provides an application
framework that meets many of the technology requirements for business applications,
allowing you to focus on meeting your ERP domain requirements for rich client, Web client,
and integration applications.

Chapter 2

The MorphX Development
Environment

In this chapter:

Introduction . 21

Developing with MorphX . 21

Application Model Elements . 25

Chapter Summary . 34

The objectives of this chapter are to:

■	 Introduce MorphX, the Microsoft Dynamics AX 4.0 integrated development environ
ment (IDE).

■	 Show how MorphX is used throughout a product’s life cycle.

■	 Explain why MorphX is designed the way it is.

■	 Introduce the application model elements and their relationships.

Introduction
This chapter provides an overview of the MorphX development environment. It introduces
the designers and tools available and explains when you would typically use them when
building an application with MorphX. The designers and tools are described in detail in the
next two chapters.

You build an application with MorphX by using modeling. The building blocks available for
modeling are commonly known as application model elements. This chapter introduces the
different kinds of application model elements and their relationships, describes the tools
necessary for working with application model elements, and explains the sequence in which
to apply the tools. For a more thorough explanation of the application model elements, refer
to the Microsoft Dynamics AX SDK.

Developing with MorphX
MorphX features an extensive set of designers and tools. This section provides an overview of
the tools and designers by mapping them to a typical product life cycle, shown in Figure 2-1.
21

22 Part I A Tour of the Development Environment
Refer to Chapter 3, “The MorphX Designers,” and Chapter 4, “The MorphX Development
Tools,” for in-depth information about how to use the designers and tools.

Pla
n Design

Im
pl

em
en

t Release

Stabilize

Product
Cycle

Figure 2-1 A product life cycle model

Figure 2-1 shows a typical product life cycle. Most software projects start with a planning
phase. In this phase, you decide on the market segment, establish the vision for the product,
and allocate resources. The design phase follows, in which design documents are created,
design reviews are conducted, prototypes are implemented, and requirements are
documented. In the next phase, implementation, code implementation takes place. When
implementation is complete, the stabilization phase begins. Here the focus is to validate the
product quality: Are all requirements met? Does the product work as intended? Does the
product meet performance goals? When the product stability is satisfactory, the product can
be released. The release phase includes packaging, marketing, and maintenance, which might
involve releasing error corrections, hotfixes, and service packs. Finally, the product life cycle
starts over with the next version of the product.

You might follow this model in a strict manner, use variations, or manage your projects in a
less formal manner. The purpose of this discussion is to introduce the MorphX designers and
tools. Note that it is beyond the scope of this book to discuss how to run software projects
optimally.

Plan

When running a Dynamics AX project, you never start from scratch. It might be your first
Dynamics AX project and you might have a lot of learning to do, practices to formulate, and
partnerships to form, but you always have a code base from which to start.

In the planning phase, you investigate the existing Dynamics AX functionality and plan how
to integrate with the existing functionality at a high level. Typically, this takes place at the user
interface level.

It is a good idea to do this kind of investigation in demo mode. Dynamics AX automatically
enters demo mode when you skip the License Information step in the installation checklist.
The main benefit of investigating in demo mode is that all product functionality is available; if
a license file is loaded, only the functionality purchased for that particular license is available.

23 Chapter 2 The MorphX Development Environment
When all functionality is available, you can more effectively plan how to integrate and how to
avoid implementing redundant functionality. When you work in demo mode, the number of
users, Application Object Servers, and companies are limited. In demo mode, MorphX is not
available, the date-handling algorithm is limited, and dates after a certain threshold date
cannot be used.

Design

The first designer you will see in Dynamics AX is the Application Object Tree (AOT). This is
the repository for all the elements that together constitute the existing business application.

The next designers you will use are the property sheet and the X++ editor. Most nodes in the
AOT have a set of properties that can be inspected and modified by using the property sheet.
Method nodes contain X++ source code. The code can be inspected and modified by using the
X++ editor.

With these designers, you can, for example, see the structure of forms (by using the AOT), the
properties specified on each control (by using the property sheet), and the event handler’s
implementation (by using the X++ editor). You will use these designers throughout the
remaining phases of the product life cycle.

If you use the Version Control tool, you benefit from all elements being read-only. In read-only
mode, you can investigate without the risk of modifying the existing code. If this is the first
version of your project, you can also use the layering technology to provide the same safe
guard.

The designers discussed so far reveal implementation details at the element level. Three
additional tools show how elements relate to each other at a higher level. The Cross-Reference
tool shows you where any specific element is used. In the design phase, this tool is useful for
determining where table fields are displayed, initialized, read, modified, and so on. The Find
tool allows you to search any element in the AOT. In the design phase, you typically search the
entire AOT. The Reverse Engineering tool raises the abstraction level. With this tool, you can
generate Microsoft Visio Unified Modeling Language (UML) models. If you find yourself
struggling to understand the object hierarchies or the data models, you can take advantage of
a visual UML diagram by using this tool.

During the design phase, you should also consider your approach to testing. Designing for
testing from the beginning makes your life easier later in the product life cycle, and it typically
results in a better design. See Chapter 16, “Unit Testing,” for information on implementing
unit tests by using MorphX.

Implement

When your design documents and functional specifications are complete and you are ready to
start developing, you should consider setting up the Version Control tool. Version control

24 Part I A Tour of the Development Environment
allows you to keep track of all changes, which is particularly useful when working in large
teams. You can also specify code quality criteria. Code that does not conform to the code
quality that you specify is rejected in the version control check-in process, so you can always
be sure that code that falls short of the quality standard is not allowed into your project.

When you are ready to start your first implementation, you should use the Project Designer to
group related elements because the large number of elements in the AOT can make it hard to
work efficiently otherwise. A project provides a view into the AOT, allowing you to focus on
the elements that you are working with. Using a project allows you to define what you want to
see and the structure in which you see it.

After you have written your first piece of source code with the X++ editor, you must compile it.
The compiler generates the bytecode from your source code and presents any syntax errors.
The compiler also triggers the Best Practices tool, which validates your implementation of X++
code and element definitions according to development guidelines, allowing you to automat
ically detect coding errors.

You can also use the Form Visual Designer and the Report Visual Designer to construct your
forms and reports. If you are developing a multilingual feature, you can use the Label Editor to
create localizable text resources.

You might want to refer to code examples during the implementation phase. The Find
tool and the Cross-Reference tool can help you identify examples for API usage. The Cross-
Reference tool is also helpful if you need to refactor your code.

If, when you are ready to run your feature, you discover that your logic is not behaving the way
that you intended it to, you can use the debugger to track the problem. The debugger starts
automatically when execution hits a breakpoint. You might also need to see the data that has
been created by your feature. You can use the Table Browser tool to look for the data.

Stabilize

When you have completed your implementation, you will want to find and correct any
problems that you might have in your code—ideally, without introducing new problems.

You can use the debugger to find problems in your code. If a problem mandates a change of
method profiles (return values or parameters), you should use the Cross-Reference tool to
perform an impact analysis of your changes before you make them. If you use the Version
Control tool to track changes, you can use the Compare tool to highlight differences in each
revision of an element.

Release

You might be involved in upgrading your customer from one version of an application to the
next. For example, you might upgrade the customer from an earlier version of Dynamics AX,

25 Chapter 2 The MorphX Development Environment
or you might upgrade the customer from one version of your functionality to the next. To
detect any conflicting changes to elements, you can use the Create Upgrade Project option,
available in the Upgrade Checklist, or you can access it from Tools\Development Tools\
Version Update. To resolve conflicts, the Compare tool is unmatched. It allows you to compare
versions of elements, and, based on the results, upgrade elements.

Application Model Elements
The application model dictionary in the AOT organizes application elements into element
categories. Rich client forms and reports, for example, are top-level categories, and Web client
forms and reports are collected under a top-level Web category. For simplicity, the rich client
form category is called Forms, and the rich client reports category is called Reports.

Tip To better understand the element structure as you read, you might want to start
Dynamics AX and open the AOT.

Operational and Programming Model Elements

Operational model elements are used to model how the application should behave according
to security, configuration, and licensing in an operational environment. For example, certain
functionality is available only if it is enabled system wide and the user is authorized to use it.
Programming model elements provide ways to reference library code, definitions, and
resources. They also allow you to write small X++ scripts to experiment with the X++ language
capabilities.

The following is a list of the operational model elements:

■	 Security keys

■	 Configuration keys

■	 License codes

These model elements change the operational characteristics of the Dynamics AX develop
ment and run-time environments.

The programming model elements encompass the following:

■	 Reference elements Elements whose properties identify the Microsoft .NET assemblies
referenced in X++ statements

■	 Resource elements Name file resources loaded into the memory

■	 Macro elements Libraries of X++ string replacement procedures

■	 Job elements X++ programs primarily used for testing and debugging an executable
from within the development environment.

26 Part I A Tour of the Development Environment
Figure 2-2 illustrates the operational and programming element categories in the AOT.

Security
keys

Configura
tion
keys

License
codes

Macros

References

Resources

Jobs

Data Dictionary node

AOT node

Operational
element

Programming
element

Figure 2-2 Operational and programming model elements.

Operational Model Elements

You use the AOT and the property sheet to declaratively enable and disable application
features by associating configuration keys with menu item elements and data elements. The
MorphX development environment synchronizes table and view elements with the database
schema only if they are associated with an active configuration key or if they have no configu
ration key. For details, see the section “Database Model Elements,” later in this chapter, and
the section on database synchronization in Chapter 12, “The Database Layer.” The Dynamics
AX runtime renders presentation controls only for menu items that are associated with an
active configuration key or that have no configuration key. You can enable and disable
application logic by using X++ to test for the state of a configuration key.

Dynamics AX includes all the application modules developed by Microsoft. These modules
are locked with license codes that must be unlocked with license keys. An unlocked module
can also be configured by using configuration keys. Dynamics AX administrators manually
enable and disable configuration keys by using the check boxes in the system configuration
dialog box at Administration\Setup\System\Configuration. You can manually activate config
uration keys associated with license code elements only if there is a valid license key for the
corresponding license code element.

27 Chapter 2 The MorphX Development Environment
Security keys are part of the Dynamics AX role-based security framework. When a user
identified by a Microsoft Windows principal logs on to a Dynamics AX application, he or
she is authenticated with the Microsoft Windows platform security infrastructure and then
associated with a Dynamics AX application user group that denotes the application user’s
role. An application user role determines which user interface actions a user is authorized to
perform and which data the user is authorized to view and modify.

Security keys are associated with all other model elements so that similar elements can
be grouped together into a security group. Access permissions that are assigned to a security
key apply to all elements that are members of the associated security group. Access permis
sions can also be assigned to individual elements in a security group. The security grouping
provided by security keys is used to display a tree of security keys and application elements
when they are displayed in the User Group Permissions dialog box. This makes it easier for an
application administrator to navigate the thousands of menu item elements and data
elements for which he or she needs to assign user group permissions.

Programming Model Elements

The following list describes the programming model elements in detail:

■	 Reference elements Reference elements hold references to Microsoft .NET assemblies
for the .NET common language runtime (CLR) types to be incorporated natively into
X++ source code. The X++ editor reads type data from the referenced assemblies so that
IntelliSense is available for CLR namespaces, types, and type members. The MorphX
compiler uses the CLR type definitions in the referenced assembly for type and member
syntax validation, and the Dynamics AX runtime uses the reference elements to locate
and load the referenced assembly at run time.

■	 Resource elements Resource elements hold references to file resources that are
read from the file system and stored in memory. Image and animation files used when
developing Web client applications are referenced as resources. The name of the file that
contains the resource also references the resource when it is stored in the database.

■	 Macro elements Macro elements are libraries of X++ syntax replacement procedures
included in the X++ source code. You should use macro libraries to provide readable
names for constants. See Chapter 5, “The X++ Programming Language,” for an example
of a macro procedure and an example that shows how to include a macro library in X++
source code.

■	 Job elements Job elements are X++ source code statements that are easily executed by
selecting the Command\Go menu item or by pressing F5 on the keyboard while using
MorphX. Job elements offer a convenient method of experimenting with features of the
X++ language when they are used to write sample code. See Chapter 5 for an example
of X++ code statements written in a job element. Job elements should not be used for
writing application code. In fact, the Dynamics AX enterprise resource planning (ERP)
application model contains no job element when it is released to customers and
development partners.

28 Part I A Tour of the Development Environment
Value Type, Database, and Data Association Model Elements

Figure 2-3 illustrates the value type, database, and data association element categories that are
located in the Data Dictionary node in the AOT. Configuration key elements can be associated
with base enumeration and extended data type elements as well as with table, view, and map
elements. Table, view, and map application elements can also be associated with security
key elements.

Table
collections

Perspectives

Tables Queries

Maps

Views

Base
Enums

Data Dictionary node

Data Dictionary node

Extended
data types

Database element

Value type element

Data association element

Security key element

Configuration key element

Figure 2-3 Value type, database, and data association model elements.

Value Type Model Elements

A base enumeration element (sometimes shortened to “enum”) defines a name for a group of
symbolic constants that are used in X++ code statements. For example, an enumeration with
the name WeekDay can be defined to name the group of symbolic constants that includes
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, and Sunday.

An extended data type element can extend a base enumeration by providing a new name
for a group of symbolic constants that includes the base enumeration elements and any addi
tional symbolic constants or symbolic constraints defined in the extension. An extended data
type element can also extend the string, boolean, int, real, date, time, int64, guid, and container
types. An extended data type definition can also comprise a set of application parameters that

29 Chapter 2 The MorphX Development Environment
define how the Dynamics AX runtime renders user interface controls. For example, an
extended data type representing an account number extends a string value type, restricts its
length to 10 characters, and sets its user interface label to “Account number.”

Extended data types can also extend each other. For example, an extended data type
that defines an account number can be specialized by other extended data types defining
customer and vendor account numbers. The specialized extended data type inherits proper
ties, such as string length, label, and Help text. Some of the properties can be overridden on
the specialized extended data type. You constrain the possible values of an extended data type
and define a database table association by adding a relationship from the extended data type
to a table field element. The Dynamics AX runtime automatically ensures that the values of
the extended data type are consistent with this relationship. The runtime also uses the
defined relationship to navigate between rich client and Web client main table forms when a
user selects the Go To The Main Table Form menu item. This menu item appears when a user
right-clicks a form data grid column that is mapped to a table element field whose type is an
extended data type with a defined relationship.

Database Model Elements

Database elements are database table and view definitions that correspond to database server
entities and relationships as well as query elements that define database query statements. The
MorphX development environment synchronizes table and view element definitions with data
base schema definitions. This feature allows Dynamics AX to use both Microsoft SQL Server and
the Oracle database server as application databases. MorphX synchronizes only those database
elements for which there are enabled configuration keys and corresponding valid license keys.

Database element keys and indexes are used to create database entity keys and indexes, but data
element interrelationships are not used to create integrity relationships in a database. Instead,
they validate data entries to automatically join and select database data as a user navigates
between forms, and they join data sources associated with a form. For example, a user sees con
firmations only for the selected sales orders when navigating from a sales order form to a sales
order confirmation form. Moreover, MorphX automatically converts between X++ programming
value types such as string, enum, and boolean and their corresponding database data types, such
as varchar and int. For example, an X++ string defined to have a maximum length of 10 charac
ters is stored as a database varchar data type defined to have a maximum length of 10 characters.

A table element can also define table field groups, menu item references, table relationships,
delete actions, and methods that are used by the Dynamics AX runtime when it renders data
entry presentation controls and when it ensures the referential integrity of the database. The
X++ editor also uses these elements to support developers with IntelliSense when they write X++
statements that create, read, update, and delete data in the database. You can also use the AOT
to associate table elements with data source elements on forms, reports, queries, and views.

View elements define database table view entities and are synchronized with the application
database. View elements can include a query that filters data in a table or data joined from

30 Part I A Tour of the Development Environment
multiple tables. View element definitions also include table field mappings and methods.
Tables cannot be updated through views because they primarily provide an efficient method
for reading data. View elements can be associated with form and report data sources and are
instantiated in X++ variable declarations.

Query elements define a database query structure that can be executed from X++ statements,
particularly X++ statements used in classes that derive from the RunBase class. You add tables
to query element data sources and specify how they should be joined. You also specify how
data is returned from the query, such as by using sort order and range specifications.

Note You do not have to use the query element as form and report data sources because
these data sources have a similar built-in query specification capability.

Data Association Model Elements

Map elements do not define database entities, so they are not synchronized with the database.
They actually define X++ programming elements that wrap table objects at run time. Map
elements associate common fields and methods for tables that are not in third-normal form.
For example, the CustTable table element and the VendTable table element in the Dynamics AX
application model are mapped to the AddressMap map element so that developers can use one
AddressMap object to access common address fields and methods. The MorphX compiler val
idates that table variables assigned to map variables are defined as valid element mappings.

Note Maps provide a useful common interface to data entities and prevent the need to
duplicate methods on denormalized tables, but you should use maps only when normalization
is not an option.

Table collection elements define groups of tables that can be shared by two or more Dynamics
AX companies that share virtual company accounts. An administrator creates a virtual
company and then adds table collections to it. The administrator also adds the virtual
company accounts to an actual Dynamics AX company’s accounts. The Dynamics AX runtime
uses the virtual company data area identifier instead of the actual company data area identifier
when it inserts or reads data in the tables in the table collection.

Caution The tables placed in a table collection should not have foreign key relationships
with tables outside the table collection unless specific extensions are written to maintain the
relational integrity of the database.

Perspective elements define table collections that report views on the Dynamics AX database
model. Perspectives are used to design and generate ad hoc reports by using Microsoft SQL
Server Reporting Services.

31 Chapter 2 The MorphX Development Environment
Class Model Elements

Class elements define the structure and behavior of business logic types that work on ERP
reference data and business transaction data. These elements comprise object-oriented type defi
nitions that instantiate business objects at run time. You define type declaration headers and
methods by using the X++ programming language. You associate rich client and Web client menu
item elements in the AOT with class element methods by using the property sheet provided by
MorphX. This allows the Dynamics AX runtime to instantiate corresponding business logic
objects when users select action, display, or output menu item controls on a user interface.

The Dynamics AX runtime also invokes business object methods when they overload event
handlers on tables, forms, and reports. Class elements are also defined for application integra
tion scenarios that are not driven by a user interface. Chapter 9, “XML Document Integra
tion,” describes how these elements are associated with XML document elements that read
from and write to the file system, Microsoft Message Queuing, and Web services.

Presentation Model Elements

The two types of presentation elements include rich client elements and Web client elements.
The rich client element categories, Forms and Reports, are located under the AOT root node,
and the Web client element categories, Web Forms and Web Reports, are under the Web node
in the AOT. Presentation elements are form, report, menu, or menu item definitions for either
a Microsoft Windows client application, called a rich client application, or a Microsoft
Windows SharePoint Services client application, called a Web client application. Both types of
clients have a control layout feature called IntelliMorph. IntelliMorph automatically lays out
presentation controls based on model element property and security settings. Presentation
controls are automatically supplied with database and calculated data when their data source
elements are associated with database or temporary table fields.

Rich Client Model Elements

Figure 2-4 illustrates the rich client elements and their relationships. Configuration key and
security key elements can be associated with menu item elements only. This prevents users
from executing application code for which there are no license keys or for which there is no
active configuration key.

Table elements can also be associated with menu item elements. Each table element definition
includes an optional display menu item element reference that, by convention, launches a
form presentation control that renders the data from the database table in a grid control. The
Dynamics AX runtime also automatically adds a Go To The Main Table Form menu item to
a drop-down menu that appears when a user right-clicks a grid cell whose associated table
column has a foreign key relationship with another table. The Dynamics AX runtime uses the
referenced table’s menu item element to launch the form that renders the data from the for
eign key table in a table grid. The form is populated with all the data from the foreign key
table, and the related record is displayed as the active record.

32 Part I A Tour of the Development Environment
Tables

Forms Reports

Classes

Views

Menu
items

Menus

Security key element

Configuration key element

Database element

Class element

Rich client element

Figure 2-4 Rich client model elements.

Menu elements define logical menu item groupings. Menu definitions can include submenu
elements and other menu elements. The menu element named MainMenu defines the menu
entries for the Dynamics AX navigation pane.

Menu item elements define hyperlinks labeled for display, action, and output that the Dynam
ics AX runtime uses to instantiate and execute forms, business logic objects (defined by using
class elements), and reports, respectively. When rendering forms and reports, the Dynamics
AX runtime ignores menu items that are disabled by configuration keys, security keys, or
role-based access permissions.

Form elements define a presentation control with which users insert, update, and read data
base data. A form definition includes a data source and a design element that defines the
controls that must be rendered on the form, as well as their data source mappings. A form is
launched when a user clicks a display menu item control, such as a button.

Report elements define a presentation control that renders database and calculated data
in a page layout format. A report can be sent to the screen, a printer, an e-mail account,
or the file system. A report definition includes a data source and a design element that
define the output-only controls that must be rendered on the report, as well as their data

33 Chapter 2 The MorphX Development Environment
source mappings. A report is launched when a user clicks an output menu item control,
such as a button.

Web Client Model Elements

Configuration key and security key elements can be associated with Web menu items and
Weblet elements. This prevents users from executing Web application code for which there
are no license keys or for which there is no active configuration key. Resource elements can be
associated with Web form and Web report elements so that they can be incorporated into
Web pages by the Dynamics AX runtime.

Figure 2-5 illustrates the Web client model elements and their relationships.

Web
pages

Web
menus

Web
menu
items

Weblets Classes

Web
files

Web
content

Reports
Web

reports
Web
forms

Tables Views Resources

Database element
Security key element

Rich client element

Programming element Configuration key element

Web client element

Business logic element

Figure 2-5 Web client model elements.

Web menu elements define logical Web menu item groupings. Web menu definitions can
include submenu application elements and other Web menu application elements. Web
menu items are rendered as hyperlinks on Web pages.

34 Part I A Tour of the Development Environment
Web menu item elements define hyperlinks containing URLs and class labels that the Dynam
ics AX runtime uses to navigate between Web pages and to generate Web pages, respectively.
Web menu items render Web form and Web menu hyperlinks and controls.

Web file elements define file references to components required by Windows SharePoint
Services. These components include site definitions, templates, and Web Part installation
files. The MorphX development environment saves these files to a specified Web server at
deployment time.

Weblet elements define references to class application elements that extend the Weblet class
definition. Weblet objects return HTML documents whose format is governed by input
parameters.

Web form elements define Web presentation controls with which users insert, update, and
read database data. A Web form definition includes a data source and a design element that
defines the controls that must be rendered on the Web form, as well as their data source
mappings. A Web form is generated when a Web page hosting the Web form is generated.

Web report elements define Web presentation controls that render database and calculated
data in a Web format. A report definition includes a data source and a design element that
define the output-only controls that must be rendered on the report, as well as their data
source mappings. A Web report is generated when a Web page hosting the Web form is
generated.

Web content elements define display and output elements that reference Web form, Web
report, and (rich) report elements for their content.

Web page elements define the composition of an HTML document element that comprises
Web content elements and Web menu elements.

Chapter Summary
This chapter provided a brief overview of the design and operation of the tool set within the
MorphX development environment, as well as an overview of all the AOT elements seen from
a typical product life-cycle perspective. The next two chapters offer in-depth descriptions of
how to work with each of the components in MorphX.

Chapter 3

The MorphX Designers

In this chapter:

Introduction .35

The Application Object Tree. .36

The Project Designer .41

The Property Sheet .44

The X++ Editor. .46

The Label Editor .48

The Form Visual Designer and Report Visual Designer .51

Chapter Summary .54

The objectives of this chapter are to:

■	 Provide an overview of the designers used when implementing a business application
using MorphX.

■	 Share tips and tricks on how to use the designers efficiently.

■	 Demonstrate how to personalize and extend the designers.

Introduction
The business functionality in Microsoft Dynamics AX 4.0 was built with the MorphX design
ers. Each feature uses the model elements described in the previous chapter. These elements
contain metadata, structure, properties (key and value pairs), and X++ code. For example, a
table element includes the name of the table, the properties set for the table, the fields, the
indices, the relations, the methods, and so on.

The parts of the elements have different characteristics. MorphX has a set of designers that are
streamlined to create, view, modify, and delete the contents of elements.

The MorphX designers include the following:

■	 The Application Object Tree The Application Object Tree, or AOT, is the main entry
point for all development activities and the repository for all elements. You can use the
AOT to invoke the other designers and to browse and create elements.

■	 The Project Designer You can group related elements into projects by using this
designer.
35

36 Part I A Tour of the Development Environment
■	 The property sheet You can use this designer to inspect and modify properties of
elements. The property sheet shows key and value pairs.

■	 The X++ Editor You can use this text editor to inspect and write X++ source code.

■	 The Label Editor You can create and inspect localizable strings by using this editor.

■	 The Form Visual Designer and the Report Visual Designer You can design forms and
reports in a what-you-see-is-what-you-get fashion by using these editors.

The behavior of the designers can be personalized by clicking Options on the Tools menu.
Figure 3-1 shows the Options dialog box.

Figure 3-1 The dialog box in which development options are specified.

The Application Object Tree
The AOT is the main entry point to MorphX and is the repository explorer for all metadata.
You can open it by clicking its button on the toolbar or by pressing Ctrl+D.

Navigating the AOT

As the name implies, the Application Object Tree is a tree view. The root of the AOT contains
the element categories, such as Classes, Tables, and Forms. Note that some elements are
grouped into subcategories to provide a better structure. For example, Tables, Maps, Views,
and Extended Data Types reside under Data Dictionary, and all Web-related elements are
found under Web. Figure 3-2 shows the AOT.

The AOT can be navigated by using the arrow keys on the keyboard. Pressing the right arrow
expands a node if it has any children.

Elements are ordered alphabetically. Because thousands of elements exist, understanding the
naming conventions and adhering to them is important to effectively use the AOT.

37 Chapter 3 The MorphX Designers
Figure 3-2 The Application Object Tree.

All element names in the AOT follow this structure:

<Business area name> + <Business area description> + <Action performed or type of contents>

In this naming convention, similar elements are placed next to each other. The business area

name is also often referred to as the prefix. The prefixes are commonly used to indicate the

team responsible for an element.

Table 3-1 contains a list of the most common prefixes and their descriptions.

Table 3-1 Common Prefixes

Prefix Description

Ax Dynamics AX typed data source

Axd Dynamics AX business document

BOM Bill of material

COS Cost accounting

Cust Customer

HRM Human resource management

Invent Inventory management

JMG Shop floor control

KM Knowledge management

Ledger General ledger

PBA Product builder

Prod Production

Proj Project

38 Part I A Tour of the Development Environment
Table 3-1 Common Prefixes

Purch Purchase

Prefix Description

Req Requirements

Sales Sales

SMA

SMM

Service management

Sales and marketing management

Sys Application frameworks and development tools

Tax Tax engine

Vend Vendor

Web Web framework

WMS Warehouse management

When creating new elements, make sure to follow the recommended naming conventions.
This will make future development and maintenance much easier.

An alternative view of the information organized by the AOT is provided by the Project
Designer. The Project Designer is described in detail later in this chapter.

Creating New Elements

You can create new elements in the AOT by right-clicking the element category node and
selecting New <Element Name>, as shown in Figure 3-3.

Figure 3-3 Creating a new element in the AOT.

39 Chapter 3 The MorphX Designers
Objects are given automatically generated names when they are created. However, the default
names should be replaced with new names in accordance with the naming convention.

Modifying Elements

Each node in the AOT has a set of properties and either subnodes or X++ code. The property
sheet (shown in Figure 3-9) can be used to inspect or modify properties, and the X++ editor
(shown in Figure 3-12) can be used to inspect or modify X++ code.

The order of the subnodes may play a role in the semantics of the element. For example, the
tabs on a form display in the order in which they are listed in the AOT. The order of nodes can
be changed by selecting a node and pressing the Alt key while pressing the Up or Down arrow
key on the keyboard.

A red vertical line next to an element name marks it as modified and unsaved, or dirty, as
shown in Figure 3-4.

Figure 3-4 A dirty element in the AOT, indicated by a vertical line next to CustTable (sys).

A dirty element is saved when:

■	 The element is executed.

■	 The Save or Save All actions are explicitly invoked by the developer.

■	 Auto-save takes place. The frequency of this is specified in the Options dialog box acces
sible from the Tools menu.

Refreshing Elements

If several developers make modifications to elements simultaneously in the same installation
of Dynamics AX, each developer’s local elements could become out of sync with the latest
version. To ensure that the local versions of remotely changed elements are updated, an auto-
refresh thread runs in the background. This auto-refresh functionality will eventually update
all changes, but you might want to explicitly force a refresh. You do this by right-clicking the
element that you want to restore and then selecting Restore. This action refreshes both the

40 Part I A Tour of the Development Environment
on-disk and in-memory versions of the element. The following is a less elegant way of ensuring
that the latest elements are used:

1.	 Close the Dynamics AX client to clear in-memory elements.

2.	 Close the Dynamics Server service on the AOS to clear in-memory elements.

3.	 Delete the application object cache files (*.auc) from the Local Application Data folder
(located in Documents and Settings\<User>\Local Settings\Application Data) to
remove the on-disk elements.

Note In earlier versions of Dynamics AX, the application object cache was stored in .aoc
files. To support Unicode, the file extension has been changed to .auc in Dynamics AX 4.0.

Element Actions

Each node in the AOT contains a set of available actions. These actions are accessed from the
context menu, which can be opened by right-clicking the node in question.

Note that:

■	 The actions available depend on the type of node selected.

■	 You may select multiple nodes and perform actions simultaneously on all of the nodes
selected.

A frequently used action is Open New Window, which is available for all nodes. It opens a new
AOT window with the current nodes as the root. This action was used when creating the
screen capture of the CustTable element shown in Figure 3-4, and it can be very useful when
dragging and dropping elements.

The list of available actions on the context menu is extendable. You may create custom actions
for any element in the AOT by using the features provided by MorphX. In fact, all actions
listed on the Add-Ins submenu are implemented in MorphX by using X++ and the MorphX
designers.

You can enlist a class as a new add-in by following this procedure:

1.	 Create a new menu item and give it a meaningful name, a label, and Help text.

2.	 Set the menu item’s Object Type property to Class.

3.	 Set the menu item’s Object property to the name of the class to be invoked by the add-in.

4.	 Drag the menu item to the SysContextMenu menu.

5.	 If the action will be available only for certain nodes, the verifyItem() method on the
SysContextMenu class must be modified.

41 Chapter 3 The MorphX Designers
Element Layers

When an element from a lower layer is modified, a copy of the element is placed in the current
layer. All elements in the current layer appear in bold type (as shown in Figure 3-5), which
makes it easy to recognize changes. For a description of the layer technology, see the section
“The Application Model Layering System” in Chapter 1, “Architectural Overview.”

Figure 3-5 An element in the AOT that exists in several layers.

The Application Object Layer setting in the Options dialog box can be used to personalize the
layer information shown in the AOT. Figure 3-5 shows a class with the option set to All Layers.
As you can see, each method is suffixed with information about the layers in which it is
defined, such as sys, var, and usr. If an element exists in several layers, you can right-click it
and select Layers to access the versions of an element from lower layers. The All Layers setting
is highly recommended during code upgrade because it provides a visual representation of
the layer dimension directly in the AOT.

The Project Designer
For a fully customizable overview of the elements, you can use projects. In a project, elements
can be grouped and structured according to the developer’s preference. This is a powerful
alternative to the AOT because all the elements needed for a feature can be collected in one
project.

Creating a New Project

The Project Designer is opened by clicking the Project button on the toolbar. Figure 3-6 shows
the Project Designer.

42 Part I A Tour of the Development Environment
Figure 3-6 The Project Designer, showing available private and shared projects.

Except for its structure, the Project Designer behaves exactly like the AOT. Every element in a
project is also present in the AOT.

When you create a new project, you must decide whether it should be private or shared
among all developers. You cannot set access requirements on shared projects. A shared
project can be made private (and a private project can be shared) by dragging it from the
shared category into the private category.

Note Central features of Dynamics AX 4.0 are captured in shared projects to provide an
overview of all the elements in a feature. No private projects are included with the application.

A startup project may be specified in the Options dialog box. If specified, the chosen project
automatically opens when Dynamics AX is started.

Automatically Generated Projects

Projects can be automatically generated in several ways to make working with them easier.

Group Masks

Groups are folders in a project. When you create a group, the contents of the group can be
automatically generated by setting the ProjectGroupType property (All is an option) and a
regular expression as the GroupMask property. The contents of the group are created auto
matically and kept up to date as elements are created, deleted, and renamed. This ensures that
the project is always current, even when elements are created directly in the AOT.

Figure 3-7 shows the ProjectGroupType property set to Tables and the GroupMask property set
to <xref on a project group. All table names starting with xref (the prefix for the Cross-Reference
tool) will be included in the project group.

43 Chapter 3 The MorphX Designers
Figure 3-7 The property sheet specifying settings for ProjectGroupType and GroupMask.

Figure 3-8 shows the resulting project when using the settings from Figure 3-7.

Figure 3-8 A project created by using group masks.

Filters

You can also generate a project based on a filter. Because all elements in the AOT persist in a
database format, you can use a query to filter elements and have the results presented in a
project. A project filter is created by clicking the Filter button on the project’s toolbar.
Depending on the complexity of the query, project generation can take several minutes.

This feature allows you to create a project containing:

■ Elements created or modified within the last month.

■ Elements created or modified by a named user.

■ Elements from a particular layer.

Development Tools

Several development tools, such as the Wizard Wizard, produce projects containing the
elements created by the wizard. The result of running the Wizard Wizard is a new project that
contains a form, a class, and a menu item—all the elements you need to run the wizard.

Several other wizards also create projects, such as the Report Wizard and the Class Wizard.
You can access the wizards by clicking Tools\Development Tools\Wizards.

44 Part I A Tour of the Development Environment
Layer Comparison

You can compare all elements in one layer with elements in another layer, called the reference
layer. If an element exists in both layers, and the definitions of the element are different or the
element does not exist in the reference layer, the element will be added to the resulting
project. You can compare layers by clicking Tools\Development Tools\Version Update\
Compare Layers.

Upgrade Projects

When you upgrade from one version of Dynamics AX to another or install a new service pack,
new elements are introduced and existing elements are modified. These changes might
conflict with customizations implemented in a higher layer.

The upgrade project feature makes a three-way comparison to establish whether an element
has an upgrade conflict. It compares the original version with both the customized version
and the updated version. If a conflict is detected, the element is added to the project.

The resulting project provides a list of elements to update based on upgrade conflicts between
versions. You can use the Compare tool described in Chapter 4, “The MorphX Development
Tools,” to see the conflicts in each element. Together, these features provide a cost-effective
toolbox to use when upgrading.

You can create an upgrade project by clicking Tools \Development Tools \Version Update\
Create Upgrade Project.

Project Types

When you create a new project, you can specify a project type. So far, the discussions in this
chapter have been limited to standard projects. Two specialized project types are also provided:

■ Test project Project used to group a set of classes for unit testing

■ Help Book project Project used for the table of contents in the online Help system

You can create a custom specialized project by creating a new class that extends the ProjectNode
class. Specialized projects allow you to control the structure, icons, and actions available to
the project.

The Property Sheet
Properties are an important part of the metadata system. Each property is a key and value pair.
The property sheet allows you to inspect and modify properties of elements.

Open the property sheet by pressing Alt+Enter or by clicking the Properties button. The property
sheet automatically updates itself to show properties for any element selected in the AOT.

45 Chapter 3 The MorphX Designers
You do not have to manually open the property sheet for each element; you can simply leave
it open and browse the elements. Figure 3-9 shows the property sheet for a class. The two
columns are the key and value pairs for each property.

Figure 3-9 The property sheet for an object in the AOT.

Figure 3-10 shows the Categories tab for the class shown in Figure 3-9. Here, related properties
are categorized. For elements with many properties, this view can make it easier to find the
right property.

Figure 3-10 The Categories tab on the property sheet for an element in the AOT.

Read-only properties appear in gray. Just like files in the file system, elements contain infor
mation about who created them and when they were modified. The Microsoft build process
ensures that all elements that ship from Microsoft have the same time and user stamp.

The default sort order places related properties near each other. Categories were introduced
in an earlier version of Dynamics AX to make finding properties easier, but properties can
also be sorted alphabetically by setting a parameter in the Options dialog box. (Thanks to

46 Part I A Tour of the Development Environment
Erik Damgaard, founder of Damgaard Data.)The default sorting order is retained in the
current version for developers familiar with the layout of properties.

The property sheet can be docked on either side of the screen by right-clicking the title bar.
Docking ensures that the property sheet is never hidden behind another designer.

The property sheet can also be used as a designer component in custom application code by
using the DynamicPropertyManager class, which provides an application programming inter
face (API) to the property sheet. The API supports default values, callbacks when properties
are changed, categories, read-only properties, and so on.

The following sample code shows how you can create the custom property sheet shown in
Figure 3-11. The property sheet automatically updates itself depending on which element has
focus. To update without giving an element focus, you can execute the code sample through a
menu item or a button on a form. Otherwise, the property sheet will flash your properties for
a split second before focus returns to an element and the property sheet is updated with the
element’s properties.

DynamicPropertyManager dynamicPropertyManager =
new DynamicPropertyManager();

Struct propertyStruct =
new Struct("int Property1; int Property2; str Property3");

propertyStruct.value("Property1", 100);
propertyStruct.value("Property2", 200);
propertyStruct.value("Property3", "Hello World!");
dynamicPropertyManager.setProperties(1,

"My Property Sheet", propertyStruct);

Figure 3-11 A custom property sheet showing three custom properties.

The X++ Editor
All X++ code is written with the X++ editor. You open the editor by selecting a node in the AOT
and pressing Enter. The editor contains two panes. The left pane shows the methods available,
and the right pane shows the X++ code for the selected method, as shown in Figure 3-12.

47 Chapter 3 The MorphX Designers
Figure 3-12 The X++ editor.

The X++ editor is a basic text editor that supports color coding and IntelliSense, a Microsoft
program that provides lookup capability for context-sensitive information as the developer
types.

Shortcut Keys

Navigation and editing in the X++ editor follow standard shortcuts, as described in Table 3-2.

Table 3-2 X++ Editor Shortcut Keys

Action Shortcut keys Description

Show Help window F1 Opens context-sensitive Help for the
type or method currently selected in
the editor.

Go to next error
message

F4 Opens the editor and positions the
cursor at the next compilation error,
based on the contents of the compiler
output window.

Execute current
element

F5 Starts the current form, report, or class.

Compile F7 Compiles the current method.

Toggle a breakpoint F9 Sets or removes a breakpoint.

List enumerations F11 Provides a drop-down list of all
enumerations available in the system.

List reserved words Shift+F2 Provides a drop-down list of all
reserved words in X++.

List built-in functions Shift+F4 Provides a drop-down list of all built-in
functions available in X++.

Run an editor script Alt+M Lists all available editor scripts and lets
you select one to execute (such as
Send to mail recipient).

Open the Label Editor Ctrl+Alt+Spacebar Opens the Label Editor and searches
for the selected text.

48 Part I A Tour of the Development Environment
Table 3-2 X++ Editor Shortcut Keys

Action Shortcut keys Description

Show parameter
information or IntelliSense
list members

Ctrl+Spacebar Shows parameter information as a
ScreenTip or shows members in a
drop-down list.

Go to implementation
(drill down in code)

Ctrl+Shift+Spacebar Goes to the implementation of the
selected method. Highly useful for fast
navigation.

Go to the next method Ctrl+Tab Sets focus on the next method in the
editor.

Go to the previous
method

Ctrl+Shift+Tab Sets focus on the previous method in
the editor.

Enable block selection Ctrl+O Enables block selection, instead of the
default line selection.

Editor Scripts

The X++ editor contains a set of editor scripts that can be invoked by clicking the Editor
Scripts button on the toolbar. Editor scripts provide functionality such as the following:

■ Send to mail recipient

■ Send to file

■ Comment or un-comment code

■ Check out element, if version control is enabled

■ Generate code for standard code patterns

■ Open the AOT for the element that owns the method

Note Code generation allows you, in a matter of minutes, to create a new class with the right
constructor method and the right encapsulation of member variables by using parm methods. Parm
methods (parm is short for parameter) are used as simple property getters/setters on classes.
Naturally, code generation is carried out in accordance with X++ best practices.

The list of editor scripts is extendable. You can create your own scripts by adding new
methods to the EditorScripts class.

The Label Editor
The term label in Dynamics AX simply refers to a localizable text resource. Text resources are
used throughout the product as messages to the user, form control labels, column headers,
Help text in the status bar, captions on forms, and text on Web forms, to name just a few
places. Labels are localizable, meaning that they can be translated into any language. Because
the space requirement for displaying text resources typically depends on the language, you

49 Chapter 3 The MorphX Designers
might fear that the actual user interface must be manually localized as well. However, with
IntelliMorph technology, the user interface is dynamically rendered and honors any space
requirements imposed by localization.

The technology behind the label system is simple. All text resources are kept in a Unicode-
based label file that must have a three-letter identifier. The label file is located in the applica
tion folder (Documents and Settings\All Users\Application Data\Microsoft\Axapta 4.0\
Axapta Application\Appl\Standard) and follows this naming convention:

Ax<Label file identifier><Locale>.ALD

The following are two examples:

Axsysen-us.ALD

Axtstda.ALD

Each text resource in the label file has a 32-bit integer label ID, label text, and an optional label

description. The structure of the label file is very simple:

@<Label file identifier><Label ID> <Label text>

[Label description]

Figure 3-13 shows an example.

Figure 3-13 A label file opened in Microsoft Notepad showing a few labels from the en-us label file.

This simple structure allows for localization outside Dynamics AX using third-party tools.

After the localized label files are in place, the end user can choose a language in the Options dialog
box. When the language is changed, the user must close and restart the Dynamics AX client.

You can create new label files by using the Label File Wizard, which is accessed by clicking
Tools\Development Tool\Wizards\Label File Wizard. The wizard guides you through the
steps for adding a new label file or a new language to an existing label file. After you run the
wizard, the label file is ready to use.

Note Any combination of three letters can be used when naming a label file, and any label
file can be used from any layer. A common misunderstanding is that the label file identifier
must be the same as the layer in which it is used. This misunderstanding is caused by the
Microsoft label file identifiers. Dynamics AX ships with a SYS layer and a label file named SYS;
service packs contain a SYP layer and a label file named SYP. This naming standard was
chosen because it is simple, easy to remember, and easy to understand. Dynamics AX does
not impose any limitations on the label file name.

50 Part I A Tour of the Development Environment
The following are tips for working with label files:

■	 When naming a label file, you should choose a three-letter ID that has a high chance of
being unique, such as your company’s initials. Do not choose the name of the layer, such
as VAR or USR. It is likely that you will eventually merge two separately developed fea
tures into the same installation, a task that will be more difficult if the label files collide.

■	 Feel free to reference labels in the Microsoft-provided label files, but avoid making
changes to labels in these label files, because they are updated with each new version of
Dynamics AX.

Creating a New Label

The Label Editor is used to create new labels. It can be started by using any of the following
procedures:

■	 Clicking Tools\Development Tools\Label\Label Editor.

■	 Clicking the Label Lookup/Text button on the X++ editor toolbar.

■	 Clicking the lookup button on text properties in the property sheet.

The Label Editor (shown in Figure 3-14) allows you to find existing labels. It is often prefera
ble to reuse a label rather than create a new label. You can create a new label by pressing
Ctrl+N or by clicking the New button.

Figure 3-14 The Label Editor.

In addition to finding and creating new labels, the Label Editor can also show where a label is
used. You can also see a log of changes to each label.

The following are tips to consider when creating and reusing labels:

■	 When reusing a label, make sure that the label meaning is what you intend it to be in all
languages. Some words have a dual meaning in certain languages and translate into two

51 Chapter 3 The MorphX Designers
different words. For example, the English word can is both a verb and a noun. The
description column describes the intended meaning of the label.

■	 When creating new labels, make sure to use complete sentences or other standalone
words or phrases in each label. Do not construct complete sentences by concatenating
labels with one or few words because the order of words in a sentence differs from one
language to another.

Referencing Labels from X++

In the MorphX design environment, labels are referenced in the format @<LabelFileIdenti
fier><LabelID>. If you do not want a label reference to automatically convert to the label text,
you can use the literalStr function. When a placeholder is needed to display the value of a vari
able, the strFmt function and a string containing %n, where n>=1, can be used. Placeholders
can also be used within labels. The following code shows a few examples.

// prints: Time transactions

print "@SYS1";

// prints: @SYS1

print literalStr("@SYS1");

// prints: Microsoft Dynamics is a Microsoft brand

print strFmt("%1 is a %2 brand", "Microsoft Dynamics", "Microsoft");

The following are some best practices to consider when referencing labels from X++:

■	 You should always create user interface text by using a label. When referencing labels
from X++ code, use double quotation marks.

■	 You should never create system text such as file names by using a label. When referenc
ing system text from X++ code, use single quotation marks. You can place system text in
macros to make it reusable.

Using single and double quotation marks to differentiate between system text and user inter
face text allows the Best Practice tool to find and report any hard-coded user interface text.
The Best Practice tool is described in Chapter 4.

The Form Visual Designer and Report Visual Designer
MorphX has two visual designers, one for forms and one for reports, that allow you to drag
controls on the design surface in a what-you-see-is-what-you-get fashion. The actual position
of the controls is determined by IntelliMorph, so precise placement of controls is not possible.
These layout restrictions can be overridden by changing property values, such as Top, Left,
Height, and Width, from Auto to a fixed value, allowing the controls to be laid out entirely
with the visual designers. However, doing so interferes with the automated layout attempted
by IntelliMorph. This means that there is no guarantee that your forms and reports will dis
play well when translated, configured, secured, and personalized. For this reason, it is a best

52 Part I A Tour of the Development Environment
practice to let IntelliMorph control all the layout. You will find more detailed information
about IntelliMorph in Chapter 11, “Configuration and Security.” Most forms and reports that
ship with Dynamics AX are designed by using the AOT. When the visual designer is opened,
a tree structure of the design is displayed, and adding new controls to the design is quite simple.
You can do so by either dragging fields or field groups from the data source to the design or
right-clicking the design and choosing New Control.

Note IntelliMorph and MorphX treat form and report designs as hierarchical structures. A
control can be next to another control or inside a group control. This makes a lot of sense for
business applications. If you require controls to be on top of one another, you must use
absolute pixel positions. The order of the controls in the AOT mandates the z-order—that is,
the order in which controls are virtually stacked in the display.

You can use a report wizard, located in Tools\Development Tools\Wizards, to help you create
reports. The wizard guides you through the process step by step, allowing you to specify data
sources, sorting, grouping, layout, and other settings before producing a report in the AOT.

The Form Visual Designer

The designers can be helpful tools for learning how the IntelliMorph layout scheme works.
If you have the Form Visual Designer open when you start designing a form, you immediately
see what the form will look like, even when it is modified in the AOT. In fact, after creating a
few forms, you will probably feel so confident of the power of IntelliMorph and the effective
ness of designing forms in the AOT that you will only rarely use the Form Visual Designer.

The Form Visual Designer is opened by right-clicking a form’s design in the AOT and selecting
Edit. The designer is shown in design mode in Figure 3-15. Next to the form is a toolbar with
all the available controls, which can be dragged onto the form’s surface. You can also see the
property sheet showing the selected control’s properties.

Figure 3-15 The Form Visual Designer.

53 Chapter 3 The MorphX Designers
One interesting form that overrides IntelliMorph is the form tutorial_Form_freeform. Figure 3-16
shows how a scanned bitmap of a payment form is used as a background image for the form,
and the controls are positioned where data entry is needed.

Figure 3-16 A somewhat non-standard form that uses a bitmap background.

The Report Visual Designer

The majority of reports fall into two categories—internal reports and external reports. Require
ments for reports used internally in a company are often more relaxed than requirements for
external reports. Often external reports are part of the company’s face to the outside world.
An invoice report is a classic example of an external report.

Leveraging the features of IntelliMorph, internal reports typically use an autodesign that
allows the consumer of the report to add and remove columns from the report and control
report orientation, font, and font size.

External reports typically use a generated design, which effectively overrides IntelliMorph. So
for external reports, the Report Visual Designer is a clear winner. Often, external reports are
printed on pre-printed paper, so the ability to easily control the exact position of each control
is essential.

A generated design is created from an autodesign by right-clicking a design node of a report in
the AOT and selecting Generate Design. The Report Visual Designer can be opened by right-
clicking a generated design and selecting Edit. As shown in Figure 3-17, each control can be
moved freely, and new controls can be added.

Notice the zoom setting in the lower right corner. This setting allows you to get a close-up view
of the report and, with a steady hand, position each control exactly where you want it.

The rendering subsystem of the report engine can print only generated designs because it
requires all controls to have fixed positions. If a report has only an autodesign, the report
engine will generate a design in memory before printing.

54 Part I A Tour of the Development Environment
Figure 3-17 The Report Visual Designer.

Chapter Summary
This chapter introduced you to the many designers in MorphX and described what you can
expect when using MorphX. However, the only way to truly understand how the designers
work is to use them. Part II, “Developing with Microsoft Dynamics AX,” discusses a scenario in
which many aspects of the Dynamics AX application are changed by using the designers intro
duced in this chapter and the tools described in the following chapter.

Chapter 4

The MorphX Development Tools

In this chapter:

Introduction .55

The Compiler .56

The MorphX SDK .58

The Best Practices Tool .59

The Debugger. .62

The Visio Reverse Engineering Tool .66

The Table Browser Tool .69

The Find Tool .71

The Compare Tool .73

The Cross-Reference Tool .77

The Version Control Tool .80

Chapter Summary .90

The objectives of this chapter are to:

■	 Provide an overview of the most useful development tools in MorphX.

■	 Demonstrate how to use the tools proficiently and productively.

■	 Explain how the tools are designed and how some of them can be extended to suit
individual preferences and development standards.

Introduction
The business functionality in Microsoft Dynamics AX 4.0 was built with the MorphX designers
described in Chapter 3, “The MorphX Designers.” A toolbox helps you work efficiently with
the designers. Chapter 2, “The MorphX Development Environment,” explained how the
designers and tools fit into a product’s life cycle.

This chapter describes the following commonly used tools:

■	 Compiler This tool is used to compile X++ code into an executable format.

■	 MorphX SDK The MorphX software developer kit contains valuable developer
documentation.
55

56 Part I A Tour of the Development Environment
■	 Best Practice tool This is a static code analysis tool that can automatically detect
defects in both your code and your elements.

■	 Debugger The X++ debugger helps you find bugs in your X++ code.

■	 Reverse Engineering tool You can generate Microsoft Office Visio Unified Modeling
Language (UML) diagrams from elements by using the Reverse Engineering tool.

■	 Table Browser tool This tool allows you to view the contents of a table directly from
the table elements.

■	 Find tool The Find tool allows you to search for code or metadata patterns in the
Application Object Tree (AOT).

■	 Compare tool Use this tool to see a line-by-line comparison of two versions of the same
element.

■	 Cross-Reference tool The Cross-Reference tool allows you to determine where an
element is used.

■	 Version Control tool You can track all changes to elements and see a full revision log
by using the Version Control tool.

You access all of these development tools from one of two places:

■	 The Development Tools submenu on the Tools menu

■	 The context menu on elements in the AOT

The Compiler
Whenever you make a change to X++ code, you must recompile, just as you would in any other
development language. You start the recompile by pressing F7 in the X++ editor. Your code
also recompiles whenever you close the editor or save a dirty element.

The compiler also produces a list of the following information:

■	 Compiler errors These prevent code from compiling and should be fixed as soon as
possible.

■	 Compiler warnings These typically indicate that something is wrong in the
implementation. See Table 4-1, later in this section, for a list of compiler warnings.
Compiler warnings can and should be addressed. Check-in attempts with compiler
warnings are rejected.

■	 Tasks (also known as to-dos) The compiler picks up single-line comments that start
with TODO. These comments can be useful during development for adding reminders,
but they should be used only in cases in which implementation cannot be completed.
For example, you might use a to-do comment when you are waiting for a check-in from

57 Chapter 4 The MorphX Development Tools
another developer. You should avoid using to-do comments to postpone work that
can readily be completed, to ensure that the work is not overlooked. For a developer,
there is nothing worse than debugging an issue at a customer site and finding a to-do
comment indicating that the issue was already known.

Note Unlike other languages, X++ requires that you only compile code that you
have modified. This is because the intermediate language produced by the compiler is
persisted along with the X++ code and metadata. Of course, your changes can require
consumers of your code to be changed and recompiled if, for example, you rename a
method or modify its parameters. If the consumers are not recompiled, a run-time
error is thrown when they are invoked. This means that you can execute your business
application even when compile errors exist, as long as the code that cannot compile is
not used. You should always compile the entire AOT when you consider your changes
complete and fix any compilation errors found.

■	 Best practice deviations More complex validations are carried out by the Best
Practices tool. See the section entitled “The Best Practices Tool,” later in this chapter, for
more information.

The Compiler Output dialog box provides access to everything reported during compilation,
as shown in Figure 4-1. Each category of findings has a dedicated tab. Each tab contains the
same information for each issue that the compiler detects: a description of the issue and
where it was found. The Status tab shows a count of the detected issues.

Figure 4-1 The Compiler Output dialog box.

Compile results can be exported. This is useful if you want to share the list of issues with team
members. The exported file is an HTML file that can be viewed in Microsoft Internet Explorer
or re-imported into the Compiler Output dialog box in another Dynamics AX 4.0 session.

In the Compiler Output dialog box, click Setup and then click Compiler to define the types
of issues that the compiler should report. Compiler warnings are grouped into four levels, as
shown in Table 4-1.

58 Part I A Tour of the Development Environment
Table 4-1 Compiler Warnings

Warning message Level

Break statement found outside legal context 1

The new method of a derived class does not call super() 1

The new method of a derived class may not call super() 1

Function never returns a value 1

Not all paths return a value 1

Assignment/Comparison loses precision 1

Unreachable code 2

Empty compound statement 3

Class names should start with an uppercase letter 4

Member names should start with a lowercase letter 4

The MorphX SDK
Constructing quality software has become a daunting task during the last decade. Many new
competencies are expected of the developer, and mastering them fully and at all times is
nearly impossible. Today you must write code that conforms to many requirements, including
security, localization, internationalization, customization, performance, accessibility, reliability,
scalability, compatibility, supportability, interoperability, and so on. The list seems to grow
with each revision, and keeping up with all of these competencies is increasingly difficult.

Dynamics AX 4.0 includes a software development kit (SDK) that explains how to satisfy
these requirements when using MorphX. You access the SDK from the application Help
menu under Developer Help. The Developer Help section of the SDK includes an important
discussion on conforming to best practices in Dynamics AX. Reading the Developer Help
section is highly recommended—not just for novices, but also for experienced developers who
will find that the content has been extensively revised for version 4.0.

The motivation for conforming to best practices should be obvious to anyone. Constructing
code that follows proven standards and patterns cannot guarantee a project’s success, but it
certainly minimizes the risk of failure. To ensure your project’s success, you should learn,
conform to, and advocate best practices within your group.

The following are a few benefits of following best practices:

■	 You will avoid less-than-obvious pitfalls. Following best practices helps you avoid many
obstacles, even those that surface only in border scenarios that would otherwise be
difficult and time-consuming to detect and test. Using best practices allows you to leverage
the combined experiences of Dynamics AX expert developers.

■	 The learning curve is flattened. When similar tasks are performed in a standard way,
you are more comfortable in an unknown area of the application. This makes it more

59 Chapter 4 The MorphX Development Tools
cost-efficient to add new resources to a project and enables downstream consumers of
the code to make changes more readily.

■	 You will be making a long-term investment. Code that conforms to standards is
less likely to require rework during an upgrade process. This is true for upgrading to
Dynamics AX 4.0, installing any service packs, and upgrading to future releases.

■	 You are more likely to ship on time. Most of the problems that you will face when
implementing a solution in Dynamics AX have been solved at least once before. Choosing
a proven solution will result in faster implementation and less regression. You can find
solutions to known problems in both the Developer Help section of the SDK and the
code base.

The Best Practices Tool
A powerful supplement to the best practices discussion in the SDK is the Best Practices tool.
This tool is the MorphX version of a static code analysis tool, similar to FxCop for the
Microsoft .NET Framework and PREfix and PREfast for C and C++. The Best Practices tool is
embedded in the compiler, and the result is located on the Best Practices tab of the Compiler
Output dialog box.

The purpose of static code analysis is to automatically detect defects in the code. The longer
a defect exists, the more costly it becomes—a bug found in the design phase is much cheaper
to correct than a bug in shipped code running at several customer sites. The Best Practices
tool allows any developer to run an analysis of his or her code to ensure that it conforms to a
set of predefined rules. Developers can run analysis during development, and they should
always do so before implementations are tested.

The Best Practices tool displays deviations from the best practice rules, as shown in Figure 4-1.
Double-clicking a line on the Best Practices tab opens the X++ editor on the violating line of
X++ code.

Understanding Rules

The Best Practices tool includes about 300 rules, a small subset of the best practices
mentioned in the SDK. Clicking Setup and then Best Practices opens the Best Practice
Parameters dialog box, which allows you to define the best practice rules that you want to run.

Note The compiler error level must be set to 4 if best practice rule violations are to be
reported. To turn off the Best Practices tool, click Tools\Options\Compiler, and then set the
diagnostic level to less than 4.

The best practice rules are divided into categories. By default, all categories are turned on, as
shown in Figure 4-2.

60 Part I A Tour of the Development Environment
Figure 4-2 The Best Practice Parameters dialog box.

The best practices rules are divided into three levels of severity:

■	 Errors The majority of the rules focus on errors. Any check-in attempt with a best
practice error is rejected. All errors must be taken seriously and fixed as soon as possible.

■	 Warnings A 95/5 rule should be followed for warnings. This means that 95 percent of
all warnings should be treated as errors; the remaining 5 percent constitute exceptions
to the rule. Valid explanations should be provided in the design document for all warnings
that are not fixed.

■	 Information In some situations, your implementation might have a side effect that is
not obvious to you or the user. These are typically reported as information messages.

Dynamics AX 4.0 introduces a notion of suppressible errors and warnings. A suppressed best
practice deviation is reported as information. This gives you a way to identify the deviation as
reviewed and accepted. To identify a suppressed error or warning, place a line containing the
following text just before the deviation.

//BP Deviation Documented

Only a small subset of the best practice rules can be suppressed. The following guidelines
should be used for selecting rules to suppress:

■	 Where exceptions exist that are impossible to detect automatically, you should
examine each error to ensure the right implementation. APIs are a typical example of
this. A dangerous API is an API that can compromise the system’s security when used
incorrectly. If a dangerous API is used, a suppressible error will be reported. Using a
dangerous API is allowed when certain precautions are taken, such as using code
access security. You can suppress the error after applying the appropriate mitigations.

61 Chapter 4 The MorphX Development Tools
■	 About 5 percent of all warnings are false positives and can be suppressed. Note that only
warnings caused by actual code can be suppressed, not warnings caused by metadata.

After you set up the best practices, the compiler will automatically run the best practices check
whenever an element is compiled. The results are displayed on the Best Practices tab in the
Compiler Output dialog box.

Adding Custom Rules

The X++ Best Practices tool allows you to create your own set of rules. The classes used to
check for rules are named SysBPCheck<ElementKind>. The init, check, and dispose methods are
called once for each node in the AOT for the element being compiled.

One of the most interesting classes is SysBPCheckMemberFunction, which is called for each
piece of X++ code whether it is a class method, form method, macro, or other method. For
example, if you do not want your developers to include their names in the source code, you
can implement a best practice check by creating the following method on the SysBPCheck-
MemberFunction class.

protected void checkUseOfNames()
{

 #Define.MyErrorCode(50000)

 container devNames = ["Arthur", "Lars", "Michael"];

 int i;

 int j;

 int pos;

 str line;

 int lineLen;

 for (i=scanner.lines(); i; i--)
{

line = scanner.sourceLine(i);

lineLen = strlen(line);

for (j=conlen(devNames); j; j--)

{

pos = strscan(line, conpeek(devNames, j), 1, lineLen);

if (pos)

{

sysBPCheck.addError(#MyErrorCode, i, pos,

"Don't use your name!");

}

}

}

}

To enlist the rule, make sure to call the preceding method from the check method. Compiling
this sample code results in the best practice errors shown in Table 4-2.

62 Part I A Tour of the Development Environment
Table 4-2 Best Practice Errors in checkUseOfNames

Message Line Column

Method contains text constant: 'Arthur' 4 27

Don't use your name! 4 28

Method contains text constant: 'Lars' 4 37

Don't use your name! 4 38

Method contains text constant: 'Michael' 4 45

Don't use your name! 4 46

Method contains text constant: 'Don't use your name!' 20 59

In a real-world implementation, names of developers would probably be read from a file.
Make sure to cache the names to prevent the compiler from going to the disk to read the
names for each method being compiled.

The Debugger
Like most development environments, MorphX features a debugger. The debugger is a
stand-alone application, not part of the Dynamics AX shell like the rest of the tools
mentioned in this chapter. As a stand-alone application, the debugger allows you to debug
X++ in any of the Dynamics AX components in the following list:

■	 Windows Client

■	 Application Object Server

■	 Enterprise Portal

■	 Business Connector

Using the Debugger

For the Debugger to start, a breakpoint must be hit during execution of X++ code. You set
breakpoints by using the X++ editor in the Windows Client. The debugger starts automatically
when any component hits a breakpoint.

You must enable debugging for each component as follows:

■	 In the Windows Client, click Tools\Options. On the Development tab, select When
Breakpoint in the Debug Mode list.

■	 For the Application Object Server, open the Microsoft Dynamics AX Server Configuration
Utility under Start\Administrative Tools. Create a new configuration (if necessary) and
select the check box labeled Enable Breakpoints To Debug X++ Code Running On This
Server.

■	 For the Enterprise Portal and Business Connector, open the Microsoft Dynamics AX
Configuration Utility under Start\Administrative Tools. Select one of two check boxes

63 Chapter 4 The MorphX Development Tools
on the Developer tab: Enable User Breakpoints For Debugging Code Running In The
Business Connector or Enable Global Breakpoints For Debugging Code Running In The
Business Connector Or Client. The latter is useful for debugging incoming Web requests.

Caution In a live environment, enabling any of the debugging capabilities is not recommended.
Execution will stop when it hits a breakpoint, and users will experience a hanging client.

The debugger allows you to set and remove breakpoints by pressing F9. You can set a break
point on any line that you want. However, if you set a breakpoint on a line without an X++
statement, the breakpoint will be triggered on the next X++ statement in the method. A break
point on the last brace will never be hit.

You can enable or disable a breakpoint by pressing Ctrl+F9. For a list of all of your break
points, press Shift+F9.

Breakpoints are persistent in the SysBreakpoints database table. Each developer has his or her
own set of breakpoints. This means that your breakpoints are not cleared when you close
Dynamics AX and that other Dynamics AX components can access them and break where you
want them to.

The Debugger Interface

The main window in the debugger initially shows the point in the code where a breakpoint was
hit. Execution can be controlled one step at a time while variables and other aspects are inspected.
Figure 4-3 shows the debugger opened to a breakpoint with all of the windows enabled.

Figure 4-3 The debugger with all windows enabled.

The debugger windows include the following:

64 Part I A Tour of the Development Environment
Main window

The main debugger window shows you the current X++ code. Each variable has a ScreenTip
that reveals its value. You can drag the next-statement pointer in the left margin. This is
particularly useful if the execution path is not what you expected or if you want to repeat a
step.

Variables

In this window, local, global, and member variables can be inspected. Local variables are
variables in scope at the current execution point. Global variables are the global classes that
are always instantiated: Appl, Infolog, Classfactory, and VersionControl. Member variables make
sense only on classes and show the class member variables.

The Variables window shows the name, value, and type of the variables. If a variable is changed
during execution stepping, it is marked in red. Each variable is shown associated with a client or
server icon. You can modify the value of a variable by double-clicking the value.

Tip As a developer, you might want to provide more information than what is provided
by default in the value field. For a class, the defaults are New and Null. You can change the
defaults by overriding the toString() method. If your class does not explicitly extend object
(the base class of all classes), you must add a new method named toString, returning str and
taking no parameters, to implement this functionality.

Call Stack

The Call Stack window shows the code path visited to arrive at this execution point.
Clicking a line in the Call Stack window opens the code in the Code window and updates
the local Variables window. A client or server icon indicates the tier on which the code is
executed.

Watch

In the Watch window, you can inspect variables without the scope limitations of the Variables
window. You can drag a variable here from the code window or from the Variables window.

The Watch window shows the name, value, and type of the variables. Five different Watch
windows are available. You can use these to group the variables you are watching in the way
that you prefer.

Breakpoints

The Breakpoints window lists all of your breakpoints. You can delete, enable, and disable your
breakpoints.

65 Chapter 4 The MorphX Development Tools
Output

The Output window shows the traces that are enabled and the output to the Infolog, the
information log framework introduced in Chapter 1, “Architectural Overview.” The Output
window includes the following pages:

■	 Debug You can instrument your X++ code to trace to this page by using the printDebug
static method on the Debug class.

■	 Infolog This page contains messages in the queue for the Infolog.

■	 Database, Client/server, and ActiveX Trace Any traces enabled on the Development
tab in the Options dialog box will appear on these pages.

Status Bar

The status bar at the bottom of the debugger is also worth some attention. It offers the following
important context information:

■	 Current user The ID of the user who is logged in to the system. This information is
especially useful when debugging incoming Web requests.

■	 Current session The ID of the session on the Application Object Server (AOS).

■	 Current company accounts The ID of the current company accounts.

■	 Transaction level The current transaction level. When reaching zero, the transaction
will be committed.

Debugger Shortcut Keys

Table 4-3 shows the most important shortcut keys available in the debugger.

Table 4-3 Debugger Shortcut Keys

Action Shortcut Description
Run F5 Continue execution
Stop debugging Shift+F5 Break execution
Step over F10 Step over next statement
Run to cursor Ctrl+F10 Continue execution, but break at the

cursor’s position
Step into F11 Step into next statement
Step out Shift+F11 Step out of method
Toggle breakpoint Shift+F9 Insert or remove breakpoint
Variables window Ctrl+Alt+V Open or close Variables window
Call Stack window Ctrl+Alt+C Open or close Call Stack window
Watch window Ctrl+Alt+W Open or close Watch window
Breakpoints window Ctrl+Alt+B Open or close Breakpoints window
Output window Ctrl+Alt+O Open or close Output window

66 Part I A Tour of the Development Environment
The Visio Reverse Engineering Tool
Dynamics AX 4.0 allows you to generate Office Visio UML models from existing metadata.
Considering the amount of metadata available in Dynamics AX 4.0 (more than 30,000
elements and more than 5 million lines of text when exported), it is practically impossible to
get a clear view of how the elements relate to each other by using the AOT. The Visio Reverse
Engineering tool is a great aid when you need visualization of metadata.

Note You must have Microsoft Office Visio 2003 installed to use the Visio Reverse
Engineering tool. The Reverse Engineering tool replaces the Visual MorphXplorer from the
previous version of Dynamics AX.

The Reverse Engineering tool can generate either a UML data model or a UML object model,
including all elements from a private or shared project. To open the tool, right-click a project,
point to Add-Ins, and then click Reverse Engineer. In the dialog box shown in Figure 4-4, you
must specify a file name and model type.

Figure 4-4 The Visio Reverse Engineering dialog box.

When you click OK, the tool uses the metadata for all elements in the project to generate an
Office Visio document that opens automatically in Visio. You can drag elements from the Visio
Model Explorer onto the drawing surface, which is initially blank. Any relationship between
two elements is automatically shown.

Data Model

When generating a UML data model, the Reverse Engineering tool looks for tables in the
project. The UML model will contain a class for each table in the project and its attributes and
associations. Figure 4-5 shows a class diagram with the CustTable (Customers), InventTable
(Inventory Items), SalesTable (Sales Order Header), and SalesLine (Sales Order Line) tables.
To simplify the view, some attributes have been removed.

67 Chapter 4 The MorphX Development Tools
1

Figure 4-5 A UML data model diagram.

-C
us

tI
nv

oi
ce

A
cc

ou
nt

{In
vo

ic
eA

cc
ou

nt
.A

cc
ou

nt
N

um
}*

-C
us

tA
cc

ou
nt

{A
cc

ou
nt

N
um

.A
cc

ou
nt

N
um

}*
-I

te
m

Id
{It

em
Id

:It
em

Id
}*

1
C

u
st

Ta
b

le

+
{A

cc
ou

nt
Id

x}
--

A
cc

ou
nt

N
um

 :
C

us
tA

cc
ou

nt
+

N
am

e
: C

us
tN

am
e

+
A

d
d

re
ss

 :
A

d
d

re
ss

in
g

+
C

us
tG

ro
up

 :
C

us
tG

ro
up

Id
+

In
vo

ic
eA

cc
ou

nt
 :

C
us

tI
nv

oi
ce

A
cc

ou
nt

1

1

1
1

1
-I

te
m

N
am

e{
It

em
N

am
e:

It
em

N
am

e}
*

In
ve

n
tT

ab
le

+
{It

em
ld

x}
--

G
ro

up
It

em
ld

x-
-T

yp
el

d
x-

-D
im

G
ro

up
It

em
ld

x-
-I

te
m

Id
 :

It
em

ld
+

It
em

N
am

e
: I

te
m

N
am

e
+

Ty
p

el
d

x-
-I

te
m

Ty
p

e
: I

te
m

Ty
p

e
+

N
et

W
ei

g
ht

 :
It

em
N

et
W

ei
g

ht

-C
us

tI
nv

oi
ce

A
cc

ou
nt

{In
vo

ic
eA

cc
ou

nt
.A

cc
ou

nt
N

um
}*

-I
te

m
Id

{It
em

Id
:It

em
Id

}*

-C
us

tA
cc

ou
nt

{C
us

tA
cc

ou
nt

.A
cc

ou
nt

N
um

}*

W
or

ks
he

et
H

ea
d

er
::S

al
es

Ta
b

le

+
{S

al
es

Id
x}

--
{C

us
tI

d
x}

--
Sa

le
sI

d
 :

Sa
le

sI
d

Ba
se

+
{C

us
tI

d
x}

--
C

us
tA

cc
ou

nt
 :

C
us

tA
cc

ou
nt

+
In

vo
ic

eA
cc

St
at

us
Id

x-
-I

nv
oi

ce
A

cc
ou

nt
 :

C
us

tln
vo

ic
eA

cc
ou

nt
+

D
el

iv
er

yA
d

d
re

ss
 :

A
d

d
re

ss
in

g
+

In
ve

nt
Lo

ca
tio

nI
d

 :
Sa

le
sI

nv
en

tL
oc

at
io

nI
d

+
Q

uo
ta

tio
nI

d
 :

Q
uo

ta
tio

nI
d

+
Sa

le
sN

am
e

: S
al

es
N

am
e

+
St

at
us

C
us

tA
cc

Id
x-

-I
nv

oi
ce

A
cc

St
at

us
Id

x-
-S

al
es

St
at

us
 :

Sa
le

sS
ta

tu
s

+
Sa

le
sT

yp
e

: S
al

es
Ty

p
e

-S
al

es
Ta

b
le

{S
al

es
Id

:S
al

es
Id

}*

1
-S

al
es

Ta
b

le
Re

f{
In

ve
nt

Re
fT

yp
e:

1+
In

ve
nt

Re
fld

:S
al

es
Id

}*

1

-S
al

es
Id

Ba
se

{S
al

es
Id

:S
al

es
Id

}*

1

W
or

ks
he

et
Li

ne
::S

al
es

Li
n

e

+
Sa

le
sL

in
eI

d
x-

-S
al

es
St

at
us

Id
x-

-S
al

es
Id

 :
Sa

le
sI

d
Ba

se
+

Sa
le

sL
in

eI
d

x-
-L

in
eN

um
 :

Li
ne

N
um

+
C

ur
re

nc
yC

od
e

: C
us

tC
ur

re
nc

yC
od

e
+

{It
em

Id
x}

--
St

at
us

It
em

Id
x-

-I
te

m
Id

 :
It

em
Id

Sm
al

l
+

{T
ra

ns
Id

Id
x}

--
In

ve
nt

Tr
an

sI
d

 :
In

ve
nt

Tr
an

sI
d

+
Li

ne
A

m
ou

nt
 :

Sa
le

sL
in

eA
m

ou
nt

+
Sa

le
sP

ri
ce

 :
Sa

le
sP

ri
ce

+
Sa

le
sQ

ty
 :

Sa
le

sO
rd

er
ed

Q
ty

+
Sa

le
sU

ni
t

: S
al

es
U

ni
t

68 Part I A Tour of the Development Environment
The UML model also contains referenced tables and all extended data types, base enumerations,
and X++ data types. This allows you to include these in your diagrams without having to run
the Reverse Engineering tool again.

Fields in Dynamics AX are generated as UML attributes. All attributes are marked as public
because of the nature of fields in Dynamics AX. Each attribute also shows the type. The
primary key field is underlined. If a field is a part of one or more indexes, the names of the
indexes are prefixed to the field name; if the index is unique, the index name is noted in
brackets.

Relationships in Dynamics AX are generated as UML associations. The aggregation property
of the association is set based on two conditions in metadata:

■	 If the relationship is validating (the validate property is set to Yes), the aggregation
property is set to shared. This is also known as UML aggregation, visualized by a white
diamond.

■	 If a cascading delete action exists between the two tables, a composite association is
added to the model. A cascading delete action ties the life span of two or more tables and
is visualized by a black diamond.

The end name on associations is the name of the Dynamics AX relationship, and the names
and types of all fields in the relationship appear in brackets.

Object Model

When generating an object model, the Reverse Engineering tool looks for Dynamics AX
classes, tables, and interfaces in the project. The UML model will contain a class for each
Dynamics AX table and class in the project and an interface for each Dynamics AX interface.
The UML model will also contain attributes and operations including return types, parameters,
and the parameters’ types. Figure 4-6 shows an object model of the most important RunBase
and Batch classes and interfaces in Dynamics AX. To simplify the view, some attributes and
operations have been removed, and operation parameters are suppressed.

The UML model also contains referenced tables, classes and tables, and all extended data
types, base enumerations, and X++ data types. This allows you to include these in your dia
grams without having to run the Reverse Engineering tool again.

Fields and member variables in Dynamics AX are generated as UML attributes. All fields are
generated as public attributes, whereas member variables are generated as protected
attributes. Each attribute also shows the type. Methods are generated as UML operations,
including return type and parameters, and the parameters’ types.

The Reverse Engineering tool also picks up any generalizations (classes extending other
classes), realizations (classes implementing interfaces), and associations (classes using each
other). The associations are limited to references in member variables.

69 Chapter 4 The MorphX Development Tools
+run() : void

+run()
#dialog()
+getFromDialog()
+init()
+initParmDefault()
+new()
+pack()
+progressInit()
+prompt()
+run()
+unpack()
+validate()
+description()

#dialogCanceled : boolean
#progress : RunbaseProgress

#priority : Priority
#startDate : StartDate
#startTime : timeOfDay
#periodic : BatchPeriodic
#recurrenceData : SysRecurrenceData

1

+dialog()
+finishJob()
+run()
#runJob()
+sendMail()

#groupId : BatchGroupId
#privateBatch : NoYes

+batchInfo()
+canGoBatch()
+caption()
+parmCurrentBatch()
+runsImpersonated()
+batchInfo()
+canGoBatch()
+canReuseBatch()
+getFromDialog()
+initBatch()
+prompt()
+runsImpersonated()

#batchInfo : BatchInfo
#inBatch : boolean
#currentBatch : Batch

+batchInfo()
+canGoBatch()
+caption()
+parmCurrentBatch()
+runsImpersonated()

«interface»
SysRunable

BatchInf

BatchRun RunBaseBatch

«interface»Batchable

RunBase

Figure 4-6 A UML object model diagram.

Note To get the names of operation parameters, you must reverse engineer in debug
mode. The names are only read from metadata and placed into the stack when in debug
mode. You can enable debug mode on the Development tab in the Options dialog box by
selecting When Breakpoint in the Debug Mode list.

The Table Browser Tool
The usage scenarios of this small, helpful tool are numerous. The Table Browser tool lets
you see the records in a table without requiring you to build any user interface. This is useful
when debugging, validating data models, and modifying or cleaning up data, to name just a
few uses.

70 Part I A Tour of the Development Environment
The table browser can be accessed from the Add-Ins submenu in the AOT on:

■ Tables.

■ Tables listed as data sources in Forms, Reports, Web Forms, and Web Reports.

■ System tables listed in the AOT under System Documentation\Tables.

Note The Table Browser tool is implemented in X++. You can find it in the AOT under the
name SysTableBrowser. It is a good example of how to bind the data source to a table at run
time.

Figure 4-7 shows the Table Browser tool started from the CustTable table. In addition to
the querying, sorting, and filtering capabilities provided by the grid control, the Table
Browser tool allows you to type an SQL SELECT statement directly into the form using the
X++ language syntax and see a visual display of the result set. This is great for trying out
complex SELECT statements. The tool fully supports grouping, sorting, aggregation, and
field lists.

Figure 4-7 The Table Browser tool, showing CustTable from demo data.

The Table Browser tool also allows you to choose to see only the fields from the auto-report
field group. These fields will be printed in a report when the user clicks Print in a form
with this table as a data source. Typically, these fields hold the most interesting information.
This option can make it easier to find the values that you are looking for in tables with
many fields.

Note The Table Browser tool is just a normal form that uses IntelliMorph. This means that
it cannot display fields for which the visible property is set to No or fields that the current
user does not have access to.

71 Chapter 4 The MorphX Development Tools
The Find Tool

Search is everything! The size of the Dynamics AX application calls for a powerful and
effective search tool. The scenarios demanding search are numerous, but here are just a few:

■	 A new developer is looking for the right place to implement changes.

■	 A developer is searching for an example of how to use an API. He would like to find real
examples to complement the examples in the documentation.

■	 An experienced developer is scanning the source code or metadata properties for

deviations from best practices.

The Find tool, shown in Figure 4-8, can be started from any node in the AOT by pressing
Ctrl+F or by clicking Find on the context menu. Note that the Find tool supports multiple
selections in the AOT.

Figure 4-8 The Find tool.

The Name & Location tab defines what you are searching for and where to look:

■	 Search Menu options are Methods and All Nodes. When All Nodes is chosen, the
Properties tab appears.

■	 Named This text box limits the search to nodes with the name specified. This option
is rarely used.

■	 Containing Text Use this box to specify the text to look for in the method expressed as
a regular expression.

■	 Show Source Code When this check box is selected, results include a snippet of source
code containing the match. This makes it easier to browse the results.

■	 Look In and Use Selection By default, the Find tool searches the node selected in the
AOT (and its sub-nodes). If focus is changed in the AOT while the Find tool is open, the
Look In value is updated. This is quite powerful if several nodes should be searched with
the same criterion. This behavior can be disabled by clearing the Use Selection check
box.

72 Part I A Tour of the Development Environment
The Date tab lets you specify additional ranges for your search, such as Modified Date and
Modified By.

On the Advanced tab, you can specify more advanced settings for your search, such as the
layer to search, the size range of elements, the type of element, and the tier on which the ele
ment is set to run.

The Filter tab, shown in Figure 4-9, allows you to write a more complex query by using X++
and type libraries. The code written in the Source text box will be the body of a method with
the following profile:

boolean FilterMethod(str _treeNodeName,
str _treeNodeSource,
XRefPath _path,
ClassRunMode _runMode)

The example in Figure 4-9 uses the class SysScannerClass to find any occurrence of the
TTSAbort X++ keyword. The scanner is primarily used to pass tokens into the parser during
compilation. Here, however, it detects use of a special keyword. This is more accurate
(and slower) than using a regular expression, because X++ comments do not produce
tokens.

Figure 4-9 Filtering in the Find tool.

The Properties tab appears when All Nodes is selected in the Search menu. A search range can
be specified for any property. Leaving the range blank for a property is a powerful setting
when inspecting properties: It matches all nodes, and the property value is added as a column
in the results, as shown in Figure 4-10. The search begins when you click Find Now. The
results appear at the bottom of the dialog box as they are found. Searching all methods in the
AOT takes about three minutes when you search only for text patterns.

Double-clicking any line in the result set opens the X++ editor with focus on the matched
code snippet. When you right-click the lines in the result set, a context menu containing the
Add-Ins menu opens.

73 Chapter 4 The MorphX Development Tools
Figure 4-10 Search results in the Find tool.

The Compare Tool
Several versions of the same element typically exist. These versions might emanate from
various layers or revisions in version control, or they could be modified versions that exit
in-memory. Dynamics AX has a built-in Compare tool that highlights any differences between
two versions of an element.

The comparison shows changes to elements, which can be modified in three ways:

■	 A metadata property can be changed.

■	 X++ code can be changed.

■	 The order of sub-nodes can be changed, such as the order of tabs on a form.

Starting the Compare Tool

You open the Compare tool by right-clicking an element and then clicking Compare on the
Add-Ins submenu. A dialog box allows you to select the versions of the element that you want
to compare, as shown in Figure 4-11.

Figure 4-11 The Comparison dialog box.

The versions to choose from come from many sources. The following is a list of all possible
types of versions:

■	 Standard layered version types (sys, syp, gls, glp, dis, dip, los, lop, bus, bup, var, vap,
cus, cup, usr, usp)

74 Part I A Tour of the Development Environment
■	 Old layered version types (old sys, old syp, and so on) If .aod files are present in the
Old Application folder (located in Program Files\Microsoft Dynamics AX\40\Application
\Appl\Standard\Old), elements from the files are available here. This allows you to
compare an older version of an element with a 4.0 version of the element. See Chapter 1,
“Architectural Overview,” for more information on layers. In Chapter 1, Figure 1-5 illus
trates the components in the model layering system.

■	 Version control revisions (Version 1, Version 2, and so on) Any revision of an ele
ment from the version control system can be retrieved individually and used for compar
ison. The version control system is explained later in this chapter.

■	 Best practice washed version (Washed) A few simple best practice issues can be
resolved automatically by a best practice “wash.” Selecting the washed version shows
you how your implementation differs from best practices. To get the full benefit of this,
select the Case Sensitive check box on the Advanced tab.

■	 Export/import file (XPO) Before you import elements, these can be compared with
existing elements (which they will overwrite during import). The Compare tool can be
used during the import process (Command\Import) by selecting the Show Details check
box in the Import dialog box and right-clicking any elements that appear in boldface. Bold
face objects already exist in the application and objects that are not boldface do not.

■	 Upgraded version (Upgraded) MorphX can automatically create a proposal for how a
class should be upgraded. The requirement for upgrading a class arises during a version
upgrade. The Create Upgrade Project step in the Upgrade Checklist automatically detects
customized classes conflicting with new versions of the class. A class is conflicting when you
have changed the original version of the class, and the original version has also been changed
by the publisher of the class. MorphX constructs the proposal by merging your changes and
the publisher’s changes to the class. MorphX requires access to all three versions of the
class—the original version in the Old Application folder, a version with your changes in the
current layer in the Old Application folder, and a version with the publisher’s changes in the
same layer as the original. The installation program ensures that the right versions are avail
able in the right places during an upgrade. The conflict resolution is shown in Figure 4-12.

Your changes
(for example,

old usr)

Original
(for example,

old sys)

Their changes
(for example,

sys)

Proposal
(for example,

usr)

Compare

Figure 4-12 How the upgraded version proposal is created.

75 Chapter 4 The MorphX Development Tools
Note Two different elements can also be compared. To do this, select two elements in the
AOT, right-click, point to Add-Ins, and then click Compare.

Figure 4-13 shows the Advanced tab, on which you can specify comparison options.

Figure 4-13 Comparison options on the Advanced tab.

Table 4-4 describes the comparison options.

Table 4-4 Comparison Options

Option Description

Show Differences Only All equal nodes are suppressed from the view, making it easier to
find the changed nodes. This option is selected by default.

Suppress Whitespace White space, such as spaces and tabs, is suppressed into a single
space when comparing. The Compare tool can ignore the
amount of white space, just as the compiler does. This option is
selected by default.

Case Sensitive Because X++ is not case-sensitive, the Compare tool is also not
case-sensitive by default. In certain scenarios, case sensitivity is
required and must be enabled, such as when you are using the
best practice wash feature mentioned earlier in this section. This
option is not selected by default.

Show Line Numbers The Compare tool can add line numbers to all displayed X++
code. This can be useful during an upgrade of larger chunks of
code. This option is not selected by default.

Using the Compare Tool

After you choose elements and set parameters, you can start the comparison by clicking
Compare. Results are displayed in a three-pane dialog box, as shown in Figure 4-14. The top
pane is the element selection, the left pane is a tree structure resembling the AOT, and the
right pane shows details of the tree selection.

The icons in the tree structure indicate how each node is changed. A red or blue check mark
indicates that the node exists only in a red or blue element. Red corresponds to the sys layer,
and blue corresponds to the old sys layer. A gray check mark indicates that the nodes are iden
tical but one or more sub-nodes are different. A not equal symbol (≠) on a red and blue back
ground indicates that the nodes are different in the two versions.

76 Part I A Tour of the Development Environment
Figure 4-14 Comparison results.

Note Each node in the tree view has a context menu that provides access to the Add-Ins
submenu and the Open New Window option. The Open New Window option provides an
AOT view on any element, including old layer elements.

Details of the differences are shown in the right pane. Color coding is also used in this pane to
highlight differences. If an element is editable, small action icons appear. These icons allow
you to make changes to source, metadata, and nodes, which can save you time when performing
an upgrade. A right or left arrow will remove or add the difference, and a bent arrow will move
the difference to another position. These arrows always come in pairs, so you can see where
the difference will be moved to and from. An element is editable if it is from the current layer
and checked out if a version control system is used.

Compare APIs

Although Dynamics AX uses the comparison functionality for development purposes only, the
general comparison functionality can be used more widely. The available APIs allow you to
compare and present differences in the tree structure or text representation of any type of entity.

The Tutorial_CompareContextProvider class shows how simple it is to compare business data
by using these APIs and present it by using the Compare tool. The tutorial consists of two
parts:

■	 Tutorial_Comparable This class implements the SysComparable interface. Basically, it
creates a text representation of a customer.

77 Chapter 4 The MorphX Development Tools
■	 Tutorial_CompareContextProvider This class implements the SysCompareContext-
Provider interface. It provides the context for comparison. For example, it lists a
tutorial_Comparable class for each customer, sets the default comparison options, and
handles context menus.

Figure 4-15 shows a comparison of two customers, the result of running the tutorial.

Figure 4-15 Result of comparing two customers using the Compare API.

The line-by-line comparison functionality can also be used directly in X++. The static run
method on the SysCompareText class, shown in the following code, takes two strings as
parameters and returns a container that highlights differences in the two strings. A set of
optional parameters can also be used to control the comparison.

public static container run(str _t1,

str _t2,

boolean _caseSensitive = false,

boolean _suppressWhiteSpace = true,

boolean _lineNumbers = false,

boolean _singleLine = false,

boolean _alternateLines = false)

Refer to the Microsoft Dynamics AX SDK for documentation of the classes.

The Cross-Reference Tool
The concept of cross-references in Dynamics AX is simple. If an element uses another element,
the reference is recorded. Cross-references allow you to determine which elements a particular

78 Part I A Tour of the Development Environment
element uses, as well as which elements are being used by other elements. Dynamics AX
provides the Cross-Reference tool to access and manage cross-reference information.

The Cross-Reference tool must be updated regularly for accuracy. The update typically takes
several hours. The footprint in your database is about 1 gigabyte for the standard application.

You can update the Cross-Reference tool from Tools\Development Tools\Cross-Reference
\Periodic\Update. Updating the Cross-Reference tool also compiles the entire AOT, because
cross-reference information is emitted by the compiler.

Tip Keeping the Cross-Reference tool updated is important if you want to rely on its information.
If you work in a shared development environment, you share cross-reference information
with your team members. Updating the Cross-Reference tool nightly is a good approach for
a shared environment. If you work in a local development environment, you can keep the
Cross-Reference tool updated by enabling cross-referencing when compiling. This will,
however, slow down the compilation. Another option is to manually update cross-references
for the elements in a project. You can do so by right-clicking the project, pointing to Add-Ins,
pointing to Cross-Reference, and then clicking Update.

In addition to the main cross-reference information, two smaller cross-reference subsystems
exist:

■	 Data model This cross-reference subsystem stores information about relationships
between tables. It is primarily used by the query form and the Reverse Engineering tool.

■	 Type hierarchy This cross-reference subsystem stores information about class and
data type inheritance. It is used in the Application Hierarchy Tree only. The Application
Hierarchy Tree is available in Tools\Development Tools\Application Hierarchy Tree.

Further discussion of these tools is beyond the scope of this book. Refer to the Microsoft
Dynamics AX SDK for more information on these subsystems and the tools relying on them.

The cross-reference information collected is quite complete. Table 4-5 shows a list of the kinds
of elements included in the cross-reference tool, as documented in the AOT under System
Documentation\Enums\xRefKind.

Table 4-5 Kinds of Cross-Referenced Element

BasicType Class

ClassInstanceMethod ClassStaticMethod

ClrType (new in version 4.0) ClrTypeMethod (new in version 4.0)

ConfigurationKey Enum

Enumerator ExtendedType

Label LicenseCode

Map MapField

MapInstanceMethod MapStaticMethod

79 Chapter 4 The MorphX Development Tools
Table 4-5 Kinds of Cross-Referenced Element

MenuItemAction (new in version 4.0) MenuItemDisplay (new in version 4.0)

MenuItemOutput (new in version 4.0) Predefined (predefined functions)

SecurityKey	 Table

TableField	 TableIndex

TableInstanceMethod	 TableStaticMethod

WebActionItem (new in version 4.0) WebDisplayContentItem (new in version 4.0)

WebOutputContentItem (new in version 4.0) WebUrlItem (new in version 4.0)

When the Cross-Reference tool is updated, it scans all metadata and X++ code for references to
elements of the kinds listed in Table 4-5.

Tip It is a good idea to use intrinsic functions when referring to elements in X++ code.
An intrinsic function can evaluate to either an element name or an ID. The intrinsic functions
are named <ElementKind>Str or <ElementKind>Num, respectively. Using intrinsic functions
provides two benefits: You have compile-time verification that the element you reference
actually exists, and the reference is picked up by the Cross-Reference tool. Also, there is no
run-time overhead. Here is an example:

print classNum(myClass); //Prints ID of myClass, such as 50001
print classStr(myClass); //Prints "MyClass"
print "MyClass"; //No compile check or cross-reference;
See Chapter 14, “Reflection,” for more information about intrinsic functions.

The primary function of the Cross-Reference tool is to determine where a particular element is
being used. Here are a couple of scenarios:

■	 You want to find usage examples. If the product documentation does not help you, you
can use the Cross-Reference tool to find real implementation examples.

■	 You need to perform an impact analysis. If you are changing an element, you need to
know which other elements are affected by your change.

To access usage information, right-click any element in the AOT, point to Add-Ins, point to
Cross-Reference, and then click Used By. If the option is not available, the element is not used
or that cross-reference has not been updated.

Figure 4-16 shows where the prompt method is used on the RunBaseBatch class.

When you view cross-references for a class method, the Application Hierarchy Tree is visible,
allowing you to see whether the same method is used on a parent or sub-class. For types that
do not support inheritance, such as tables, table methods, and table fields, the Application
Hierarchy Tree is hidden.

80 Part I A Tour of the Development Environment
Figure 4-16 The Cross-Reference tool, showing where RunBaseBatch.prompt() is used.

The Version Control Tool
The Version Control tool is a new feature in Dynamics AX 4.0 that makes it possible to use a
version control system, such as Microsoft Visual SourceSafe 6.0, to keep track of changes to
elements in the AOT. The tool is accessible from Tools\Development Tools\Version Control
and from the context menu on elements in the AOT.

The benefits of using a version control system include:

■	 Revision history of all elements All changes are captured along with a description
of the change, making it possible to consult change logs and retrieve old versions of an
element.

■	 Code quality enforcement The implementation of version control in Dynamics AX 4.0
enables a fully configurable quality bar for all check-ins. With the quality bar, all changes
are verified according to coding practices. If the change does not meet the criteria, it is
rejected. The quality bar is used at Microsoft for all check-ins, which has helped raise the
quality level of X++ code to an unprecedented level. Microsoft developers may not check
in code with compiler errors, compile warnings, or best practice errors. In the final
stages of development, tasks in code (to-dos) are also prohibited.

■	 Local development environment Each developer must have a local installation
and make all modifications locally. When modifications are ready, they can be checked
in and made available to consumers of the build. This allows a developer to rewrite
fundamental areas of the system without causing any instability issues for others. It also
makes developers immune to any downtime of a centralized development server.

Using a version control system when developing is optional, and it is perfectly possible and
recommended to develop without using a version control system for smaller development
projects. Because using a version control system adds overhead to the entire process, smaller
projects do not usually warrant the extra cost.

The elements persisted in the version control server are file representations of the elements in
the AOT. The file format used is the standard Dynamics AX export format (.xpo). Each .xpo
file contains only one element.

81 Chapter 4 The MorphX Development Tools
The .xpo file format has changed slightly from the previous version of Dynamics AX to better
fit the purpose of a version control system. Properties set to their default values are not
exported, and the timestamp inside the file is removed.

Figure 4-17 shows a typical deployment, in which each developer locally hosts the AOS and
the database. Each developer also needs a copy of all .xpo files. When a developer communicates
with the version control server, the .xpo files are transmitted. When he or she creates a new
element or label, a unique ID is required. An ID Server, implemented as a Microsoft .NET Web
service, is required to ensure uniqueness of IDs across all the local developers’ environments.
The ID Server is a component available with Dynamics AX.

.xpo files
AOS

Version control
server

Database

Request
object/

.xpo files label ID
Developer

ID Server

Figure 4-17 A typical deployment using version control.

Element Life Cycle

Figure 4-18 shows the element life cycle in a version control system. When the element is in a
state marked with a green color, it can be edited; otherwise it is read-only.

You can create a new element in one of two ways:

■	 Create a completely new element.

■	 Customize an existing element, resulting in an overlayered version of the element.
Because elements are stored per layer in the version control system, customizing an
element effectively creates a new element.

After an element is created, it must be added to the version control system. First give it a
proper name in accordance with naming conventions, and then click Create on the context
menu. After the element is created, it must be checked in.

82 Part I A Tour of the Development Environment
Opened for
add

New object Deleted

Overlayer
object

Checked in

Opened for
edit

Create

Check in

Delete

Rename

Rename

Check in
Undo check-out

Check out

Create

Figure 4-18 The element life cycle.

An element that is checked in can be renamed. Renaming an element deletes the element with
the old name and adds an element with the new name.

Check-out

To modify an element, you must check it out. Checking out an element locks it so that others
cannot modify it while you are working.

By clicking Tools\Development Tools\Version Control\Pending Objects, you can see which
elements you currently have checked out. The elements that you have checked out (or that
you have created and not yet checked in), appear in blue, rather than black, in the AOT.

Undo Check-out

If you decide that you do not want to modify an element that you checked out, you can undo
the check-out. This releases your lock on the element and imports the server version of the ele
ment to undo your changes.

Check-in

When you have finalized your modifications, elements must be checked in to be part of
the next build. When you click Check-In on the context menu, the dialog box shown in
Figure 4-19 appears, displaying all of the elements that you currently have checked out. The
Check In dialog box shows all open elements by default; any elements not required in the
check-in can be removed from the list by pressing Alt+F9.

83 Chapter 4 The MorphX Development Tools
Figure 4-19 The Check In dialog box.

The following is the recommended check-in procedure.

1.	 Perform synchronization to update all elements in your environment to the latest
version.

2.	 Verify that everything is still working as intended. Compilation is not enough!

3.	 Check in the elements.

Quality Checks

Before a check-in is accepted by the version control system, the elements being checked in
may be subject to quality checks. You define what will be accepted in a check-in when you set
up the version control system. The following checks are supported:

■	 Compiler errors

■	 Compiler warnings

■	 Compiler tasks

■	 Best practice errors

When a check is enabled, it will be carried out when you do a check-in. If the check fails, the
check-in stops. You must address the issue and restart the check-in.

Updating Source Code Casing

Before elements are checked in, the Source Code Titlecase Update tool, available on the
Add-Ins submenu, can be automatically executed to ensure a uniform casing in variable and
parameter declarations and references. You can specify this parameter when setting up the
version control system by selecting the Run Title Case Update check box.

84 Part I A Tour of the Development Environment
Creating New Elements

When using version control, you create new elements just as you normally would in the
MorphX environment without a version control system. These elements will not be part of
your check-in until you click Create on the context menu.

You may also create all element types except those listed in System Settings (Tools\Development
Tools\Version Control\Setup\System Settings). By default, jobs and private projects are not
accepted.

New elements should follow Dynamics AX naming conventions. The best practice naming
conventions are enforced by default, so you cannot check in elements with names such as
aaaElement, Del_Element, element1, or element2. (The only Del elements allowed are those
required for version upgrade purposes.) Naming requirements can be changed in System
Settings.

Renaming Elements

An element must be in the checked-in state to be renamed. Because all references in .xpo files
are strictly name based (and not ID based), all references to renamed elements must be
updated. For example, when a table field is renamed, any form or report that uses that field
must be updated. Most references in metadata in the AOT are ID based, and they are not
affected when an element is renamed; in most cases, it is enough to simply check out the form
or report and include it in the check-in to update the .xpo file. The cross-reference functionality
can be leveraged to identify references. References in X++ code are name based. You can use
the compiler to find affected references.

Revision history of the element is kept intact when elements are renamed. No tracking
information in the version control system is lost as a result of a rename.

Deleting Elements

You delete an element as you normally would in Dynamics AX. An element must be in the
checked-in state to be deleted. The deletion occurs when the element is checked in. You can
see pending deletions in the Pending Objects dialog box.

Labels

Working with labels is very similar to working with elements. To change, delete, or add a label,
you must check out the label file containing the label. You can check out the label file from the
Label Editor dialog box.

The main difference between checking out elements and checking out label files is that
simultaneous check-outs are allowed for label files. This means that others can change labels
while you have a label file checked out.

85 Chapter 4 The MorphX Development Tools
When you check in a label file, your changes are automatically merged into the latest version
of the file. If you modify or delete a label that another person has also modified or deleted,
your changes will be lost. Lost changes are shown in the Infolog.

Label IDs are guaranteed to be unique by the ID Server; adding labels will not generate
conflicts.

Get Latest

If someone else has checked in a new version of an element, the Get Latest option on the
context menu allows you to get the version of the element that was most recently checked in.
This option is not available when you have the element checked out yourself.

Synchronization

Synchronization allows you to get the latest version of all elements. This is a required
step that must be performed before checking in. It can be started from Tools\Development
Tools\Version Control\Periodic\Synchronize.

Synchronization is divided into three operations that happen automatically in the following
sequence:

1. Copy the latest files from the Version Control Server to the local disk.

2. Import the files into the AOT.

3. Compile the imported files.

Synchronization should be used to get your system up-to-date. Synchronization will not affect
any new elements that you have created or any elements that you have checked out.

Figure 4-20 shows the Synchronization dialog box.

Figure 4-20 The Synchronization dialog box.

Selecting the Force check box gets the latest version of all files, whether they have changed or
not, and then imports every single file.

86 Part I A Tour of the Development Environment
Synchronization Log

How you keep track of versions on the client depends on the version control system. Visual
SourceSafe requires that Dynamics AX keep track of itself. When you synchronize the latest
version, it is copied to the local repository folder from the version control system. Each file
must be imported into Dynamics AX to be reflected in the AOT. To minimize the risk of partial
synchronization, a log entry is created for each file. When all files are copied locally, the log is
processed, and the files are automatically imported into Dynamics AX.

When synchronization fails, the import operation is usually the cause of problems.
Synchronization failure leaves your system in a partially synchronized state. To complete
the synchronization, you must restart Dynamics AX and restart the import. You use the
synchronization log to restart the import, which is accessed from Tools\Development
Tools\Version Control\Inquiries\Synchronization Log.

The Synchronization Log dialog box, shown in Figure 4-21, displays each batch of files, and
you can restart the import by clicking Process. If the Processed check box is not selected, the
import has failed and should be restarted.

Figure 4-21 The Synchronization Log dialog box.

Show History

One of the biggest advantages of a versioning system is the ability to track changes to elements.
Selecting Show History on an element’s context menu displays a list of all changes to an
element, as shown in Figure 4-22.

Figure 4-22 Revision history of an element.

87 Chapter 4 The MorphX Development Tools
This dialog box shows the version number, the action performed, the time the action was
performed, and who performed the action. You can also see the change number and the
change description.

A set of buttons in the revision history dialog box allows further investigation of each version.
Clicking Contents opens a form that shows other elements included in the same change.
Clicking Compare opens the Compare dialog box, which allows you to do a line-by-line
comparison of two versions of the element. The Open New Window button opens an AOT
window that shows the selected version of the element, which is useful for investigating
properties because it allows you to use the standard MorphX toolbox. Clicking View File
opens the .xpo file for the selected version in Microsoft Notepad.

Revision Comparison

Comparison is the key to harvesting the benefits of a version control system. You can start
a comparison from several places, including the Compare option on the Add-Ins submenu.
Figure 4-23 shows the Comparison dialog box where two revisions of the table AssetBudget are
selected.

Figure 4-23 Comparing element revisions from version control.

Note that a comparison contains a list of all checked-in versions, in addition to the layer
element versions.

Pending Elements

When you are working on a project, it is easy to lose track of which elements have been
opened for editing. The Pending Objects dialog box in Figure 4-24 shows a list of elements
that are currently checked out in the version control system. Notice the column containing
the action performed on the element. Deleted elements are available only in this dialog box;
they are no longer shown in the AOT.

You can access the Pending Objects dialog box from Tools\Development Tools\Version
Control\Pending Objects.

88 Part I A Tour of the Development Environment
Figure 4-24 Pending elements.

Build

Because the version control system contains .xpo files, and not an .aod file, a build process is
required to generate an .aod file from the .xpo files. The following procedure is a high-level
overview of the build process.

1.	 Use the CombineXPOs command-line utility to create one .xpo file by combining all
.xpo files. The purpose of this step is to make the .xpo file consumable by Dynamics AX.
Dynamics AX requires all referenced elements to be present in the .xpo file or already
exist in the AOT to maintain the references during import.

2.	 Import the new .xpo file by using the command-line parameter -AOTIMPORT
FILE=<FileName.xpo> to Ax32.exe. This step imports the .xpo file and compiles every
thing. After it is complete, the new .aod file is ready.

These steps must be followed for each layer being built. The steps are described in detail in the
SDK.

Integration with Other Version Control Systems

The implementation of the version control system in Dynamics AX is fully pluggable. This
means that any version control system can be integrated with Dynamics AX.

Figure 4-25 shows a simplified UML class diagram of the implementation.

The xVersionControl class is a system class. It is the integration point with MorphX. The kernel
implementation in this class instructs MorphX to behave as if there were no version control
system. MorphX calls methods on this class when the developer navigates the AOT. The
VersionControl application class derives from xVersionControl and acts as factory and dis
patcher. It creates an instance of SysVersionControlSystem and dispatches all MorphX events to
this class. An instance of the VersionControl class is always available with the same name.

89 Chapter 4 The MorphX Development Tools
Sy
sV

er
si

o
n

C
o

n
tr

o
lS

ys
te

m

-F
ol

d
er

-S
et

tin
g

s

xV
er

si
o

n
C

o
n

tr
o

l
«i

nt
er

fa
ce

»
Sy

sV
er

si
o

n
C

o
n

tr
o

lla
b

le

Ve
rs

io
n

C
o

n
tr

o
l

Sy
sV

er
si

o
n

C
o

n
tr

o
lS

ys
te

m
So

u
rc

eD
ep

o
t

Sy
sL

ab
el

Fi
le

Sy
sT

re
eN

o
d

e

Sy
sV

er
si

o
n

C
o

n
tr

o
lF

ile
Sy

sV
er

si
o

n
C

o
n

tr
o

lS
ys

te
m

V
is

u
al

So
u

rc
eS

af
e

-T
re

eN
od

e
1

1

+
A

llo
w

Ch
ec

kO
ut

()
+

A
llo

w
Cr

ea
te

()
+

Co
m

m
an

dC
he

ck
In

()
+

Co
m

m
an

dC
he

ck
O

ut
()

+
Co

m
m

an
dC

re
at

e(
)

+
Co

m
m

an
dD

el
et

e(
)

+
A

llo
w

Ch
ec

kO
ut

()
+

A
llo

w
Cr

ea
te

()
+

Ch
ec

kI
n(

)
+

Ch
ec

kO
ut

()
+

Cr
ea

te
()

+
D

el
et

e(
)

+
Id

eI
nt

eg
ra

tio
n(

)

+
To

Fi
le

()
+

Fr
om

Fi
le

()
+

Fi
le

N
am

e(
)

Figure 4-25 A UML class diagram of the version control system implementation.

SysVersionControlSystem is the base class for integration with any version control system. The
Visual SourceSafe specializations derive from this class.

Classes implementing SysVersionControllable can be passed to the command methods on
SysVersionControlSystem. Three classes are required to do this: one to handle label files, one to
handle tree nodes, and one to handle all other files.

90 Part I A Tour of the Development Environment
Integrating with another version control system requires a new specialized SysVersionControl-
System class that implements the command methods by communicating with the version
control system. For example, the check-in and check-out commands must be implemented to
interface correctly with the version control system.

Chapter Summary
This chapter showed you how to use and leverage some of the many tools available in MorphX.
Some of these tools can be extended, such as the Best Practices tool, or used from your own
code, such as the Compare tool.

Much of this chapter focused on the Version Control tool. From a development perspective,
this tool is the most exciting addition to version 4.0. Understanding and using it can have a
very positive impact on your organization.

Chapter 5

The X++ Programming Language

In this chapter:

Introduction .91

Jobs .92

The Type System .92

Syntax .96

Classes and Interfaces .115

Chapter Summary .118

The objectives of this chapter are to:

■	 Provide an introduction to the X++ programming language.

■	 Introduce job model elements, which are useful for executing X++ samples.

■	 Describe the Microsoft Dynamics AX 4.0 runtime type system that supports value types,
reference types, and type hierarchies.

■	 Explain the syntax of the X++ programming language and provide examples of variable
declarations, expressions, statements, macros, and comments.

■	 Describe the syntax of class and interface definitions.

Introduction
The X++ language is an object-oriented, application-aware, and data-aware programming lan
guage. The language is object-oriented because it supports object abstractions, abstraction
hierarchies, polymorphism, and encapsulation. The language is application-aware because it
includes keywords such as client, server, changecompany, and display that are useful for writing
client-server enterprise resource planning (ERP) applications. The language is data-aware
because it includes keywords such as firstFast, forceSelectOrder, and forUpdate, as well as a data
base query syntax, that are useful for programming database applications.

You use the Dynamics AX designers and tools to edit the structure of application types. You
specify the behavior of application types by writing X++ source code using the X++ editor. The
X++ compiler compiles this source code into bytecode intermediate format. Model data, X++
source code, and intermediate bytecode are stored in the .aod files. The Dynamics AX runtime
dynamically composes object types by loading overridden bytecode from the highest level def
inition in the model layering stack. (For more information about the layering technology, see
Chapter 1, “Architectural Overview.”) Objects are instantiated from these dynamic types.

91

92 Part I A Tour of the Development Environment
This chapter describes the Dynamics AX runtime type system and the essential features of the
X++ language used to write ERP applications. This introduction to the language will help you
understand the examples provided in this book. It will also help you avoid common program
ming pitfalls that stem from the language implementation. For an in-depth discussion of the
type system and the X++ language, refer to the Microsoft Dynamics AX SDK.

Jobs
Jobs are model elements that you create by using the Application Object Tree (AOT). The
following X++ compilation unit provides an example of a job model element that prints the
“Hello World” string to an automatically generated window. The pause statement stops pro
gram execution and waits for user input from a dialog box.

static void myJob(Args _args)
{

print "Hello World";

pause;

}

Jobs are globally defined functions that execute in the rich client run-time environment. Jobs
are frequently used because they are easily executed from within the MorphX development
environment by pressing F5 or selecting Go on the command menu. Applications should not
use jobs as part of their core design. No jobs are distributed with the Dynamics AX application
code. The examples provided in this chapter can be run as jobs.

The Type System
The Dynamics AX runtime manages the storage of value type data on the call stack and refer
ence type objects on the memory heap. The call stack is the memory structure that holds data
about the active methods called during program execution. The memory heap is the memory
area that allocates storage for objects that are destroyed automatically by the Dynamics AX
runtime.

Value Types

Value types include the built-in primitive types, extended data types, enumeration types, and
built-in collection types:

■	 The primitive types are boolean, int, int64, real, date, timeofday, str, and guid.

■	 The extended data types are specialized primitive types and specialized base enumera
tions. User-defined extended data types are dynamically composed from application
model layers.

93 Chapter 5 The X++ Programming Language
■	 The enumeration types are base enumerations and extended data types. User-defined
enumeration types are dynamically composed from application model layers. Dynamics
AX runtime enumeration types are exposed in the system API.

■	 The collection types are the built-in array and container types.

By default, variables declared as value types are assigned their zero value by the Dynamics AX
runtime. These variables cannot be assigned to null. Variable values are copied when variables
are used to invoke methods and when they are used in assignment statements. Therefore, two
value type variables cannot reference the same value.

Reference Types

Reference types include the record types, class types, and interface types.

■	 The record types are table, map, and view. User-defined record types are dynamically
composed from application model layers. Dynamics AX runtime record types are
exposed in the system API.

Note Although they are not visible in the AOT, all record types implement the methods
that are members of the system xRecord type, a Dynamics AX runtime class type.

■	 User-defined class types are dynamically composed from application model layers and
Dynamics AX runtime class types exposed in the system API.

■	 Interface types are type specifications and cannot be instantiated in the Dynamics AX
runtime. Class types can, however, implement interfaces.

Variables declared as reference types contain references to objects that the Dynamics AX run
time instantiates from dynamically composed types defined in the application model layering
system and from types exposed in the system API. The Dynamics AX runtime also performs
memory de-allocation (garbage collection) for these objects when they go out of scope and
there are no longer any references to them. Reference variables declared as record types refer
ence objects that are automatically instantiated by the Dynamics AX runtime. Class type
objects are programmatically instantiated using the new operator. Copies of object references
are passed as reference parameters in method calls and are assigned to reference variables, so
two variables could reference the same object.

More Info Not all nodes in the AOT name a type declaration. Some class type declara
tions are merely syntactic sugar—convenient, human-readable expressions. For example, the
class header definition for all rich client forms declares a FormRun class type, the class header
definition for all rich client reports declares a ReportRun class type, and the class header def
inition for a Web client form declares a WebFormRun class type. FormRun, ReportRun, and
WebFormRun are also, however, class types in the system API. Allowing their declarations is
syntactic sugar because it is technically illegal to have two types with the same name in the
Dynamics AX class type hierarchy.

94 Part I A Tour of the Development Environment
Type Hierarchies

The X++ language supports the definition of type hierarchies that specify generalization and
specialization relationships between class types. For example, a check payment method is a
type of payment method. A type hierarchy allows code reuse. Reusable code is defined on base
types defined higher in a type hierarchy as they are inherited, or reused, by derived types
defined lower in a type hierarchy. This section introduces the base types provided by the
Dynamics AX runtime and describes how they are extended in type hierarchies.

Caution The Dynamics AX type system is known as a weak type system because the X++
language accepts certain type assignments that are clearly erroneous and lead to run-time
errors. Be aware of the caveats outlined in the following sections, and try to avoid weak type
constructs when writing X++ code.

The anytype Type

There is no strict type hierarchy with a concrete base type for all types in the Dynamics AX
type system. The anytype type therefore imitates a base type for all types. Variables of the any-
type type behave like value types when they are assigned a value type variable and like refer
ence types when they are assigned a reference type variable. The SysAnyType class can be used
to explicitly box all types, including value types, and make them behave like reference types.

The anytype type, shown in the following code sample, is syntactic sugar that allows methods
to accept any type as a parameter or allows a method to return different types.

static str queryRange(anytype _from, anytype _to)
{

return SysQuery::range(_from,_to);
}

You can declare variables by using anytype. However, the anytype type locks its primitive type
at first assignment and cannot be changed later, as shown here.

anytype a = 1;
print strfmt("%1 = %2", typeof(a), a); //Integer = 1
a = "text";
print strfmt("%1 = %2", typeof(a), a); //Integer = 0
pause;

The common Type

The common type is the base type of all record types. Like the anytype type, record types are
context-dependent types whose variables can be used as though they reference single records
or a record cursor that can iterate over a set of database records.

95 Chapter 5 The X++ Programming Language
Using the common type allows you to cast one record type to another (possibly incompatible)
record type, as shown in this example.

//customer = vendor; //Compile error

common = customer;

vendor = common; //Accepted

Table maps defined in the AOT are a more type-safe method of capturing commonalities
between record types and should be used to prevent incompatible record assignments. A table
map defines fields and methods that safely operate on one or more record types.

Note that method calls on the common type are validated by the compiler. The following
method invocation, for example, is accepted by the compiler, even though the method does
not exist.

common.nonExistingMethod();

For this reason, you should use reflection to confirm that the method on the common type
exists before it is invoked.

The object Type

The built-in object type is a weak reference type whose variables reference objects that are
instances of class or interface types in the Dynamics AX class hierarchy.

The type system allows programmers to implicitly cast base type objects to derived type
objects and to cast derived type objects to base type objects, as shown here.

baseClass = derivedClass;

derivedClass = baseClass;

Note that the object type allows you to use the assignment operator and cast one class type to
another incompatible class type, as shown in the following code. This will, however, probably
result in a run-time exception when your code encounters an object of an unexpected type.

//textIO = binaryIO; //Compile error

Object = textIO;

binaryIO = object; //Accepted

Use the SysDictClass class instead of the assignment operator to prevent these incompatible
type casts. The SysDictClass class provides is() methods to safely cast derived types of base
types and the as() method to safely cast base types to derived types.

96 Part I A Tour of the Development Environment
Note that method calls on the object type are not validated by the compiler. The following
method invocation is accepted by the compiler, even though the method does not exist.

object.nonExistingMethod();

Extended Data Types

You use the AOT to create extended data types that model concrete data values and data hier
archies. For example, the Name data type is a string, and the CustName and VendName data
types extend the Name data type.

The X++ language supports extended data types but does not offer any type checking accord
ing to the hierarchy of extended data types. X++ treats any extended data type as its primitive
type; therefore, code such as the following is allowed.

CustName customerName;

FileName fileName = customerName;

When used properly, however, extended data types improve readability of X++ code; it is eas
ier to understand the intended use of a CustName data type than a string data type, even if they
are both used to declare string variables.

Syntax
The X++ language belongs to the “curly brace” family of programming languages (those that
use curly braces to delimit syntax blocks), such as C, C++, C#, and Java. If you are familiar
with any of these languages, you will have no problem reading and understanding the X++
syntax.

In contrast to many other programming languages, the X++ language is not case-sensitive.
However, using camel casing (camelCasing) for class names and Pascal casing (PascalCasing)
for variable names is considered a best practice. (More best practices for writing X++ code are
available in the Microsoft Dynamics AX SDK.) You can use the Source Code Titlecase Update
tool (accessed from the Add-Ins submenu in the AOT) to automatically apply casing in X++
code to match the best practice recommendation.

CLR types, which are case-sensitive, are one important exception to the casing guidelines.
This is explained later in this chapter.

Variable Declarations

Variable declarations must be placed at the beginning of methods. Table 5-1 provides
examples of value type and reference type variable declarations, as well as example variable

97 Chapter 5 The X++ Programming Language
initializations. Parameter declaration examples are provided in the “Classes and Interfaces”
section later in this chapter.

Table 5-1 X++ Variable Declaration Examples

Type Examples

anytype anytype type = null;
anytype type = 1;

record types common record = null;
CustTable custTable = null;

object types	 object obj = null;
ClrObject dt = new ClrObject("System.DateTime");
MyClass myClass = new MyClass();

boolean	 boolean b = true;

int int i = -5;
int h = 0xAB;

int64	 int64 i = -5;
int64 h = 0xAB;
int64 u = 0xA0000000u;

real real r1 = 3.14;
real r2 = 1.0e3;

date	 date d = 12\12\2004

timeofday	 timeofday time = 43200;

str	 str s1 = "a string";
str s2 = 'a string';
str 40 s40 = "string 40";
str right sr = "justified";

guid	 guid g = newguid();

container container c1 = ["a string", 123];
container c2 = connull();

base enumeration types NoYes theAnswer = NoYes::Yes;

extended data types Name name = "name";

Declaring variables with the same name as their type is a common practice. At first glance, this
might be confusing. Consider this class and its getter/setter method to its field.

Class Person
{

Name name;

98 Part I A Tour of the Development Environment
public Name Name(Name _name = name)
{

;

name = _name;

return name;

}

}

Because X++ is not case-sensitive, the word name is used in eight places in the preceding code.
Three refer to the extended data type, four refer to the field, and one refers to the method
(“_name” is used twice). To improve readability, you could rename the variable to something
more specific, such as personName. However, using a more specific variable name implies that
a more specific type should be used (and created if it does not already exist). Changing both
the type name and the variable name to PersonName would not improve readability. The ben
efit of this practice is that if you know the name of a variable, you also know its type.

Because X++ allows you to define variables with the same name as their type, variable names
become ambiguous. The X++ compiler expects methods to start with variable declarations. To
denote a variable with an ambiguous name and not a type, you must add a hanging semico
lon, as shown in the preceding example, to signify the end of variable declarations. Including
the hanging semicolon is considered a best practice because it allows your code to accommo
date new types easily. Variable names could become ambiguous when new extended data
types are created, causing compilation errors.

Expressions

X++ expressions are sequences of operators, operands, values, and variables that yield a
result. Table 5-2 summarizes the types of expressions allowed in X++ and includes examples
of their use.

Table 5-2 X++ Expression Examples

 Category Examples

Object creation
operators

new MyClass()
new System.DateTime()

//X++ object creation
//CLR object wrapper and
//CLR object creation

Values and variables "string"
myVariable

Access operators this
element
<datasource>_ds
x.y
E::e
a[x]
Table.Field
Table.(FieldId)
(select statement).Field

System.Type

//Instance member access
//Form member access
//Form data source access
//Instance member access
//Enum access
//Array access
//Table field access
//Table field access
//Select result access
//CLR namespace type access

99 Chapter 5 The X++ Programming Language
Table 5-2 X++ Expression Examples

 Category Examples

Method invocations	 super() //Base member invocation
MyClass::m() //Static member invocation
myObject.m() //Instance member invocation
this.m() //This instance member invocation
myTable.MyMap::m();//Map instance member invocation
f() //Built-in function call

Arithmetic operators + - * / div mod

Shift operators << >>

Relational operators < > <= >= == != like

Logical operators ! && ||

Bitwise operators ~ ^ & |

Conditional operators x ? y : z

String concatenation "Hello" + "World"

Parentheses (x)

Statements

X++ statements specify object state and object behavior. Table 5-3 provides examples of X++
language statements that are commonly found in many programming languages. In-depth
descriptions of each statement are beyond the scope of this book.

Table 5-3 X++ Statement Examples

Statement Example

assignment statement	 int i;
;
i = 1;
i++;
++i;
i--;
--i;
i += 1;
i -= 1;

compound statement	 int i;
{

i = 3;
i++;

}

print statement	 int i = 0;
;
prin print i;
prin print "Hello World";
print 5.2;

100 Part I A Tour of the Development Environment
Table 5-3 X++ Statement Examples

Statement Example

if statement	 boolean b = true;
int i = 0;
;
if (b == true)
{

i++;
}
else
{

i--;
}

break statement	 int i;
;
for (i = 0; i < 100; i++)
{

if (i > 50)
{

break;
}

}

continue statement	 int i;
int j = 0;
;
for for(i = 0; i < 100; i++)

{
if (i < 50)
{

continue;
}
j++;

}
}

while statement	 int i = 4;
;
while (i <= 100)
{

i++;
}

do while statement	 int i = 4;
;
do
{

i++;
}
while (i <= 100);

Chapter 5 The X++ Programming Language 101
Table 5-3 X++ Statement Examples

Statement Example

for statement	 int i;
;
for (i = 0; i < 42; i++)
{

print i;
}

switch statement	 str s = "test";
;
switch (s)
{

case "test" :
print s;
break;

default :
print "fail";

}

pause statement print "Hello World";
pause;

window statement	 window 100, 10 at 100,10;
print "Hello World";
pause;

breakpoint statement breakpoint;

return statement static void myJob(Args _args)
{

return;
}

throw statement throw error("Error text");

try statement	 try
{

throw error("Force exception");
}
catc catch(exception::Error)
{

print "Error";
pause;

}

retry statement	 try
{

throw error("Force exception");
}
catch(exception::Error)
{

retry;
}

102 Part I A Tour of the Development Environment
Table 5-3 X++ Statement Examples

Statement Example

.NET CLR interoperability	 str s;
statement	 System.Guid g = System.Guid::NewGuid();

;
s = g.ToString();
print s;
pause;

inner function	 static void myJob(Args _args)
{

str myLocalFunction()
{

return "Hello World";
}
;
print myLocalFunction();
pause;

}

system function	 guid g = newguid();
;
print abs(-1);

flush statement	 MyTable myTable;
;
flush myTable;

changecompany
statement

MyTable myTable;
;
while select myTable
{

Print myTable.myField;
}
changecompany("ZZZ")
{

while select myTable
{

print myTable.myField;
}

}

Data-Aware Statements

The X++ language has built-in support for querying and manipulating database data. The syn
tax for database statements is similar to Structured Query Language (SQL), and this section
assumes that you are familiar with SQL. The following code shows how a select statement is
used to return only the first selected record from the MyTable database table and how the
data in the record’s myField field is printed.

Chapter 5 The X++ Programming Language 103
static void myJob(Args _args)
{

MyTable myTable;
;
select firstOnly * from myTable where myTable.myField1==’value’;
print myTable.myField2;
pause;

}

Note that the “* from” part of the select statement in the example is optional. The asterisk (*)
character can be replaced by a comma-separated field list, such as myField2, myField3. All
fields must, however, be defined on the selection table model element, and only one selection
table is allowed after the from keyword. The where expression in the select statement can com
prise any number of logical and relational operators. The firstOnly keyword is optional and
can be replaced by one or more of the optional keywords. Table 5-4 describes all the possible
keywords.

Table 5-4 Keyword Options for select Statements

Keyword Description

firstfast Fetches the first selected record faster than the remaining selected
records.

firstonly Returns only the first selected record.

forupdate Selects records for updating.

nofetch Specifies that the Dynamics AX runtime should not execute the state
ment immediately because the records are required only by some other
operation.

forceplaceholders Forces the Dynamics AX runtime to generate a query with placeholder
field constraints. For example, the query generated for the preceding
code example looks like this: select * from myTable where myField1=?.
Database query plans are reused when this option is specified. This is
the default option for select statements that do not join table records.
This keyword cannot be used with the forceliterals keyword.

forceliterals Forces the Dynamics AX runtime to generate a query with the specified
field constraints. For example, the query generated for the preceding
code example looks like this: select * from myTable where
myField1=’value’. Database query plans are not reused when this option
is specified. This keyword cannot be used with the forceplaceholders
keyword.

forceselectorder Forces the Microsoft SQL Server query processor to access tables in the
order in which they are specified in the query. (No effect on Oracle.)

forcenestedloop Forces the SQL Server query processor to use a nested-loop algorithm
for table join operations. Other join algorithms, such as hash-join and
merge-join algorithms, are therefore not considered by the query
processor.

reverse Returns records in reverse of the select order.

104 Part I A Tour of the Development Environment
The following code example demonstrates how a table index clause is used to suggest the
index that a database server should use when querying tables. The Dynamics AX runtime
appends an order by clause and the index fields to the first select statement’s database query.
Records are thus ordered by the index. The Dynamics AX runtime inserts an optional query
hint into the second select statement’s database query.

static void myJob(Args _args)
{

MyTable1 myTable1;

MyTable2 myTable2;

;

while select myTable1

index myIndex1

{

print myTable1.myField2;

}

while select myTable2

index hint myIndex2

{

print myTable2.myField2;

}

pause;

}

The following code example demonstrates how the results from a select query can be ordered
and grouped. The first select statement specifies that the resulting records must be sorted in
ascending order based on myField1 values and then descending order based on myField2 val
ues. The second select statement specifies that the resulting records must be grouped by
myField1 values and sorted in descending order.

static void myJob(Args _args)
{

MyTable myTable;

;

while select myTable

order by Field1 asc, Field2 desc

{

print myTable.myField;

}

while select myTable

group by Field1 desc

{

print myTable.Field1;

}

pause;

}

Chapter 5 The X++ Programming Language 105
The following code demonstrates use of the avg and count aggregate functions in select state
ments. The first select statement averages the values in the myField column and assigns the
result to the myField field. The second select statement counts the number of records returned
by the selection and assigns the result to the myField field.

static void myJob(Args _args)
{

MyTable myTable;
;
select avg(myField) from myTable;
print myTable.myField;

select count(myField) from myTable;
print myTable.myField;
pause;

}

Caution The compiler does not verify that aggregate function parameter types are
numeric, so the result returned by the function could be assigned to a field of type string. The
compiler also performs rounding if, for example, the average function calculates a value of 1.5
and the type of myField is an integer.

Table 5-5 describes the aggregate functions supported in X++ select statements.

Table 5-5 Aggregate Functions

Function Description

avg Returns the average of the non-null field values in the records returned by
the selection.

count Returns the number of non-null field values in the records returned by the
selection.

sum Returns the sum of the non-null field values in the records returned by the
selection.

minof Returns the minimum of the non-null field values in the records returned by
the selection.

maxof Returns the maximum of the non-null field values in the records returned by
the selection.

The following code example demonstrates how tables are joined with join conditions. The
first select statement joins two tables by using an equality join condition between fields in the
tables. The second select statement joins three tables to illustrate how join conditions can be
nested and how an exists operator can be used as an existence test with a join condition. The
second select statement also demonstrates how a group by sort can be used in join conditions.
In fact, the join condition can comprise multiple nested join conditions because the syntax of
the join condition is the same as the body of a select statement.

106 Part I A Tour of the Development Environment
static void myJob(Args _args)
{

MyTable1 myTable1;
MyTable2 myTable2;
MyTable3 myTable3;
;
select myField from myTable1

join myTable2
where myTable1.myField1=myTable2.myField1;

print myTable1.myField;

select myField from myTable1
join myTable2

group by myTable2.myField1
where myTable1.myField1=myTable2.myField1;

exists join myTable3
where myTable1.myField1=myTable3.mField2

print myTable1.myField;
pause;

}

Table 5-6 describes the exists operator and the other join operators that can be used in place of
the exists operator in the previous example.

Table 5-6 Join Operators

Operator Description

exists Returns true if any records are in the result set after executing the join clause.
Returns false otherwise.

notexists Returns false if any records are in the result set after executing the join clause.
Returns true otherwise.

outer Returns the left outer join of the first and second tables.

The following example demonstrates use of the while select statement that increments the
myTable variable’s record cursor on each loop.

static void myJob(Args _args)
{

MyTable myTable;

;

while select myTable

{

Print myTable.myField;

}

}

The ttsbegin, ttscommit, and ttsabort transaction statements must be used for updating records
in tables and inserting records into tables. The ttsbegin statement marks the beginning of a

Chapter 5 The X++ Programming Language 107
database transaction block; ttsbegin-ttscommit transaction blocks can be nested, and the
outermost block commits all database inserts and updates performed since the first ttsbegin
statement to the database. The ttsabort statement rolls back all the database inserts and
updates performed since the ttsbegin statement. Table 5-7 provides examples of these
transaction statements for single records and operations and for set-based (multiple-record)
operations.

Table 5-7 Transaction Statement Examples

Statement type Example

ttsbegin boolean b = true;

ttscommit ;

ttsabort ttsbegin;

if (b == true)
ttscommit;

else
ttsabort;

select forupdate	 MyTable myTable;
;
ttsbegin;
select forupdate myTable;
myTable.myField = "new value";
myTable.update();
ttscommit;

insert method	 MyTable myTable;
;
ttsbegin;
myTable.id = "new id";
myTable.myField = "new value";
myTable.insert();
ttscommit;

update_recordset	 MyTable myTable;
;
ttsbegin;
update_recordset myTable setting

myField1 = "value1",
myField2 = "value2"
where myTable.id == "001";

ttscommit;

insert_recordset	 MyTable1 myTable1;
MyTable2 myTable2;
;
ttsbegin;
insert_recordset myTable2 (myField1, myField2)

select myField1, myField2 from myTable1;
ttscommit;

108 Part I A Tour of the Development Environment
Exception Handling

It is a best practice to use the X++ exception handling framework instead of programmatically
halting a transaction by using the ttsabort statement. This is because an exception (other than
the update conflict exception) thrown inside a transaction block halts execution of the block,
and all the inserts and updates performed since the first ttsbegin statement are rolled back.
Throwing an exception has the additional advantage of providing a way to recover object state
and maintain database transaction consistency. The following example demonstrates throw
ing an exception inside a database transaction block.

static void myJob(Args _args)
{

MyTable myTable;

boolean state = true;

;

try

{

ttsbegin;

state = false;

update_recordset myTable setting

myField = "value"
where myTable.id == "001";

if(state==false)

{

throw error("Error text");

}

ttscommit;

}

catch(Exception::Error)

{

state = true;
retry;

}

catch

{

print "Unhandled Exception";

pause;

}

}

The throw statement throws an exception that causes the database transaction to halt and roll
back. Code execution cannot continue inside the scope of the transaction, so the runtime
ignores try and catch statements when inside a transaction. This means that an exception
thrown inside a transaction can be caught only outside the transaction, as shown here.

static void myJob(Args _args)
{

try

{

ttsbegin;

Chapter 5 The X++ Programming Language 109
try
{

...

throw error("Error text");

}

catch //Will never catch anything

{

}

ttscommit;

}

catch

{

print "Got it";

pause;

}

}

Although a throw statement takes the exception enumeration as a parameter, using the error
method to throw errors is the best practice. The try statement’s catch list can contain more
than one catch block. The first catch block in the preceding example catches error exceptions
and resets the state variable. The retry statement performs a jump to the first statement in the
try block. The second catch block catches all exceptions not caught by catch blocks earlier in
the try statement’s catch list. Table 5-8 describes the Dynamics AX system Exception data type
enumerations that can be used in try-catch statements.

Table 5-8 Exception Data Type Enumerations

Element Description

Deadlock Thrown when a database transaction has deadlocked.

Error Thrown when an unrecoverable application error occurs. A catch
block should assume that all database transactions in a transaction
block have been halted and rolled back.

Internal Thrown when an unrecoverable internal error occurs.

Break Thrown when a user presses the Break key or Ctrl+C.

DDEerror Thrown when an error occurs in the use of a DDE system class.

Sequence Thrown by the Dynamics AX kernel if a database error or database
operation error occurs.

Numeric Thrown when an unrecoverable error occurs in the str2int, str2int64,
or str2num system functions.

CLRError Thrown when an unrecoverable error occurs in a CLR process.

CodeAccessSecurity Thrown when an unrecoverable error occurs in the demand method
on a CodeAccessPermission object.

UpdateConflict Thrown when an update conflict error occurs in a transaction block
using optimistic concurrency control. The catch block should use a
retry statement to attempt to commit the halted transaction.

UpdateConflictNot-
Recovered

Thrown when an unrecoverable error occurs in a transaction block
using optimistic concurrency control. The catch block should not use
a retry statement to attempt to commit the halted transaction.

110 Part I A Tour of the Development Environment
Caution The error method in the preceding table is a static method on the global
X++ class for which the X++ compiler allows an abbreviated syntax. The expression
Global::error("Error text") is equivalent to the error expression in the examples. These global
methods are X++ methods that should not be confused with system functions that are
Dynamics AX system API methods, such as newguid().

Interoperability

The X++ language has statements that allow interoperability (interop) with Microsoft .NET
CLR assemblies and Microsoft COM components. Interoperability with both technologies is
obtained by wrapping external objects in Dynamics AX object wrappers and by dispatching
method calls from the Dynamics AX object to the wrapped object.

CLR Interoperability

You can write X++ statements for CLR interoperability in one of two ways. The first is to use
Dynamics AX system types as shown in the following example, which demonstrates CLR
interoperability with the XML document type in the .NET XML assembly. This example
assumes that the .NET System.Xml assembly has been added to the AOT references node. (See
Chapter 4, “The MorphX Development Tools,” for a description of the Cross-Reference tool.)
CLR types must be identified by their fully qualified name; for example, the expression
System.Xml.XmlDocument is the fully qualified type name for the Microsoft .NET Framework
XML document type. The programs are somewhat verbose, because the compiler does not
support operator expressions more than one deep.

static void myJob(Args _args)
{

ClrObject doc = new ClrObject("System.Xml.XmlDocument");
ClrObject docStr;
ClrObject rootElement;
ClrObject headElement;
ClrObject docElement;
ClrObject xml;
;
docStr = ClrInterop::getObjectForAnyType("Document");
rootElement = doc.CreateElement(docStr);
doc.AppendChild(rootElement);
headElement = doc.CreateElement("Head");
docElement = doc.get_DocumentElement();
docElement.AppendChild(headElement);
xml = doc.get_OuterXml();
print ClrInterop::getAnyTypeForObject(xml);
pause;

}

The first statement in the preceding example demonstrates the use of a static method to
convert between X++ primitive types and CLR objects. The print statement shows the reverse,

Chapter 5 The X++ Programming Language 111
converting CLR value types to X++ primitive types. Table 5-9 lists the value type conversions
that Dynamics AX supports.

Table 5-9 Type Conversions

CLR type to Dynamics AX type

Byte, SByte, Int16, UInt16, Int32 int

Byte, Sbyte, Int16, UInt16, Int32, Uint32, Int64 int64

Double, Single real

Guid guid

String str

Dynamics AX type to CLR type

int Int32, Int64

int64 Int64

real Single, Double

guid Guid

str String

The preceding code example also demonstrates the X++ method syntax used to access CLR
object properties, such as get_DocumentElement. CLR supports several operators that are not
supported in X++. Table 5-10 lists the supported CLR operators and the alternative method
syntax.

Table 5-10 CLR Operators and Methods

CLR operators CLR methods

Property operators get_<property>, set_<property>

Index operators get_Item; set_Item

Math operators op_<operation>;(arguments)

The following features of CLR cannot be used with X++:

■ Public fields (These can be accessed by using CLR reflection classes.)

■ Events and delegates

■ The ref parameter modifier

■ The out parameter modifier

■ Generics

■ Inner classes

■ The Container composite type

■ The Array composite type

■ Namespace declarations

112 Part I A Tour of the Development Environment
The second method of writing X++ statements for CLR, shown in the following example, uses
CLR types that perform the same steps performed in the previous example. In this case, how
ever, the MorphX support for Microsoft IntelliSense can provide token lookahead, which
makes it easier to write CLR interoperability statements. Fully qualified type names must still
be used because X++ does not support namespace importing.

Caution X++ is case-sensitive when referring to CLR types!

The following example demonstrates implicit type conversions from Dynamics AX strings to
CLR strings in the string assignment statements, as well as how CLR exceptions are caught
in X++.

static void myJob(Args _args)
{

System.Xml.XmlDocument doc = new System.Xml.XmlDocument();
System.Xml.XmlElement rootElement;
System.Xml.XmlElement headElement;
System.Xml.XmlElement docElement;
System.String xml;
System.String docStr = "Document";
System.String headStr = "Head";
System.Exception ex;
str errorMessage;
;
try
{

rootElement = doc.CreateElement(docStr);
doc.AppendChild(rootElement);
headElement = doc.CreateElement(headStr);
docElement = doc.get_DocumentElement();
docElement.AppendChild(headElement);
xml = doc.get_OuterXml();
print ClrInterop::getAnyTypeForObject(xml);
pause;

}
catch(Exception::CLRError)
{

ex = ClrInterop::getLastException();
if(ex)
{

errorMessage = ex.get_Message();
info(errorMessage);

}
}

}

X++ does not support enumeration literals natively. The next code example demonstrates
how X++ uses CLR enumerations.

Chapter 5 The X++ Programming Language 113
static void myJob(Args _args)
{

System.Uri uri;
System.String scheme;
System.UriComponents uriComponents;
System.UriFormat uriFormat;
;
uri = new System.Uri("http://localhost");
uriComponents = ClrInterop::parseClrEnum("System.UriComponents","Scheme");
uriFormat = ClrInterop::parseClrEnum("System.UriFormat","UriEscaped");
scheme = uri.GetComponents(uriComponents, uriFormat);
print ClrInterop::getAnyTypeForObject(scheme);
pause;

}

The following example illustrates how static CLR methods are invoked by using the X++ static
method accessor operator ::.

static void myJob(Args _args)
{

System.Guid g = System.Guid::NewGuid();
;

}

COM Interoperability

The following code example demonstrates COM interoperability with the XML document type
in the Microsoft XML Core Services (MSXML) 6.0 COM component. The example assumes that
the MSXML COM component is installed. The MSXML document is first instantiated and
wrapped in a Dynamics AX COM object wrapper. A COM variant wrapper is created for a COM
string. The direction of the variant is into the COM component. The root element and head ele
ment variables are declared as COM objects. The example shows how to fill a string variant with
an X++ string and then use the variant as an argument to a COM method, the loadXml method.
The statement that creates the head element demonstrates how the Dynamics AX runtime auto
matically converts Dynamics AX primitive objects into COM variants.

static void Job2(Args _args)
{

COM doc = new COM("Msxml2.DomDocument.6.0");
COMVariant rootXml = new COMVariant(COMVariantInOut::In,COMVariantType::VT_BSTR);
COM rootElement;
COM headElement;
;
rootXml.bStr("<Root></Root>");
doc.loadXml(rootXml);
rootElement = doc.documentElement();

114 Part I A Tour of the Development Environment
headElement = doc.createElement("Head");

rootElement.appendChild(headElement);

print doc.xml();

pause;

}

Macros

A macro is an X++ string replacement procedure that can improve the readability of source
code. A macro comprises successive logical expressions that are evaluated by the X++ pre
processor. The result of an evaluation is an X++ value, expression, or statement that is
included in the source code when it is passed on to the X++ compiler. X++ supports three
kinds of macro directives: macro libraries, stand-alone macros, and local macros that are
defined inside method definitions. The following is an example of a local macro.

void myMethod()

{

#localmacro.HelloWorld

{

print "Hello World";
pause;

}#endmacro;
;

#HelloWorld

}

A macro library is created with the AOT. The library is included in a class declaration header
or class method, as shown in the following example.

class myClass

{

#MyMacroLibrary1
}
public void myMethod()
{

#MyMacroLibrary2

;

#MacroFromMyMacroLibrary1

#MacroFromMyMacroLibrary2

}

Comments

X++ allows single-line and multiple-line comments. Single-line comments start with // and
end at the end of the line. Multiple-line comments start with /* and ended with */. You
cannot nest multiple-line comments.

Chapter 5 The X++ Programming Language 115
You can add reminders to yourself in comments that will be picked up by the compiler and
presented to you as tasks in the compiler output window. You do this by starting a single-line
comment with the word TODO (all uppercase). Be aware that tasks occurring inside multiple-
line comments are treated as commented out, and thus are not picked up by the compiler.

Here is a code example with comments reminding the developer to add a new procedure,
while disabling an existing procedure in the meantime.

public void myMethod()
{

//Declare variables

int value;

//TODO Validate if calculation is really required
/*

//Perform calculation

value = this.calc();

*/

...

}

Classes and Interfaces
You define types and the structure of types in the AOT, not in the X++ language as you would in
other programming languages that support type declarations. This is because Dynamics AX sup
ports an object layering feature that accepts X++ source code customizations to type declaration
parts that comprise variable declarations and method declarations. Each part of a type declara
tion is managed as a separate compilation unit, and model data is used to manage, persist, and
reconstitute dynamic types whose parts can comprise compilation units from many object layers.

You use the X++ language to define logic, including method profiles (return value, method
name, and parameter type and name). The X++ editor allows you to add new methods to the
AOT, so you can continue to use the X++ editor while constructing types.

X++ class declarations are used to declare protected instance variable fields that are members
of application logic and framework reference types. You cannot declare private or public vari
able fields. Classes can be declared abstract if they are incomplete type specifications that
cannot be instantiated. They can also be declared final if they are complete specifications that
cannot be further specialized. The following code provides an example of an abstract class
declaration header.

abstract class MyClass

{

}

116 Part I A Tour of the Development Environment
Classes can also be structured into single-inheritance generalization or specialization hierar
chies in which derived classes inherit and override members of base classes. The following
code shows an example of a derived class declaration header that specifies that MyDerived-
Class extends the abstract base class MyClass. It also specifies that MyDerivedClass is final and
cannot be further specialized by another class. Derived classes can extend only one base class
because X++ does not support multiple inheritance.

final class MyDerivedClass extends MyClass

{

}

The X++ language also supports interface type specifications that specify method signatures
but do not define their implementation. Classes can implement more than one interface, but
the class and its derived classes should together provide definitions for the methods declared
in all the interfaces. If it fails to provide the method definitions, the class itself is marked as
abstract. The following code provides an example of an interface declaration header and a
class declaration header that implements the interface.

interface MyInterface

{

void myMethod();
}
class MyClass implements MyInterface
{

void myMethod()

{

}

}

Fields

A field is a class member that represents a variable and its type. Fields are declared in class
declaration headers as shown in the following code example. Fields are accessible only to
code statements that are part of the class declaration or derived class declarations. Assign
ment statements are not allowed in class declaration headers. The following example demon
strates how variables are initialized with assignment statements in a new method.

class MyClass
{

str s;

int i;

MyClass1 myClass1;

Chapter 5 The X++ Programming Language 117
public void new()
{

i = 0;
myClass1 = new MyClass1();

}
}

Methods

A class method is a member that defines the behavior of an object by using statements. An
interface method is a member that declares an expected behavior of an object. The following
code provides an example of a method declaration on an interface and an implementation of
the method on a class that implements the interface.

interface MyInterface
{

public str myMethod()
{
}

}
class myClass implements MyInterface
{

public str myMethod();
{

return "Hello World";
}

}

Methods are defined with public, private, or protected access modifiers. Methods are
publicly accessible by default. Additional method modifiers supported by X++ are provided
in Table 5-11.

Table 5-11 Method Modifiers Supported by X++

Modifier Description

static Static methods are accessed via class declarations. Fields cannot be
accessed from within a static method.

final Final methods cannot be overridden by methods with the same name in
derived classes.

abstract Abstract methods have no implementation. Derived classes must provide
definitions for abstract methods.

server Server methods can execute only on an Application Object Server. The
server modifier is allowed only on static methods.

client Client methods can execute only on a MorphX client. The client modifiers
are allowed only on static methods.

118 Part I A Tour of the Development Environment
Table 5-11 Method Modifiers Supported by X++

Modifier Description

display Display methods are invoked each time a form or report is redrawn. The dis
play modifier is allowed only on table, form, form data, report, and report
design methods.

edit The edit method is invoked each time a form is redrawn or a user provides
input through a form control. The edit modifier is allowed only on table,
form, and form data source methods.

Method parameters may have default values that are created when parameters are omitted
from method invocations. The following code sample prints “Hello World” when the
myMethod method is invoked with no parameters.

public void myMethod(str s = "Hello World")
{

print s;

pause;

}

public void myMethod1();

{

myMethod();

}

A constructor is a special instance method that is invoked to initialize an object when the new
operator is executed by the Dynamics AX runtime. Constructors cannot be called directly
from X++ code. The following sample provides an example of a class declaration header and
an instance constructor method that takes one parameter as an argument.

class myClass

{

int i;

public void new(int _i)

{

i = _i;

}

}

Chapter Summary
This chapter introduced the Dynamics AX runtime type system, as well as X++ expressions,
jobs, statements, classes, interfaces, tables, maps, views, and macros. This chapter also pro
vided details on the unique data-aware features of X++, exception handling, and interoperabil
ity with the .NET CLR system and COM technology.

Part II
Developing with Microsoft
Dynamics AX

In this part:

Chapter 6: Customizing Microsoft Dynamics AX .121

Chapter 7: Extending Microsoft Dynamics AX .151

Chapter 8: The Business Connector .189

Chapter 9: XML Document Integraion .213

Chapter 6

Customizing Microsoft
Dynamics AX

In this chapter:

Introduction .121

Table and Class Customization. .122

Form Customization .132

Report Customization .140

Number Sequence Customization .147

Chapter Summary .150

The objectives of this chapter are to:

■	 Describe how to customize Microsoft Dynamics AX 4.0 inventory tables and classes to
implement new inventory dimensions.

■	 Explain how to customize Dynamics AX forms.

■	 Describe how to customize Dynamics AX reports.

■	 Explain how to customize the Dynamics AX number sequence classes to implement a
new number sequence.

Introduction
Dynamics AX allows you to customize the application by changing or adding new metadata or
modifying the application source code in almost any way. The unique layering feature ensures
that you can always return to the point at which you began to make modifications and restore
the original metadata and X++ code.

The next section of this chapter describes how to customize Dynamics AX to include a set of
new inventory dimensions by customizing a set of tables and classes. The new dimensions
automatically appear in forms and reports without requiring changes to the original code or
metadata of any of these elements.

The chapter also describes form and report customizations. The sales order form is modified
to include a product image, and the sales invoice report is modified to include promotional
text.
121

122 Part II Developing with Microsoft Dynamics AX
The last section of the chapter explains how to customize the number sequence classes to
enable the use of a new number sequence, which is useful for creating invoice numbers,
voucher numbers, and so on.

Table and Class Customization
By default, Dynamics AX 4.0 supports up to eight inventory dimensions. (Additional inventory
dimensions can be defined by the user.) Dimensions describe the characteristics of items or
item lots. Item dimensions might include characteristics such as configuration, model, and
size. Item lots might have storage dimensions, such as warehouse, location, or pallet, or they
might be identified by a serial number and batch number.

The following customization scenario describes how to customize tables and classes
used by the inventory dimension feature to implement two new item dimensions that
describe a specific bicycle configuration: frame size and wheel size. This description is not
an exhaustive list of elements that must be changed; instead, it offers guidelines on how to
find the elements necessary to customize the full implementation of a new inventory
dimension.

Creating New Dimension Types

When implementing new inventory dimensions, your first task is to create extended data
types for each of the dimensions. Doing so provides the following benefits:

■	 To apply the inventory dimensions to multiple tables, you define the type just once and
then apply it to each table.

■	 The Label property, the HelpText property, and a few constraints can be defined on the
data type, ensuring consistent behavior and appearance of fields of the same type.

■	 If the type is declared as a parameter or a return type for a method, you can declare
variables of the type in X++ code to optimize IntelliSense responsiveness and to improve
the readability of the code.

This scenario defines a table in which a field of the specific type is part of the primary key.
You can define the relationship to this table on the extended data type and subsequently
instruct the application runtime to provide lookups and Go To The Main Table Form
support.

In this example, you enter the Data Dictionary in the Application Object Tree (AOT) and
create a BikeFrameSize extended data type and a BikeWheelSize extended data type. Table 6-1
lists the property settings that deviate from the default settings.

Figure 6-1 shows the property sheet for the BikeFrameSize extended data type, accessible by
clicking Properties on the context menu for the type.

Chapter 6 Customizing Microsoft Dynamics AX 123
Table 6-1 BikeFrameSize and BikeWheelSize Property Settings

Property BikeFrameSize BikeWheelSize

Type Real Real

Label Frame size Wheel size

HelpText Frame size in inches Wheel size in inches

AllowNegative No No

ShowZero No No

NoOfDecimals 0 0

Figure 6-1 The BikeFrameSize extended data type property sheet.

Best Practices Creating labels for text in the Label and HelpText properties is, of course, a
best practice, but the text in this example is written as a literal (as opposed to referencing a
label) to improve readability.

Next, create two tables, named BikeFrameSizeTable and BikeWheelSizeTable, in which the
frame and wheel sizes for each item can be stored. In addition to the specific inventory
dimension types, the tables also contain an ItemId field and a Name field. The ItemId and
dimension in each table constitute the table’s primary index.

Table 6-2 lists the BikeFrameSizeTable property settings that deviate from the default settings.
(The property settings for BikeWheelSizeTable are identical except for the BikeWheelSize field
and its extended property type.)

124 Part II Developing with Microsoft Dynamics AX
Table 6-2 Field Property Settings

Property ItemId BikeFrameSize Name

Type String Real String

ExtendedDataType ItemId BikeFrameSize Name

Mandatory Yes Yes No (default)

AllowEdit No No Yes (default)

Create a unique index on both tables. For BikeFrameSizeTable, name the index FrameIdx and
make it contain the ItemId field and the BikeFrameSize field. For BikeWheelSizeTable, name the
index WheelIdx and make it contain the ItemId field and the BikeWheelSize field. Declare the
indexes as the PrimaryIndex on the respective tables. In the AOT, the fields and the index
appear as shown in Figure 6-2.

Figure 6-2 The BikeFrameSizeTable definition.

In addition to the fields and index shown in Figure 6-2, you should also set properties in the
tables for caching, form references, and so on, and the table should contain field groups and
methods for checking the validity of the fields. However, it is beyond the scope of this chapter
to describe these enhancements. The Microsoft Dynamics AX SDK contains guidelines and
best practices for creating tables.

After you define the tables, you should update the extended data types to reflect their
relationship to the individual tables, as shown in Figure 6-3.

Figure 6-3 The BikeFrameSize extended data type relation.

Chapter 6 Customizing Microsoft Dynamics AX 125
This relationship instructs the Dynamics AX runtime to provide lookup and Go To The Main
Table Form functionality when fields of these types appear on forms. The application runtime
uses the related table as the data source for the lookup form and also to find the main table
form from the FormRef property on the table. You must therefore create forms for the Bike-
FrameSizeTable and BikeWheelSizeTable tables and menu items to open the forms. These menu
items are added to the FormRef properties on the corresponding tables. You could design the
forms to mirror the form shown in Figure 6-4, but this is also beyond the scope of this chapter.

Figure 6-4 The Frame Sizes form.

Adding New Dimensions to a Table

To store transactions with the new inventory dimensions, the dimensions must be added to
the InventDim table. You do this by creating two new fields, BikeFrameSize and BikeWheelSize,
of the corresponding type on the InventDim table. You should also add these fields to the
unique DimIdx index, because any combination of inventory dimensions may exist only once
in the InventDim table.

The display of inventory dimensions in almost any form in the Dynamics AX application is
based on field groups and where the content of the field group in the form is built at run time.
The forms runtime in Dynamics AX builds the group from the list of fields in the associated field
group defined on the InventDim table. Therefore, by adding the new fields to the Inventory-
Dimensions field group on the InventDim table, you make the two new fields available in
almost any form that displays inventory dimensions. Position the fields in the field group
based on where you want them to appear relative to the other dimensions, as shown in
Figure 6-5.

Figure 6-5 shows “usr” flags on the AutoReport and ItemDimensions field groups, indicating
that the custom fields have been added to these groups as well. The AutoReport group is
modified so that it will print the new dimensions if you create an auto-report by clicking Print
on a form; the ItemDimensions group is modified because the new dimensions are considered
to be item dimensions.

126 Part II Developing with Microsoft Dynamics AX
Figure 6-5 The InventDim table with customized InventoryDimensions field group.

Although the inventory dimensions are now available in any form because of the interpretation
of the field groups by the Dynamics AX forms runtime, the fields are still not visible or
editable, because they are not enabled in any inventory dimension group. Moreover, the two
new inventory dimensions automatically appear in the Dimension Groups form, because the
inventory dimension feature also interprets the InventoryDimensions field group on the Invent-
Dim table to find all the currently available inventory dimensions. To make the form work
with the new dimensions, you merely state whether the new dimensions are item dimensions.
You do this by adding the new dimensions to the isFieldItemDim method on the InventDim
table, as shown in the following X++ code. The added lines are shown in bold.

static public boolean isFieldIdItemDim(fieldId dimFieldId)
{

;

#InventDimDevelop

switch (dimFieldId)
{

case (fieldnum(InventDim,ConfigId)) :

case (fieldnum(InventDim,InventSizeId)) :

case (fieldnum(InventDim,InventColorId)) :

case (fieldnum(InventDim,BikeFrameSize)) : // Frame size added
case (fieldnum(inventDim,BikeWheelSize)) : // Wheel size added

return true;

case (fieldnum(InventDim,InventLocationId)) :

case (fieldnum(InventDim,InventBatchId)) :

case (fieldnum(InventDim,wMSLocationId)) :

case (fieldnum(InventDim,wMSPalletId)) :

case (fieldnum(InventDim,InventSerialId)) :

return false;

}

throw error("@SYS70108");

}

Chapter 6 Customizing Microsoft Dynamics AX 127
The new dimensions will be available for setup in the Dimension Groups form, which is
reached through the Navigation Pane under Inventory Management\Setup\Dimensions
\Dimension Groups. The dimensions are located in the Item Dimensions grid, as shown in
Figure 6-6.

Figure 6-6 The Dimension Groups form with new item dimensions.

Important You might have to restart the Application Object Server (AOS) after adding
fields to the InventoryDimensions field group, because the list of fields in the group is cached
in memory on both the client tier and the server tier.

Enabling New Dimensions in Forms

The new dimensions can be enabled by setting up dimension groups, but the dimensions are
not yet visible in the forms. The inventory dimension feature uses a temporary table called
InventDimParm to carry certain information, such as whether a dimension:

■ Is enabled.

■ Is an item dimension.

■ Is a primary stocking dimension.

■ Is visible.

■ Serves as a filter-by term.

■ Serves as a group-by term.

■ Serves as an order-by term.

This is done by reflecting each inventory dimension as a Boolean flag field on the
InventDimParm table and then matching the corresponding fields in the X++ code. For
example, when a dimension group is queried to determine which dimensions are active, an
InventDimParm record is returned where the corresponding flag field is set to true for the

128 Part II Developing with Microsoft Dynamics AX
active dimensions. The remaining flags are set to false. You must therefore add a frame-size
flag and a wheel-size flag to the InventDimParm table, as shown in Table 6-3.

Table 6-3 BikeFrameSizeFlag and BikeWheelSizeFlag Property Settings

Property BikeFrameSizeFlag BikeWheelSizeFlag

Type Enum Enum

Label Frame size Wheel size

HelpText View by frame size View by wheel size

ExtendedDataType NoYesId NoYesId

Enum NoYes NoYes

The new fields should also be added to the FixedView and View field groups defined on the
InventDimParm table, because they are used in forms from which it is possible to specify
whether a dimension should be visible.

When you add fields to the table and field groups, the new fields on the InventDim table must
be mapped to the corresponding fields on the InventDimParm table in the X++ code. To do
this, you modify the dim2DimParm method on the InventDim table, as shown in the following
X++ code. The added mappings of BikeFrameSize and BikeWheelSize appear in bold.

static public fieldId dim2dimParm(fieldId dimField)
{

;
#InventDimDevelop

switch (dimField)
{

case (fieldnum(InventDim,ConfigId)) :
return fieldnum(InventDimParm,ConfigIdFlag);

case (fieldnum(InventDim,InventSizeId)) :
return fieldnum(InventDimParm,InventSizeIdFlag);

case (fieldnum(InventDim,InventColorId)) :
return fieldnum(InventDimParm,InventColorIdFlag);

case (fieldnum(InventDim,InventLocationId)) :
return fieldnum(InventDimParm,InventLocationIdFlag);

case (fieldnum(InventDim,InventBatchId)) :
return fieldnum(InventDimParm,InventBatchIdFlag);

case (fieldnum(InventDim,wMSLocationId)) :
return fieldnum(InventDimParm,WMSLocationIdFlag);

case (fieldnum(InventDim,wMSPalletId)) :
return fieldnum(InventDimParm,WMSPalletIdFlag);

case (fieldnum(InventDim,InventSerialId)) :
return fieldnum(InventDimParm,InventSerialIdFlag);

case (fieldnum(InventDim,BikeFrameSize)) : // Add mapping
return fieldnum(InventDimParm,BikeFrameSizeFlag);

case (fieldnum(InventDim,BikeWheelSize)) : // Add mapping
return fieldnum(InventDimParm,BikeWheelSizeFlag);

}

Chapter 6 Customizing Microsoft Dynamics AX 129
throw error(strfmt("@SYS54431",funcname()));

}

The same modification must be made to the dimParm2Dim method on the same table to map
InventDimParm fields to InventDim fields.

Customizing Other Tables

The customizations made so far allow the new dimensions to be enabled on dimension
groups and presented in forms. However, you should also consider customizing the following
additional tables by adding inventory dimensions to them:

■ InventDimCombination

■ InventSumDeltaDim

■ InventStatusReportTmp

■ PBATreeInventDim

■ PriceDiscTmpPrintout

■ InterCompanyInventDim

Whether and how these tables should be customized depends on the functionality you are
implementing. You should therefore examine how the inventory dimensions are implemented
and used for each of the tables.

Adding Dimensions to Queries

Because of the generic implementation of the inventory dimension concept using the
InventDim and InventDimParm tables, a substantial number of queries written in X++ use
just a few patterns to select, join, and filter the inventory dimensions. So that you do not
have to repeatedly copy and paste the same X++ code, these patterns exist as macros that
you can apply in your code. To modify these queries, you simply customize the macros, and
then recompile the entire application to update the X++ code with the new dimensions.

You should customize the following macros:

■ InventDimExistsJoin

■ InventDimGroupAllFields

■ InventDimJoin

■ InventDimSelect

The bold text in the following X++ code shows the changes that you must make to the
InventDimExistsJoin macro to enable the two new dimensions for all exists joins written as
statements involving the InventDim table.

130 Part II Developing with Microsoft Dynamics AX
/* %1 InventDimId */

/* %2 InventDim */

/* %3 InventDimCriteria */

/* %4 InventDimParm */

/* %5 Index hint */

exists join tableId from %2
where

(%2.InventDimId == %1) &&
(%2.ConfigId == %3.ConfigId || ! %4.ConfigIdFlag) &&
(%2.InventSizeId == %3.InventSizeId || ! %4.InventSizeIdFlag) &&
(%2.InventColorId == %3.InventColorId || ! %4.InventColorIdFlag) &&
(%2.BikeFrameSize == %3.BikeFrameSize || ! %4.BikeFrameSizeFlag) &&
(%2.BikeWheelSize == %3.BikeWheelSize || ! %4.BikeWheelSizeFlag) &&
(%2.InventLocationId == %3.InventLocationId || ! %4.InventLocationIdFlag) &&
(%2.InventBatchId == %3.InventBatchId || ! %4.InventBatchIdFlag) &&
(%2.WMSLocationId == %3.WMSLocationId || ! %4.WMSLocationIdFlag) &&
(%2.WMSPalletId == %3.WMSPalletId || ! %4.WMSPalletIdFlag) &&
(%2.InventSerialId == %3.InventSerialId || ! %4.InventSerialIdFlag)

#InventDimDevelop

The three remaining macros are just as easy to modify. Just remember to recompile the entire
application after you make your changes.

Adding Lookup, Validation, and Defaulting X++ Code

In addition to macro customizations and the customizations to the previously mentioned
methods on the InventDim table, you must also implement and customize lookup, validation,
and defaulting methods. These include methods such as the InventDim::findDim lookup
method, the InventDim.validateWriteItemDim validation method, and the InventDim.initFrom-
InventDimCombination defaulting method. The necessary changes in the InventDim::findDim
lookup method for the new inventory dimensions are shown in bold in the following X++
code.

server static public InventDim findDim(InventDim _inventDim,
boolean _forupdate = false)

{

InventDim inventDim;

;

if (_forupdate)

inventDim.selectForUpdate(_forupdate);

select firstonly inventDim
index hint DimIdx
where inventDim.ConfigId == _inventDim.ConfigId &&

inventDim.InventSizeId == _inventDim.InventSizeId &&
inventDim.InventColorId == _inventDim.InventColorId &&
inventDim.BikeFrameSize == _inventDim.BikeFrameSize &&

Chapter 6 Customizing Microsoft Dynamics AX 131
inventDim.BikeWheelSize == _inventDim.BikeWheelSize &&
inventDim.InventLocationId == _inventDim.InventLocationId &&
inventDim.InventBatchId == _inventDim.InventBatchId &&
inventDim.wMSLocationId == _inventDim.wMSLocationId &&
inventDim.wMSPalletId == _inventDim.wMSPalletId &&
inventDim.InventSerialId == _inventDim.InventSerialId;

#inventDimDevelop

return inventDim;
}

Notice the use of the inventDimDevelop macro in the preceding method. The inventDim-
Develop macro is merely a macro that contains the following comment.

/* used to locate code with direct dimension references */

Performing a global search for use of the inventDimDevelop macro should be sufficient to find
all the X++ code that must be considered when implementing a new dimension. This search
returns all the methods that require further investigation. Figure 6-7 shows results of a search
for the use of the macro on all tables.

Figure 6-7 Search results for the inventDimDevelop macro.

Best Practices Inserting the inventDimDevelop macro in X++ code when it makes a
direct reference to an inventory dimension is considered a best practice. Doing so makes
implementing new dimensions easier.

132 Part II Developing with Microsoft Dynamics AX
Most of the methods you will find when searching for the macro will be lookup, validation,
and defaulting methods, but you will also see other methods that do not fall under these
categories. Such methods would include those that modify the Query object, such as the
InventDim::queryAddHintFromCaller method, and methods that describe dimensions, such
as the InventDimParm.isFlagSelective method. You should also review these methods when
investigating the X++ code.

Tip Although the inventory dimension feature is implemented with the inventDimDevelop
macro to direct developers to the methods that they need to change, you might encounter
methods with no macro included, or tables, forms, or reports for which the inventory dimensions
are not used generically. You are therefore advised to use the cross-reference system on an
existing dimension that has the same behavior as the new dimension to determine its use
and review it appropriately. You should also investigate whether the new dimension is or
should be available in the same element.

Form Customization
Like most of the elements in the AOT, forms can be customized to include additional information
and actions, such as fields and buttons, and to fulfill end user requirements. The design and
behavior of a form is generally a combination of how a table used as a data source for the
form is designed and how the form itself is designed. All necessary customizations can be
implemented by modifying just the form. However, this is not the recommended approach. As
a best practice, some customizations should be implemented at the table level.

The best practice for implementing forms is to keep most of the business logic and design
decisions at the table level, and focus only on the positioning of fields and menu items when
designing the form. This approach has several advantages:

■	 X++ code in forms is executed on the client tier only; X++ code in table methods can be
executed on the server tier for optimal performance.

■	 Customizations made to a form are restricted to that form; customizations made to a
table apply to all forms that use the table as a data source. This results in a consistent
user experience wherever the table is used.

■	 Customization of a form copies the entire form to the current layer; customizations to
tables are more granular. Customization of fields, field groups, and methods results in a
copy of the specific element to the current layer only. This makes upgrading to service
packs and new versions easier.

■	 X++ customizations to the validate, default, and database trigger methods on forms,
such as validate, modified, and write, affect records only, which are modified through
the user interface. If records are modified through the business logic in X++ code, the
customized X++ code will not execute, because the business logic only executes the
corresponding methods on the table.

Chapter 6 Customizing Microsoft Dynamics AX 133
The following actions can be implemented only by customizing the form:

■ Enable and disable fields

■ Hide and show fields

■ Enable and disable menu items

However, you should consider having a table method determine the business logic on the
form. An example of this is shown in the following lines of X++ code from the InventTable
form, in which a method on the table determines whether a field can be edited.

void setItemDimEnabled()

{

boolean configActive = inventTable.configActive();

inventTable_ds.object(
fieldnum(InventTable,StandardConfigId)).allowEdit(configActive);

inventTable_ds.object(
fieldnum(InventTable, StandardConfigId)).skip(!configActive);

}

By moving these decision-making methods to the table, you make them available to other
forms that manipulate the same table.

Displaying an Image

The following example illustrates how to customize the sales order form to allow a user to
upload and display an image of a custom order. In this example, a customer must be able to
place an order for a bike through the enterprise portal and upload a sketch of the bike at the
same time. An example of a customer-supplied bike image is shown in Figure 6-8.

Figure 6-8 An uploaded bike image.

134 Part II Developing with Microsoft Dynamics AX
This image must be stored in the database and attached to the sales order line. Sales order
lines are stored in the SalesLine table. You could add a new field to the SalesLine table of type
container and store the image in this field, but this example uses the document management
functionality in Dynamics AX. The image is therefore stored in the DocuValue table with a
reference to a record in the DocuRef table from the image record in DocuValue to the SalesLine
record. The relationship and multiplicity between the three tables is shown in Figure 6-9.

SalesLine DocuRef
0..1 *

*

0.. 1

DocuValue

Figure 6-9 The relationship between the SalesLine, DocuRef, and DocuValue tables.

Caution In general, adding container type fields to existing tables is not considered a best
practice, because the container type fields in Microsoft SQL Server 2000 are stored separately
from the remaining fields on disk, and extra reads are required to retrieve the value in the
container field. This causes performance degradation in scenarios in which the entire record is
fetched but the value in the container field is not needed. The same applies to fields of type
memo.

In this example, a new document type named Image stores the attached file in the database.
The Image document type is shown in Figure 6-10. The Document Type form is located in the
Navigation Pane, Basic\Setup\Document Management\Document Types.

Figure 6-10 The Image document type.

Any uploaded image is therefore stored in the document management system; a user can
view the image by either clicking the Document Handling icon on the status bar or choosing
Document Handling on the Command menu. The user sees the dialog box shown in Figure 6-11,
in which the image can be viewed, modified, or deleted, and additional notes or documents
can be attached.

Chapter 6 Customizing Microsoft Dynamics AX 135
Figure 6-11 Storage of the uploaded bike image in the document management system.

Displaying an Image on a Form

You can display the image directly by placing it on a separate Image tab on the sales order
form. Figure 6-12 shows an order for a bike with a frame size of 21 inches and a wheel size of
28 inches. The user can click the Image tab to view the uploaded bike image and confirm that
it matches the ordered item before confirming the sales order. The Sales Order form is located
in the Navigation Pane, Accounts Receivable\Sales Order.

Figure 6-12 The uploaded bike image displayed on the Sales Order form Image tab.

The following two example implementations describe how to use the document management
tables as data sources in the form and how to create a separate method on the SalesLine
table. These examples demonstrate customization of the SalesTable sales order form and the
SalesLine table.

136 Part II Developing with Microsoft Dynamics AX
Displaying an Image by Using Joined Data Sources

One way to display the image is to apply the DocuRef and DocuValue tables as data sources
for the SalesTable form. The following example creates a DocuRef data source based on the
relationship between the SalesLine, DocuRef, and DocuValue tables shown in Figure 6-9. The
DocuRef data source relates to the DocuRef table and will be joined to the SalesLine data source.
Additionally, a DocuValue data source will be created to connect to the DocuRef data source.
Table 6-4 shows additional properties of the data sources.

Table 6-4 DocuRef and DocuValue Property Settings

Property DocuRef DocuValue

Table DocuRef DocuValue

AllowEdit No No

AllowCreate No No

AllowDelete No No

JoinSource SalesLine DocuRef

LinkType Active Active

The properties JoinSource and LinkType allow the DocuRef and DocuValue records to be fetched
when the user moves from one line to another. The remaining properties disable editing of the
records.

You can attach multiple files, documents, and notes to a SalesLine record by using the docu
ment management feature, but the goal of this example is to display an image from a linked
document named Image. You can limit the retrieved records from the DocuRef table by adding
a range to the query used by the DocuRef data source. You do this by customizing the init
method on the DocuRef data source, as shown here.

public void init()
{

super();

docuRef_ds.query().dataSourceTable(
tableNum(DocuRef)).addRange(
fieldNum(DocuRef,TypeId)).value(queryValue('Image'));

}

This X++ code limits the query so that it retrieves only records from the DocuRef table in which
the TypeId field is equal to the value 'Image'.

Note The use of a constant such as the word Image is not a best practice. The value must
be retrieved from a configuration table so that the user can decide the naming. 'Image' is
hard-coded in the preceding example only to improve the readability and limit the scope of
the example.

Chapter 6 Customizing Microsoft Dynamics AX 137
The image is displayed by using a window control, which is placed in a tab control, as shown
in Figure 6-13.

Figure 6-13 Tab and window controls in the SalesTable form.

Although the image is stored in the File field on the DocuValue table, to display the image you
cannot simply link the field as a DataField value on the window control Properties sheet. The
image must be parsed to the control by using a method on the control in X++ that uses the
FormWindowControl object. The AutoDeclaration property on the FormWindowControl object is
therefore set to Yes so that the forms designer automatically declares an object handle with the
same name. This handle can be used in X++ and manipulated at run time because the form
application runtime automatically ensures that it is a handle to the FormWindowControl
object. Moreover, the Width and Height properties are set to Column Width and Column Height
so that the image takes up all the space on the tab.

The last step is to parse the retrieved image from the DocuValue table to the BikeImage Form-
WindowControl object. You can do this when a DocuValue record buffer is present. This record
must contain an image that is stored in the database, and the X++ code should be placed in
the active method on the DocuValue data source and look like the following.

public int active()
{

Image image;
int ret;
ret = super();
if (docuValue.File)
{

image = new Image();
image.setData(docuValue.File);
bikeImage.image(image);

}

138 Part II Developing with Microsoft Dynamics AX
else
{

bikeImage.imageResource(0);
}
return ret;

}

This code determines whether a value exists in the File field and, if so, instantiates an image
object and parses the File field value to the image object. This object is then parsed by using
the image method to the FormWindowControl object that will display the image. If the File field
does not contain a value, the imageResource method on the FormWindowControl object is
called with a value of zero to clear the control of any previous content. The active method is
executed only if a DocuValue record has been retrieved. However, if a user moves from an
order line with an image to an order line without an image, the image is not cleared because
the active method is not executed. If you add the following line to the active method on the
SalesLine data source, the image is cleared when a new order line becomes active and before
the DocuRef and DocuValue records are retrieved.

docuBikeImage.imageResource(0);

The customizations described in this section make it possible to display the image on the
Image tab. This solution has one downside, however. Whenever a user moves from one order
line to another or a line is created or saved, calls are made from the client to the server and
lookups are made in the database for the DocuRef and DocuValue data sources. You can see
this by turning on the client/server or SQL trace option in the Options dialog box which is
accessed from the Tools menu. The next section addresses this issue and offers a solution—
decreasing the number of client/server calls and lookups in the database.

Displaying an Image when Activating the Image Tab

The following example implements a solution similar to the previous example, but it results in
calls to the server and the database only when the image is actually displayed.

The TabPage control must be added to the SalesTable form and contain a FormWindowControl
with property settings similar to those in the preceding example. The DocuRef and DocuValue
tables are not, however, added as data sources for the form. Instead, this example retrieves the
image—the only element shown on the Image tab—from the database only when the user
chooses to display the content of the Image tab. You configure this by adding the following
X++ code to the pageActivated method on the TabPage control.

public void pageActivated()
{

Image image;
DocuValueFile docuValueFile;
;

Chapter 6 Customizing Microsoft Dynamics AX 139
docuValueFile = salesLine.bikeImage();

if (docuValueFile)

{

image = new Image();

image.setData(docuValueFile);

bikeImage.image(image);

}

else

{

bikeImage.imageResource(0);

}

super();

}

This code is very similar to the code added to the DocuValue active method, but in this case the
value is retrieved from a bikeImage method on the SalesLine table. The bikeImage method is a
new method created on the SalesLine table with the following content.

server public DocuValueFile bikeImage()
{

DocuRef docuref;

DocuValue docuValue;

;

select forceplaceholders firstonly tableid from docuRef

where docuRef.RefCompanyId == this.DataAreaId &&

docuRef.RefTableId == this.TableId &&

docuRef.RefRecId == this.RecId &&

docuRef.TypeId == 'Image'

join file from docuValue

where docuValue.RecId == docuRef.ValueRecId;

return docuValue.File;

}

The select statement in the bikeImage method is a combination of the two lookups in the
database produced by the runtime shown in the first sample implementation, which used
data sources. However, the statements in this method are joined. The bikeImage method could
simply be implemented in the SalesTable form, but implementing it on the SalesLine table
allows it to be reused in other forms or reports and executed on the server tier, if required.

The advantage of this implementation method is that both database lookups and calls from
the client to the server are reduced by half. And because calls are made only when the Image
tab is activated, they are not made when a user simply moves through the order lines without
viewing the content of the Image tab. The disadvantage, however, is that the user cannot
personalize the form or move the display of the image to another tab, because retrieval of the
image is dependent on activation of the Image tab.

140 Part II Developing with Microsoft Dynamics AX
Report Customization
Reports, like forms, can be customized to include and exclude information, and you can
modify their design and layout. As with forms, the design and layout of a report depend on
settings on the table and on the report itself. The best practice is, once again, to keep as much
of the business logic as possible with the table methods or metadata. The X++ code in reports
must deal with the functionality for the specific report. All other X++ code must generally be
implemented on the table to be reused by other areas in the application. Advantages to such
an approach include:

■	 Customizations made to a report are isolated; customizations made to a table affect all
reports using that table, resulting in a consistent user experience wherever the table is used.

■	 Customization of a report copies the entire report to the current layer; customizations
made to tables are more granular, because customization of fields, field groups, and
methods results in a copy of the specific element to the current layer only. This makes
upgrading to service packs and new versions easier.

■	 Methods in reports always execute on the tier where the report is generated; methods
on tables can be targeted to execute on the server tier. Where a report is generated is
controlled by the RunOn property on the menu item that starts the report. The property
can be set to Client, Server, or Called From.

Creating Promotional Materials

The example in this section demonstrates how to customize the sales order invoice report
named SalesInvoice. The invoice is customized to include promotions based on items listed on
the invoice. The promotion appears below each item on the invoice associated with a promotion.
Figure 6-14 shows an example of an invoice that displays a promotion for a water bottle.

Figure 6-14 A promotion on an invoice.

Chapter 6 Customizing Microsoft Dynamics AX 141
Like the forms example, this example uses the document management feature in Dynamics
AX. You use document handling to store the text and image in the database. The information
is attached to the item table as two different types of document information, named PromoText
and PromoImage, for storing the text and image. Figure 6-15 shows the new document types.

Figure 6-15 The PromoText and PromoImage document types.

Figure 6-16 shows the text and image attached to an item named PB-Bike.

Figure 6-16 Text and image attached to an item.

The X++ code used to display the promotions on the invoice looks up the item in the
InventTable table and searches the document handling for documents of type PromoText and
PromoImage to print on the invoice. If neither type is attached to the item, no promotion
information prints.

Adding Promotional Materials to an Invoice Report

Before you customize the SalesInvoice report for this example, you must decide where in the
design of the report to place the printing of the promotion. The printed information should be
printed for each invoiced item, so you must place it under the CustInvoiceTrans section group
because the CustInvoiceTrans table contains the invoiced items. The CustInvoiceTrans section
group contains a reference body section that can print other pieces of reference information,

142 Part II Developing with Microsoft Dynamics AX
such as from inventory dimensions or the packing slip lines posted when the invoiced item is
shipped. The promotion resembles this kind of information in terms of when and how it is
printed.

This example, therefore, creates a new section group within the reference body section below
the existing three groups. The new section group must reference a table type so that it can be
invoked when a record buffer of the same type is sent to the report by using the element.send
method. The DocuRef table stores the promotion text, and the DocuValue table stores the
promotion image with an association created in the DocuRef table.

Although the storage of the text and image results in the creation of DocuRef records, the
choice of DocuRef as the reference table type for the new section group is not an optimal
solution. First, the information is stored as two records in the DocuRef table, but the text and
image should be printed side by side for this example. The element.send method should be
called only once, parsing in only a single record buffer. Also, two other section groups already
use DocuRef as the table type, so using this type might result in the other section groups
getting invoked as well when the promotion prints. You could prevent this by introducing a
variable to control which section group to invoke, but then you would have to customize even
more of the report, making it harder to upgrade the report when a new version or service pack
is installed.

Both of the DocuRef records are, however, related to the same InventTable record, so this table
is used as the type for the section group, and an InventTable record buffer is sent to the report
to print the promotion text and image. Figure 6-17 shows the new section group, named
InventTable, and its positioning within the report.

Figure 6-17 The InventTable section group in the SalesInvoice report.

Chapter 6 Customizing Microsoft Dynamics AX 143
Implementing Promotional Methods

When the promotion text and image print, an InventTable record buffer is sent to the report.
For this reason, this example implements two methods to return the text and image by using
an InventTable record buffer. The methods can be implemented directly in the report, but
because the methods are not report-specific—and therefore can be reused in other reports, or
even forms—the methods are implemented as instance methods on InventTable. The following
code shows the new methods. The PromotionImage method is implemented like the BikeImage
method in the forms example discussed earlier. However, the PromotionImage method must
only look in the DocuRef table to find the text.

display server public DocuValueFile PromotionImage()
{

DocuRef docuref;
DocuValue docuValue;
;
select forceplaceholders firstonly tableid from docuRef

where docuRef.RefCompanyId == this.DataAreaId &&
docuRef.RefTableId == this.TableId &&
docuRef.RefRecId == this.RecId &&
docuRef.TypeId == 'PromoImage'

join file from docuValue
where docuValue.RecId == docuRef.ValueRecId;

return docuValue.File;

}

display server public Notes PromotionText()
{

DocuRef docuref;

;

select firstonly notes from docuRef

where docuRef.RefCompanyId == this.DataAreaId &&

docuRef.RefTableId == this.TableId &&

docuRef.RefRecId == this.RecId &&

docuRef.TypeId == 'PromoText';

return docuRef.Notes;

}

Both methods are implemented as display methods to allow them to bind directly to report
controls and to print the information.

Binding Display Methods to Report Controls

The next step is to bind the methods to report controls. A new body section called Body-
InventTable is created in the InventTable section group with several altered properties, as
shown in Table 6-5.

144 Part II Developing with Microsoft Dynamics AX
Table 6-5 BodyInventTable Property Settings

Property Settings

NoOfHeadingLines 0

LineAbove Solid

LineBelow Solid

LineLeft Solid

LineRight Solid

The NoOfHeadingLines property must be set to zero because the text and image must not in
clude any headers when printed. The Line property settings create a border around the
promotion.

In the body section, a string control, named PromotionText, and a bitmap control, named
PromotionImage, are added and bound to the two new InventTable methods. The properties
shown in Table 6-6 are changed on the two controls.

Table 6-6 PromotionText and PromotionImage Property Settings

Property PromotionText PromotionImage

Left Auto (right)

Width 70.00 char 2.0 inch

Height 2.0 inch

DynamicHeight Yes

ShowLabel No No

Table InventTable InventTable

DataMethod PromotionText PromotionImage

The ShowLabel properties are set to No because no headers should be printed. The Promotion-
Text control is set to a fixed width of 70 characters with a dynamic height so that the text
will not be truncated. The PromotionImage has a fixed size of 2 inches by 2 inches and is right-
justified on the page.

The last step is to look up an InventTable record buffer based on the invoiced item, and then
send the buffer to the report. You do this with the following new method on the BodyReference
body section.

void printInventTable()
{

InventTable inventTable = custInvoiceTrans.inventTable();
if (inventTable.RecId)
{

element.send(inventTable);
}

}

Chapter 6 Customizing Microsoft Dynamics AX 145
The method uses the InventTable lookup method on the CustInvoiceTrans table, which returns
a record buffer for the invoiced item, which the method subsequently sends to the report.

The preceding method should be called from the executionSection method on the same body
section. The following method is therefore customized by including the call to the printInvent-
Table method.

void executeSection()
{;

this.printCustPackingSlipTrans();
this.printDimHistory();
this.printInventTable();

}

The positioning of the body section, report control, and report methods is shown in Figure 6-18.

Figure 6-18 The position of the new sections, control, and methods in the SalesInvoice report.

After the completion of all the customizations to the SalesInvoice report and the addition of
new methods to InventTable, the report prints the promotion below each invoiced item on the
report, as shown in Figure 6-14.

Preventing Printing of an Empty Body Section

The solution thus far has one flaw: It prints an empty BodyInventTable body section if there is
no document reference for the PromoText and PromoImage document types, which causes an
empty box to appear below each item on the invoice. You could easily fix this by altering the
printInventTable method to include a check for text or images, as shown in the following
change to the printInventTable method.

146 Part II Developing with Microsoft Dynamics AX
void printInventTable()
{

InventTable inventTable = custInvoiceTrans.inventTable();

if (inventTable.RecId &&

(inventTable.PromotionText() || inventTable.PromotionImage()))

{

element.send(inventTable);

}

}

This code ensures that the InventTable record buffer is sent to the report only if the Promotion-
Text method or the PromotionImage method returns a value.

In terms of performance, this change is not optimal because methods may be executed twice
if a promotion is added to the InventTable record. This could result in as many as five round
trips to the database for each printed invoiced item: two from the printInventTable method,
two when printing the values, and one when the report runtime determines the height of the
PromotionText control.

A better solution is to cache the returned values from the PromotionText and PromotionImage
methods when they are called in the printInventTable method, and then use the cached values
instead of retrieving them from the database when printing the PromotionText and Promotion-
Image controls.

The cache variables must be added to the classDeclaration of the report, so the following lines
are inserted there.

DocuValueFile promotionImage;

Notes promotionText;

The printInventTable method is modified to store the returned values from the PromotionText
and PromotionImage methods on the InventTable record buffer in the newly created variables,
as shown in the following copy of the method.

void printInventTable()
{

InventTable inventTable = custInvoiceTrans.inventTable();

;

promotionImage = inventTable.PromotionImage();

promotionText = inventTable.PromotionText();

if (inventTable.RecId &&

(promotionText || promotionImage))

{

element.send(inventTable);

}

}

Chapter 6 Customizing Microsoft Dynamics AX 147
In addition to these two new display methods, PromotionText and PromotionImage are
created to return the values of the variables. The following code samples show these
methods, implemented in the BodyInventTable body section.

display Notes PromotionText()
{

return promotionText;

}

display DocuValueFile PromotionImage()
{

return promotionImage;

}

With these two methods named similarly to the InventTable methods, you must only remove
the value in the Table property on the PromotionImage and PromotionText report controls to
enable the report to retrieve the value from the local report methods instead of the InventTable
methods. You can even remove the display method modifiers from the two InventTable
methods, because they are no longer used as display methods.

When you print the report again, empty BodyInventTable body sections do not appear and the
printing of this specific section is optimized. The report will never result in more than two
round trips to the database for each invoiced item. The only disadvantages are that return
types of the methods on the InventTable and the equivalent methods on the report should be
kept synchronized, and these return types should again be kept synchronized with the types
of the cache variables. This was not necessary earlier in the example, before the values in the
report were cached.

Number Sequence Customization
In Chapter 7, “Extending Microsoft Dynamics AX,” the sample X++ code shows that a service
order feature must have a number sequence to generate a unique identification number. To
achieve this, you must customize the number sequence class, setting up the relationship
between a module and a number sequence reference, and also associating the number
sequence reference with the extended data type in which you want to store a number from the
sequence.

When you want to create a new number sequence, you must first create an extended data
type. The ID of the type is used as the identifier for the number sequence reference, so it must
be unique. Figure 6-19 shows a string data type named BikeServiceOrderId.

148 Part II Developing with Microsoft Dynamics AX
Figure 6-19 The BikeServiceOrderId extended data type.

The properties on the extended data type are set to create a type with a maximum length of 20
characters, as shown in Table 6-7.

Table 6-7 BikeServiceOrderId Property Settings

Property Settings

Type String

Label Service order

HelpText Service order ID

StringSize 20

To implement a number sequence reference for service orders and assign it a specific service
order number sequence, you must make changes to a NumberSeqReference class. To implement
the reference in the Accounts Receivable module, among other references used by the sales
order functionality, you add the following lines of X++ code to the loadModule method on the
NumberSeqReference_SalesOrder class.

numRef.DataTypeId = typeId2ExtendedTypeId(
typeid(BikeServiceOrderId));

numRef.ReferenceHelp = "Unique key for the service order table, "+
"used when identification of a service "+
"order is allocated automatically.";

numRef.WizardContinuous = false;
numRef.WizardManual = NoYes::No;
numRef.WizardAllowChangeDown = NoYes::No;
numRef.WizardAllowChangeUp = NoYes::No;
numRef.SortField = 100;
this.create(numRef);

These are the only modifications necessary to set up a new number sequence reference. The
reference is available in the Accounts Receivable parameter form, and a number sequence can
be created automatically by using the Number Sequence Wizard. You start the Number
Sequence Wizard by clicking the Wizard button in the Number Sequences form located in the
Navigation Pane under Basic\Setup\Number Sequences\Number Sequences.

Chapter 6 Customizing Microsoft Dynamics AX 149
The numRef table buffer in the preceding example is of a NumberSequenceReference table type.
This table contains several fields that can be set depending on the reference you are about to
create. These fields are described in Table 6-8.

Table 6-8 NumberSequenceReference Field Explanations

Field Explanation

DataTypeId The ID for the reference. Use the ID of the extended data type.

ConfigurationKeyId The configuration key that must be enabled for the reference
to display. The configuration key should be set only if it is
different from the key associated with the extended data type.

ReferenceLabel The number sequence reference label should be set only if it is
different from the label on the extended data type.

ReferenceHelp The number sequence reference user interface help field should
be set only if the help text is different from text in the HelpText
property on the extended data type.

DataTypeSameAsId Indicates that the reference can use the number from another
number sequence. To make this possible, set the ID for the
reference to the listed number sequence. Usually this setting
is applied to voucher references that use the ID of the journal
as the voucher number.

GroupEnabled Indicates that the reference is enabled for use with number
sequence groups. This setting should be specified only if the
reference can be set up for each number sequence group.

SortField The position of the reference in the list. Use a sufficiently high
number to avoid conflict with other or future references within
the same module.

WizardLowest The default value for the Smallest field when creating the
number sequence with the Number Sequence Wizard.

WizardHighest The default value for the Largest field when creating the
number sequence with the Number Sequence Wizard.

WizardManual The default value for the Manual field when creating the
number sequence with the Number Sequence Wizard.

WizardContinuous The default value for the Continuous field when creating the
number sequence with the Number Sequence Wizard.

WizardAllowChangeDown The default value for the To A Lower Number field when
creating the number sequence with the Number Sequence
Wizard.

WizardAllowChangeUp The default value for the To A Higher Number field when
creating the number sequence with the Number Sequence
Wizard.

WizardFetchAheadQty The default value for the Quantity Of Numbers pre-allocation
field when creating the number sequence with the Number
Sequence Wizard. This field also enables the pre-allocation
number sequence feature, but it cannot be used in combination
with a sequence marked Continuous.

150 Part II Developing with Microsoft Dynamics AX
Finally, the following method is implemented on the SalesParameters table. The method
returns the new number sequence reference and should be used in the X++ code that requires
numbers from the number sequence.

static client server NumberSequenceReference numRefBikeServiceOrderId()
{

return NumberSeqReference::findReference(
typeId2ExtendedTypeId(typeid(BikeServiceOrderId)));

}

Chapter Summary
Customizing the Dynamics AX application is easy, but customizing it in the right manner
is much more difficult. Dynamics AX is designed, according to best practice guidelines, to
operate as optimally as possible in a production environment. When customizing the
application, you are advised to follow the guidelines in the Microsoft Dynamics AX SDK.
Customizing an application is harder than implementing an extension, because customization
requires that you consider the ramifications of upgrades to the Dynamics AX application.
This chapter focused on issues that you should consider when customizing tables, classes,
forms, or reports, but it barely scratches the surface of what is possible in Dynamics AX.

Chapter 7

Extending Microsoft Dynamics AX

In this chapter:

Introduction .151

Wizard Framework Extension .151

RunBase Framework Extension .165

Chapter Summary .187

The objectives of this chapter are to:

■	 Explain how to create new wizards with the same look and feel as the standard Microsoft
Dynamics AX 4.0 wizards.

■	 Demonstrate how to use the RunBase application framework to implement new
business transaction jobs.

Introduction
A wizard is a special form of user assistance that automates a single task or set of tasks.
A wizard presents users with a series of dialog boxes to collect information necessary
to complete a task. Wizards are especially useful for complex or infrequent tasks that
the user might have difficulty learning or doing and for tedious, frequently performed
tasks. The first part of this chapter shows how to build a simple wizard to create new
inventory items.

The second part of the chapter examines the RunBase framework. The RunBase framework
supports business transaction jobs, such as exchange rate adjustment or inventory closing.
The framework helps developers write new business transaction jobs by supplying all the
programming infrastructure so that the developer can focus solely on the business logic. This
chapter implements a sample RunBase class that sends bike-tuning service offers to customers
via e-mail.

Wizard Framework Extension
The wizard framework supplies the programming infrastructure to create wizards with a
consistent look and feel. When developing wizards, you should follow some simple guidelines
to ensure that all wizards have the same look and feel and are as helpful to the user as possible.
151

152 Part II Developing with Microsoft Dynamics AX
For example, all wizards should state a clear purpose on the first page and present a very
limited set of choices and controls. Figure 7-1 shows a sample first page.

Figure 7-1 A sample first page, stating a clear purpose.

You should provide extensive instructions to users to make the concepts implemented by
the wizard easy to understand. Consider the use of instructions with graphics, as shown in
Figure 7-2, if you want to explain very complex concepts.

Figure 7-2 A wizard page that provides the user with clear, complete instructions.

The user should be able to finish the entire task within the wizard itself. Do not confuse users
by redirecting them to other forms to complete the wizard. Include default values or settings
(as shown in Figure 7-3) wherever possible. If possible, enable the Finish button as soon as
the wizard has collected enough information to skip the rest of the wizard pages. Try to
minimize the number of decisions that the user must make.

Chapter 7 Extending Microsoft Dynamics AX 153
Figure 7-3 A wizard page showing default values for Label, Labelfile ID, and Enumerated Value.

Make sure that the wizard clearly states the actions it will take and how the user can
proceed when the wizard has been completed. You can present this information on the last
page of the wizard as fixed text with a summary of the selected values and settings, as shown
in Figure 7-4.

Figure 7-4 A final wizard page that provides an overview of what will happen upon completion.

Creating a New Wizard

The Wizard Wizard is a special wizard in Dynamics AX that helps you create wizards that
have the same look and feel as the standard Dynamics AX wizards. You open the Wizard
Wizard, shown in Figure 7-5, from the Dynamics AX menu bar: click Tools\Development
Tools\Wizards\Wizard Wizard.

154 Part II Developing with Microsoft Dynamics AX
Figure 7-5 The Wizard Wizard welcome page.

As shown in Figure 7-6, the wizard asks you to choose between two types of wizards: a Standard
Wizard, for any kind of job, and a Default Data Wizard, especially designed to help the user
create basic default data in the system. This section demonstrates creation of a standard wizard
that will be available from the Navigation Pane and the main menu of Dynamics AX.

Figure 7-6 The Wizard Type page.

When you enter a name for your wizard on the next screen (shown in Figure 7-7), you can see
how the names of the elements that will be created in the Application Object Tree (AOT) are
suffixed with either Wizard or DefaultDataWizard, depending on the type of wizard.

In the last step, you enter the number of steps that you want in your wizard, as shown in
Figure 7-8. This number includes the welcome page and the summary page. If you change
your mind about the number of steps after completing the wizard, you can change the
elements generated by the wizard in the AOT.

Chapter 7 Extending Microsoft Dynamics AX 155
Figure 7-7 The Naming page.

Figure 7-8 The Setup page.

Because this sample wizard does not include any complicated selections, the summary page,
shown in Figure 7-9, is rather short.

The Wizard Wizard creates a private project, shown in Figure 7-10, that contains three new
elements, described from top to bottom:

■	 A class for holding the business logic of the wizard and the logic for running the wizard
in the framework. The class extends either SysWizard or SysDefaultDataWizard, depending
on the type of wizard.

■	 A form with the user interface of the wizard.

■	 A display menu item to start the wizard. The menu item starts the class that starts the
form.

156 Part II Developing with Microsoft Dynamics AX
Figure 7-9 The summary page.

Figure 7-10 The elements of a new wizard collected in a private project.

Note The Wizard Wizard does not add the new elements to the version control system if
version control is enabled. You must do this manually.

Creating Labels

After creating the basic frame for the new wizard, the next step is to add labels. To open the
Label Editor, click Tools\Development Tools\Label\Label Editor. The Label Editor is shown
in Figure 7-11.

The Label Editor creates labels in your default language. The Setup tab allows you to set
the default language and displays the default label file in which new labels are stored. (If
there is no default label file, you must create one with the Label File Wizard, located in Tools\
Development Tools\Label, and then select it as the default on the Setup tab.) You may change
these default settings.

Labels are identified with an ID consisting of the label file name and a counter. The label IDs
displayed depend on any existing labels and your choice of label file. In the following table, a
default label file—USR—results in the label IDs @USR1, @USR2, @USR3, and so on.

Chapter 7 Extending Microsoft Dynamics AX 157
Figure 7-11 The Label Editor.

Press Ctrl+N to create the new labels shown in Table 7-1. The label ID is generated automatically
when you provide text in the Label field; the additional Description field is optional.

Table 7-1 Label IDs and Labels

Label ID Label

@USR1 Create inventory item wizard.

@USR2 This wizard helps you create a new inventory item.

@USR3 Item identification.

@USR4 Item number and description.

@USR5 Select proper group relationships for the item.

@USR6 Create inventory item.

@USR7 This is all the wizard needs to know to create the inventory item.

@USR8 Click Finish to create and save the item.

Take note of the label numbers you are given so that you can use them in your code if you have
label numbers other than those listed in the table. You may also use the Label Editor to search
for previously created labels based on their content.

Adding Content to the Wizard

Next, you will add selection fields to the wizard you created earlier and write the logic to
create the inventory item. You edit the wizard form by using the AOT. In the AOT, scroll to the
name of the wizard form you want to design and right-click it. Select Properties, and then set
the Caption property of the form design to @USR1.

Right-click TabPage:Step1, select Properties, and then change the Caption property from “Step 1
Title” to @USR1. Add a StaticText control to TabPage:Step1 by right-clicking it and selecting
New Control\Static Text. A Text Property appears in the properties list; set it to @USR2.

158 Part II Developing with Microsoft Dynamics AX
On TabPage:Step2, change the Caption property from “Step 2 Title” to @USR3. Set the
HelpText property to @USR4.

Now you may begin adding input fields. In this example, the user must be able to enter an
item ID, item name, and item description. Start by investigating the type of item IDs. The table
in which items are stored is called InventTable. Look up the item ID on the table, open the
properties, and note that the extended data type of the field is ItemId. Using this extended
data type directly in the wizard will cause a problem, because the extended data type has a
relationship with InventTable; the drop-down list for the extended data type displays existing
item IDs associated with the field. You must find the name of the parent of the extended data
type for use in the new wizard.

Locate the extended data type in the AOT and examine the properties. You can see that the
type extends the ItemIdBase extended data type; because this type does not have any database
relationships, you can safely use it in the wizard. In other situations, if you cannot find a
suitable extended data type, you can either create one or change the LookupButton property of
the form control to Never.

Right-click TabPage:Step2, point to New Control, and then click StringEdit. Open the properties
of the new field and change the Name property to ItemId, change the ExtendedDataType property
to ItemIdBase, and change the AutoDeclaration property to Yes. (Setting the AutoDeclaration
property to Yes allows you to easily address the control by using X++ code later; the runtime
automatically creates an object handle, which allows access to the control.)

Repeat this procedure to add a field for the ItemName of InventTable. The ExtendedDataType
type should be Name. Remember to set the AutoDeclaration property to Yes.

Finally, add the inventory description field. Give it the name ItemDescription. The inventory
item description field is in the InventTxt table, not in InventTable as in the previous case, so you
must open InventTxt to determine the extended data type. As you can see from the Txt field on
the table, the extended data type is ItemFreeTxt. Supply this type in the ExtendedData Type
property. Remember to set the AutoDeclaration property to Yes.

On the third page of the wizard, the user should be able to link the item to the mandatory
item group, inventory model group, and dimension group. To make this possible, open the
properties list for TabPage:Step3 and change the Caption property from “Step 3 Title” to
@SYS1177, reading ”Groups,” and change the HelpText property to @USR5. Using the proce
dure described earlier, add three fields to the page with the following extended data types:
ItemGroupId, InventModelGroupId, and InventDimGroupId. Give the fields names that match
the extended data type name, and remember to set the AutoDeclaration property to Yes.

The fourth page of the wizard is dedicated to prices. For this example, you will add a sales
price field. Change the Caption property of the fourth tab from “Step 4 Title” to @SYS73780,
reading “Pricing,” and change the HelpText property to @SYS87796, reading “Set up sales
prices.” Add a RealEdit control with the extended data type Price to the tab. Change the Name
property to Price and remember to set the AutoDeclaration property to Yes.

Chapter 7 Extending Microsoft Dynamics AX 159
On the fifth and final page, you will add a short summary that describes what the wizard does
when the user clicks Finish. Change the Caption property of the tab from “Step 5 Title” to
@USR6. Add a StaticText control to the tab. Change the Name property to TxtFinish, change
the AutoDeclaration property to Yes, change the Width property to Column Width, change the
Height property to Column Height, and remove the text value from the Text property. Because
this summary text will be composed of several sentences with more than one label, you
will write X++ code to set the text. The code must be added to the setTexts method on the
form, as shown here.

void setTexts()

{

;

txtFinish.text("@USR7" + '\n\n' +

"@USR8" + '\n' +

"@SYS68351");

}

Next, you will set up the navigation for the wizard. You will implement three simple rules:

■	 The Next button must not be enabled on the Item Identification page if an item ID has
not been entered.

■	 The Next button must not be enabled on the Groups page unless all three fields have a
value.

■	 The Finish button must be enabled as soon as the Groups page is filled in. It is not
mandatory for the user to enter a price, so the step in which the user can enter the price
can safely be skipped.

Start in the class declaration of the InventItemCreateWizard class by defining macro variables
so that you can address the tabs by name rather than by number, as shown in this example.

public class InventItemCreateWizard extends SysWizard
{

#define.Welcome(1)

#define.Id(2)

#define.Groups(3)

#define.Prices(4)

#define.Finish(5)

}

To make the Finish button available before the last page, override the hasFinishButton method
by right-clicking the InventItemCreateWizard class, clicking Override Method, and choosing
hasFinishButton. Set the return value to true, as shown here.

160 Part II Developing with Microsoft Dynamics AX
boolean hasFinishButton()

{

;

return true;

}

The setupNavigation method describes the initial navigation settings that apply when the
wizard is opened. Override this method as shown in the following code.

void setupNavigation()

{

;

nextEnabled[#Welcome] = true;

backEnabled[#Welcome] = false;

finishEnabled[#Welcome] = false;

nextEnabled[#Id] = false;

backEnabled[#Id] = true;

finishEnabled[#Id] = false;

nextEnabled[#Groups] = false;

backEnabled[#Groups] = true;

finishEnabled[#Groups] = false;

nextEnabled[#Prices] = true;

backEnabled[#Prices] = true;

finishEnabled[#Prices] = true;

nextEnabled[#Finish] = false;

backEnabled[#Finish] = true;

finishEnabled[#Finish] = true;

}

To enable the Next button when an item ID has been entered, find the ItemId control on the
form and override the textChange method with the following code.

public void textChange()

{

;

super();

if (this.text())
{

if (!sysWizard.isNextEnabled())

{

sysWizard.nextEnabled(true, sysWizard.curTab(), false);
}

}

else

{

if (sysWizard.isNextEnabled())

Chapter 7 Extending Microsoft Dynamics AX 161
{

sysWizard.nextEnabled(false, sysWizard.curTab(), false);

}

}

}

On the Groups page, all three fields must be filled in before the Next button is enabled. Create
a single method on the form, in the Methods section directly under the form name node,
to control the values Next and Finish, as shown here.

void enableNextOnGroups()

{

;

if (itemGroupId.text() &&

inventModelGroupId.text() &&

inventDimGroupId.text())

{

if (!sysWizard.isNextEnabled())

{

sysWizard.nextEnabled(true, sysWizard.curTab(), false);

}

if (!sysWizard.isFinishEnabled())
{

sysWizard.finishEnabled(true, sysWizard.curTab(), false);
}

}

else

{

if (sysWizard.isNextEnabled())
{

sysWizard.nextEnabled(false, sysWizard.curTab(), false);
}

if (sysWizard.isFinishEnabled())

{

sysWizard.finishEnabled(false, sysWizard.curTab(), false);

}

}

}

Override the textChange method of each of the three controls on the Groups page as follows.

public void textChange()

{

;

super();

element.enableNextOnGroups();

}

162 Part II Developing with Microsoft Dynamics AX
Also override the modified method of each of the three controls as follows.

public boolean modified()
{

boolean ret;

;

ret = super();

element.enableNextOnGroups();

return ret;

}

Before you can write the business logic to create the inventory item, you must create methods
on the form to return the selected values from the controls that you have added, as shown
in the following code.

public ItemId itemId()

{

;

return itemId.text();

}

public ItemName itemName()
{

;

return itemName.text();

}

public ItemFreeTxt itemDescription()

{

;

return itemDescription.text();

}

public itemGroupId itemGroupId()

{

;

return itemGroupId.text();

}

public InventModelGroupId inventModelGroupId()

{

;

return inventModelGroupId.text();

}

public InventDimGroupId inventDimGroupId()

{

;

return inventDimGroupId.text();

}

Chapter 7 Extending Microsoft Dynamics AX 163
public Price price()

{

;

return price.realValue();

}

You may now write the X++ code that uses the selections made in the wizard and creates the
inventory item. The following code is inserted in the run method of the wizard class.

void run()
{

InventTable inventTable;

InventTxt inventTxt;

InventTableModule inventTableModule;

InventItemLocation inventItemLocation;

;

ttsBegin;

inventTable.initValue();

inventTable.ItemId = formRun.itemId();

inventTable.ItemName = formRun.itemName();

inventTable.ItemGroupId = formRun.itemGroupId();

inventTable.ModelGroupId= formRun.inventModelGroupId();

inventTable.DimGroupId = formRun.inventDimGroupId();

inventTable.insert();

inventTxt.initValue();

inventTxt.ItemId = formRun.itemId();

inventTxt.LanguageId = CompanyInfo::find().LanguageId;

inventTxt.Txt = formRun.itemDescription();

inventTxt.insert();

inventTableModule.initValue();

inventTableModule.ItemId = formRun.itemId();

inventTableModule.ModuleType = ModuleInventPurchSales::Invent;

inventTableModule.insert();

inventTableModule.ItemId = formRun.itemId();

inventTableModule.ModuleType = ModuleInventPurchSales::Purch;

inventTableModule.insert();

inventTableModule.ItemId = formRun.itemId();

inventTableModule.ModuleType = ModuleInventPurchSales::Sales;

inventTableModule.Price = formRun.price();

inventTableModule.insert();

inventItemLocation.initValue();

inventItemLocation.ItemId = formRun.itemId();

inventItemLocation.InventDimId = InventDim::inventDimIdBlank();

inventItemLocation.insert();

ttsCommit;

}

164 Part II Developing with Microsoft Dynamics AX
You could include calls to validateWrite of the tables to ensure that it is impossible to create
items with the wizard that cannot be created with the normal form.

Adding the Wizard to the Navigation Pane and Main Menu

To make the wizard available from the Dynamics AX main menu and the Navigation Pane, you
must add the menu item to the main menu. First, you must associate the menu item with a
configuration key and a security key.

Open properties for the menu item and change the ConfigurationKey property to LogisticsBasic.
The SecurityKey property must match the position of the menu item on the main menu or
Navigation Pane, so set SecurityKey to InventPeriodic. Because the wizard adds data to the
system, you must also change the NeededAccessLevel property to Add. Finally, change the Label
property of the menu item to @USR1 and the HelpText property to @USR2.

Now the menu item can be added to the main menu. The main menu consists of several
submenus; you will add the wizard menu item to the Inventory Management submenu. In the
AOT, expand Menus, right-click Invent, point to New, and then click Menu Item. Right-click
the new menu item, and then select Properties. Make sure that MenuItemType is set to Display,
and set MenuItemName to InventItemCreateWizard. Then drag the menu item to the Periodic
folder. Save the menu, and then restart the Dynamics AX client to make the new menu item
appear in the Navigation Pane and the Dynamics AX main menu. When the menu item is
saved in the main menu, it is also visible in the Navigation Pane, which is another view of the
main menu.

Tip You could also add the menu item to the menu by simply dragging it from the Menu
Items node and dropping it on the MainMenu node in the AOT.

Creating a Default Data Wizard

Default data wizards are targeted especially for creating base data in the system. An example
is the Unit Creation Wizard available from Basic\Setup\Units\Units\Functions. A default
data wizard has one step more than the standard wizard. In this additional step, you must
choose from two types of default data wizards:

■ Set up several groups of tables.

■ Set up one group of tables.

If you select the first type of default data wizard, a grid on the second tab allows the user
to select the areas in which to run the wizard. You typically use the second type of default data
wizard for complex wizards that will operate on only a few tables. This kind of wizard is
typically started from the main form for the table for which it creates data, and not from the
menu.

Chapter 7 Extending Microsoft Dynamics AX 165
Note Dynamics AX includes a sample default data wizard called TutorialDefaultData
Wizard.

RunBase Framework Extension
Use the RunBase framework throughout Dynamics AX whenever you must execute a business
transaction job. Extending the RunBase framework allows you to implement business operations
that do not have default support in the Dynamics AX application. The RunBase framework
supplies many features, including dialog boxes, query windows, validation-before-execution
windows, the progress bar, client/server optimization, pack-unpack with versioning, and
optional scheduled batch execution at a given date and time.

Inheritance in the RunBase Framework

Classes that use the RunBase framework must inherit from either the RunBase class or the
RunBaseBatch class. If the class extends RunBaseBatch, it can be enabled for scheduled execution
in batch mode.

In a good inheritance model, each class has a public construction mechanism, unless the class is
abstract. If initialization of the class is not required, use a static construct method. Because X++
does not support method name overloading, you should use a static new method if the class must
be initialized further upon instantiation. Static new methods have the following characteristics:

■	 They are public and static.

■	 Their names are prefixed with new.

■	 They are named logically or with the arguments that they take. Examples include new-
InventTrans and newInventMovement.

■	 They usually take non-default parameters only.

■	 They always return a valid object of the class type, instantiated and initialized, or throw
an error.

Note A class can have several new methods with different parameter profiles. The NumberSeq
class is an example of a class with multiple new methods.

The default constructor (the new method) should be protected to force users of the class
to instantiate and initialize it with the static construct or new method. If new has some extra
initialization logic that is always executed, you should place it in a separate init method.

To ease the task of writing customizations, the best practice is to add construction functionality
for new subclasses (in higher layers) without mixing code with the construct method in
the original layer.

166 Part II Developing with Microsoft Dynamics AX
The Property Method Pattern

To allow other business operations to run your new business operation, you might want
to run it without presenting the user with any dialog boxes. If you do this, you will need an
alternative to dialog box to set the values of the necessary member variables of your business
operation class.

In Dynamics AX classes, member variables are always protected. In other words, they cannot
be accessed outside of the class; they can be accessed only from within objects of the class
itself or its subclasses. To access member variables from outside of the class, you must write
accessor methods. The accessor methods can get, set, or both get and set member variable
values.

A Dynamics AX best practice is to not use separate get and set accessor methods. The accessor
methods are combined into a single accessor method, handling both get and set, in a pattern
called the property method pattern. Accessor methods should have the same name as the
member variable that they access, prefixed with parm.

The following is an example of what a method implementing the property method pattern
could look like.

public NoYesId parmCreateServiceOrders(NoYesId _createServiceOrders =

createServiceOrders)

{

;

createServiceOrders = _createServiceOrders;

return createServiceOrders;

}

If you want the method to work only as a get method, change it to something such as this.

public NoYesId parmCreateServiceOrders()
{
;

return createServiceOrders;

}

And if you want the method to work only as a set method, change it to this.

public void parmCreateServiceOrders(NoYesId _createServiceOrders =

createServiceOrders)

{

;

createServiceOrders = _createServiceOrders;

}

Chapter 7 Extending Microsoft Dynamics AX 167
When member variables contain huge amounts of data (such as large containers or memo
fields), the technique in the following example is recommended. This technique determines
whether the parameter is changed. The disadvantage of using this technique in all cases is the
overhead of an additional method call.

public container parmCode(container _code = conNull())
{
;

if (!prmIsDefault(_code)
{

code = _code;
}

return code;
}

Tip From the X++ editor window, you can access a template script to help you create parm
methods. Right-click the editor window, point to Scripts, point to Template, point to Method,
and then click Parm. A dialog box appears in which you must enter the variable type and
name of the member variable that you want the parm method to give access to. You can also
access the script by pressing Shift+F10 in the editor window and then selecting Scripts.

The Pack-Unpack Pattern

When you want to save the state of an object with the option to reinstantiate the same object
later, you must use the pack-unpack pattern. The RunBase framework requires that you
implement this pattern to switch the class between client and server (for client/server optimi
zation) and to present the user with a dialog box that states the choices made at the last
execution of the class.

The pattern consists of a pack method and an unpack method. These methods are used by the
SysLastValue framework, which stores and retrieves user settings or usage data values that
persist between processes.

Note A reinstantiated object is not the same object as the saved object. It is a copy of the
object with the same values as the packed and unpacked member variables.

The pack and unpack Methods

The pack method must be able to read the state of the object and return it in a container. Read
ing the state of the object involves reading the values of the variables needed to hydrate and
dehydrate the object. Variables used at execution time that are declared as member variables

168 Part II Developing with Microsoft Dynamics AX
do not have to be included in the pack method. The first entry in the container must be a
version number that identifies the version of the saved structure. The following is an example
of the pack method.

container pack()

{

;

return [#CurrentVersion, #CurrentList];

}

The macros must be defined in the class declaration. CurrentList is a macro defined in the
ClassDeclaration holding a list of the member variables to pack. If the variables in the
CurrentList macro are changed, the version number should also be changed to allow safe and
versioned unpacking. The unpack method can support unpacking previous versions of the
class, as shown in the following example.

class InventCostClosing extends RunBaseBatch

{

#define.maxCommitCount(25)

// Parameters

TransDate transDate;

InventAdjustmentSpec specification;

NoYes prodJournal;

NoYes updateLedger;

NoYes cancelRecalculation;

NoYes runRecalculation;

FreeTxt freeTxt;

Integer maxIterations;

CostAmount minTransferValue;

InventAdjustmentType adjustmentType;

InventCostMinSettlePct minSettlePct;

InventCostMinSettleValue minSettleValue;

...

#DEFINE.CurrentVersion(2)
#LOCALMACRO.CurrentList

TransDate,

Specification,

ProdJournal,

UpdateLedger,

FreeTxt,

MaxIterations,

MinTransferValue,

adjustmentType,

minSettlePct,

minSettleValue,

cancelRecalculation,

runRecalculation,

Chapter 7 Extending Microsoft Dynamics AX 169
collapseGroups

#ENDMACRO

}

public boolean unpack(container packedClass)

{

#LOCALMACRO.Version1List

TransDate,

Specification,

ProdJournal,

UpdateLedger,

FreeTxt,

MaxIterations,

MinTransferValue,

adjustmentType,

minSettlePct,

minSettleValue

#ENDMACRO

boolean _ret;

Integer _version = conpeek(packedClass,1);

switch (_version)

{

case #CurrentVersion:

[_version, #CurrentList] = packedClass;

_ret = true;

break;

case 1:

[_version, #Version1List] = packedClass;

cancelRecalculation = NoYes::Yes;

runRecalculation = NoYes::No;

_ret = true;

break;

default:
_ret = false;

}

return _ret;

}

If any member variable is not packable, the class cannot be packed and reinstantiated to the
same state. If any of the members are other classes, records, cursors, or temporary tables, they
must also be made packable. Other classes that do not extend RunBase may implement the
pack and unpack methods by implementing the SysPackable interface.

When the object is reinstantiated, it must be possible to call the unpack method, which reads
the saved state and reapplies the values of the member variables. The unpack method can
reapply the correct set of member variables according to the saved version number, as shown
in this example.

170 Part II Developing with Microsoft Dynamics AX
public boolean unpack(container _packedClass)
{

Version version = conpeek(_packedClass, 1);
;

switch (version)
{

case #CurrentVersion:
[version, #CurrentList] = _packedClass;
break;

default:
return false;

}
return true;

}

The unpack method returns a Boolean value that indicates whether the initialization was a
success.

Bike-Tuning Service Offers Example

In this section, you will create an extension of the RunBase class to send bike-tuning service
offers to customers via e-mail. Each bike-tuning offer could result in the creation of a service
order transaction. To follow this example, you must have created an extended data type and a
number sequence for bike-tuning service orders, as described in Chapter 6, “Customizing
Microsoft Dynamics AX.”

Note To send e-mail messages, you must first set up the e-mail parameters in Dynamics
AX. You access the e-mail parameters from Administration\Setup\E-Mail Parameters. To run
the example without sending e-mail messages, omit the bits that use the SysMailer class.

Creating the Labels

Start by creating the labels that you need. Open the Label Editor from Tools\Development
Tools\Label\Label Editor. The label numbers that appear in the Label Editor depend on your
existing labels and the choice of label file. This example refers to the labels as @USR9,
@USR10, and @USR11. Press Ctrl+N to create the labels shown in Table 7-2.

Table 7-2 Bike-Tuning Label Numbers and Text

Label number Text

@USR9 Bike-tuning offers.

@USR10 Create bike-tuning offers

@USR11 Send bike-tuning offers to existing customers via e-mail.

Chapter 7 Extending Microsoft Dynamics AX 171
Take note of the label numbers you are given so that you can use them in your code if you have
label numbers other than those listed in the table.

Creating the Table

To store information about the generated service orders, a simple table with only two fields
must be created. If you are not confident in your ability to create new tables, the Microsoft
Dynamics AX SDK offers detailed table creation information.

The table must be created with the following properties.

Name BikeServiceOrderTable

Label @SYS79051 The label reads “Service Orders.”

Add two fields to identify the service order and the customer. The fields must have the follow
ing properties.

Name CustAccount

ExtendedDataType CustAccount

Name BikeServiceOrderId

ExtendedDataType BikeServiceOrderId

Finally, add an index with the following properties to the table.

Name ServiceOrderIdx

AllowDuplicates No

DataField BikeServiceOrderId

Creating the Class

Now you can begin to create the business transaction class itself. Create a new class that
extends the RunBase class, as shown in this example.

public class BikeTuningOffers extends RunBase

{

}

Implement the two abstract pack and unpack methods of RunBase. For now, you will make a
very simple implementation to be able to compile the class. You will make the final implemen
tation with the correct class members later. Insert to-do comments in the code, as shown in
the following example, so that compile log messages will remind you to revisit the methods.

172 Part II Developing with Microsoft Dynamics AX
public container pack()

{

;

//TODO Make the final implementation.

return conNull();

}

public boolean unpack(container _packedClass)

{

;

//TODO Make the final implementation.

return true;

}

To enable the example for execution, you must implement the run method. Because it is too
early to add the business operation, you will implement an empty method, as shown here.

public void run()

{

}

Implementing the Class Description

You must implement a static method that returns a description of what the class does. This
method sets the title of the dialog box, and it can also be used for different kinds of user
interface presentations on the class. The description method must effectively be executed on
the tier from which it is called, so define it as client server. Use one of the labels created earlier,
as shown in this example.

client server static ClassDescription description()

{

;

return "@USR9";

}

Implementing Constructors

Next, you create a custom static constructor as shown here.

public static BikeTuningOffers construct()
{

BikeTuningOffers bikeTuningOffers;

;

Chapter 7 Extending Microsoft Dynamics AX 173
bikeTuningOffers = new BikeTuningOffers();

return bikeTuningOffers;

}

To force users of the class to use your constructor, rather than the default constructor (new),
make the default constructor protected. Right-click the class, point to Override Method, click
new, and change the method as shown here.

protected void new()

{

;

super();

}

To enable your job to run from a menu item, you must create the static constructor that is
called by the menu item that you will eventually create. This is the method with the name
main, and it should look like this.

public static void main(Args args)
{

BikeTuningOffers bikeTuningOffers;

;

bikeTuningOffers = BikeTuningOffers::construct();

if (bikeTuningOffers.prompt())

{

bikeTuningOffers.run();

}

}

In the main method, you call the prompt method of the framework. This method opens the
user dialog box. It returns true if the user clicks OK and the values entered are free of errors.
The run method of the framework starts the actual job.

Implementing a User Dialog Box

The user dialog box should allow the user to choose whether to create service orders automat
ically for each bike-tuning offer sent to customers via e-mail. To make this option available,
you must have two global member variables in the class declaration. One is the dialog box
field object shown in the dialog box, and the other is a variable used to store the value entered
in the dialog box field. The changed class declaration looks like this.

174 Part II Developing with Microsoft Dynamics AX
public class BikeTuningOffers extends RunBase

{

DialogField dialogCreateServiceOrders;

NoYesId createServiceOrders;

}

The RunBase framework sets up the basic dialog box by using the dialog framework, so you
must add your dialog box field to the dialog box by overriding the dialog method. The follow
ing code sample displays what the system gives you when you override the dialog method.

protected Object dialog(DialogRunbase dialog, boolean forceOnClient)
{

Object ret;

ret = super(dialog, forceOnClient);

return ret;

}

Rewrite this code as shown here so that it is more readable and follows the general pattern for
the method.

protected Object dialog()
{

DialogRunBase dialog;

;

dialog = super();

return dialog;

}

Now add your field to the dialog box, as shown in the following code. Dialog box fields are
objects of the DialogField class.

protected Object dialog()
{

DialogRunBase dialog;

;

dialog = super();

dialogCreateServiceOrders = dialog.addField(typeId(NoYesId), "@SYS79091", "@SYS84386");

return dialog;

}

Chapter 7 Extending Microsoft Dynamics AX 175
To use the values entered in the dialog box, you must retrieve them from the dialog box fields
and store them in member variables. When the user clicks OK or Cancel, the framework calls
the getFromDialog method to retrieve and save the values. Implement an override of this
method as follows.

public boolean getFromDialog()
{

boolean ret;

;

ret = super();

createServiceOrders = dialogCreateServiceOrders.value();

return ret;

}

When the user clicks OK, the framework calls the validate method. Although further validation
is not necessary for this example, the following code shows how to implement an override
that prevents the user from running the job without selecting the Create Service Orders
check box.

public boolean validate()
{

boolean ret;

;

ret = super();

if (ret && createServiceOrders == NoYes::No)
{

ret = checkFailed("You cannot run the job without creating service orders.");
}

return ret;

}

You can view the user dialog box, shown in Figure 7-12, by opening the class. Right-click the
class in the AOT, and then click Open.

Figure 7-12 The Create Bike-Tuning Offers dialog box.

176 Part II Developing with Microsoft Dynamics AX
Implementing the run Method

You can now write the sendOffers method that contains your business operation as follows.

private void sendOffers()
{

CustTable custTable;

BikeServiceOrderId bikeServiceOrderId;

BikeServiceOrderTable bikeServiceOrderTable;

SysMailer sysMailer;

;

sysMailer = new SysMailer();

ttsBegin;

while select custTable
{

if (createServiceOrders)

{

bikeServiceOrderId =
NumberSeq::newGetNum(SalesParameters::numRefBikeServiceOrderId()).num();

bikeServiceOrderTable.BikeServiceOrderId = bikeServiceOrderId;

bikeServiceOrderTable.CustAccount = custTable.AccountNum;

bikeServiceOrderTable.insert();

}

sysMailer.quickSend(CompanyInfo::find().Email,
custTable.Email,
"Tune your bike",
strFmt("Hi %1,\n\nIt's time to tune your

bike...", custTable.name));

}

ttsCommit;

}

To call the method, you must add it to the run method, which, as you might remember, is
called from the value main if the user clicks OK in the dialog box and the values pass validation.
The run method follows a specific pattern, as shown here.

public void run()
{

#OCCRetryCount

;

if (! this.validate())

throw error("");

try

{

ttsbegin;

Chapter 7 Extending Microsoft Dynamics AX 177
// Place the code that carries out the actual business transaction here.

ttscommit;

}

catch (Exception::Deadlock)

{

retry;

}

catch (Exception::UpdateConflict)

{

if (appl.ttsLevel() == 0)
{

if (xSession::currentRetryCount() >= #RetryNum)

{

throw Exception::UpdateConflictNotRecovered;
}
else
{

retry;
}

}

else

{

throw Exception::UpdateConflict;

}

}

}

This pattern ensures that the transaction is carried out within the scope of a database transaction
and that the execution can recover from a deadlock or update conflict in the database. The run
method calls validation again because someone may call run without showing the dialog box.
In run, an error is thrown to completely stop the execution if validation fails. (Using the class
without showing the dialog box is discussed later in this section.) When you add the call to
the sendOffers method that holds your business operation, the run method looks like this.

public void run()
{

#OCCRetryCount

;

if (! this.validate())

throw error("");

try

{

ttsbegin;

this.sendOffers();

ttscommit;

}

catch (Exception::Deadlock)

{

178 Part II Developing with Microsoft Dynamics AX
retry;

}

catch (Exception::UpdateConflict)

{

if (appl.ttsLevel() == 0)
{

if (xSession::currentRetryCount() >= #RetryNum)

{

throw Exception::UpdateConflictNotRecovered;
}
else
{

retry;
}

}

else

{

throw Exception::UpdateConflict;

}

}

}

Implementing the pack and unpack Methods

Now is a good time to revisit the pack and unpack methods. Start in the class declaration
by setting up the member variables that you want to store. In this example, you store the
createServiceOrders variable. State the version number of the current set of member variables.
The version number allows you to add new member variables later and still retrieve the old
settings from the last execution of the operation. Also, you can specify the version number to
be treated as the first version of the member variable list in the #Version1 declaration. This
allows you to treat another version as the first version, which you might choose to do if you
simply want to ignore a range of older versions. The first version is typically version 1.

public class BikeTuningOffers extends RunBase

{

DialogField dialogCreateServiceOrders;

NoYesId createServiceOrders;

#define.CurrentVersion(1)

#define.version1(1)

#localmacro.CurrentList

createServiceOrders

#endmacro

}

When more variables are stored in the #CurrentList macro, separate each variable by a comma.

Chapter 7 Extending Microsoft Dynamics AX 179
The pack method must be changed to follow this specific pattern.

public container pack()

{

;

return [#CurrentVersion, #CurrentList];

}

The unpack method must be changed to follow this pattern.

public boolean unpack(container _packedClass)
{

Version version = runbase::getVersion(_packedClass);

;

switch (version)

{

case #CurrentVersion:

[version, #CurrentList] = _packedClass;

break;

default:

return false;

}

return true;

}

You must also make the following change to your implementation of the dialog method to
show the old values in the dialog box fields.

protected Object dialog()
{

DialogRunBase dialog;

;

dialog = super();

dialogCreateServiceOrders = dialog.addFieldValue(typeId(NoYesId),

createServiceOrders, "@SYS79091", "@SYS84386");

return dialog;

}

Notice that you call the addFieldValue method rather than the addField method. The addField-
Value method allows you to pass a default value to the dialog box field. The RunBase frame
work ensures that the variable is set to the value saved in the SysLastValue framework at this
point in time.

180 Part II Developing with Microsoft Dynamics AX
Creating a Menu Item

To make the operation available from the main menu and the Navigation Pane, you must
create a menu item for the operation. The menu item must be attached to a configuration key
and a security key.

To create a new configuration key, open the AOT and expand Data Dictionary, right-click
Configuration Keys, and then select New Configuration Key. Right-click the new configuration
key and select Properties to open the property sheet. Change the name to BikeTuningOffers,
and add the label number @USR9 to the Label field. The label should read “Bike-tuning
offers.” If you want to make the configuration dependent on another configuration key, you
should fill in the ParentKey property. For this example, make the configuration key dependent
on the Quotation configuration key by entering QuotationBasic in the ParentKey property field.

The security key property for the menu item should be chosen from the existing security
keys. The chosen security key must match the position of the menu item on the main menu or
in the Navigation Pane. For example, if you wanted to put your menu item under Accounts
Receivable\Periodic, the security key must be CustPeriodic.

With the configuration and security keys in place, you are ready to create the menu item. In
the AOT, expand Menu Items, right-click Action, and then select New Menu Item. Right-click
the new menu item, and then select Properties. Fill out the properties as described in the
Table 7-3.

Table 7-3 Bike-Tuning Menu Item Properties

Property Value Explanation

Name BikeTuningOffers This is the name of the menu
item as it appears in the AOT.

Label @USR10 The label should read, “Create
bike-tuning offers.”

HelpText @USR11 The label should read, “Send
bike-tuning offers to existing
customers via e-mail.”

ObjectType Class This is the type of object
opened by the menu item.

Object BikeTuningOffers This is the name of the object
opened by the object.

RunOn Server Execute the job on the server
tier.

ConfigurationKey BikeTuningOffers This is the new configuration
key that you just created.

SecurityKey CustPeriodic This is the security key chosen
according to the position of the
menu item on the main menu
or in the Navigation Pane.

Chapter 7 Extending Microsoft Dynamics AX 181
Tip You can drag the class node in the AOT onto the Action node under Menu Items to
create a new menu item with the same name as the class and the ObjectType and Object
properties already defined.

Now add the menu item to the Accounts Receivable submenu. In the AOT, expand Menus,
right-click Cust, point to New, and then click Menu Item. Right-click the new menu item, and
then select the Properties tab. Change Name to BikeTuningOffers. Change MenuItemType to
Action and MenuItemName to BikeTuningOffers. Finally, move the menu item to the Periodic
folder of the menu. Save the menu, and then restart the Dynamics AX client to make the new
menu item appear in the Navigation Pane and on the Dynamics AX main menu.

Adding Property Methods

Suppose that you want to run the Bike-Tuning Offers business operation directly from
another piece of code without presenting the user with a dialog box. To do so, you must
implement property methods according to the property method pattern. This pattern allows
you to set and get the properties that would otherwise be inaccessible because member
variables in Dynamics AX are protected.

Start by writing a parm method for the property as follows.

public NoYesId parmCreateServiceOrders(NoYesId _createServiceOrders =
createServiceOrders)
{

;
createServiceOrders = _createServiceOrders;

return createServiceOrders;
}

This job demonstrates how you can run the operation without showing the dialog box.

static void createBikeTuningOffersJob(Args _args)
{

BikeTuningOffers bikeTuningOffers;
;

bikeTuningOffers = BikeTuningOffers::construct();
bikeTuningOffers.parmCreateServiceOrders(NoYes::Yes);

bikeTuningOffers.run();
}

182 Part II Developing with Microsoft Dynamics AX
Adding Constructors

As mentioned earlier in this chapter, X++ does not support method name overloading, and
you should avoid using default parameters on constructors. You must create individually
named new methods with different parameter profiles instead.

In the preceding example, you created an instance of the class and set the necessary parameters.
Imagine that there is one more parameter in your class that indicates a certain customer
account number for creating bike offers. Add a new member variable to the class declaration,
and then add the new parameter method, like this.

public class BikeTuningOffers extends RunBase
{

DialogField dialogCreateServiceOrders;

NoYesId createServiceOrders;
CustAccount custAccount;

#define.CurrentVersion(1)

#define.version1(1)

#localmacro.CurrentList

createServiceOrders

#endmacro

}

public CustAccount parmCustAccount(CustAccount _custAccount = custAccount)
{

;

custAccount = _custAccount;

return custAccount;

}

Suppose that the customer record contained information about the option to create service
orders with bike offers. For example, imagine that offers are not sent to the customer if the
customer has been stopped for new transactions. Because you want to avoid using default
parameters in the construct method, you must call both of these parm methods when you
create an instance based on a customer record.

Running the business operation from a job with a specific customer would look like this.

server static void createBikeTuningOffersJobCustomer(Args _args)
{

CustTable custTable = CustTable::find('4001');

BikeTuningOffers bikeTuningOffers;

;

bikeTuningOffers = BikeTuningOffers::construct();
bikeTuningOffers.initParmDefault();

Chapter 7 Extending Microsoft Dynamics AX 183
bikeTuningOffers.parmCustAccount(custTable.accountNum);
bikeTuningOffers.parmCreateServiceOrders(custTable.blocked == CustVendorBlocked::No);

bikeTuningOffers.run();

}

This code is a good candidate for the static new pattern, so implement a static newCustTable
method on the BikeTuningOffers class to create an instance based on a customer record, as
shown here.

server static public BikeTuningOffers newCustTable(CustTable _custTable)
{

BikeTuningOffers bikeTuningOffers;

;

bikeTuningOffers = BikeTuningOffers::construct();
bikeTuningOffers.initParmDefault();
bikeTuningOffers.parmCustAccount(_custTable.accountNum);
bikeTuningOffers.parmCreateServiceOrders(_custTable.blocked == CustVendorBlocked::

No);

return biketuningOffers;

}

Now change your job to a simpler version to be assured that the class gets properly instantiated
and initialized.

server static void createBikeTuningOffersJobCustomer(Args _args)
{

CustTable custTable = CustTable::find('4001');

BikeTuningOffers bikeTuningOffers;

;

bikeTuningOffers = BikeTuningOffers::newCustTable(custTable);

bikeTuningOffers.run();

}

Adding a Query

Adding a query to the business operation class allows the user to select a range of targets to
apply the operation to, such as sending bike-tuning offers to selected customers. To use the
query, you must be able to create an instance of QueryRun. Start by adding QueryRun as a
member variable, as shown here.

184 Part II Developing with Microsoft Dynamics AX
public class BikeTuningOffers extends RunBase

{

DialogField dialogCreateServiceOrders;

NoYesId createServiceOrders;

CustAccount custAccount; // This member won’t be used with the query.

QueryRun queryRun;

#define.CurrentVersion(2)

#define.version1(1)

#localmacro.CurrentList

createServiceOrders

#endmacro

}

To initialize the QueryRun object, override the initParmDefault method, as shown in the following
code. This method is called by the RunBase framework if no saved object state is found by the
SysLastValue framework via the unpack method.

public void initParmDefault()
{

Query query;

;

super();

query = new Query();

query.addDataSource(tableNum(CustTable));

queryRun = new QueryRun(query);

}

You must modify the pack method, as shown in the following example, so that you can save
the state of the QueryRun object.

public container pack()

{

;

return [#CurrentVersion, #CurrentList, queryRun.pack()];

}

Consequently, you must also modify the unpack method to reinstantiate the QueryRun object,
as shown here.

public boolean unpack(container _packedClass)

{

Version version = runbase::getVersion(_packedClass);

Chapter 7 Extending Microsoft Dynamics AX 185
Container packedQuery;

;

switch (version)

{

case #CurrentVersion:

[version, #CurrentList, packedQuery] = _packedClass;

if (packedQuery)

queryRun = new QueryRun(packedQuery);

break;

default:

return false;

}

return true;

}

To make the QueryRun object available for presentation in the dialog box, override the
queryRun method to return your QueryRun object, as shown in the following code.

public QueryRun queryRun()

{

;

return queryRun;

}

To actually show the query in the dialog box, you must override the showQueryValues method
to return the value true, as follows.

boolean showQueryValues()

{

;

return true;

}

If you open the class now, you can see that the query is embedded in the dialog box, as shown
in Figure 7-13.

Figure 7-13 The Create Bike-Tuning Offers dialog box with an embedded query.

186 Part II Developing with Microsoft Dynamics AX
Finally, you must change your business logic method, sendOffers, so that it uses the QueryRun
object, as shown here.

private void sendOffers()
{

CustTable custTable;

BikeServiceOrderId bikeServiceOrderId;

BikeServiceOrderTable bikeServiceOrderTable;

SysMailer sysMailer;

;

sysMailer = new SysMailer();

ttsBegin;

while (queryRun.next())

{

custTable = queryRun.get(tableNum(CustTable));

if (createServiceOrders)
{

bikeServiceOrderId = NumberSeq::newGetNum(SalesParameters::
numRefBikeServiceOrderId()).num();

bikeServiceOrderTable.BikeServiceOrderId = bikeServiceOrderId;
bikeServiceOrderTable.CustAccount = custTable.AccountNum;
bikeServiceOrderTable.insert();

}

sysMailer.quickSend(CompanyInfo::find().Email,
custTable.Email,
"Tune your bike",
strFmt("Hi %1,\n\nIt's time to tune your bike...",

custTable.name));

}

ttsCommit;

}

Client/Server Considerations

Typically, you will want to execute business operation jobs on the server tier, because
these jobs almost always involve several database transactions. However, you want the user
dialog box to be executed on the client to minimize client/server calls from the server tier.
Fortunately, the RunBase framework can help you run the dialog box on the client and the
business operation on the server tier.

To run the business operation job on the server and push the dialog box to the client, you
should be aware of two settings. On the menu item that calls the job, ypou must set the RunOn

Chapter 7 Extending Microsoft Dynamics AX 187
property to Server; on the class, you must set the RunOn property to Called from. Figure 7-14
shows where to set the RunOn property of a class.

Figure 7-14 The execution tier of the class set to Called from.

When the job is initiated, it starts on the server, and the RunBase framework packs the internal
member variables and creates a new instance on the client, which then unpacks the internal
member variables and runs the dialog box. When the user clicks OK in the dialog box, RunBase
packs the internal member variables of the client instance and unpacks them again in the server
instance.

Chapter Summary
This chapter has introduced you to wizard development and RunBase-controlled business
operation transaction classes. To fully understand these concepts, you should, of course, try
to create some new wizards and RunBase classes yourself. You should also look at some of the
existing wizards and RunBase classes.

Chapter 8

The Business Connector

In this chapter:

Introduction .189

Integration Technologies .190

Inside the Business Connector .191

Usage Scenarios .197

Working with the .NET Business Connector .200

CLR Interoperability. .208

Migrating Applications .210

Chapter Summary .211

The objectives of this chapter are to:

■	 Describe the two components of the Business Connector, what they do, and how they
relate to other integration components in Microsoft Dynamics AX 4.0.

■	 Provide example scenarios that use the Business Connector.

■	 Explain how to use the new .NET Business Connector to build managed applications
that integrate with Dynamics AX 4.0.

■	 Illustrate the differences between the COM Business Connector and the .NET Business
Connector.

Introduction
The Business Connector is a versatile platform component that you can use to build software
applications that interact deeply with both the data and the business logic residing in
Dynamics AX 4.0. The Business Connector consists of two components: the COM Business
Connector and the .NET Business Connector. This chapter focuses mainly on the .NET
Business Connector because it is new in Dynamics AX 4.0 and will be of interest to anyone
who wants to develop managed solutions with Dynamics AX without using COM.

This chapter compares the Business Connector with other integration components included
with Dynamics AX 4.0. It also explains the Business Connector architecture to help you
understand how it functions. Several example scenarios demonstrate the variety of potential
uses for the Business Connector. The .NET Business Connector managed classes are
described and code examples are provided to illustrate their use. This chapter also describes
189

190 Part II Developing with Microsoft Dynamics AX
how to port applications built with the COM Business Connector in earlier versions of
Dynamics AX to the .NET Business Connector, and it highlights the differences between the
two Business Connector components.

Integration Technologies
Integration of enterprise resource planning (ERP) systems with other systems within and
beyond an organization is now a common requirement, and Dynamics AX provides a variety
of ways to implement such integration. Figure 8-1 shows all the integration components in
Dynamics AX 4.0.

AOS

Microsoft Dynamics AX

CLR
interoperability

XML

Direct X++ API
calls

Managed
component

XML

XML

Web services Asynchronous
transports

AIF

Microsoft .NET Framework 2.0

Managed
application

Trading
partners

and third-party
systems

.NET Business
Connector

Figure 8-1 The integration components in Dynamics AX 4.0.

All the integration components interact with Dynamics AX through the Application Object
Server (AOS). Dynamics AX 4.0 supports only a three-tier architecture (earlier versions
supported both a two-tier and a three-tier architecture), which means that the integration
components, like the database, can interact with Dynamics AX only through the AOS. The
majority of the integration components use Microsoft .NET Framework 2.0 in some way,
which is a reflection of the goal to make it easier for the development community to use the
.NET platform for solutions development.

The .NET Business Connector enables development of managed applications, using the .NET
Framework and a common language runtime (CLR)–compatible language to integrate with
Dynamics AX. In Figure 8-1, the arrow from the .NET Framework to the .NET Business

Chapter 8 The Business Connector 191
Connector shows that the managed applications interact with Dynamics AX through the .NET
Business Connector, in contrast to how CLR interoperability works. The .NET Business
Connector is the most general-purpose integration component in Dynamics AX and is partic
ularly appropriate for developing custom applications that require a large degree of flexibility
and control over implementation.

CLR interoperability enables external managed components to be instantiated and executed
from the X++ code. In Figure 8-1, the arrow from CLR interoperability to the .NET Framework
represents the flow from the X++ code to the Microsoft .NET CLR, mirroring the flow into
Dynamics AX via the .NET Business Connector. CLR interoperability is built into the Dynamics
AX kernel and can therefore be used wherever the kernel runs. Like the .NET Business
Connector, CLR interoperability is a general-purpose feature, and it is in many ways comple
mentary to the type of integration that the .NET Business Connector provides.

The Application Integration Framework (AIF) is a comprehensive, feature-rich, standards-
based integration infrastructure that provides the ability to implement loosely coupled, XML-
based document integration scenarios with Dynamics AX. AIF comprises both synchronous
Web services, which internally use the .NET Business Connector, and a more traditional
integration component that supports a variety of asynchronous transports. These capabilities
allow interaction with third-party systems and external trading partners. AIF is the recom
mended solution for business-to-business, application-to-application, and enterprise application
integrations. See Chapter 9, “XML Document Integration,” for details.

Inside the Business Connector
As stated earlier, the Business Connector is a versatile platform component. The Business
Connector itself comprises two components: one that provides Microsoft COM interoperability,
and another that provides interoperability with the .NET Framework. You should choose the
component that is appropriate to the environment in which you are working. Both Business
Connector components contain the Dynamics AX kernel and provide a run-time environment
for executing X++ code and interacting with other elements in the AOT. This is because virtu
ally the entire Dynamics AX development and run-time environment is based on X++, and the
kernel is responsible for interpreting and executing this code.

Table 8-1 summarizes the primary characteristics of the two types of Business Connector.

Table 8-1 Business Connector Characteristics

Characteristic COM Business Connector .NET Business Connector

Single-user with single-session Yes Yes
or multi-session support
(desktop PC deployment)

Multi-user and multi-session Yes Yes
support (Web or other server
deployment)

192 Part II Developing with Microsoft Dynamics AX
Table 8-1 Business Connector Characteristics

Characteristic COM Business Connector .NET Business Connector

Microsoft COM–based interface Yes No

.NET Framework 2.0 managed
classes

No Yes

Integration with the managed
HTTP context (for enabling Web
applications)

No

The COM Business Connector in
the previous version supported
the unmanaged HTTP context,
but Dynamics AX 4.0 does not.

Yes

CLR interoperability available Yes Yes

As you can see, the Business Connector versions are largely similar, differentiated only by
managed HTTP context integration and the programming environment for which each is
intended.

The Logical Component Stack

If you divide the .NET Business Connector into its constituent parts, you will see that the fol
lowing three logic components (illustrated in Figure 8-2) interoperate to deliver functionality:

■ Managed classes

■ Transition layer

■ Interpreter

Managed classes

Transition layer

Interpreter

.NET Business Connector

Figure 8-2 The logical component stack in the .NET Business Connector.

Managed Classes

The managed classes component is a set of .NET Framework–based classes that expose
functionality that can be accessed through the .NET Business Connector. It includes the
following classes: Axapta, AxaptaBuffer, AxaptaContainer, AxaptaObject, and AxaptaRecord.
The purpose of each of these classes is described later in this chapter, in the section called
“Working with the .NET Business Connector.” If you used the COM Business Connector in
the previous version of the application, you will find that the functionality of the managed
classes in Dynamics AX 4.0 is mostly equivalent.

Chapter 8 The Business Connector 193
The Transition Layer

The transition layer is where the mapping occurs between .NET Framework objects and types
and their Dynamics AX equivalents, as part of both request and response processing associated
with the use of the Business Connector.

The Interpreter

The interpreter consists of the kernel. Dynamics AX allows code to be executed locally in
the Business Connector AX kernel or remotely in the AX kernel of the AOS. The interpreter
manages local and remote code execution. It also manages connectivity to the AOS and other
infrastructure, such as session management and security.

Run Time

At run time, both types of Business Connector interact with the AOS because the two-tier
model is not supported in Dynamics AX 4.0. The diagram in Figure 8-3 depicts the run-time
interaction.

Application object
data

.NET Business
Connector

X++

X++

AOS

AX
database

Figure 8-3 The Business Connector run-time interactions.

The important interactions among the Business Connector, the AOS, and the AX database are
as follows:

■	 The Business Connector authenticates against the AOS when the Axapta.Logon()
method is called. The credentials passed to the AOS by the Business Connector must
correspond to an existing Dynamics AX user, who must be enabled and have the
appropriate rights, granted through security keys, to use the Business Connector.

■	 The AOS completes the authentication and establishes a session for the Dynamics

AX user.

194 Part II Developing with Microsoft Dynamics AX
■	 Other Business Connector classes and methods are invoked as needed. Data in Dynamics
AX can be selected, inserted, updated, and deleted by using the Business Connector
through the AOS. In addition, the X++ business logic that resides in the Dynamics AX
metadata store, the Application Object Directory (AOD), can be invoked and executed
either on the AOS or in the Business Connector itself.

Web Interoperability

The Dynamics AX development environment includes a feature known as the Web framework.
This is covered in more detail in Chapter 10, “The Enterprise Portal.” The Web framework is
used to develop the Web-based functionality in X++, which is then exposed in the Dynamics
AX Enterprise Portal (EP). However, Web applications generally must interact with the HTTP
context data, which typically includes the request, response, view state, and so forth. The
Dynamics AX EP uses the .NET Business Connector to integrate with Dynamics AX, and the
.NET Business Connector can interoperate with Internet Information Services (IIS) and
Microsoft ASP.NET to provide access to the HTTP context information necessary to enable
Web-based functionality. Note that in earlier versions of Dynamics AX, the COM Business
Connector integrated with the unmanaged HTTP context as part of the interoperability with
Active Server Pages (ASP). This is no longer supported.

The diagram in Figure 8-4 illustrates how Web interoperability works.

Web
framework

ASP.NET

.NET Business
Connector

Internet Information Services (IIS)

AOS

Application domain

Dynamics AX database

Figure 8-4 .NET Business Connector Web interoperability.

Managed Web applications, including the Dynamics AX EP, execute in IIS within an
application domain. Upon initialization, the application domain loads and instantiates the

Chapter 8 The Business Connector 195
.NET Business Connector. The managed application then uses the .NET Business Connector to
invoke Dynamics AX Web framework elements, such as Web menu items, Web forms, and
Web reports. The X++ code stored in the AOD that defines these elements accesses the
HTTP context as needed through the following classes (located in the AOT under System
Documentation\Classes):

■ IISApplicationObject

■ IISContextObject

■ IISPostedFile

■ IISReadCookie

■ IISRequest

■ IISRequestDictionary

■ IISResponse

■ IISServer

■ IISSessionObject

■ IISStringList

■ IISVariantDictionary

■ IISViewState

■ IISWriteCookie

For example, you could write an X++ class to retrieve a variable from the HTTP context, which
you could then use in another X++ class. In the following code example, the method takes a
parameter, which is the name of the HTTP context variable, the value of which will be
obtained using IISRequest().

str getIISServerVariable(str 80 var)
{

IISRequest request;
str res;

request = new IISRequest();
res = request.serverVariables().itemTxt(var);
return res;

}

If you want to develop a new, custom Web-enabled application that integrates with Dynamics
AX and can access managed HTTP context information, you can use both ASP.NET and the
.NET Business Connector. The interoperability among IIS, ASP.NET, and the .NET Business
Connector allows you to access HTTP context information from X++ code that is part of your
application.

http:ASP.NET

196 Part II Developing with Microsoft Dynamics AX
Important Existing applications developed with the previous version of the COM Business
Connector and ASP that accessed the unmanaged HTTP context must be migrated to
ASP.NET to successfully run with Dynamics AX 4.0.

Security

A significant amount of effort has been expended on enhancing security within Dynamics
AX 4.0. This section highlights the security mechanisms in place for the Business Connector.

Authentication

Microsoft Windows authentication is implemented throughout Dynamics AX 4.0, and this
change is reflected in both types of Business Connector. The COM interface (COM Business
Connector) and the managed classes (.NET Business Connector) have been refactored to
accommodate parameters that are specific to Windows authentication.

Authorization

The Business Connector has an associated set of Dynamics AX security keys that control
access to different parts of the Business Connector functionality. Table 8-2 describes these
security keys.

Table 8-2 Dynamics AX Security Keys

Security key Description

SysCom Enables or disables the use of either type of Business Connector

SysComData Controls the level of access that users have to data

SysComExecution Controls access to execution rights of classes and jobs in the
Business Connector

SysComIIS Controls whether the Business Connector is accessible to users
when running in the context of IIS

These keys can be browsed in the Data Dictionary under Security Keys. You can control the
use of the Business Connector in different user groups in Dynamics AX by configuring these
security keys.

Code Access Security

Code Access Security (CAS) is a new feature in Dynamics AX 4.0. CAS is a mechanism
intended to help Dynamics AX developers write code that invokes protected X++ APIs in a
manner that minimizes the potential for malicious exploitation of these APIs. A protected API
is an X++ API method that has been secured by using CAS. It also ensures that the protected
APIs are executed only on the AOS, not on the Dynamics AX client or the Business Connector.
CAS therefore restricts the X++ APIs that can be executed locally in the Business Connector. If
such an attempt is made, a CAS exception is returned.

Chapter 8 The Business Connector 197
Usage Scenarios

This section provides several scenarios to demonstrate how the Business Connector might
be used in real-world situations. The usage scenarios described here fall into the following
categories:

■	 Client

■	 Web

■	 Server

Client

In client-based scenarios, the Business Connector and the application that uses it are installed
on a user’s desktop computer. To make this easier to set up, Dynamics AX 4.0 allows the
installation of just the COM or .NET Business Connector, instead of the entire Dynamics AX
rich client (which was required in the previous version of Dynamics AX).

Office Excel Integration Example

Microsoft Office Excel integration is probably the best illustration of client-based use of the
COM Business Connector, because it is a commonly used tool and particularly appropriate for
viewing and manipulating data sets from ERP systems such as Dynamics AX.

You can extend Office Excel by developing add-ins that load when Excel launches. Office
Excel exposes a menu that can be accessed by users working on a spreadsheet. Here are the
requirements for this type of integration:

■	 It must be possible for the current Windows user to be authenticated in Dynamics AX.

■	 It must be possible to retrieve data from Dynamics AX into a range within a workbook in
Office Excel.

■ It must be possible to update data in Dynamics AX that corresponds to the retrieved data.

Figure 8-5 illustrates the topology of this integration.

Dynamics AX AO
and database

COM Business
Connector

Office Excel
add-in

Figure 8-5 Office Excel integration with Dynamics AX using the COM Business Connector.

198 Part II Developing with Microsoft Dynamics AX
The following actions are associated with the use of the COM Business Connector from the
Office Excel add-in:

1.	 The COM Business Connector is invoked initially to authenticate the current Windows
domain user and to establish a session with Dynamics AX.

2.	 An Office Excel user clicks a menu option to retrieve data from Dynamics AX. This

executes code in the add-in to query data (through the Business Connector). Data

retrieved from Dynamics AX is then passed back to the worksheet via the Business

Connector.

3.	 After the data appears in the worksheet, the user manipulates it.

4.	 When the data is ready to be saved back to Dynamics AX, the user clicks a menu
option, which causes the Business Connector to execute code in the add-in to persist the
data. Note that any business logic attached to the destination table in Dynamics AX
is executed when the Business Connector processes the updates, and exceptions are
passed back to the calling application, which in this case is the Office Excel add-in.

This scenario illustrates the concept of developing an add-in to a popular Microsoft
Office program using the COM Business Connector. In fact, this concept was used to
develop several snap-ins for the previous version of the application, which are published
here: http://www.gotdotnet.com/codegallery/codegallery.aspx?id=b44f8ee7-4d2b-4e39-9bfb
1119fffbe018. Search the page for “Snap-ins for Microsoft Dynamics AX 3.0.” Note that you
must register to see the snap-ins. As of this writing, there are three such snap-ins:

■	 Business Data Lookup Provides the ability to access Dynamics AX data from Microsoft
Office applications by using the task pane

■	 Time Sheet Management Enables time sheet data to be entered and submitted from
Office Outlook

■	 Vacation Scheduler Allows users to submit time-off requests from Office Outlook

Each of these snap-ins uses the COM Business Connector to access Dynamics AX business
logic and data. You can download the source code to see how the Business Connector is used
in each one.

PDA Synchronization Example

A potential client-based use of the .NET Business Connector is for PDA synchronization. For
example, you could develop an application that allows a PDA to collect information that can be
uploaded to Dynamics AX. PDAs generally rely on some kind of synchronization manager; if this
synchronization program is customizable, you can extend it to integrate with Dynamics AX.

The specific requirements for this type of integration are as follows:

■	 It must be possible to verify that the current Windows user matches the identity of the
device owner.

http://www.gotdotnet.com/codegallery/codegallery.aspx?id=b44f8ee7-4d2b-4e39-9bfb-

Chapter 8 The Business Connector 199
■	 It must be possible to retrieve the data to be uploaded from the PDA, or from the local
file system if downloaded from the PDA.

■	 It must be possible to validate and insert the downloaded data into the corresponding
Dynamics AX tables.

The diagram in Figure 8-6 illustrates the topology of this integration.

Dynamics AX AO
and database

.NET Business
Connector

Synchronization
manager

Figure 8-6 PDA synchronization using the .NET Business Connector.

The following actions are associated with the use of the .NET Business Connector during
PDA synchronization:

1.	 The synchronization manager downloads data from the PDA and recognizes that it
needs to be uploaded to Dynamics AX.

2.	 The synchronization manager authenticates the current user’s credentials with the
Business Connector and establishes a Dynamics AX session.

3.	 Data read from the PDA is uploaded to Dynamics AX through the Business Connector.
The data is validated using X++ business logic defined in Dynamics AX. Exceptions are
reported as errors in the synchronization manager.

4.	 Validated data is persisted in the Dynamics AX database.

This usage scenario shows how the Business Connector might be incorporated into the
synchronization mechanism for a PDA, and how data entered on the PDA can be transferred
to Dynamics AX.

Web

Earlier in this chapter, we explained how the .NET Business Connector interacts with the
managed HTTP context, thus enabling Web applications, including the Dynamics AX EP,
to access and use this context information. One of the primary processes in the EP is page
processing, which is a good example of how you can use a Business Connector to enable a
Web application. Refer to Chapter 10 for a detailed description of page processing and the role
of the Business Connector.

Server

A final usage scenario uses the .NET Business Connector on the server that hosts the AOS and
the Dynamics AX database, as shown in Figure 8-7.

200 Part II Developing with Microsoft Dynamics AX
.NET business
connector

Server
application

Dynamics AX AOS

and database

Figure 8-7 Server-based use of the .NET Business Connector.

In this scenario, a non-Web-based managed application uses the .NET Business Connector to
integrate with Dynamics AX. This approach can be used for a variety of purposes, but one
example is offline processing. Typically, a Dynamics AX user must be logged on to a computer
to authenticate in Dynamics AX. In some cases, this is not possible. For example, the
asynchronous integration offered by the AIF does not require the originating user to be logged
on to the machine where data is processed and inserted into Dynamics AX. However, this task
must be executed using the correct user identity.

The solution is to use the .NET Business Connector to impersonate a Dynamics AX user. You
can do this in one of three ways:

1.	 Use the Logon() API method and supply the original user’s credentials, assuming they
are known and maintained securely.

2.	 Use the LogonAs() API method and supply the credentials of the Dynamics AX Business
Connector Proxy user. The Business Connector Proxy user is a specifically nominated
domain account used within the user impersonation mechanism in both types of
Business Connector. For more details about this, review the documentation supplied
with the application.

3.	 Execute the Business Connector in a Windows process owned by the Dynamics AX
Business Connector Proxy user, and then call the LogonAs() API method.

If you use one of these methods to log on to the Business Connector, you can develop
server-based applications that can process data using the correct Dynamics AX user identity.

Working with the .NET Business Connector
This section takes a closer look at building applications with the .NET Business Connector,
including the following topics:

■	 Data types and mappings

■	 Managed classes

■	 Request and response processing

■	 Exception handling

Chapter 8 The Business Connector 201
Data Types and Mappings

The .NET Business Connector makes it easier to develop managed applications that
integrate with Dynamics AX by bridging two programming environments: the managed
.NET Framework environment and the unmanaged Dynamics AX X++ environment.
Inevitably, some form of translation is required when passing objects and data between
these two environments. Table 8-3 maps equivalent data types between .NET and Dynamics AX.

Table 8-3 Data Type Mappings

Dynamics AX data type .NET Framework data type

String, RString, VarString System.String

Integer System.Int32

Real System.Double

Enums System.Enum

The Business Connector uses integers for
enumerations.

Time System.Int

You must convert this value to Dynamics AX time
format.

Date System.Date
You need only use the date portion, because time is
stored separately in Dynamic AX.

Container AxaptaContainer

Boolean (enumeration) System.Boolean
Dynamics AX uses integers to
represent Boolean values of true and false.

GUID System.GUID

This data type is new in Dynamics AX 4.0 (but it is not
supported in the COM Business Connector).

Int64 System.Int64

This data type is new in Dynamics AX 4.0.

The Business Connector managed class methods explicitly support specific data types for
parameters and return values. Refer to the Microsoft Dynamics AX SDK for more
information.

Managed Classes

This section provides an overview of the managed classes in the .NET Business Connector.
You develop applications with the .NET Business Connector by instantiating and using the
public managed classes described in Table 8-4.

202 Part II Developing with Microsoft Dynamics AX
Table 8-4 .NET Business Connector Managed Classes

Class name Description

Axapta The Axapta class provides methods for connecting to a Dynamics AX sys
tem, creating Dynamics AX objects (class objects, record objects, container
objects, and buffer objects), and executing transactions.

AxaptaBuffer The AxaptaBuffer class represents an array of bytes and provides methods
for manipulating the buffer contents. AxaptaBuffer objects can be added to
AxaptaContainer objects.

AxaptaContainer The AxaptaContainer class provides methods for reading and modifying
containers. In Dynamics AX 4.0, this class is implemented by using the
IList and ICollection interfaces in the .NET Framework. AxaptaContainer
contains the methods defined by these interfaces, so behavioral similarities
exist between AxaptaContainer and these interfaces.

AxaptaObject The AxaptaObject class provides a single method for invoking X++ class
methods.

AxaptaRecord The AxaptaRecord class provides methods for reading and manipulating
AxaptaRecord objects (tables in the Dynamics AX database).

Examples of how these classes are used in an application are provided in the following
sections.

Request and Response Processing

Much like any integration component, the Business Connector processes requests and
returns responses associated with the use of the managed classes by applications across
all the established Business Connector user sessions. The steps described in the following
section traverse the logical component stack presented in Figure 8-2.

Request Processing

The diagram shown in Figure 8-8 depicts the processing steps associated with a request made
through the managed classes.

1.	 A request is initiated by invoking a managed class.

2.	 The request is received and marshaled across the transition layer (where .NET objects
and data are converted from .NET to X++).

3.	 The transition layer dispatches the request to the interpreter in the .NET Business
Connector.

4.	 If the request involves executing X++ code, this code is run either locally or remotely on
the AOS, depending on the directive associated with the code.

5.	 After the request is processed, a response is generated.

Chapter 8 The Business Connector 203
Execute request

Invoke managed API

Receive API call

Marshall call

Dispatch request to
interpreter

Response

Execute request
locally

Execute request
remotely

Figure 8-8 Request processing in the .NET Business Connector.

Response Processing

The diagram shown in Figure 8-9 depicts the processing steps associated with generating a
response.

1.	 The active request processed by the .NET Business Connector completes, successfully or
unsuccessfully.

2.	 The response is instantiated and dispatched by the interpreter to the transition layer.

3.	 The transition layer marshals the response to the managed classes (converting objects
and data from X++ to .NET).

4.	 The response is returned to the caller, which is the application that initially invoked the
Business Connector.

The main variation in the request and response cycle is the location where the X++ code being
invoked is executed. This is controlled by the declaration associated with the X++ code. By
default, the X++ code runs where called—that is, from the interpreter where it is invoked. If the
client keyword is used, this forces execution on either the Business Connector or the Dynam
ics AX client. If the server keyword is used, the code is executed by the AOS.

204 Part II Developing with Microsoft Dynamics AX
End

Dispatch response to
transition layer

Active request

Complete request
locally

Complete request
remotely

Marshall response to
managed API layer

Return response
to caller

Figure 8-9 Response processing in the .NET Business Connector.

Exception Handling

The .NET Business Connector has a large set of managed exceptions that can be raised at run
time. Although it was originally based on the errors in the COM Business Connector, this set
of managed exceptions has been extended in Dynamics AX 4.0 to provide improved granularity,
and therefore more flexibility, in handling those exceptions. Most notable is the addition of
several remote procedure call (RPC)–related exceptions, which you can use to control error
handling associated with the connectivity between the Business Connector and the AOS. As a
general rule, unhandled exceptions (such as OutOfMemoryException) are not caught by the
Business Connector. This type of exception is simply propagated to the calling application
and prevents such unhandled exceptions from being masked or hidden by the Business
Connector.

A new exception has been added in Dynamics AX 4.0 that provides a consistent way to
manage AOS failures. If the AOS to which the .NET Business Connector currently has affinity
becomes inaccessible, a BusinessConnectorInstanceInvalidException exception is raised for
every call to a method in the managed classes thereafter. This exception can then be used to
take other actions, such as terminating the process so it can be restarted.

Refer to the Microsoft Dynamics AX SDK for more information on the data types, managed
classes, and managed exceptions referenced in this section.

Chapter 8 The Business Connector 205
HelloWorld Example

How do you write C# code that uses the .NET Business Connector? The simple example that
follows (the Business Connector equivalent of “Hello World”) demonstrates logging on to
Dynamics AX. To use the following code, you must be able to log on successfully using the AX
client. Also, the .NET Business Connector must be installed from wherever you will execute
the code. Create a new project in Microsoft Visual Studio. In the New Project dialog box, select
Console Application under Visual C#. This creates the project file structure and files and
presents you with a program called Program.cs. Paste the code in the following example
between the curly brackets associated with the Main method. In Solution Explorer, right-
click References and choose Add Reference. In the Add Reference dialog box, click the
Browse tab. Use the file controls to navigate to the Dynamics AX Client\Bin folder. Select
Microsoft.Dynamics.BusinessConnectorNet.dll, and then click OK. This makes the .NET
Business Connector accessible to the C# application. Now you can build and run the solution.

Axapta ax;

// Log on.

ax = new Axapta();

try {
ax.Logon(null, null, null, null);

}
catch (Exception)
{

Console.WriteLine("Exception occurred");
}
Console.WriteLine("Hello World!");
ax.Logoff();

First, you must instantiate the Axapta class to authenticate, using one of the methods within
the Axapta class. Authentication is accomplished by using the Logon() method. If you do not
provide any explicit parameter values, the following values, which can be overridden as
needed, are used:

■ The current Windows user

■ The default Dynamics AX company for the user

■ The default language for the user

■ The default active configuration

A message appears on the console, and the Dynamics AX session is terminated using the
Logoff() method.

http:Program.cs

206 Part II Developing with Microsoft Dynamics AX
Accessing Data

To access data in Dynamics AX, you must use the AxaptaRecord class. The following
example shows how to retrieve a list of bike-related inventory items that are classified as
“raw material.”

using System;

using Microsoft.Dynamics.BusinessConnectorNet;

namespace ListInvItemRecords
{

// ListInvItemRecords
// Shows how to retrieve and iterate through a list of Dynamics AX records
class ListInvItemRecords
{

public static void Run()
{

Axapta ax;

String invItemNameField = "ItemName";

Object invItemName;

String invItemIdField = "ItemId";

Object invItemId;

// Log on.

ax = new Axapta();

try

{

ax.Logon(null, null, null, null);
}
catch (Exception)
{

Console.WriteLine("Exception occurred");
}

Console.WriteLine("*** List inventory item records");

// Instantiate the Dynamics AX record.

AxaptaRecord axRecord = ax.CreateAxaptaRecord("InventTable");

// Execute a query.

axRecord.ExecuteStmt("select * from %1

where %1.ItemGroupId == 'RawMat'");

// Loop through matching Dynamics AX records.

while (axRecord.Found)

{

invItemName = axRecord.get_Field(invItemNameField);
invItemId = axRecord.get_Field(invItemIdField);
Console.WriteLine(invItemId + "\t" + invItemName);

Chapter 8 The Business Connector 207
axRecord.Next();

}

axRecord.Dispose();

// Log off of Dynamics AX.

ax.Logoff();

}

}

}

Here are the important aspects of the code example:

■	 Variables are declared to store the Dynamics AX record data that you will retrieve and to
hold the field names used.

■	 Authentication is the same as in the HelloWorld example.

■	 To begin working with a specific type of Dynamics AX record, you must first instantiate
an AxaptaRecord object, and you must provide the name or ID of the record as an
argument.

■	 A query is executed against the Dynamics AX record using ExecuteStmt, which parses the
query syntax and replaces the substitution variable (%1) with the name of the record.
The query syntax is of a generic form. Dynamics AX executes the query with the exact
syntax appropriate for the database being used, whether it is Microsoft SQL Server or
Oracle.

■	 A while loop cycles through the records returned from Dynamics AX, which uses another
method on AxaptaRecord called Found to determine that matching records exist.

■	 For each record, get_Field()retrieves each of the field values and assigns a value to the
appropriate variable declared earlier.

■	 To proceed to the next record, the Next() method is called.

■	 The AxaptaRecord object instance is disposed of to release any unmanaged resources
associated with it, and Logoff() is called to terminate the session.

You can also invoke X++ business logic directly from the .NET Business Connector, as shown
in the following section.

Invoking Business Logic

In addition to accessing data, you can also invoke business logic defined in Dynamics AX
directly from the .NET Business Connector. In this example, you call a method in an X++ class
to update inventory item details in Dynamics AX based on data from a separate inventory
management system. To do this, you use the CallStaticClassMethod method in the Axapta
managed class, as shown in this code.

208 Part II Developing with Microsoft Dynamics AX
try {
returnValue = ax.CallStaticClassMethod("InventoryManager",

"updateInventoryQty");

if((Boolean)returnValue)
Console.WriteLine("Inventory quantity updated successfully");

else
Console.WriteLine("Inventory quantity update failed");

}
catch (Exception)
{

Console.WriteLine("Exception occurred");
}

The X++ class returns a Boolean result in this case, which is then used to determine the next
action in the application.

As you can see from these examples, developing applications that integrate with Dynamics AX
using the .NET Business Connector is relatively straightforward. Although real applications
would use the managed classes more extensively, the approach to accessing data and invoking
business logic remains the same.

CLR Interoperability
As explained in Chapter 5, “The X++ Programming Language,” you can invoke external
managed components from Dynamics AX by using CLR interoperability. CLR interoperability
can be used from any Dynamics AX kernel, so you can use it from either type of Business
Connector included with Dynamics AX 4.0. Why should you consider using CLR interoper
ability? You might need to invoke functionality provided by an externally managed program
during some processing activity in the Business Connector, and rather than invoke the
managed program on the AOS, you could choose to exploit the processing capacity of the
Business Connector, especially if it is located on a separate machine.

The diagram in Figure 8-10 shows how CLR interoperability works from the .NET Business
Connector.

Managed
application

.NET Business
Connector

AOS

Microsoft .NET Framework 2.0

Managed
component

Application
object data

Dynamics AX
CLR

interoperability

Dynamics AX
database

Figure 8-10 Invoking externally managed components from the .NET Business
Connector using CLR interoperability.

Chapter 8 The Business Connector 209
In this scenario, a bicycle distributor has purchased a third-party managed component, called
ThirdPartyUtilities, that contains the business logic necessary to validate an account number.
The managed component must be integrated into the Dynamics AX application, which
processes account information by using the Business Connector.

The following steps illustrate the use of CLR interoperability from within the .NET Business
Connector for enabling the ThirdPartyUtilities managed component:

1.	 Create a reference in the AOT under the References node so that Dynamics AX
recognizes the third-party component. You can do this by adding a new reference item
in the AOT, opening it, and browsing for the .dll file. Save the reference after the
required information has been provided.

2.	 Create an X++ class, called ProcessingManager, that invokes a method in the managed
component by using the CLR interoperability feature. This requires you to instantiate the
class that you will use in the ThirdPartyUtilities component, called ValidationManager,
and then invoke the appropriate method, called validateAccNum, in that class with a
parameter that represents the data to be validated, called inboundAccNum, and return
the result, as shown here.

static boolean validateAccNum(inboundAccNum)
{

ThirdPartyUtilities.ValidationManager valMgr = new
ThirdPartyUtilities.ValidationManager();

boolean validationResult;
;
validationResult = valMgr.validateAccNum(inboundAccNum);

return validationResult;

}

3.	 In the managed application, add code in the appropriate place to invoke the X++ method
in ProcessingManager and provide the account number to validate, as shown here.

returnValue = ax.CallStaticClassMethod("ProcessingManager",
"validateAccNum",
inboundAccNum);

At run time, the managed application invokes the validateAccNum X++ method in the
ProcessingManager class, which then instantiates the CLR object from the Business Connector
and returns a Boolean result. By default, the X++ methods execute from the location where
they are called, which in this case is the Business Connector. Therefore, the processing
associated with this request is performed in the interpreter within the Business Connector,
rather than in the AOS.

210 Part II Developing with Microsoft Dynamics AX
Migrating Applications
This section explains how to migrate existing applications to use the COM Business Connector
included with Dynamics AX 4.0. If you developed applications with the COM Business
Connector in the previous version of Dynamics AX, you should be aware of a few changes to
ensure that your application works with Dynamics AX 4.0:

■	 Interface names have changed: IAxapta is now IAxapta3, and IAxapta2 has been
integrated with IAxapta3. You must update the application code to reference the correct
name, and you must also recompile your application. The other interfaces are the same
as in the previous version.

■	 Both types of Business Connector use Integrated Windows authentication. The Logon()
method is still used to connect to Dynamics AX, but it attempts to authenticate the
current Windows domain user because there is no longer any concept of Dynamics AX
application users. A new method called LogonAs() allows user impersonation in the
.NET Business Connector and the COM Business Connector.

■	 Web-related X++ classes interoperate only with the managed HTTP context, rather than
with the unmanaged HTTP context as in the previous version of Dynamics AX. Therefore,
existing applications that use the Web-related X++ classes must be updated to work with
the managed HTTP context.

■	 The COM Business Connector is installed as a standard COM application. There are no
longer any options in the Dynamics AX Client Configuration Utility for registering by
using COM+ or DCOM. However, you can accomplish the COM+ registration manually,
if necessary.

To take advantage of the capabilities of the .NET Framework, you might consider migrating
applications built with the COM Business Connector to its .NET-based successor. You should
consider the following when doing this:

■	 The IAxaptaParameterList interface has been removed; you can now supply arrays to
methods that contain parameters.

■	 Similar methods have been combined into a single method call with multiple signatures.
For example, AxaptaObject.Call and AxaptaObject.CallEx have been consolidated into
AxaptaObject.Call.

■	 The following methods have been removed because they do not have any use in
managed applications:
IAxapta3::CreateReference

IAxapta3::GetReference
IAxapta3::ReleaseReference
IAxapta3::Stop You must refactor your code to remove the use of these methods.

Chapter 8 The Business Connector 211
■	 AxaptaContainer has been completely re-implemented to use IList and ICollection from
the .NET Framework. If you developed managed applications using these classes, you
will be familiar with how they work in Dynamics AX 4.0.

■	 The Business Connector uses Windows Integrated authentication for connections to
Dynamics AX 4.0. Supported authentication methods include Logon and LogonAs.
Review your application code to determine which type of authentication is needed.

■	 Errors are thrown as managed exceptions. In Dynamics AX 4.0, you can catch a
large number of exceptions, which enables greater control of the Business Connector
application at run time.

Chapter Summary
This chapter explained the role of the Dynamics AX Business Connector in developing
applications that integrate with Dynamics AX, and it described specific scenarios in which
the Business Connector can be used. It also described managed classes and provided code
examples to illustrate how applications that use the .NET Business Connector are written. The
chapter highlighted the use of CLR interoperability to demonstrate the flexibility of the
Dynamics AX kernel in providing a way to invoke reusable third-party managed components.
Finally, this chapter presented important information on the changes to the COM Business
Connector in Dynamics AX 4.0 and explained how to migrate applications to the .NET
Business Connector.

Chapter 9

XML Document Integration

In this chapter:

Introduction .213

AIF Architectural Overview. .214

The XML Structure .216

The AxdBase API .217

The AxInternalBase API. .219

The Query .225

The Axd Wizard .226

Customizing an Existing XML Document. .227

The Entity Key Class. .230

The Send Framework. .230

Security .232

Chapter Summary .233

The objectives of this chapter are to:

■	 Describe the AxdBase and AxInternalBase class hierarchies.

■	 Introduce the Axd Wizard.

■	 Describe how to customize a Microsoft Dynamics AX 4.0 XML document.

■	 Explain how to send XML documents to partners who are not known at coding time by
using the send framework.

■	 Discuss the security implications associated with transmitting XML documents in and
out of Dynamics AX.

Introduction
The Application Integration Framework (AIF) has replaced Commerce Gateway in Dynamics
AX 4.0 as the conduit for exchanging electronic business documents. To provide broad
support for business-to-business collaboration scenarios, the AIF enables interaction with
application integration platforms such as Microsoft BizTalk Server 2006. It also enables
enterprise application integration scenarios via a variety of communication channels, including
Microsoft Message Queuing (MSMQ) and Web services.
213

214 Part II Developing with Microsoft Dynamics AX
The AIF depends on the XML document framework to provide an XML document interface to
Dynamics AX. The XML document framework consists of two X++ class hierarchies:

■	 Dynamics AX document classes (referred to as Axd classes) present data as electronic
documents. They protect the user from the complexity of the underlying table structures
and associated business logic and elevate error handling from individual database tables
and fields to the document level. In addition, the Axd classes provide methods for
serializing instances to XML and deserializing document class instances from XML
while performing value mapping and data filtering. The Axd classes can also automatically
generate an XML schema that describes the equivalent XML document based on the
associated query in the Application Object Tree (AOT).

■	 Ax<Table> classes have a 1:1 relationship with the database tables in Dynamics AX and
protect the user from the underlying table-specific business logic and the complexities
of default settings. The Ax<Table> classes eliminate the need for the calling application
to set database fields in a specific order and replicate any table-specific business logic.
For this reason, the Axd classes always use Ax<Table> classes to manipulate the under
lying Dynamics AX database tables.

AIF Architectural Overview
The overall AIF architecture, shown in Figure 9-1, consists of two major components: transport
and business logic exposure. This chapter focuses primarily on business logic exposure, which
is what you will modify as you implement new documents or modify default solutions.

External
Web services

Microsoft .NET Web service framework Dynamics AX messaging gateway (X++)

Microsoft BizTalk
Server 2006 MSMQ Filesystem

Document services (X++)

Configuration (X++) Dynamics AX integration layer (X++)

Dynamics AX business logic (X++)

Figure 9-1 The AIF architecture, showing business logic below and transport layers above.

The design of the Dynamics AX business logic encompasses two primary type hierarchies:
AxInternalBase and AxdBase. You can think of the AxInternalBase class hierarchy as an extension
of the table functionality. Your custom classes inherit the table properties and settings, and

Chapter 9 XML Document Integration 215
you must subsequently apply any additional business logic and validation to suit your needs.
The children classes of AxInternalBase in Dynamics AX 4.0 primarily implement validation,
value substitution, and value defaulting.

New XML documents inherit the AxdBase class. This class allows you to serialize and deserialize
XML from and to Dynamics AX; it is also the single point of entry to Dynamics AX whether
you want to query, read, or create documents. The AxdBase class implements the AifServiceable
interface, which enables the derived classes to be externally available through either Web
services or the transport layers in the AIF. Figure 9-2 illustrates the interaction between
the Dynamics AX core business functionality and the XML application programming inter
face (API), as well as the interaction between the XML API and the transport layers of
the AIF.

Dynamics AX integration framework

Request
processor

Send
service

XSD request
service

Business
application

AxInternalBase Ax<Table> Ax<Table> Ax<Table>

<Table> <Table> <Table>

Axd<Document> Query
Send

framework
Inherit

Inherit

AxdBase

Dynamics AX document exchange

GenerateXSD Create

SendAsXML

Read

Dynamics AX core

Figure 9-2 The interaction between the document classes and their surroundings.

216 Part II Developing with Microsoft Dynamics AX
The XML Structure
The primary goal for the Dynamics AX XML document feature was a reduction in implemen
tation time for new XML documents. Because most systems integrating with Dynamics AX
need mapping columns regardless of the schema, the product team decided to implement the
Dynamics AX internal schema as the API. This way, only one mapping per integration end
point is needed, and most Dynamics AX developers are already familiar with the internal
schema.

It was clear that this should be expressed using AOT queries. The data sources for the AOT
query directly associate with tables, and these tables carry fields which in the XML translate
into properties. Benefiting from the extended data type definitions in the AOT, the XML
schema definition (XSD) can be constrained using the available metadata describing data
type, field sizes, and so on.

The widely adopted approach in the XML community regarding properties appearing in a
fixed sort order in the documents is supported by the query structure, in which tables are
addressed in the order of appearance in the query. The XML document framework automatically
addresses the fields in alphabetical order; individual documents therefore require no manual
development. Note that if the same table will be referenced in several nodes in the query, XML
schema restrictions require that the name be unique. The table fields, when referenced in the
XML, are referenced with their field names from the table, but the table names are the name
under which they are identified on the query.

The limitations are that only one root table per query is allowed, and the unique entity key
of an XML document can be associated with this root table. When constructing the queries,
you should outer-join the child data sources to uphold 1:n relationships. If 1:1 relationships
are to be enforced, you should choose an inner join.

Figure 9-3 illustrates the mapping between the query in the AOT, which is referenced by the
Axd<Document> class, and the XML document structure.

Figure 9-3 Correlation between the AOT query and the XML document structure.

Chapter 9 XML Document Integration 217
The AxdBase API
The AxdBase class offers an API that allows you to implement new XML documents with a
minimal amount of work. As mentioned earlier, the basic operations enabled with this framework
are create XML, read XML, and generate XSD. In this context, Dynamics AX does not support
delete and update operations. When you use this XML document interface, you can only read
documents or create new ones in Dynamics AX.

Table 9-1 lists the methods implemented by AxdBase, along with a short description of the
provided functionality.

Table 9-1 AxdBase Method Descriptions

Method Description

read Reads a posted transaction from the database and returns it in
an XML string.

readList Reads posted transactions from the database and returns them
in an XML string.

create Creates the document in the XML string as a transaction in
the database tables and returns the primary key of the created
transaction.

createList Behaves like create, except that it accepts more than just one
document in the XML string.

findList Returns posted transactions from the database and writes them to
an XML string.

getSchema Returns the XSD of the Dynamics AX XML document.

getActionList Returns a list of all available actions for the Dynamics AX XML
document specified.

getLabel Returns the label that corresponds to the localized document
name.

getName Returns a fixed string that contains the name of the document.

getQueryName Returns the name of the query to be used—that is, the query that
corresponds to the Dynamics AX XML document.

setTableFieldAsMandatory Sets a field as mandatory. To specify additional mandatory fields,
the Axd class must extend the initMandatoryFieldsMap method. If
a field should be mandatory, but not mandatory in the data
model, this method must call either setParmMethodAsMandatory
or setTableFieldAsMandatory to indicate that the field must be
mandatory.

prepareForSave Prepares an Ax<Table> class for saving.

prepareForQuery Abstract method that may be overridden by derived classes if
the corresponding query needs preparation before execution.
Temporary tables, for example, must be populated with data
before they can be queried.

218 Part II Developing with Microsoft Dynamics AX
Table 9-1 AxdBase Method Descriptions

Method Description

updateNow Abstract method that may be overridden by derived classes to
implement document-specific updates (for example, posting the
document or running some business logic). The method is called
as the very last step when processing an inbound document.

validateDocument Abstract method that may be overridden by derived classes to
implement document-wide business logic. This method is called
immediately after processing an inbound document and right
before the transaction is persisted to the database.

For improved productivity, the framework enables all implemented operations by default.
This means that if, for example, you do not want to support create, you must override it in
your derived document class and throw an exception explaining that the operation is
not supported. The following example of an unsupported create action is from the actual
implementation in the AxdASN class, which is included with Dynamics AX.

public AifEntityKey create(XML _xML,

AifEndpointActionPolicyInfo _actionPolicyInfo,

AifConstraintList _constraintList)

{

;

throw error(strfmt("@SYS94924", this.getName(), 'create'));

}

When you create a completely new document, you must override the following methods:

■ getActionList

■ getConstraintList

■ getLabel

When you include more tables in the query, and the field values in one query rely on field
values in, for example, the parent tables, you must also override the prepareForSave method.
This is necessary only if you intend to support create or createList actions. In the following
example, using the prepareForSave method of the AxdChartOfAccount class, the foreign key is
populated with the values from the primary fields in the parent table. Pay particular attention
to the lines in bold, which set up the association.

public boolean prepareForSave(AxdStack _axdStack, str _dataSourceName)
{

AxLedgerTable axLedgerTable;

AxledgerTableInterval axledgerTableInterval;

;

switch (classidget(_axdStack.top()))

{

Chapter 9 XML Document Integration 219
case classnum(AxLedgerTable) :

axLedgerTable = _axdStack.top();

return true;

case classnum(AxledgerTableInterval) :
axledgerTableInterval = _axdStack.top();
if(classidget(axledgerTableInterval.parentAx<Table>()) ==

classnum(AxLedgerTable))
{

axLedgerTable = axledgerTableInterval.parentAx<Table>();
axledgerTableInterval.parmAccountTableId(axLedgerTable

.currentRecord().TableId);
axledgerTableInterval.parmAccountRecID(axLedgerTable.currentRecord()

.RecId);
return true;

}

else

error(strfmt("@SYS97762"));
return false;

default :
error(strfmt("@SYS88979", classId2Name(classidget(_axdStack.top()))));
return false;

}

return false;

}

The AxInternalBase API
The goal for creating Ax<Table> classes was to have an API available when creating and updating
records in Dynamics AX tables. The design goals of the AxInternalBase API were as follows:

■	 The API must be easy to use.

■	 The API must handle related fields. The default value should apply when a field is
updated. For example, when you update the customer account field on the sales order,
the address fields should be populated with default values when you copy the address
fields from the customer record to the sales order record.

■	 The API must handle the sequence of field updating. For example, the invoice account
field is a related field, which should revert to the default value when the customer
account field is updated.

■	 Field value defaulting might not always provide the expected end result. Consider an
example: If the invoice account field is updated first and related fields’ values are
defaulted, and then the customer account field is updated and its related fields’ values
are defaulted, the defaulted value would then overwrite the explicitly provided value in
the invoice account field.

220 Part II Developing with Microsoft Dynamics AX
■	 The API must handle fetching numbers or identifiers from number sequences. For
example, when you create a sales order, a sales order number must be fetched from a
sales order number sequence. The business logic that handles this is implemented in
these classes.

New Ax<Table> classes must inherit from the base class AxInternalBase. The AxInternalBase
class keeps track of which methods have been executed to set a table field to a specific value.
You can implement this tracking either externally or internally. Externally, for example, you
can call the parmCustAccount method on the AxSalesTable class with a specific value. Inter
nally, you can call the parmInvoiceAccount method on the AxSalesTable, because it is a related
field that should revert to the default value when the parmCustAccount method is executed. By
monitoring the methods that have been executed, the AxInternalBase class ensures that a
value set externally is not overwritten.

The class declaration on the AxBC class must declare a record variable of the table type
that the AxBC class relates to. The AxSalesTable class declaration therefore has the following
declaration.

class AxSalesTable extends AxInternalBase
{

SalesTable salesTable;
}

On an Ax<Table> class, you should create an instance method for each field on the related
table. The method name must be the same as the field name, prefixed with the word parm,
and it must use the following template.

public DataType parmFieldName(DataType _fieldName = literal)
{

if (!prmisdefault(_fieldName))
{

this.setField(fieldNum(TableName, FieldName), _fieldName);
}
return tableName.fieldName;

}

If the instance method is executed without a parameter, the value of the field is returned. If
the method is executed with a parameter, the setField method is executed with the field ID of
the table field as well as the passed parameter.

The setField instance method on the AxInternalBase class determines whether the field has
already been set to a specific value, and it assigns the value if not already set. At the same time,
a list of fields with assigned values is updated. The setField method uses the logic shown in
Figure 9-4.

Chapter 9 XML Document Integration 221
Start

End

Assign
value to field

Update list of
fields with

assigned values

Has value
been assigned

to field?

Was
value assigned

externally?

Is value
being assigned

internally?

No

No

No

Yes

Yes

Yes

Do not assign
value to field

Figure 9-4 The setField method logical flow.

You can see an actual implementation of the setField method in the following declaration of
the parmCustAccount method on the AxSalesTable class.

public CustAccount parmCustAccount(CustAccount _custAccount = '')
{

if (!prmisdefault(_custAccount))
{

this.setField(fieldNum(SalesTable, custAccount), _custAccount);
}
return salesTable.custAccount;

}

When you must solve intra-table field relations in which a table field will default to a specific
value when the value of another table field changes, you must create an instance method
for both fields. The method name must be the same as the field name, including a set prefix,
and it must apply the following template. The bold text is subject to modification of current
table and field names.

protected void setFieldName()
{

if (this.isMethodExecuted(funcName(), fieldNum(TableName, FieldName)))

222 Part II Developing with Microsoft Dynamics AX
{
return;

}
// Additional code goes here.
}

Because the method may be executed several times, the isMethodExecuted method determines
whether the method has already been executed and whether the field has already been assigned
a value. The isMethodExecuted method uses the logic shown in Figure 9-5.

Start

End

Return true
Update list of

methods that have
been executed

Has method
already been

executed?

Has value
been assigned

to field?

Yes

Yes

No

No

Return false

Figure 9-5 The isMethodExecuted method logical flow.

Dependencies on other fields must be programmed like this.

this.setAnotherFieldName();

if (this.isFieldSet(fieldNum(TableName, AnotherFieldName)))
{

this.fieldName(newValue);
}

Chapter 9 XML Document Integration 223
First, you should execute the set method of the field for which the current field has dependencies
to get a value assigned to this field if any of its dependencies have changed. Then you should
determine whether the dependent field has been assigned a new value. If it has, assign a
new value to the current field. You can see an implementation in the following declaration
of the setPaymMode method on the AxSalesTable class.

protected void setPaymMode()
{

if (this.isMethodExecuted(funcName(), fieldNum(SalesTable, paymMode)))

{

return;

}

this.setInvoiceAccount();

if (this.isFieldSet(fieldNum(SalesTable, invoiceAccount)))

{

this.parmPaymMode(this.invoiceAccount_CustTableRecord().paymMode);

}

}

To set and get the current record, the instance of the currentRecord method in AxSalesTable
must be overridden. The override must apply the following template.

protected TableName currentRecord(TableName _tableName = tableName)
{

if (!prmisdefault(_tableName))

{

super(_tableName);
tableName = _tableName;

}

else

{

super();

}

return tableName;

}

The super call in currentRecord executes the currentRecord instance method on the AxInternal-
Base class. The currentRecord instance method uses the logic shown in Figure 9-6.

224 Part II Developing with Microsoft Dynamics AX
End

Mark that the value
of current record

has been assigned

Start

Is method
executed with a

parameter?

No

Yes

Figure 9-6 The currentRecord method logical flow.

You can see an implementation in the following declaration of the currentRecord method on
the AxSalesTable class.

protected SalesTable currentRecord(SalesTable _salesTable = salesTable)
{

if (!prmisdefault(_salesTable))
{

super(_salesTable);
salesTable = _salesTable;

}
else
{

super();
}
return salesTable;

}

To update fields on an existing record, the record must be passed to an Ax<Table> object
via a table record instance method. The method name must be the same as the table name,
and it must apply the following template.

public TableName tableName(TableName _tableName = tableName)
{

if (!prmisdefault(_tableName))
{

this.setCurrentRecordFromExternal(_tableName);

Chapter 9 XML Document Integration 225
}

return this.currentRecord();

}

The setCurrentRecordFromExternal instance method executes the currentRecord methods and
clears all internal variables to prepare the object for changes to the new record.

To ensure that all defaulting methods are called before inserting or updating a record, you
must override the setTableFields method on the AxInternalBase class. The method should
include a call to all defaulting methods. You can see part of the implementation in the following
declaration of the setTableFields method on the AxSalesTable class.

protected void setTableFields()
{

SalesTableLinks salesTableLinks;

;

super();

useMapPolicy = false;

this.setCashDisc();

this.setCommissionGroup();

this.setContactPersonId();

this.setCurrencyCode();

this.setCustAccount();

this.setCustGroup();

this.setDeliveryAddress();

this.setDeliveryCity();

// And so on…

The Query
An important feature of the Axd classes is their ability to serialize and deserialize the class
instance objects of Dynamics AX–specific XML documents. The schemas for these documents
are generated by iterating the query, defining the schemas, and using the names of the
Ax<Table> classes and their properties to name the XML elements.

A <table> element is created for each table in the query. Each of these <table> elements
contains a list of all the properties of the corresponding Ax<Table> class for which there is
a parm<Fieldname> get/set method. You must adhere to naming conventions, because you
cannot assign attributes to X++ class field names and methods to indicate whether you
should be able to serialize the field values. After the elements representing properties, still
embedded within the <table> element, is a series of <child-table> elements that represent the
children of the <table> element as defined in the query. If a <table> element in the query has
no children, it contains only elements representing the parm<Fieldname> properties of the
corresponding Ax<Table> class.

226 Part II Developing with Microsoft Dynamics AX
Note The query can hold only one root table. Having more than one root table will cause
the framework to throw an error and stop the execution.

To implement a 1:n relationship, you must set the Join mode property on the query equal to
outerJoin. You are advised to do this whenever there is no particular reason for keeping a 1:1
relationship. In most documents included with Dynamics AX, this approach is enforced; only
queries involving the InventDim table have an inner join clause.

The Axd Wizard
The purpose of the Axd Wizard is to simplify and automate the development and maintenance
of Axd and Ax<Table> classes and reduce the risk of errors caused by Ax<Table> classes
that are out of sync with the underlying Dynamics AX tables. The wizard helps you identify
manual analysis and coding tasks by removing the mechanical part of the development and
allowing you to concentrate on the business logic. The wizard interaction is illustrated in
Figure 9-7.

Axd
Wizard

Axd query
analyzer

Axd class
generator

Ax<Table>
class generator

Query

Axd project

Axd class

Call
(status)

Call
(status)

Call
(status)

Analyze

(update)

Generate

(update)

Generate

Generate

Re
ad

Ax<Table>class

Figure 9-7 The Axd Wizard.

You must provide an existing query as input, state the name and label for the Axd class, and
select the actions to be generated (read, readList, create, createList, findEntityKeys, findList). An
Axd class is generated. The wizard generates all methods from templates with to-do comments
inserted where manual action is needed. If only outbound actions (read, readList, findEntityKeys,
findList) are selected, you will have an opportunity to choose whether Ax<Table> classes
should be generated.

If the Ax<Table> class is new, the basic skeleton is generated containing parm<Fieldname>
methods with the correct parameter types and return types for every field on the underlying

Chapter 9 XML Document Integration 227
Dynamics AX tables that is marked as visible and is neither a system field nor marked for
deletion (that is, prefixed with DEL). For existing Ax<Table> classes, the Ax<Table> class
generator adds any missing parm<Field> methods, verifies the signature of existing parm<Field>
methods, and optionally fixes any discrepancies in the method signatures. The Ax<Table>
class generator will not delete any existing parm<Fieldname> methods from an existing
Ax<Table> class, even if the corresponding field has been removed from the underlying table.
It is not necessary to issue any to-do comments in the case of deleted elements; if you do so,
the Ax<Table> class will not compile and an error will automatically be issued.

The Ax<Table> class generator provides the following services:

■	 Adds to-dos to the generated Ax<Table> class skeleton, highlighting any manual analysis
or coding tasks required by you.

■	 Identifies write references for each field. This means that you must use the Dynamics AX
Cross-Reference tool to identify all places in the application source code where the field
is assigned a value or the value is updated. This information is needed to reverse-engi
neer the defaulting and validating logic for each field. The generated skeleton includes
clickable links to all the code fragments updating the field value. The Ax<Table> class
generator logs a warning if the cross-reference information is not current.

■	 Identifies value mapping for each field. It determines whether the extended data type of the
field is a specialization of one of the extended data types for which the Ax<Table> classes
must perform value mapping; if it is, it updates the signature of the parm<Field> method.

In addition to the output mentioned previously, the Axd Wizard generates a job that will
generate the XML schema for the newly generated Axd class.

Customizing an Existing XML Document
For an example of how to customize an XML document, assume that a new table containing
several illustrations per inventory item is implemented in one of your customer-specific solutions.
Now you want to include the illustrations with all purchase orders sent out as XML documents.
The custom table layout for this example appears as shown in Figure 9-8.

Figure 9-8 Custom table layout.

228 Part II Developing with Microsoft Dynamics AX
The first step is to modify the query AxdPurchaseRequisition to also include the ItemIllustration
table, the new table in the example custom solution. Figure 9-9 shows how the query looks
when the new table is added. The boxed area must be added to the query that ships with
Dynamics AX 4.0.

Figure 9-9 The query after adding the ItemIllustration table.

The second step in the process of customizing your XML document is to run the query through
the Axd Wizard. The second page of the wizard prompts you for the query name on which
you want to base your solution. In this example, the query name is AxdPurchaseRequisition.
On the next page of the wizard, shown in Figure 9-10, you state the class name, which has the
same value as the query name by default.

Figure 9-10 The wizard page on which you choose the actions that the XML document
should support.

Chapter 9 XML Document Integration 229
The remaining fields are indifferent to the processing, because no modifications will be made
to existing Axd<Document> classes. If you carefully created the relationships in the query, the
wizard can construct all required code in the prepareForSave method.

On the next page, select the first check box to generate new Ax<Table> classes. The second
check box, which is optional, updates existing Ax<Table> classes, which will probably be
current already.

After you complete the wizard, you must fix potential compilation errors and all the to-dos
that the Axd Wizard produces. First, you remove the caching if it is not needed. You do this
by removing the two methods called CacheObject and CacheRecordRecord. When removing
these classes, you must also remove the two static variables from the class declarations cache-
RecordIdx and cacheObjectIdx. Assume that InventDim is not influencing the Illustration; then
you simply remove the optional parameter so that the parmItemId method looks like this.

public str parmItemId(str _itemId = '')
{

DictField dictField;

;

if (!prmisdefault(_itemId))

{

dictField = new DictField(tablenum(ItemIllustration),fieldnum(ItemIllustration,
ItemId));

this.validateInboundItemIdString(_itemId,dictField);

if(this.valueMappingInbound())

{

item = _itemId;

}

this.setField(fieldNum(ItemIllustration, ItemId), _itemId);

}

if (this.valueMappingOutbound())

{

return conpeek(this.axSalesItemId('', itemIllustration.ItemId),1);

}

else

{

return itemIllustration.ItemId;

}

}

This concludes the implementation of the new table, and you can re-register the AxdPurchase-
Requisition query from Basic\Setup\Application Integration Framework\Action to publish
the new XML schema.

230 Part II Developing with Microsoft Dynamics AX
The Entity Key Class
The AifEntityKey class is used for all operations that require one or more specific records and
also as a return value from all create and createList operations. An AifEntityKey instance
uniquely identifies a transaction in a Dynamics AX database. It consists of a table ID, the field
IDs for a unique index of that table, and the values of the respective fields. In addition, it holds
the record ID of the retrieved records. The following code shows a partial implementation
from the AxdBaseCreate class.

protected void setEntityKey()
{

Map keyData;
;
keyData = SysDictTable::getKeyData(axBcStack.top().currentRecord());

entityKey = AifEntityKey::construct();
entityKey.parmTableId(axBcStack.top().currentRecord().TableId);
entityKey.parmRecId(axBcStack.top().currentRecord().RecId);
entityKey.parmKeyDataMap(keyData);

// More code lines go here.

}

The Send Framework
The send framework, implemented in the AxdSend API, provides the functionality to send
documents that are associated with no specific endpoint and have no unique entity key used
to scope the document. The exact range of records, such as a range of ledger accounts, is
selected by the user. Dynamics AX includes several default documents that use this feature,
such as AxdChartOfAccounts and AxdPricelist.

The send framework provides default dialog boxes for selecting endpoints and ranges for a
document and enabling generation of XML documents with multiple records. The framework
allows you to provide specific dialog boxes for documents that need more user input than
the default dialog box provides. The framework is not intended for documents that can be
identified by a publicly known unique entity key and have inherent endpoints associated with
them.

The default dialog box includes an endpoint drop-down list and, optionally, a Select button to
open the standard query form. The query is retrieved from the Axd<Document name> class
specified by the caller. Many endpoints can potentially be configured in the AIF, but only a
few are allowed to receive the current document. The lookup shows only the endpoints that
are valid for the document, honoring the constraint set up for the read and readList actions for
the current document.

Chapter 9 XML Document Integration 231
The framework requires minimal coding to support a new document. If a document requires
you to simply select an endpoint and fill out a query range, most of the functionality will come
from the framework without additional coding.

The framework implements a standard dialog box, as shown in Figure 9-11.

Figure 9-11 The Send Document Electronically dialog box for the Chart Of Accounts XML
document.

If a document requires a more specific dialog box, you simply inherit the AxdSend class and
provide the necessary user interface interaction to the dialog box method. In the following
code example, an extra field has been added to the dialog box . You simply add one line of
code (shown in bold in the following code sample from the AxdSendChartOfAccounts class) to
implement parmShowDocPurpose from the AxdSend class and to make this field appear on the
dialog box.

static public void main(Args args)
{

AxdSendChartofAccounts axdSendChartofAccounts ;
AifConstraintList aifConstraintList;
AifConstraint aifConstraint;
;
axdSendChartofAccounts = new AxdSendChartofAccounts();
aifConstraintList = new AifConstraintList();
aifConstraint = new AifConstraint();

aifConstraint.parmType(AifConstraintType::NoConstraint);
aifConstraintList.addConstraint(aifConstraint);

axdSendChartofAccounts.parmShowDocPurpose(true) ;

axdSendChartofAccounts.sendMultipleDocuments(classnum(AxdChartOfAccounts),A

ifSendMode::Async,aifConstraintList) ;

}

Sorting is not supported in the send framework, and the query structure is locked to ensure
that the resulting query will match the query defined by the XML document framework,
which is why these sorting and structure limitations are enforced by the AxdSend class. The
query dialog box shows only the fields on the top-level tables because of the mechanics of
queries with an outer join predicate. The result set will very likely be different from what
would be expected from an end-user perspective. For example, restrictions on inner data
sources will only filter these data sources, and not the data sources that contain them. The
restrictions are imposed on the user interface to match the restrictions on the query when
using the findList method on the document.

232 Part II Developing with Microsoft Dynamics AX
Security
By default, record-level and column-level security are applied to all data retrieval. However,
in some cases it is crucial that record-level and column-level security be ignored, such as
when transmitting invoices. In such a case, it is essential that the customer be presented with
the same data as actually posted, regardless of the security settings for the person invoking
the document. The following example shows how to override the default behavior.

protected void unpackPropertyBag(AifPropertyBag _aifPropertyBag)
{

AxdSendContext axdSendContext = AxdSendContext::create(_aifPropertyBag);
;
// Get send context properties.
…
this.security(axdSendContext.parmSecurity());
…

}

To prevent spoofing, you can implement the notion of constraints. Constraints essentially
filter the endpoints that are potential legal recipients of an XML document. An example of a
constraint is a customer associated with specific endpoints configured in the AIF. Immediately
before transmission, the framework verifies that all constraints in the XML to be sent are legal
for the endpoint chosen.

The getConstraintList method populates the list of AifConstraint objects present in the parameter
list with the constraint type and the constraint ID. This helps prevent spoofing. The method
is abstract in the AxdBase class and must be implemented by all derived classes. The following
is an example of an overridden getConstraintList method.

protected void getConstraintList(Common _curRec,
AifConstraintList _constraintList)

{

AifConstraint aifConstraint = new AifConstraint();

SalesTable salesTable;

;

if (_curRec.TableId != tablenum(SalesTable))

{

throw error(strfmt("@SYS23396",funcname()));

}

salesTable = _curRec;

aifConstraint.parmId(salesTable.CustAccount);

aifConstraint.parmType(AIFConstraintType::Customer);

_constraintList.addConstraint(aifConstraint);

}

Chapter 9 XML Document Integration 233
Chapter Summary

This chapter introduced the XML document framework and explained its environment, which
resides between the ordinary business logic and the actual transports in and out of Dynamics
AX. The chapter also explained that the structure of the XML mirrors the internal data structure.
When you create documents, the primary tasks are creating the relevant AOT query, running
the Axd Wizard, and then verifying the code of the generated classes and, in some cases, also
implementing business logic to address value validation, value mapping, and value defaulting.

This chapter also explained why little work is necessary to modify existing XML documents.
In many cases, you must only update the AOT query and run the Axd Wizard.

Finally, the send framework was covered. The chapter explained that not all documents have
a native recipient. Such documents must have a form in which the end user can choose the
desired endpoint at run time.

Part III

Under the Hood

In this part:

Chapter 10: The Enterprise Portal .237

Chapter 11: Configuration and Security .275

Chapter 12: The Database Layer .301

Chapter 13: Advanced MorphX Forms .361

Chapter 14: Reflection .377

Chapter 15: System Classes .393

Chapter 16: Unit Testing .415

Chapter 17: Performance. .427

Chapter 18: Upgrade and Data Migration .463

Chapter 10

The Enterprise Portal

In this chapter:

Introduction .237

Inside the Enterprise Portal .238

Page Processing .239

The Web Framework .242

Content Management. .269

Common Search. .270

Security .272

Chapter Summary .274

The objectives of this chapter are to:

■	 Introduce the Enterprise Portal.

■	 Provide insight into the Web framework design and run-time components.

■	 Illustrate Application Object Tree and Microsoft Windows SharePoint Services
integration.

■	 Describe the steps necessary to develop and customize Web applications on the
Enterprise Portal.

■	 Explain content management and search integration.

■	 Offer a detailed look at Enterprise Portal security.

Introduction
The Enterprise Portal (or EP) is the Web platform for Microsoft Dynamics AX 4.0 that is
used to Web-enable and customize existing or new applications in Dynamics AX. The Dynamics
AX EP enables customers, vendors, business partners, and employees to directly access
relevant business information and collaborate and conduct business transactions with
Dynamics AX through personalized, role-based Web portals.

Users access the EP through a Web browser remotely or from within a corporate intranet,
depending on how the EP is configured and deployed. The EP contains a set of default Web
pages and user roles that can be used as-is or modified to meet the customer’s unique
237

238 Part III Under the Hood
business needs. Roles are designed for casual users of the system, to be used in a self-service
manner to fulfill business requirements. The EP serves as the central place for users to
access any data, structured or unstructured, such as transactional data, reports, charts, key
performance indicators (KPIs), documents, and alerts, from anywhere and collaborate.
Figure 10-1 shows the home page of an example EP site.

Figure 10-1 An example of an EP home page.

Inside the Enterprise Portal
The EP is built on Windows SharePoint Services, and it combines all the rich content and
collaboration functionality in Windows SharePoint Services with structured business data in
Dynamics AX.

The EP Web pages use EP Web Parts and other Windows SharePoint Services Web Parts.
The EP Web Parts present information and expose functionality from Dynamics AX and are
implemented with Windows SharePoint Services Web Part technology. EP Web Parts
connect to Weblets in the EP Web framework through the Dynamics AX .NET Business
Connector and render the HTML generated by the EP Web framework. Windows Share-
Point Services Web Parts fulfill content and collaboration needs. Figure 10-2 shows the
high-level components of the EP.

Chapter 10 The Enterprise Portal 239
Microsoft Windows Server 2003
Internet Information Services

Enterprise Portal server

.NET Business
Connector

Enterprise
Portal Web
framework

ASP.NET

AOS

Enterprise Portal
clients and browsers

External
systems

Web services

Dynamics AX

Windows SharePoint
Services databases

Windows SharePoint Services

Windows
SharePoint Services

Web Parts

Microsoft
Dynamics AX

Web Parts

ISV Web
Parts

Database

Figure 10-2 The EP components.

Page Processing
The first step in developing or customizing an application on the EP is to understand the
interactions between the user’s browser on the client and the EP on the server when the
user accesses the EP. Figure 10-3 shows a simplified version of the page request process.

The following is the sequence of interactions that occurs when a user accesses the EP:

1.	 The user opens the browser on his or her machine and navigates to the EP URL.

2.	 The browser establishes a connection with the Internet Information Services (IIS) Web
server.

3.	 Based on the authentication mode enabled, IIS authenticates the user.

4.	 After the user is authenticated, the Windows SharePoint Services Internet Server Appli
cation Programming Interface (ISAPI) filter intercepts the page request and checks the
user’s right to access the site.

5.	 After the user is authorized by Windows SharePoint Services, the Web page routes to a
custom Microsoft ASP.NET page handler object of Windows SharePoint Services.

240 Part III Under the Hood
IIS

ISAPI filter

Retrieve page content

Web Part Page

Page processed by ASP .NET handler

Windows SharePoint Services
ISAPI filter intercepts the request

Web page request comes to IIS

Dynamics AX pages
(safe mode rendering)
sent to ASP .NET handler

Enterprise Portal Web Parts
processed by Enterprise Portal
framework through
.NET Business Connector

Non-Enterprise
Portal pages

Static pages
(direct mode rendering)
sent to ASP.NET handler

.NET Business Connector

Process Weblets referred by Enterprise
Portal Web Parts with their properties

Create or get Web session from
Enterprise Portal Web framework

Add Web Parts to page and retrieve
and set Web Part properties

Retrieve list of Web Parts for Web
Part zones

Add controls to page

Retrieve page template

Create page object

Response sent back to browser

ASP.NET handler

Windows
SharePoint

Services
database

Dynamics AX
database

Application
Object Server

File system on
Windows

SharePoint
Services server

Figure 10-3 The EP page request flow.

Chapter 10 The Enterprise Portal 241
6.	 The page handler pulls the Web Part Page data from the Windows SharePoint Services
content database. This data contains information such as the page template ID, the Web
Parts used and their properties, and the page template stored on the file system on the
Web server. Windows SharePoint Services then processes the page and creates and
initializes the Web Parts on the page with properties and personalization data, if any.

7.	 When initialing the Web Parts, the EP initializes a Web session with the EP Web frame
work through the .NET Business Connector.

8.	 The Web framework checks for Dynamics AX authorization, and then calls the appro
priate Web handlers in the Web framework to process the EP objects that the Web Part
points to.

9.	 The framework runs the business logic and returns the processed HTML to the

Web Part.

10.	 The Web page assembles all the HTML returned by all the Web Parts and renders the
page to the user’s browser.

11.	 The EP Web session ends.

As you can see in this sequence, all the business logic, data retrieval, and user interface elements
are defined in the MorphX development environment and stored in the Application Object
Tree (AOT), and Windows SharePoint Services handles the overall page layout and personaliza
tion. Figure 10-4 shows a sample EP topology.

Intranet domain

Enterprise Portal
/ Windows SharePoint
Services / IIS

AOS
Database

Internet

ISA Server 2004

Browser

Domain
controller

Client or Browser

Figure 10-4 An EP topology.

242 Part III Under the Hood
The Web Framework
The EP Web framework is the design-time and run-time Web infrastructure of MorphX.
This includes the kernel, X++ classes, designer and debugging tools, data binding, security
trimming, metadata store, and the mechanism for linking all of these components together. In
combination with the EP Web Parts and Windows SharePoint Services, they constitute the
Web user interface to Dynamics AX.

Weblets are the basic unit of the Dynamics AX Web elements that generate HTML. Web
forms, Web reports, and Web menus are some of the specialized Weblets in Dynamics AX
included for rapid Web development. Web forms allow you to quickly build a Web user
interface by using pre-built Dynamics AX Web controls; these controls are then tied to the
Dynamics AX data source and the event model to define the business logic. Reports and Web
reports have a finer-grained designer surface (with grid-snapping, pixel-positioning, and so
on) for defining the layout and binding to a data source, and they include built-in tools for
generating summary reports and graphs. Web menus allow you to build and render the
navigation hierarchy or site map. Dynamics AX comes with many other specialized, ready-to
use Weblets that can be used in the EP, such as the Category Browser Weblet, Favorite Record
Weblet, and Questionnaire Weblet.

Developers can use these pre-built Weblets or build their own by using MorphX. Data
retrieval, business logic, and presentation as defined in Web forms, reports, Web reports, or
custom-built Weblets. The navigation and menu hierarchy are defined in Web menu items
and Web menus. Web menu items are secured in the AOT by applying the security key.

Figure 10-5 shows all the Web nodes in the AOT.

Figure 10-5 The Web nodes in the AOT.

Chapter 10 The Enterprise Portal 243
Web Forms

Web forms derive from Weblets and are generally the Web elements used for creating,
editing, viewing, and listing business data from Dynamics AX in the EP. Essentially, you
can consider a Web form to be a Web element that returns a stream of HTML about
transactional data that can be rendered and displayed in a Web browser. One or more
application tables can be set as the data source for Web forms. Dynamics AX includes
several default Web form controls that can be used in Web forms. Programmed entirely in
HTML, the Web form controls are like very thin wrappers of the standard HTML controls.
Dynamics AX includes the following Web form controls: WebButton, WebCheckBox,
WebComboBox, WebDate, WebEdit, WebGrid, WebGroup, WebGuid, WebImage, WebInt64,
WebInteger, Weblet, WebRadioButton, WebReal, WebStaticText, WebTab, WebTabPage, and
WebUserDefined.

The layout for all the controls, except WebUserDefined, is pre-built. This enables developers
to perform rapid application development simply by binding the controls to the data
source. If the development requires more granular control in regard to how the layout
generates HTML, the WebUserDefined Web control can be useful, because its layout method
can be overridden.

You can place Web form controls into groups by using a WebGroups control, and you can
arrange them on the page by using standard HTML. This means that you position every
element relative to other page elements, and that you cannot define absolute positions for
the controls.

Web form controls also offer support for data lookup to provide a way for the user to
fill in fields from a pre-populated list. The Web lookup uses the relations that are
added to table fields or extended data types to list the possible values for the field. The
LookupButton property on a Web control specifies whether a Lookup button must be
displayed next to the control. The default setting is Auto, which displays the Lookup
button. The LookupMethod property specifies how the lookup should be handled for
the control. The default setting displays the lookup form or list in a separate browser
window.

Web Form Runtime

At run time, the EP Web framework instantiates an object of the WebFormHTML class.
The WebFormHTML object reads the Web form’s design and calls the appropriate
layoutControls method passing the control’s ID. This method then calls the control type–
specific methods, such as layoutText, layoutDate, or layoutButton. These methods render the
Web form controls by using the appropriate HTML controls. The controlName method on
the WebFormHTML class returns a name that uniquely identifies the control, whether it is
data-bound or not. This identifier is used by the SetControls method, which is called when
the Web form is posted. The SetControls method does the opposite of the layoutControls

244 Part III Under the Hood
method—it reads the values of the Web form controls and puts them back into the form’s
data sources by calling the getParm method on WebSession class, passing the unique control
names provided by the layout methods. Figure 10-6 shows a simplified Web form HTML
generation sequence diagram.

IIS - Web Part
rendering engine

WebF

WebPortalExecutionEngine
class

ormWeblet
class

WebFormHandler
 class

WebFormHtml
class

Global output
buffer

Run frame (2)

New (6)

Write HTML to
global output

buffer (9)

Process Web
content item (4)

Render Web
content item (7)

New (5)

Run (3)

Layout (8)

Final HTML (10)

Run Weblet item
(1)

Figure 10-6 Web form HTML generation (simplified).

Web Form Events

The EP is stateless. On every round trip to the server, pages are instantiated, processed,
rendered, and disposed of. If a page needs to keep its state between server round trips,
when a server-side event is processed, the ASP.NET page framework uses a hidden
input control, referred to as ViewState, to store the state of the page and all the
controls in that page in encoded format to persist between Web requests. A server round

Chapter 10 The Enterprise Portal 245
trip to the same page for processing a server-side event is commonly referred to as
a postback. A postback occurs when a page is submitted in the browser or when the Web
control on the page raises a server-side event that necessitates a postback. The EP Web
framework persists the value of the Web controls in the ASP.NET ViewState during
page postback. No custom coding is required to persist the Web control values between
postbacks. However, information other than the values stored in ViewState must be
handled separately.

The EP Web framework provides several events that allow you use X++ code to persist
the values of variables and temporary tables into ViewState during postbacks in Web
forms. The first such event is called the loadViewState event. You can use this event
to load the in-memory variables from ViewState. The loadViewState event occurs
before the init and run events are executed. After the run event lays out the controls
and updates them with postback data, the framework updates the ViewState with post-
back data.

The second event to occur that is related to ViewState is the loaded event. By this time, the
changes to the data source and Web controls have been applied, the controls on the Web page
have been updated with postback data, and the ViewState of the page has been updated with
postback data. This is the right place to use the in-memory variables retrieved from ViewState
and subsequently update the Web controls, if necessary.

The third event related to ViewState is called saveViewState. This event can be used to
save the in-memory variable into ViewState. The SaveViewState event occurs after the
layout event.

Figure 10-7 shows the sequence of Web form events.

Web Form Example

Imagine that you have been asked to create a Web page in your company’s EP so that
salespeople can create a sales order from anywhere on the Web. To accomplish this task,
you create a Web form called EPSalesTableCreateTunnel and add data sources and Web
controls. Because this Web form is designed like a wizard to make creation of sales orders
more intuitive, the sales basket ID must be preserved between the pages of the wizard.
To do this, a salesBasketId variable is declared in the class declaration. The value of sales-
BasketId is persisted into ViewState in the saveViewState event. Between page posts, the
variable is loaded from ViewState in the loadViewState event. The following code illustrates
this task.

246 Part III Under the Hood
loadViewState

Load your in-memory variables from the view state.

Init

Layout

Render all the controls.

saveViewState

Save your in-memory variables into ViewState.

Run

Framework events

Controls and data source are updated from the view state.
Controls and data source are updated from the postback data.

View state is updated with postback data.

Loaded

Controls and data source now reflect {query results +
view state + postback data}. Prepare to handle your event.

Control events

Events such as tabchanged and buttonclick.

callWebMenuFunction

This method is called only when the Web Menu Web Part is
connected to a Web Form Web Part and Action type

Web menu item is clicked.

If the form is connected to a menu, for each item in the menu,
setMenuFunctionRecord is fired if layoutMenuFunction
returns true.

If the form is connected to a menu, for each item in the menu,
showMenuFunction is fired.

Figure 10-7 The sequence of Web form events.

Chapter 10 The Enterprise Portal 247
public class FormWebRun extends ObjectRun

{

SalesBasketId salesBasketId;

#define.SalesBasketId('EPSalesTableCreateTunnel_SalesBasketId')

}

private void loadViewState()

{

super();

if (this.viewStateContains(#SalesBasketId))

salesBasketId = this.viewStateItem(#SalesBasketId);

}

private void init()

{

if (element.args().dataset() == tablenum(SalesBasket))

salesBasket = element.args().record();

salesBasketId = salesBasket.SalesBasketId;

}

private void loaded()

{

super();

if (!salesBasketId)

{

salesBasket_da.create();

salesBasketId = salesBasket.SalesBasketId;

}

}

private void saveViewState()

{

super();

if (salesBasketId)

this.viewStateItem(#SalesBasketId,salesBasketId);

}

Figure 10-8 shows the EPSalesTableCreateTunnel Web form in the AOT, the property pane of
the Web Form Web Part pointing to this Web content, and the run-time view.

Reports and Web Reports

Reports and Web reports present and summarize business data in a ready-to-use format that
helps the user analyze the business and make decisions. Reports are generally static and
read-only, but advanced reports can be delivered as interactive Web pages with drilldown
capabilities. Reports can also be presented as graphs with rich visualizations.

Web Report Runtime

At run time, the Run method on the Web report Weblet instantiates and executes the Web
report. It creates an instance of the WebReportRunEx class. This class extends the system class
ReportRun, which generates a report with multiple output options, such as printing to a
printer, previewing on screen, or sending to your own custom-built output device.

248 Part III Under the Hood
Figure 10-8 The Web form in the AOT, the Web Part property, and the run-time rendering.

To render the report on the EP, the kernel uses the WebReportHTML class to handle
the run-time execution. WebReportHTML extends the WebReportBase class, which
extends the system class ReportOutputUser. Generation of the HTML for the Web
report takes place in the WebReportHTML class. Like Web forms, the WebReportHTML
class uses HTML tables to arrange the sections and controls, thereby taking advantage of
the browser’s rendering engine. Although the kernel processes the report, it delegates the
processing of the report to the WebReportHTML class, rather than printing or previewing it,
thereby providing full control of the format and display of the report to the developer.
When the Web report runs, the kernel calls the proper methods on the WebReportHTML
object in exactly the same order as when the report is processed in the kernel and
sent to the screen or the printer. For this purpose, the ReportOutputUser system class
has several layout methods that can be overridden, thus giving the X++ class that extends
it total display control of the report.

Chapter 10 The Enterprise Portal 249
The first method called when a Web report is executed is the startReport method. The kernel
passes the PrintJobSettings class for the report to the method, allowing you to specify any
default settings for the Web report based on the information found in PrintJobSettings. After
the kernel is finished processing the Web report, it calls the endReport method on the
WebReportHTML object. The actual processing of the Web report takes place between these
two calls. Based on the Web report design, all the other methods on the object will be called
when the control flow from the kernel is passed on.

The methods in WebReportHTML are divided into two groups: methods that handle report
sections and methods that handle formatting of the report control types (or fields). Typically,
each section in the report has two methods (or events): a start method and an end method.
Examples include startPageHeaderSection, endPageHeaderSection, startBodySection, endBodySection,
startProgrammableSection, and endProgrammableSection.

Both start and end methods receive a parameter: an object of the system class for the particular
section. The kernel, for example, passes an object of type OutputBodySection to the startBody-
Section method, which allows you to read body properties such as ArrangeMethod and NoOf-
Columns for the section and format the output of the method accordingly.

As a general rule, sections are arranged by using HTML tables, such as <TABLE> in the start
method and </TABLE> in the end method, because they act as containers for report fields
(as they do in standard reports). The organization of Web report content into HTML tables,
rows, and cells gives Web reports several advantages over the strategy used when formatting
standard reports. However, because the controls do not have absolute coordinates and sizes,
this approach also has some limitations. The most obvious limitation is that you cannot
control exactly where the controls are positioned on the Web page.

Figure 10-9 shows a simplified Web report HTML generation sequence diagram.

In reports, the WebMenuItemType and WebMenuItemName properties of the control assign a
Web menu item to a control so that, when activated, the control calls the Web menu item to
provide drillthrough capabilities. The CSSClass and LabelCSSClass properties let you assign a
cascading style sheet class to the control and its label, respectively.

Web Report Example

For example, consider a scenario in which you need to create a report in table format and set
the style of the table rendered based on the properties set on the report. In such a case, you
could use the startPageHeaderSection and endPageHeaderSection methods of the WebReport-
HTML class to insert the beginning and ending HTML table tags, along with the correct style
elements. Later, the body section will be processed based on the report design.

250 Part III Under the Hood
WebPortalExecutionEngine WebReportRun
class class

IIS - Web Part WebReportWeblet WebReportRunEx Global output
rendering engine class class buffer

Figure 10-9 Web report HTML generation (simplified).

public void startPageHeaderSection(OutputPageHeaderSection section)
{

this.beginContainer();

this.write('<table class="' + _cssClassReportHeader + '" border="0"
cellspacing="0" cellpadding="0">\n');

if (!_isReportTemplate)
this.beginRow();

}
public void endPageHeaderSection(OutputPageHeaderSection section)
{

if (!_isReportTemplate)
this.endRow();

Run frame (2)

New (6)

Run (7)

Write HTML to
global output

buffer (8)

Process Web
content item (4)

Publish (5)

Run (3)

Final HTML (9)

Run Weblet item
(1)

Chapter 10 The Enterprise Portal 251
this.write('</Table>\n');
this.endContainer();

_isReportTemplate = false;

}

Figure 10-10 shows the EPSalesByRegion report in the AOT, the property pane of the Web
Report Web Part pointing to this Web content, and the run-time view.

Figure 10-10 The report in the AOT, the Web Part property, and the run-time rendering.

Weblets

Weblets are the basic unit of the Dynamics AX Web elements that generate HTML. If the
needs of the Web page cannot be met by the standard design templates for Web forms and
reports, Weblets can give you complete programmatic control of the presentation.

Weblet Runtime

For the Weblet to be instantiated and called from the Web framework, it must have a certain
set of properties and methods that control its behavior at design time and run time.

Properties control the layout and behavior of Weblets. The WebLet class offers an interface to
manage the properties. The addProp method adds a property to the Weblet. The addProp
method takes the name of the property and the default value for the property. The Name

252 Part III Under the Hood
parameter must be the name of an extended data type. The getProp method retrieves the value
of a property and takes the name of the property as a parameter and returns its value.

The following are two important methods of Weblets:

■	 createProperties Creates the properties for the Weblet.

■	 run Produces the HTML code for the Weblet and sends it to the browser. This
method is called by the framework at run time, which is when the Web Part containing
the Weblet is processed and sent to the browser.

Weblet Example

The following is a code sample for a very simple example of the WebDateTimeWebLet class. The
Weblet has two properties: one to show or hide the time, and one to show or hide the date.

class WebDateTimeWebLet extends WebLet

{

}

void createProperties()

{

super();

this.addProp(extendedTypeStr(ShowTime),TRUE);

this.addProp(extendedTypeStr(ShowDate),TRUE);

}

str designView()

{

str ret;

ret += '<A>';

if (this.getProp(extendedTypeStr(ShowDate)))

ret += date2StrUsr(today());

if (this.getProp(extendedTypeStr(ShowTime)))

{

if (ret)

ret += ' ';

ret += time2str(timeNow(),0,0);

}

ret += '';

return ret;

}

void run()

{

webSession().writeTxt(this.designView());

}

Figure 10-11 shows the WebDateTimeWebLet class in the AOT, the property pane of the
Generic Web Part pointing to this Weblet, and the run-time view.

Chapter 10 The Enterprise Portal 253
Figure 10-11 The Weblet in the AOT, the Web Part property, and the run-time rendering.

Securing Web Elements

To securely expose Web forms and reports through Web Parts in Windows SharePoint
Services, you must create a Web content node pointing to the Web form or report in
the AOT. You can assign security keys, along with other configuration keys, to the Web
content node. You can assign parameters if the Web forms or reports make use of parameters
to exhibit different behavior on different pages. In custom-built Weblets, you can assign a
security key at the Weblet level in the AOT. Figure 10-12 shows the SecurityKey property of
a Web content node.

254 Part III Under the Hood
Figure 10-12 Assigning a security key to Web content.

The primary level of security is at the Weblet level. For Web forms and reports, a second
level of security is at the Web content level. These two levels of security are specific to
Web elements. In addition, both Web and non-Web applications in Dynamics AX can be
secured at the data access level by table, field, or record-level security settings. Figure 10-13
shows the security applied in EP Web Parts.

Using security keys is the primary way to set permission levels for groups in Dynamics AX.
After you configure security keys to define the features that the application should include,
the keys are used to grant permissions to the individual groups. Permissions are granted
to groups to regulate how they are allowed to work with each object in a database. You
can apply more granular control by creating your own groups, assigning appropriate
permissions to those groups, and then adding users to those groups.

At logon, the security keys determine user access. Access depends on the user groups
that the user belongs to and the company or domain of which the user is a member.
Access to the individual security key can depend on its parent, so the calculation must be
done hierarchically. Access to Web menu items, Web content, and Weblets can be set
up in the User Group Permissions dialog box (accessible from Administration\Setup\
Security\User Group Permissions). You can use the Viewing list to apply a different view to
the tree structure. Figure 10-14 shows the User Group Permissions dialog box.

Chapter 10 The Enterprise Portal 255

Web Form
Web Part

Web Report
Web Part

Web Menu
Web Part

Web Box
Menu Web

Part

Page Title
Web Part

Generic
Web Part

Instantiate
WebForm

WebLet and
create
and set

properties

Instantiate
WebReport

WebLet
and create

and set
properties

Instantiate
WebMenu

WebLet
and create

and set
properties

Instantiate
WebBox

Menu
WebLet and
create and

set properties

Instantiate
WebPage

Title WebLet
and create

and set
properties

Instantiate
the Weblet
specified

and create
and set

properties

WebReport
WebLet

WebForm
WebLet

Yes

Yes

No

No

WebMenu
WebLet

WebMenuBox
WebLet

WebPageTitle
WebLet

Weblet
specified in

the property

WebPortalExecutionEngine runWebLet

Has access
to execute the

Weblet?

Has access
to the content

item?

WebPortalExecutionEngine
processContentltem

WebMenuBase

WebForm
Handler

WebReport
Handler

WebForm
HTML

WebPortalExecutionEngine
renderContentItem

WebReport
HTML

Render HTML Access denied

User level
Table level

Record level
Security trimmed

WebDisply
ContentItem

WebOutput
ContentItem

Figure 10-13 EP security.

256 Part III Under the Hood
Figure 10-14 The User Group Permissions dialog box.

If a user does not have access to a Web menu item, that item will not appear on the Web
menu. If the Web menu item is linked from other Web forms or reports for which the user has
access, the item linked with the Web menu item appears as text, rather than as a link.

If the user does not have access to Web content or a Weblet on a Web page, the content or Weblet
will not be rendered on the page. The Web Part properties also limit the items displayed in the
drop-down list based on the user permissions for the underlying objects. Moreover, the types
of operations that are allowed on these objects depend on the access level set for the objects on
the groups to which the user belongs.

Web Menu Items and Web Menus

Web menu items are the basic navigational tool in the Web framework. They can point to
either a URL or a class. Web menu items can be secured by security keys. You can use menu
items in Web menus as navigational elements on a Web page or in controls such as buttons on
Web forms to provide links. You can hide or show the links based on user permissions. You
can use Web menu items as the glue and navigation mechanism throughout the Web site to
help you create sites that are dynamic and versatile.

The Web framework uses the WebLink class to generate hyperlinks. This class has all the
properties and methods needed by the framework to pass information back and forth between
the browser and the server. More importantly, it has a method that returns the URL for the
link. WebLink also has several methods for passing record information.

A Web menu defines the hierarchical navigational scheme and comprises Web menu items,
submenu headings, and references to other Web menus. Web menus can be included on the
Web page through the Web Menu Web Part. Different orientation and layout options exist to
allow flexible use of Web menus on Web pages. Figure 10-15 shows the AOT nodes for Web
menus and Web menu items.

Chapter 10 The Enterprise Portal 257
Figure 10-15 A Web menu and a Web menu item.

Web Parts and Web Part Pages

Web Parts are pluggable and reusable Windows SharePoint Services components that
generate HTML and provide the foundation for modular presentation of data. This
data is easily integrated to assemble a Web page and support customization and personaliza
tion. The EP comes with a standard set of Web Parts that expose the business data from
Dynamics AX. The Web Parts map to the Web elements in the Web framework. They
include the following:

■	 Web Form Web Part For rendering Web content of type display (Web forms)

■	 Web Report Web Part For rendering Web content of type output (reports and Web
reports)

■	 Web Menu Web Part For rendering Web menus

■	 Box Menu Web Part For rendering a Web menu as a list of tasks, mainly on the con
tent portion of Web pages

■	 Page Title Web Part For displaying the title of a Web page with the Dynamics AX label
system

■	 Generic Web Part For rendering any Weblet

Figure 10-16 shows the design surface of the EP Web Part Page with all of the EP Web Parts.

258 Part III Under the Hood
Figure 10-16 The EP Web Parts list on a Web Part Page.

In design mode, when the property pane is invoked for these Web Parts, the EP Web frame
work creates a Dynamics Web Property Manager (DWPM) object to get the property sheet
information from Dynamics AX. The editProperties method of the corresponding Weblet class
is called to get the properties and related items. The DWPM uses these properties, their types,
and the values and dynamically adds server-side HTML controls to the property sheet. The
user sees seamlessly defined properties for the Weblet through the Web Part in Windows
SharePoint Services.

DWPM subscribes to the server-side control events for the controls it adds and receives
notification through postback events about property value changes. DWPM then notifies the
Weblet of the property change through the propChanged callback. After the properties are set
on the Web Part, the DWPM calls the createTextFromWeblet method on the WebLet class to get
the configuration string and persist it as a property of the Web Part. At run time, the Web
framework gets the configuration string and instantiates the appropriate Weblets, generates
HTML, and renders the assembled page.

When the Web Part Page is processed, Web Parts might need to exchange information
and alter their content or functionality. Web Parts accomplish this by using standard
connectable interfaces. A connectable interface is a set of methods used by the Web Part
infrastructure to enable the transfer of information between Web Parts that do not have
prior knowledge of each other.

Chapter 10 The Enterprise Portal 259
Web Menu and Web Form Web Parts use this Web Part connection mechanism to pass
the information required to identify a record in a Dynamics AX database, known as record
context, to the pages invoked by menu items. The Web Form Web Part implements the
ICellProvider interface, and the Web Menu Web Part implements the ICellConsumer interface.
In the EP, the Web Part connection is an optional technique that is used when the menu
needs to get the context from the Web form to pass to the invoked menu item, or when the
Web form needs to control the elements displayed on the Web menu. Web Part connections
are based on the notion of providers and consumers. The Web Form Web Part is the
provider of record context, and the Web Menu Web Part is the consumer of this information
when the Web Part connection is enabled. The Web Part connection can be enabled or
displayed in Windows SharePoint Services design mode when the page contains one or more
Web Menu Web Parts or Web Form Web Parts. Figure 10-17 shows the design view of a Web
Part Page with connected Web Parts.

At run time, if the Web form is connected to the Web menu, the showMenuFunction
method on the Web form is called for every Web menu item in the Web menu before
rendering the menu link. The Web form controls whether the Web menu item is displayed
for the given context.

For example, when the EPSalesTableList Web form is displayed, and the intention is to
hide or show the EPSalesTableCreate link on the connected Web menu based on the
SalesType listed, the showMenuFunction method on the SalesTableList Web form imple
ments the following logic.

boolean showMenuFunction(MenuFunction mf)
{

boolean ret;

switch (mf.name())
{

case weburlitemstr(EPSalesTableCreate) : ret = salesTable.SalesType == Sales
Type::Sales; break;

default : ret = true; break;

}

return ret;

}

Moreover, for every Web menu item on the Web menu, the setMenuFunctionRecord method
on the Web form is called and provides the Web form with the control to set the record
context to the Web menu item for it to use. The setMenuFunctionRecord is called only when the
layoutMenuFunction method on the Web form returns true.

260 Part III Under the Hood
Figure 10-17 A Web Part connection page.

For example, when the SalesTableList Web form is connected to a Web menu, and it
must set the record context to all the Web menu items in that Web menu except for the
one named EPCustInvoiceJournalListCSS, the setMenuFunctionRecord method on the Sales
TableList form implements the logic shown in the following sample code. This causes the
record context of all the links in the Web menu (except EPCustInvoiceJournalListCSS) to
be appended as a query string.

Public Common setMenuFunctionRecord(WebMenuFunction _menuFunction, Common _cursor)
{

Common ret;

ret = super(_menuFunction, _cursor);

if (_menuFunction.name() == weburlitemstr(EPCustInvoiceJournalListCSS))
{

ret = null;
}

Chapter 10 The Enterprise Portal 261
return ret;

}

The callWebMenuFunction method on the Web form is called once for the Web menu item
when that Web menu item link is clicked. For example, if a SalesQuotationList Web Part
page can be called from two different places, such as from a Customer page and a Business
Relation page, and the Create SalesQuotation link on the SalesQuotationList page must pass
the customer information or the business relation information, depending on where it was
called from, the Web Part connection can be useful.

In such a scenario, the sales quotation table list Web form would implement a callMenuFunction
method with logic that would only be invoked when the Web Form Web Part was connected
to the Web Menu Web Part, as shown in the following code sample.

public boolean callMenuFunction(WebMenuFunction _menuFunction, Object _webLink)
{

if (_menuFunction.name() == weburlitemstr(EPSalesQuotationTableCreate))

{

if (element.args().record())
{

switch(element.args().record().TableId)

{

case tablenum(CustTable) :
_webLink.tableid(tablenum(CustTable));
_webLink.record(element.args().record());
_webLink.menufunction(new

WebUrlMenuFunction(weburlitemstr(EPSalesQuotationTableCreate)));

break;

case tablenum(smmBusRelTable) :
_webLink.tableid(tablenum(smmBusRelTable));
_webLink.record(element.args().record());
_webLink.menufunction(new

WebUrlMenuFunction(weburlitemstr(EPSalesQuotationTableCreate)));

break;

}

}

else

{

_webLink.menufunction(new

WebUrlMenuFunction(weburlitemstr(EPSalesQuotationTableCreateTunnel)));

}

return false;

}

return true;

}

Figure 10-18 shows the Web Part life cycle in ASP.NET and the sequence of events relating to
Web Part connection.

262 Part III Under the Hood
Determine postback mode

Get the post data or query string from the HTTP request.
Also determine initial request or postback.

Do Init

OnInit is called on page child controls. The default
implementation of OnInit fires the Init event.

Load page view state (if this is postback)

Save the page view state

Render the page

Render called on page child controls. GenericWebPart.Render
WebPart puts the Weblet output in the response.

Do Unload

OnUnload called on page child controls. The default
implementation of OnUnload fires the Unload event.

Generic WebPart. OnUnload overrides OnUnload and releases the
.NET Business Connector session.

Process post data (before load)

Process IPostBackDataHandler controls.

Process IPostBackEventHandler controls.

Do Load

OnLoad is called on page child controls. The default
implementation of OnLoad fires the Load event.

GenericWebPart.OnLoad overrides OnLoad

Get a BC.Net session, log on to Dynamics AX,
and initialize the X++ Web session

(the Web session is reinitialized once per page request).

Process post data (if this is a postback)

Process post data (after load). Handle controls added during load.
Raise changed events. IPostBackDataHandler.RaisePostData

ChangedEvent is called. Raise postback event (submit).
IPostBackEventHandler.RaisePostBackEvent is called.

GenericWebPart.OnClick. This event fires for action items in
menus and box menus. Call WebPortalExecutionEngine.runClass

to execute the action item class. Web Part connection mechanism
comes in before OnPreRender. If the Web Part is a connected

Web Form, do Part 1 of the Web Form life cycle.

PreRender

EnsureChildControls and OnPreRender are called on
page child controls. The default implementation of OnPreRender

fires the PreRender event. GenericWebPart.OnPreRender overrides
OnPreRender. Run the Dynamics AX Weblet. Call WebPortal

ExecutionEngine.runWebletItem. If the Web Part is a connected
Web Form, this step will do Part 2 of the Web Form life cycle.

Init

Web Form life cycle Part 1

loadViewState

Load your in-memory variables from the view state

Run

As part of super() controls and data source reflect the database state

Framework events

Controls and data source are updated from the view state.
Controls and data source are update from the postback data.

View state is updated with postbackdata

Loaded

Controls and data source now reflect query results +
view state + postback data. Prepare to handle your event.

Control events

tabchange, buttonclick, etc.

Layout

Render all the controls.

SaveViewState

Save your in-memory variables into the view state.

callWebMenuFunction

When the user clicks an action menu item, this
method is called once on the connected Web form.

If the form is connected to a menu, then for each item in the menu
setMenuFunctionRecord is fired if layoutMenuFunction returns true.

If the form is connected to a menu, for each item in the menu
showMenuFunction is fired.

Web Form life cycle Part 2

LoadPostData is called.
Controls requiring a data change event are identified.

The control requiring a postback event (submit)
is identified.

Figure 10-18 The EP Web Part life cycle.

Chapter 10 The Enterprise Portal 263
Web Files

SharePoint sites can be customized by using site definitions or custom templates built on existing
site definitions. The site definitions encompass multiple files located on the file system on each
Web server. These files define the structure and schema for the site. You can create new site
definitions by copying the existing site definition files and modifying them to meet the needs of
the sites that are created based on these site definitions. You create custom templates by using
the user interface to customize existing sites and storing them as templates.

The EP site definition files are stored in the AOT under Web\Web Files\Site Definitions. The
custom templates are stored under Web\Web Files\Site Templates. The Enterprise Portal
Deployment Wizard, accessible from Administration\SetUp\Internet\Enterprise Portal
\Manage Deployments, deploys these files from the AOT to the Web server file system and
Windows SharePoint Services.

The EP includes one default site definition for each supported language. Each site definition has
two configurations: one for authenticated users and another for public Internet users. The EP does
not include any site templates. However, the AOT provides a mechanism for partners and custom
ers to add custom templates and let the Enterprise Portal Deployment Wizard deploy these files.

The EP site definition contains the page templates embedded with the Web Menu Web Part to
display the global menu and the Page Title Web Part to display the page title using Dynamics
AX labels. So, when a page is created in the EP, these two Web Parts are already available on
the Web page, creating consistency across all Web Part Pages in the EP and supporting rapid
application development. Figure 10-19 shows some of the key files that constitute the site
definition and their locations on the Web server.

Site Definition
XML Files

Enumeration of
Site Definitions

List Definition

Web Part Page
Templates

EP Site
Definition

Navigation Structure

Setup
steps

File Sets [Modules]

Pages Files List
instances

Templates
Page/List/Document

Base Data Types

Figure 10-19 The EP site definition on the Web server.

264 Part III Under the Hood
The EP Web Parts are packed into one Web Part package and kept in the AOT under Web\
Web Files\Web Parts. If necessary, partners and customers can add their own Web Part package
under this node, and the EP will deploy these files to the Global Assembly Cache on the Web
server and add a safe control entry in the Web.config file.

The Web Part Pages display one or more Web Parts. Web Parts provide an easy way to
build powerful Web pages that display a variety of information, ranging from a Dynamics
AX data view of a list in the current site to external data presented in custom-built
Web Parts. You create Web Part Pages in Windows SharePoint Services by using Microsoft
Internet Explorer. You simply drag Web Parts onto Web Part Pages and set their properties
by using pre-populated lists. You can edit Web Part Pages by using either Microsoft Office
FrontPage or Internet Explorer. You can use Internet Explorer to edit a page and change
its Web Parts, the order of the Web Parts, and Web Part properties. You can use Office
FrontPage for logo or graphic insertion, document library or list customization, theme and
style application, and so on. Pages edited with FrontPage, however, cannot be imported
into the AOT.

All the Web Parts on a Web page share the same Dynamics AX Web session. You can import
Web Part Pages created in the EP site in Windows SharePoint Services into the AOT as page
definitions by using the Import Page tool from the Web menu items of type URL. The page
definitions are stored in the AOT under Web\Web Files\Page Definitions.

The page definitions imported into the AOT automatically create pages when a site is
created with the EP site definition. The PublicPage property of the page definition node
determines whether the page should be created on the public site. All the pages are created
for the authenticated site. The page definition Title property, if used, must be set to a label so
that the page displays the localized title when used with different language settings.

Style sheets and other necessary files, such as lookup files and images for the EP, are
kept under Web\Web Files\Static Files. The style sheets are referred to by the Web Parts.
Each Web Part applies the current theme and uses it to refer to the corresponding EP
style sheets.

For example, if the folder name of the currently applied theme in the EP site is called After
noon, the Web Part refers to the EPAfternoon.css file from the Enterprise Portal folder. This
folder is found on the Web server under <drive>:\Program Files\Common Files\Microsoft
Shared\web server extensions\60\TEMPLATE\LAYOUTS.

If the Web Part does not find a corresponding file, the default EP style sheet is applied.
Dynamics AX includes a few default style sheets for EP mapping to some of the most
commonly used Windows SharePoint Services themes. However, partners and customers
can extend these and create style sheets that map to any Windows SharePoint Services
theme. Windows SharePoint Services also allows you to create new themes.

Chapter 10 The Enterprise Portal 265
The Import Page and Deploy Page Tools

The Import Page tool and the Deploy Page tool provide a seamless integration between the
AOT and the Windows SharePoint Services Enterprise Portal site. The Import Page tool allows
pages created in Windows SharePoint Services to be pulled into the AOT from the Web menu
items of type URL. The new page definitions are in XML format and stored under Web\Web
Files\Page Definitions.

Importing pages into the AOT as page definitions allows the pages to be automatically created
when a Windows SharePoint Services site is created with the EP site definition. This allows
the pages to use the Dynamics AX labels for the page titles so that the same page definitions
can be used for sites in different languages.

You can also deploy the page definitions at the individual page level. This allows you to
import pages created in Windows SharePoint Services (set as the AOT site in Administration
\Setup\Internet\Enterprise Portal\Web Sites in the Dynamics AX client) into the AOT as
page definitions by using the standard Dynamics AX Import and Export utilities (accessible
under Administration\Periodic\Data Export/Import). Then you can deploy the newly created
or updated page definitions to the current SharePoint site as Web Part Pages without having
to delete and re-create the site, thereby avoiding problems with data migration from the old
site to the new site.

The Import Page and Deploy Page tools use the AOT site setting specified in the Web Sites
dialog box as the source or target SharePoint site. Figure 10-20 shows the AOT with the Import
Page and Deploy Page menus.

Figure 10-20 The Import Page and Deploy Page tools.

266 Part III Under the Hood
Record Context and Encryption

Record context is the interface for passing information through the query string to a Web Part
Page to retrieve a record from Dynamics AX. The EP uses record context to locate a record
in the Dynamic AX database and display it in a Web form for viewing and editing.

Some of the parameters of the query string to the EP Web Part Page as record context are as
follows:

■	 WTID = Table ID

■	 WREC = Rec ID

■	 WFID = Field ID

■	 WKEY= Unique Record KEY (the field identifier and the value of the field for the record
to be retrieved)

These parameters are passed either in a query string or in post data on Web pages. If they were
passed in clear text, an unauthorized user could view data or perform actions by guessing and
manipulating their values. To help secure the EP, Dynamics AX encrypts these parameters by
default on the front-end Web server itself. This makes it impossible to guess or manipulate the
parameters. For debugging and Web development purposes, the administrator may turn the
encryption off in the Enterprise Portal Parameters dialog box, which is located in Administration
\Setup\Internet\Enterprise Portal\Parameters. If the record-level security and other data-level
security are already active and no security threat exists, turning off the encryption could result in
better performance. However, keeping encryption turned on is highly recommended.

Whether encryption is on or off, the functionality of the Web elements in the EP must remain
the same. A URL generated for one user cannot be used by any other user. And, if the encryption
expiration interval is set, a user cannot use the URL generated for him or her after the specified
number of days has elapsed. The encryption key is stored in the database and protected by
the Application Object Server (AOS) and Business Connector Proxy accounts.

Web Page Development Flow

To put the information in this section into practice, consider the following steps of a developer
whose task is to create a Web page that displays data from a table in Dynamics AX.

Step Details

Step 1: Create a Web form in the AOT under Create a Web form in MorphX, set the data
Web\Web Forms. source, business logic, and user interface

controls, and store the Web form in the AOT.

Step 2: Create Web content under Web\Web Create Web content in the AOT, point it to the
Content. Web form created, and set the security and

configuration keys and parameters. Store the
Web content in the AOT.

Chapter 10 The Enterprise Portal 267
Step Details

Step 3: Create a Web page in Windows Share- Create a Web page in Windows SharePoint
Point Services. Services, using the Web Form Web Part and

other Web Parts, such as Web Menu Web Part,
as needed. Point the Web Part properties to the
respective items in the AOT, and store the Web
page in the SharePoint site.

Step 4: Create a Web menu item in the AOT Create a Web menu item in the AOT, set the
under Web\Web Menu Items. URL property to the page created in the SharePoint

site, and store the Web menu item in the AOT.

Step 5: Import the page definition from
Web\Web Menu Items, and set the
page title in Web\Web Files\Page
Definitions.

Step 6: Add the Web menu item to the Web
menu under Web\Web Menus.

Import the page definition on the Web menu
item saved in the AOT. This creates a node under
Page Definitions in Web\Web Files in the AOT.
Set the PageTitle and ImageResource properties
of the newly created page definition node, and
store it in the AOT.

Add the Web menu item to the Web menu in the
AOT so that it appears on Web pages that have the
Web Menu Web Part and points to the Web menu.

The following steps describe how to display data from the CustTable table in the EP.

Task Steps

Task 1: Create a Web
form.

1.	 Start the Dynamics AX client.

2.	 Press CTRL+D to open the AOT, or click the AOT button on the
toolbar. Open a second instance of the AOT and position it next to
the first.

3.	 In the left AOT window, expand the Data Dictionary node.

4.	 Expand the Tables node.

5.	 Locate the CustTable table. This is the main table that stores cus
tomer master file information.

6.	 In the right AOT window, expand the Web node.

7.	 Right-click the Web Forms node, and then click New Web Form.

8.	 Expand the new Web form. Then drag the CustTable table

identified in Step 5 from the left AOT window onto the data

sources of the new Web form in the right AOT window.

9.	 Expand the Designs node of the new Web form.

10.	 Right-click Design, point to New Control, and then click WebGrid.

11.	 Right-click the new WebGrid control, and then click
Properties.

12.	 Set the DataSource to CustTable.

13.	 Right-click WebGrid, point to Add New Control, and then click
WebEdit.

14.	 Right-click the new WebEdit control, and then click Properties.

15.	 Set the DataSource to CustTable and the DataField to Name.

16.	 Click Save All on the AOT toolbar of the right AOT window.

268 Part III Under the Hood
Task Steps

Task 2: Create Web 1. In the left AOT window, expand Web, expand Web Content, and
content. locate Display.

2.	 In the right AOT window, expand Web, expand Web Forms, and
locate the new Web form created in Task 1.

3.	 Drag the Web form from the right AOT window to the Web Con
tent\Display node in the left AOT window.

4.	 Click Save All on the AOT toolbar of the left AOT window.

Task 3: Create a Web
page.

1. In Internet Explorer, navigate to the home page of the EP by
entering the URL.

2. Click Create on the global menu.

3. Scroll to the bottom of the page and click Web Part Page.

4. Type a name for the page, select the Header, Left Column, and
Body layout templates, and then select the Document Library as
the Enterprise Portal.

5. Click Create.

6. Drag WebFormWebPart from Web Part List on the right side to
the Body section.

7. Click the down arrow on the WebFormWebPart, and then click
Modify Shared Web Part.

8. For WebDisplayContentItemName, select the Web content cre
ated in Task 2.

9. Click OK.

Task 4: Create a Web
menu item.

1.

2.

Start the Dynamics AX client.

Press CTRL+D to open the AOT, or click the AOT button on the
toolbar.

3. In the AOT, expand the Web node, expand Web Menu Items,
and locate URLs.

4. Right-click URLs, and then click Create New URL.

5. Right-click the new URL item, and then click Properties.

6. Click the URL property, and then click Lookup to open the
Browse for Folder dialog box.

7. Navigate to the Enterprise Portal folder and expand it.

8. Select the Web page created in Task 3, and then click OK.

9. Click Save All on the AOT toolbar of the right AOT window.

Task 5: Import the page 1. Right-click the new URL item and then click Import Page.
definition and set the 2. In the AOT, expand the Web node, expand Web Files, expand
page title. Page Definitions, and locate the new node created as a result of

importing the page in the preceding step.

3.	 If the page needs a title, right-click the Page Definition node and
set the PageTitle property to a label. If no title is needed, clear the
PageTitle and ImageResource properties of the Page Definition
node.

Chapter 10 The Enterprise Portal 269
Task Steps

Task 6: Add the Web 1. Start the Dynamics AX client.

menu item to the Web 2. Press CTRL+D to open the AOT, or click the AOT button on the

menu. toolbar.

3.	 In the AOT, expand the Web node, and then expand Web Menus.

4.	 Locate the Web menu to which the new Web menu item will be
added. For example, locate the EPHomeForEmployee Web
menu, and then expand the Browse node.

5.	 Right-click the Browse node, point to New, and then click Menu
item. A new menu item is created in this node.

6.	 Right-click and set the MenuItemType property to Url, and
then set the MenuItemName property to the Web menu item cre
ated in Task 4.

7.	 Click Save All on the AOT toolbar of the right AOT window.

The newly created page will be available from the EP site, including a new link to the page on
the EP home page.

Content Management
Organizations today generate abundant information that is stored in various locations and in
many different formats. However, if this information is largely inaccessible to people working
for the organization, they cannot leverage the value of the information in their daily tasks. A
great deal of knowledge and insight is often contained in overlooked or inaccessible content.

Web portals can be viewed as a mechanism by which disparate information can be aggregated
and to which access can be systematically provided to anyone who needs the information.
The EP combines the rich content management and collaboration functionality of Windows
SharePoint Services with the ability to access business data in one location. In addition to a
central document store, Windows SharePoint Services provides a completely customizable
and extendable rich metadata store and a list infrastructure to support any ad hoc semi-
structured data needs, such as announcements, links, discussion boards, issue tracking,
surveys, calendaring (including presence information), and personalization.

The EP also exposes the document handling functionality of Dynamics AX. You can attach
notes and files to records by using the Dynamics AX document handling functionality. When
you create notes, you flag them as internal or external, which allows you to control which
documents the notes will appear on. For example, you could set internal notes on a sales
order to print on a packing list but not on an invoice. Any file that can be launched from the
user environment can be attached to a record within Dynamics AX from the client, as well as
from the EP.

270 Part III Under the Hood
Common Search
Search is an intrinsic and essential feature of any Web portal, providing quick and easy access
to the information that people need. Business information exists in many forms. Along with
structured data stored in databases of business systems, volumes of unstructured information
are stored in documents and collaboration content. When too much information is stored in
many places and in many forms, users often spend enormous amounts of time using tradi
tional methods to look for the right information and lose focus on their primary task.

The EP provides users with the ability to search both business data and SharePoint site content
to locate data quickly. The Dynamics AX Data Crawler indexes business data stored in
the Dynamics AX database, and Windows SharePoint Services indexes SharePoint lists and
documents. Common search in the EP combines both of these result sets as one search result.
The search results from all sources are presented in a combined and consistent way and
display the details of items when opened. A seamless user experience ensures that the search
behavior is integrated into the EP in the way that users interact with the portal.

Windows SharePoint Services uses Microsoft SQL Server full-text search for documents and
lists. The search capability is not available with installations of the Desktop Engine version of
SQL Server (WMSDE/MSDE); it is available only with SQL Server databases. After SQL Server
is configured to support full-text indexing, you can enable or disable Windows SharePoint
Services search by using the SharePoint Central Administration page.

Dynamics AX uses the Data Crawler to index business data. The Data Crawler is configured
and executed from the Dynamics AX client by clicking Basic\Setup\Data Crawler. The tables
and fields that are indexed by the Data Crawler are configurable. If either the Data Crawler
or the Windows SharePoint Services search engine is not enabled and configured, Dynamics
AX data cannot be searched in the EP.

Common search uses the SearchLinkRefType and SearchLinkRefName properties of the
underlying table to generate the link on the search results page for Data Crawler search
queries. For example, the CustTable table has the SearchLinkRefType property set to URL and
the SearchLinkRefName property set to EPCustTableList. When the Data Crawler indexes the
CustTable table and a search query matches the record stored in the table, the search results
page displays the matching customer records with links to the EPCustTableList Web page.

By enforcing table-level security, record-level security, access type (internal or external), and
menu-level security, Dynamics AX displays only the search results for records to which the
user has access. If the user is not a valid Dynamics AX user, the Dynamics AX section of
the search results page is not displayed.

Figure 10-21 shows the components of common search.

Chapter 10 The Enterprise Portal 271
Search control
POSTing page

(CoSearchResults
.aspx)

 <User control
responsible

for rendering
Dynamics AX

search results >

Windows
SharePoint
Services search
results

Dynamics AX
search

results control
code

behind page

Check for
group

security

Check
for a

valid URL

Business
Connector

Weblet

Dynamics AX
search results

Search
term

Result
HTML

Results page

IIS server process

Search
term
/user

details

Results

set in

TmpSearch

Result

object

AOS server
process

Search
database

Search API

Figure 10-21 The EP common search components.

If a user conducts a search from within a SharePoint list or document library, the results are
restricted to that list or document library, and the search experience is the same as for any
Windows SharePoint Services site. If a user conducts a search from a Web Part Page, the
common search combines the search results from both Windows SharePoint Services
and the Dynamics AX Data Crawler. The diagram in Figure 10-22 illustrates the common
search flow.

272 Part III Under the Hood
Security
In the EP, Dynamics AX security is layered on top of, and depends on, the security of underlying
products and technologies, such as Windows SharePoint Services and IIS. For externally facing
sites, communication security and firewall configurations are also important for helping to
secure the EP.

The EP has two configurations in its site definition. The first configuration in the site definition,
referred to as Microsoft Dynamics Public, allows Internet customers or prospective customers
to view product catalogs, request customer accounts, and so on. The second configuration,
referred to as the Microsoft Dynamics Enterprise Portal, is the complete portal for self-service
scenarios involving intranet or extranet users for authenticated employees, vendors, and
customers.

Figure 10-22 The common search flow.

Hide Windows
SharePoint

Services
search results

panel

Hide Dynamics AX
search results

panel

Render
Dynamics AX
search results

Hide
Dynamics AX
results panel

1. Show Dynamics AX
 results panel
 . Hide Windows
 SharePoint
 Services results
 panel

Start

Stop

Render Windows
SharePoint

Services
search results

Windows
SharePoint

Services search
enabled?

Postback?
Postback for

Windows SharePoint
Services Doc

list?

Dynamics A
search enabled

and valid
user?

No

Yes

No

No

Yes

Yes

NoYes

Stop

2

Chapter 10 The Enterprise Portal 273
The Microsoft Dynamics Public configuration has anonymous authentication enabled in both
IIS and Windows SharePoint Services so that anyone on the Web can access it. To connect to
Dynamics AX, it uses a built-in Dynamics AX user account called Guest. The Guest account
is part of the EP Guest user group, which has limited access to Dynamics AX components
necessary for the public site to function. The Microsoft Dynamics Enterprise Portal configuration
has Integrated Windows authentication or basic authentication over Secure Sockets Layer
(SSL) enabled in IIS and Windows SharePoint Services.

This secured site restricts access to users with Active Directory directory accounts who are
configured as Dynamics AX users with Web site access enabled for that particular site by the
Dynamics AX administrator. You use the User Relations dialog box (accessed from Administra
tion\Setup) to configure users with an employee, vendor, or business relation, or a customer
account and contact. Then you can grant them access to the EP sites through Site groups for that
Windows SharePoint Services EP site.

Both types of EP site use the Business Connector proxy account to establish connections
to the AOS. The Windows SharePoint Services application pool must be configured with a
Microsoft Windows domain user account, and this account must be specified as the Dynamics
AX Business Connector proxy account for both sites to function. After the connection is
established, the EP uses either LogonAsGuest or LogonAs, depending on the type of EP
site for the current user, to activate the Dynamics AX security mechanism. Dynamics AX
provides various means and methods to limit user access, such as placing restrictions on
individual tables and fields, limiting the availability of application features through config
uration keys, and controlling user-level security with security keys.

EP security is role based. This means that you can easily group tasks associated with a business
function into a role, such as Sales or Consultant, and assign users to this role to give them
the necessary permissions on the Dynamics AX objects to perform those tasks in the EP. To
give users access to more functionality, you can assign them to more than one role.

The Enterprise Portal Configuration Wizard imports the predefined user group rights from
the Resources node in the AOT. This set of roles can easily be extended by importing the user
group permissions into the AOT under the Resources node. You assign a user to a role by
simply adding the user to the corresponding user groups.

In addition to the Dynamics AX elements, the EP includes SharePoint lists and document
libraries, which are secured with SharePoint site groups. The Dynamics AX user groups play
no role in controlling access to the SharePoint lists and documents. However, for consistency
and simplicity of the EP roles concept, a standard set of SharePoint site groups provides access
to a specific set of document libraries and lists when the site is created. You can add new roles
by modifying the XML file in the AOT under the Web Files node. Based on their SharePoint
site group membership, Dynamics AX users are granted various levels of permission on these
Windows SharePoint Services objects.

274 Part III Under the Hood
Figure 10-23 shows the sequence of interactions between the EP components.

User
Enterprise
Portal/IIS

Web server

Windows
SharePoint

Services

Windows
SharePoint

Services
database

.NET Business
Connector

(BC)
AOS

Web
framework

Database

Start

Enterprise

Portal

GetSecurity
Context
(Arnie)

LogOn GetShare
Point Return

ObjectsLogonOKSecurity

Return objects

Return
Web objects

Return
Web objects

Get data

Return data

Open
socket

IsWeb
Enabled

(Arnie, EPSite)

Get Web
objects

Get Web
Objects

Logon

Socket
Handle

Enabled
(Arnie)LogonOK

Load BC

BC handle returned

Open socket/logon()

Return
SharePoint

objects

Context
(Arnie)

Display

Enterprise

Portal

Figure 10-23 The EP sequence.

Chapter Summary
This chapter introduced Web development in the Enterprise Portal and provided a detailed
look into design and run-time aspects of the Web framework. Through examples, it also
demonstrated how to customize and extend the EP to meet your business needs. This chapter
covered content management and search functionality in the EP, and it also described how
Windows SharePoint Services is used as the Web platform for the Dynamics AX EP. This
chapter also covered the security aspects of the EP in detail.

Chapter 11

Configuration and Security

In this chapter:

Introduction .275

IntelliMorph .276

Licensing and Configuration .281

The Security Framework .287

Chapter Summary .299

The objectives of this chapter are to:

■	 Introduce the IntelliMorph layout technology.

■	 Explain how the license and configuration systems affect application functionality
throughout the system.

■	 Describe the security framework and discuss data access security.

Introduction
Microsoft Dynamics AX 4.0 is targeted toward businesses whose size, location, language, and
line of business vary widely. Security system configuration, personalization, and presentation
layout become significant features when you are implementing and using the system.

This chapter describes how the Dynamics AX 4.0 application runtime implements configuration
and security and how these concepts determine the interface that the user sees. IntelliMorph
is the unique technology for designing and developing the application forms, reports, menus,
and menu items. The IntelliMorph technology encompasses essential framework elements
that influence the final output within licensing, configuration, and security. The licensing and
configuration frameworks give you the option to license application modules, thus providing
access to various application areas. You may also enable and disable functionality independently
of the licensing.

This chapter discusses security in the context of the application runtime, and it also offers
details about important security aspects to consider when developing the application. The last
section in this chapter covers the concept of data access security, which makes it possible to
differentiate business data access across user profiles. This feature enables query construction
to extend the table permission options available in Microsoft SQL Server. The feature that
differentiates business data access is called the record level security framework.
275

276 Part III Under the Hood
IntelliMorph
Although Dynamics AX is an international product with support for multiple countries,
languages, company sizes, and industries within the same deployment, it is also an
extremely productive development platform that ensures a uniform yet very configurable
and automatically arranged layout of application functionality. The unique presentation
technology is based on model element properties, configuration and security settings,
and personalization, which together lay out the presentation controls on forms, reports,
menus, menu items, and corresponding Web elements for each individual user. The
technology is called IntelliMorph, and it works with both the rich client and the Web
client types in Dynamics AX.

A primary requirement of the IntelliMorph technology design was preparation for international
distribution, but with a different approach than other enterprise resource planning (ERP) pro
ducts; IntelliMorph had to be ready for multiple countries in multiple languages within the
same deployment, and it had to offer the same user experience, regardless of the user interface
language. This necessitated the design of a metadata-driven and property-driven user interface
in which forms, reports, menus, and menu items would react to both global and local configu
ration and security settings. A positive side-effect of this design is that users can personalize
the interface in multiple ways. The personalization has been extended even further in Dynamics
AX 4.0, in which an individual user can reference all rich client forms as individual favorites to
which they can attach any query.

IntelliMorph automatically arranges functionality based on license codes, configuration and
security keys, and personalization—without programmable changes. Figure 11-1 illustrates the
filtering structure for the layout of elements such as form, report, menu, and Web.

License codes

Configuration keys

Security keys

Personalization

Final interface experience

Figure 11-1 IntelliMorph presentation structure.

The layout includes the license code that opens the parent configuration key, which holds
either the security key references or the configuration key children to the security keys.

Chapter 11 Configuration and Security 277
Security keys determine access to the menu items that reference available functionality for
user groups and individual users. An individual user profile can be connected to multiple user
groups, and the complete collection of permissions comprises the maximum security level.
The final factor in the interface experience is personalization, which allows the user to modify
the user interface by hiding, showing, and configuring the presentation controls.

The elements and their interactions and dependencies are described in greater detail in the
following sections, which include a discussion on personalization.

Note Presentation of the user interface is not limited to support for the IntelliMorph
technology; it also provides a rich set of design options for developing Microsoft Windows
forms with many different control types, such as ActiveX or ListView controls. Dynamics AX
reports also come with their own designer that allows you to visually design a report while
using both the X++ syntax and the properties window for arranging and formatting.

Best Practices

Having an understanding of how the IntelliMorph technology works can help you develop
the run-time presentation for application extensions. If you follow the best practice design
rules and patterns, you can optimize your use of the IntelliMorph technology and ensure a
uniform application run-time interface. The best practice principles focus on using the default
property settings for the presentation controls that determine how to present elements and
functionality. They also cover the general use of labels, field groups, extended data types,
auto groups, security and configuration keys, and menu items. The standard Dynamics AX
application is developed using all the best practice rules and patterns, which provide a
uniform way of interacting with the application and the underlying business logic. Chapter 4,
“The MorphX Development Tools,” provides a description of the Best Practices tool. You can
find details on the rules and patterns in the Microsoft Dynamics AX SDK.

Principles for Forms

Designing application forms can be a very time-consuming task if you always design from
scratch, especially if your application must run in a multiple-language deployment. This is
why the best practice is to create forms and reports by dragging and dropping as often as
possible and setting very few properties manually. Occasionally, the system’s default property
values might not suit the current situation, which is why almost any property can be customized.

When you design the layout of a form for which a table or view is used as the underlying data
source, the same field groups and field structures in the original Tables and Views nodes in
the Application Object Tree (AOT) will be available in the form node, providing that you
moved the table or view by dragging it from one of these nodes to the form’s Data Sources
node. This gives you the flexibility to move field groups or individual fields from the pool of
field groups and fields in the form’s Data Sources node to the form’s Design node. The data

278 Part III Under the Hood
sources should be configured to use the Dynamics AX AutoJoin system that ensures that data
is synchronized when two forms are linked. When you work with the layout and property
settings, you must keep the Auto or Default settings. This optimizes the use of the auto-arrange
technology and limits the need to move pixels to unify and align the form presentation with
the rest of the application.

When designing forms, follow the recommendations in the following list where possible to
optimize use of the auto-arrange technology. Most patterns are property settings on the form
design.

■	 Use default settings where possible, especially for the attributes Left, Top, Width, Height,
Frame, WindowResize, WindowType, and HideToolbar.

■	 Use the DataGroup attribute when using tables or views as data sources.

■	 When using the DataGroup attribute, change the AutoDataGroup property to Yes. This
adjusts the overall behavior based on the data source behavior.

■	 Use labels instead of hard-coded strings.

■	 Add Help text (status bar Help) as labels instead of hard-coded strings.

■	 Use the TitleDatasource property to provide a better and more visible data experience for
the user.

■	 Set the AutoDeclaration property to Yes if the control features must be accessible from
X++ code.

■	 Use the AutoJoin system where possible.

If your customers require a very unique user experience, there are no design restrictions that
prevent you from completely remodeling the user interface. The only disadvantage is that
training, flexibility, and upgrade become somewhat more complex.

Principles for Reports

IntelliMorph is even more important for reports than it is for forms. The best practices for
reports primarily involve retaining the default settings for properties. When you design a
report, knowledge about the environment in which the report will execute is often unavailable.
This type of information includes the following:

■	 The size of the paper in the user’s printer

■	 The length or content of the labels according to the user’s installation profile and

language

■	 Which fields are disabled by security and configuration key settings

■	 The length of the fields (extended data types) in the user’s installation

■	 The sort order of the data sent to the report

Chapter 11 Configuration and Security 279
■	 Whether the user wants to print using the subtotals setting or just the totals setting

■	 The default settings for font and font size

■	 The number of records in the tables from which the report gets its data

You can create two kinds of report designs: Auto (AutodesignSpecs) or Generated (design).
You can use Auto for all normal reports and Generated for reports with special functional
requirements that cannot be implemented with Auto designs. You can also use the Generated
design for reports for which the design is determined externally, such as:

■	 Reports that are forms with externally determined layouts and where the information is
expected to display in very specific positions.

■	 Reports that are forms for which the design is likely to be adjusted to the customer needs
at deployment time. Invoices are one example. Most controls should have their positions
fixed (not set to Auto) to simplify moving them by using the Report Designer.

You should follow these design patterns when possible:

■	 Use default property settings where possible, especially for Orientation, Width, Label,
Width of label, and formatting information because fixed settings cause the report
controls to disregard the IntelliMorph auto-arrange technology available from the
property window.

■	 Use the Auto design report type when possible.

Working with IntelliMorph

IntelliMorph provides numerous options for personalizing Dynamics AX forms. These
options allow you to move controls, set properties on controls, and add extra fields to forms.
Forms are customized at application run time, and settings are saved on a per-user basis.
The personalization options can be invoked from multiple places, depending on the type of
personalization. The personalization options use the same framework whether a column is
hidden via the Command entry on the menu bar, moved within the form runtime by using the
mouse, or renamed by using the advanced personalization form.

The advanced personalization form, shown in Figure 11-2, provides the user with customization
options.

By using this tool, the user can change the tab page order, move elements around, remove
fields, add additional fields from existing form data sources, rename the field, prevent the
field content from being edited, change the default field length, and even choose among mul
tiple versions of the form presentation. The personalizations can be shared if, for example, a
department wants a common presentation that is different from the standard company pre
sentation and does not want to modify the global form layout.

280 Part III Under the Hood
Figure 11-2 The advanced personalization form.

To make user personalization work, you must define different levels of personalization
by using the form design properties AllowUserSetup and AllowAdd. There are four levels of
personalization as presented in Table 11-1.

Table 11-1 Personalization Levels

Personalization Level Description AllowUserSetup AllowAdd

1. Limit user
personalization of
forms

Only the size and position of the form can be
changed. You cannot change the properties
on the individual controls. Because the

No No

position and size of the form are saved
(the size is saved if the SaveSize property
is set to Yes), there will be an entry for this
form in the SysLastValue table, even
though no personalization is allowed.

2. Enable customization	 You can change the behavior of individual Restricted No
of controls	 controls, but you cannot move them or

add new controls. You can define personal
values for the following properties:
Enabled, Visible, Skip, Width, and Label
text.

3. Enable customization
of layout

You can adjust properties on controls and Yes
move controls between containers. You
can move controls from within the Setup
form by dragging or by using the navigation
buttons. You can move grid columns within
the grid by dragging them directly onto
the form. Because this feature gives the
user the option to create a tab page that
encompasses all the information normally
entered for a given record or grid, most forms
should support this level of personalization.

Restricted

Chapter 11 Configuration and Security 281
Table 11-1 Personalization Levels

Personalization Level Description AllowUserSetup AllowAdd

4. Enable customization
of layout and content

You can customize the layout and add new
fields from the Setup form. To support this
level of personalization, you must move all
code to the data source fields. The added

Yes Yes

controls do not have any code. The properties
are the default values for this type of control
and data. You can add data fields only. You
cannot add unbound controls or controls
bound to display methods.

These personalization levels also depend on how X++ code on the form is used. The kernel
can automatically restrict the user setup level if the methods that take the position of the
control into account are overridden.

Licensing and Configuration
Dynamics AX allows licensing of application modules, multiple user types, languages, server
technology, the Web framework, database logging, record-level security, development tools,
run-time execution, and integration frameworks. The system elements and application
modules are locked by license codes that must be unlocked by license keys.

Unlocking a license code is the initial step in configuration of the Dynamics AX system
because the license codes reference the configuration key that links to the physical
functionality. You unlock the license code by using the License Information form, shown in
Figure 11-3, which is accessed from Administration\Setup\System\License Information.

Figure 11-3 The License Information form.

282 Part III Under the Hood
You enter the license codes manually or import them by clicking the Load License File button.
All the license codes and license files available for import are supplied by Microsoft through
the Microsoft Partner Program.

The license codes are validated individually based on the license holder name, serial number,
expiration date, and the license key being entered or imported. The validation process either
accepts the license key and updates the status field with counts, names, or OK or returns a
negative result in the Infolog form.

Note Standard customer licenses do not contain an expiration date. Licenses for other
uses, such as evaluation, independent software vendor projects, education, and training, do
include an expiration date. When a license reaches its expiration date, the system changes
execution mode and becomes a restricted demo product for a limited amount of time.

The license code elements themselves are created in the AOT and divided into five tab pages,
as shown in Figure 11-3, based on the type of functionality that they relate to. The grouping is
determined by a license code property, and sorting inside the groups is handled by the Sys-
LicenseCodeSort table and its createSortIdx method. The Partner Modules tab allows you to
include licensed partner modules. Partners can sign an agreement with Microsoft that gives
other partners and customers the opportunity to purchase and request partner-developed
functionality. You may contact your local Microsoft subsidiary for more details about the
program.

The Configuration Hierarchy

The license codes reside at the top of the configuration hierarchy. This is the entry point
for working with the configuration system that surrounds all the application modules
and system elements available within Dynamics AX. The configuration system is based on
approximately 200 multiple configuration keys that are used to enable and disable function
ality in the application for the entire deployment. Each license key controls access to a specific
set of functions; when a key is disabled, its functionality is automatically removed from the
database and the user interface. This means that the application runtime renders presentation
controls only for menu items that are associated with the active configuration key or where no
configuration key is available.

The relationship between license codes and configuration keys is very comprehensive. An
individual license key is not only the enabler for a variety of configuration keys, but it also
removes the visibility of configuration keys and their functions throughout the entire system
if the license key is not valid. Removing configuration keys with invalid license keys reduces
the configuration complexity. For example, if a license key is not entered or not valid in the
license information form (accessed from Administration/Setup/System), the Configuration
form hides it and displays only the valid license keys and the configuration and security
keys that depend on them. This reduces the number of security keys to be configured

Chapter 11 Configuration and Security 283
when creating user groups. (User groups, which are essential to the security subsystem, are
described later in this chapter.) Figure 11-4 shows the system-wide configuration hierarchy
followed by most functionalities within an implementation, with the exception of those that
do not comply with best practices for developing Dynamics AX application modules.

Configuration key 1 Configuration key 2

Configuration key 2.1 Configuration key 1.2 Configuration key 1.1

License code

Figure 11-4 The configuration hierarchy.

The configuration hierarchy might seem complex. However, easy-to-use administrator check
lists and forms, such as the License formation, Configuration, and Permission forms, reduce
the initial complexity.

Configuration Keys

The application modules and the underlying business logic that license codes and configuration
keys enable are available when Dynamics AX is deployed. This means that everything from
forms, reports, and menus to data elements and the Data Dictionary, as well as the entire
development environment, is already present, existing in a temporary state where the
elements do not affect the enabled functionality.

Using the configuration hierarchy shown in Figure 11-4, you can enable parent configuration
keys with valid license keys to appear in the global configuration form by navigating to
Administration\Setup\System\Configuration. The parent configuration keys controlled by
the license codes appear with a red padlock overlay and cannot be disabled; any configuration
key children displayed below the parent can be changed. Parent configuration keys with no
children are not available from the configuration form.

Note Parent configuration keys can exist without an attached license key. These will be
available for the administrator to enable or disable at all times from within the Configuration
form.

The Dynamics AX configuration philosophy is to enable functionality when needed, rather
than remove superfluous functionality like other ERP systems do. The consequence of
this philosophy is that the system starts minimized by default. This means that all child

284 Part III Under the Hood
configuration keys are disabled. An example of the Configuration form and the minimized
approach is shown in Figure 11-5.

Figure 11-5 The Configuration form.

As a more detailed example, consider a company buying the Trade module license code.
The company wants most of the functionality in the module, but it does not do business
with other countries. The company therefore chooses to disable the Foreign Trade
configuration key.

By using the configuration key flow chart shown in Figure 11-6, an administrator can deter
mine whether a configuration key is enabled and what it would take to eventually enable it,
which depends on the parent of the configuration key.

Has license
code?

No

NoNo

No

No

Yes Yes Yes Yes

Has parent?

Is valid
license key
entered?

Is parent
enabled?

Is enabled?

Yes

Disabled Enabled

Figure 11-6 Configuration key flowchart.

Chapter 11 Configuration and Security 285
Using Configuration Keys

An important part of the application development process is mapping extensions to the
configuration-based and role-based security frameworks that integrate the extensions into
the complete solution. Correctly using the configuration keys throughout the system can make
enterprise-wide deployment very powerful, flexible, and economical when divisions, regions,
or sites all use the same deployment platform and customize local deployment by using
configuration keys, rather than developing specific customizations in each installation.
Individualized development, though, cannot be entirely avoided because of the nature of
businesses and their development needs.

Configuration keys affect the Data Dictionary, presentation, and navigation infrastructure
directly, meaning that a configuration key property can be referenced on all relevant elements.
Table 11-2 lists the elements that can be directly affected by configuration keys.

Table 11-2 Configuration Key References

Grouping Element types

Data Dictionary Tables including Fields and Indexes

Maps

Views

Extended data types

Base enumerations

License codes

Configuration keys

Security keys

Perspectives

Windows Presentation and Navigation Menus

Display—Menu items

Output—Menu items

Action—Menu items

Web Presentation and Navigation URL—Web menu items

Action—Web menu items

Display—Web content

Output – Web content

Web menus

Weblets

Documentation References System documentation

Application developer documentation

Application documentation

HTML Help files

286 Part III Under the Hood
Enabling the configuration keys also means invoking hierarchical structures of role-based
security options, providing system administrators with an extremely flexible and dynamic
framework for setting up user security. The role-based security hierarchy supports use
without configuration keys when it is necessary for specific kinds of implementations.
Figure 11-7 illustrates a frequently used security hierarchy in which the configuration key is
the gatekeeper for interaction with the functionality underneath.

Security key Security key Security key

Security key

Menu item Menu item Table Table

Form button Form display field Menu item Table

Configuration key

Figure 11-7 Security keys as permission gates.

The hierarchy is based on security keys that, working together with user groups, act as
permission gates that allow users to see, invoke, and work with the user interface, business
logic, and rules represented by menu items, submenu items, tables, buttons, and fields.

This introduction to the role-based security hierarchy provides a high-level overview of
the concept. The particular hierarchy shown in Figure 11-8 demonstrates how the LedgerBasic
configuration key opens for a subset of the Vendor functionality that is managed by a sub-
hierarchy of security keys. The sub-hierarchy is the link to functionality such as the Purchase
Order form and the Vendor form that are referenced via Display menu items. These Display
menu items explicitly reference specific tables to decrease the complexity of security
configuration.

This illustration does not depict all possible elements and combinations within the security
hierarchy, which would include such things as reports, classes, Web elements, or how
country-specific functionality is invoked for an individual user.

Chapter 11 Configuration and Security 287
VendTables (S) VendReports (S) VendDaily (S)

Vend (S)

LedgerBasic (C)

PurchTable (T) VendParameters
(T)

Purchase Orders
(MI)

Vendors (MI)

Figure 11-8 A security hierarchy example.

The Security Framework
The security framework within Dynamics AX uses the Microsoft Windows Integrated Security
platform and Active Directory directory service to authenticate user or system interactions
before they are authorized by the Dynamics AX role-based security. Using Windows authenti
cation allows automatic logon to the Dynamics AX application without collecting user name
and password information.

A Windows-authenticated user can be associated with only one Dynamics AX user but can be
shared between multiple Windows users. The application role for the individual Dynamics AX
user is determined by the user groups with which the role is associated, and it defines the user
interface actions that a user is authorized to perform and the data that the user is authorized to
view and modify. You can create an application role by adding all the necessary functionality to
one user group, or you can create a collection of user groups that defines the entire application
role. User groups can be shared by multiple Dynamics AX users, as shown in Figure 11-9.

Note Windows authentication is the only authentication scheme available in Dynamics AX
4.0. The option to work with the SQL Server authentication, available in earlier versions, no
longer exists.

Organizing Security

The role-based Dynamics AX security framework is comprised of users, company accounts,
domains, user groups, table and field permissions, and record-level security. Organization of
application security in Dynamics AX is associated with security keys and their relationships
with menu items, form controls, tables, and fields, which together operate as the connection
layer between the application logic and the application role configuration. The security keys

288 Part III Under the Hood
reduce the complexity of setting up the overall security of individual user groups per domain
because the references to configuration keys can remove unused functionality. Parent security
keys can enable or disable entire application modules. Subcategories of application modules
are structured by using the method that matches the main menu structure.

W
in

d
o

w
s au

th
en

ticatio
n

User
group

User
group

User
group

User
group

User
group

User
group

User
group

User
group

User
group

Dynamics AX
user

Dynamics AX
user

Dynamics AX
user

Windows user

Windows user

Windows user

Windows user

Windows user

Figure 11-9 Authentication overview.

The flow chart in Figure 11-10 illustrates how authorization is validated for the individual user
group and how configuration keys and parent security keys affect the final security access.

Has
configuration

key?

No

No

No

NoYes

Yes Yes

Has security
key-specific

rights?

Is
configuration
key enabled?

No access No access

Security
access

Use security
key-specific

rights

Use security
key parent

rights

Has parent-
specific
rights?

Yes

Figure 11-10 Validation of authorization.

Chapter 11 Configuration and Security 289
Note Configuration keys and parent security keys are element properties that are added to
the individual security key. When adding the properties, only one of the two properties can
be used at a time because a configuration key indicates that the security key is the parent
and the parent property indicates that the security key is a subcategory.

When you create security keys, the parent security keys function as the application module
keepers for the underlying child security key categories: Daily, Setup, Journals, Inquiries,
Reports, Periodic, Miscellaneous, and Tables. These categories define the user interface for the
substructure of the application module within the Dynamics AX main menu. This makes it
easy to relate the main menu items with the security elements when configuring user group
permissions.

Tip To simplify the navigation experience, all application modules use category naming.

The security keys control the initial permission levels to functionality within the application,
but they depend on the menu items and the table permissions framework for detailed security
configuration. The permissions are assigned to user groups within their corresponding
domains using the following five permission levels:

■	 No access Members of the user group cannot access the item or any sub-items that the
item controls.

■	 View access Members of the user group are allowed to view the item, but they cannot
use it.

■	 Edit access Members of the user group are allowed to view and use the item.

■	 Create access Members of the user group are allowed to view and use the item, and
they can also add new items.

■	 Full control Members of the user group have full access to the item, and no commands
are disabled. Members can also provide additional rights in special cases if full access is
given to the administration items.

Note The security framework presents only the user interface elements that the users have
access to, and it handles the appropriate access level for individual users. Security is applied
on the user interface, which is the user’s entry to the application through menus, menu
items, reports, and forms.

Permission levels are assigned and accessible from the user group permission form, which
facilitates the entire permission assignment process beyond simple node creation.

290 Part III Under the Hood
Applying Security

The process for applying the security framework to the Dynamics AX application includes the
following seven steps, which must be performed after the licensing and generic configuration
is completed:

1. Create users.

2. Create user groups.

3. Create company accounts.

4. Create domains.

5. Set permissions for user groups and domain combinations.

6. Set table and field access.

7. Set record-level security.

Domains

Configuring the security of the Dynamics AX application involves the use of domains. A
domain is a collection of one or more company accounts that allow you to define user groups
with the same permissions in a company with several subsidiary businesses, while allowing
the same user groups to have other permissions within other companies. Domains make it
easier to maintain user group security when several companies use the same security profile.

Note A single company account can belong to more than one domain.

Domains allow great flexibility in the configuration of user group permissions. They can
generate a strict security policy, in which each user group in each domain is a distinct entity
with absolutely no access between groups or domains, or one user group can have company
account access to similar group data, forms, and modules across multiple domains. The latter
option simplifies the access configuration of corporate services such as controllers, multi-site
planners, human resource functions, and other functions that centralize or share assignments
and tasks. Figure 11-11 illustrates how domains and user groups can work together in multiple
ways within the same security framework.

The domain security key SysOpenDomain controls access to information about users, user
groups, company accounts, and domains. Using the domain security key in user groups
provides access to records in all domains.

Note Dynamics AX includes only one domain by default: Admin. The Admin domain
always includes all companies. It cannot be removed, and no companies can be deleted. Use
the Admin domain for any user groups that need access to all companies. When the license
key domain is not purchased, domains are still visible and functioning, but access is limited to
the Admin domain only.

Chapter 11 Configuration and Security 291
Accounts
Payable
(Africa)

Accounts
Receivable

(Africa)

Finance
(Africa)

User groups

D
o

m
ai

n
s

A
fr

ic
a

Accounts
Payable
(Europe)

Accounts
Payable
(Asia)

Finance
(Europe/Asia)

Human
Resources

(worldwide)

Accounts
Receivable

(Asia)

Accounts
Receivable
(Europe) Eu

ro
p

e
A

si
a

Figure 11-11 An example of the relationship between domains and user groups.

User Group Permissions

Permissions and user rights are granted to groups, which allows the system administrator to
define a set of users that share common security privileges. When you add a user to a group,
you give the user all the permissions and user rights assigned to that group. By default, user
groups cannot access any menus, reports, forms, tables, or fields in Dynamics AX. User groups
can be shared between all Dynamics AX user types: Windows users, Web users, or anonymous
users, such as Business Connector users.

Note A user who is a member of more than one group inherits the highest permissions
level of the two groups. A user cannot access the application without being added to at least
one user group.

When configuring group permissions, the system administrator works with a hierarchical
security tree that represents all the available security keys and includes application module
access, individual permission levels, and Help text that explains the security element. The
User Group Permissions form allows for configuration of high-level permissions and very
detailed permission levels for individual user groups. Figure 11-12 shows the configuration
interface that system administrators work with to assign permissions.

You can use the User Group Permissions form to display the security elements by selecting
one of the following Viewing filters, which are available at the top of the form:

■	 Security Windows-relevant security elements, sorted alphabetically

■	 Security (Incl. Web) All security elements, including Web-specific elements (such as
activity centers, deployment options, and cross functions), sorted alphabetically

■	 Country/Region-Specific Legacy functions relevant for the individual countries and
regions, sorted alphabetically

292 Part III Under the Hood
■ Main Menu Functions structured according to the main menu within the Dynamics
AX application runtime

Figure 11-12 The User Group Permissions form.

These elements are the main overview elements, but additional filters will be available if the
menu node does not have a parent, such as Task Panes or Tools. This means that customized
menus can be presented automatically in the filter, if the preceding criteria are met.

If you set the permission level to Full Control on the parent node key, security key children,
menu items, and tables will inherit the same permissions. However, if you set any other
permission level, permissions will not be inherited below the parent menu item. If a permission
level is required for the entire sub-tree, the Cascade button grants the current permission level
when clicked.

Important If you change permissions for a user group, especially if you demote permissions,
you should follow the best practice of instructing all group members to restart their Dynamics
AX client, so the permission changes will take effect.

Record-Level Security

Within any enterprise, some users are restricted from working with certain sensitive data for
reasons regarding confidentiality, legal obligations, or company policy. In Dynamics AX,
authorization for access to sensitive data is managed via the table-based record level security
(RLS) framework that builds on the restrictions enforced by user group permissions. With
user group permissions, you restrict access to menus, forms, and reports for group members.
The RLS framework allows you to add additional restrictions to the information displayed
in reports and on forms. These restrictions are automatically applied by the Dynamics AX
application runtime when the application requests data from the database table included in
the RLS framework. The restrictions are included by extending the WHERE clause within the
SQL statement with the defined RLS query details.

Chapter 11 Configuration and Security 293
Common uses of record-level security include the following situations:

■	 Allowing members of a sales user group to see only the accounts they manage

■	 Prohibiting financial data from appearing on forms or reports for a specific user group

■	 Prohibiting account details or account IDs from appearing on forms or reports for a
specific user group

■	 Restricting form and report data according to location, country, or region

When you enable record-level security, you select user groups and the appropriate database
table by using the Record Level Security wizard, and then you execute a query that specifies
the fields and criteria to be applied. The query criteria are specified using the generic Query
form and are added to the individual database table that was chosen with the wizard. Note
that record-level security is configured per company, so the wizard and criteria definitions
must be executed for each company.

Important If an application role that uses multiple user groups has record-level security
applied on a certain table within a company account, maximum access is given to the role.
For example, if one user group has no record-level security for the Customer table and
another user group allows users to see only a subset of the customers, the user will have
access to all customers.

The following is the process for enabling record-level security for a user group for a particular
database table:

1.	 Start the Record Level Security wizard.

2.	 Select a user group.

3.	 Select tables.

4.	 Complete the wizard.

5.	 Mark an available table, and then click Query.

6.	 Add the query criteria.

By default, the tables in the wizard are presented based on the TableGroup property with the
value set to Main, and they are grouped according to the parent security key matching the
main menu structures. Setting the value to Main results in a subset of the tables. However, you
can expand the selection by clicking Show All Tables.

The RLS framework is automatically invoked by the kernel when criteria has been applied to
database tables, but it could require additional work in certain situations, such as the following:

■	 Using display and edit methods

■	 Using a FormListControl, FormTreeControl, or TableListControl control to show data

■	 Using a temporary table as a data source

294 Part III Under the Hood
Whenever a display or edit method is used to return a value from another row, you must
evaluate the business impact of displaying this data. If your evaluation shows signs of
unwanted information disclosure, you should perform an explicit authorization in X++
code to check permissions before calling these methods. The following code shows an
explicit authorization.

if (hasSecurityKeyAccess(securitykeyNum(mySecurityKey), AccessType::View))
{
myMethod();
}
if (hasMenuItemAccess(menuItemDisplayStr(myMenuItem), MenuItemType::Display)))
{
myMethod();
}
DictTable dictTable = new DictTable(tablenum(myTable));
if (dictTable.rights >= AccessType::Insert))
{
myMethod();
}
if (isConfigurationkeyEnabled(configurationkeyNum(myConfigurationKey))
{
myMethod();
}

Note For more security-related information on using display and edit methods, refer to
the Microsoft Dynamics AX SDK.

Populating a FormListControl, FormTreeControl, or TableListControl control with data from a
query can lead to unwanted information disclosure. In such cases, you must manually activate
the record-level security, as shown here.

public void run
{
CustTable custTable;
super();
// Ensure that record-level security is used.
custTable.recordLevelSecurity(true);
while select custTable
{
listView.add(custTable.name);
}
}

When the form cache is filled with data from a temporary table, you must ensure that the data
conforms to the record-level security. This includes tables declared as temporary in the code,
as illustrated in the following code example, and tables in the AOT whose Temporary property
is set to Yes.

Chapter 11 Configuration and Security 295
public void run

{

CustTable custTable, tmpDatasource;

;

// Ensure that record-level security is used.

custTable.recordLevelSecurity(true);

while select custTable

{

tmpDataSource.data(custTable);

tmpDataSource.insert();

}

formDataSource.setTmp();

formDataSource.checkRecord(false);

formDataSource.setTmpData(tmpDatasource);

super();

}

Record-level security is not required in the following situations:

■ When the value is calculated

■ When the value is based only on fields in the current record

Security Coding

The development of Dynamics AX 4.0 included many new Trustworthy Computing initiatives
for more secure, private, and reliable computing experiences. The following sections focus
on these security initiatives and how they affect security coding. Specifically, this section
covers table permissions, code access security, impersonation in batch execution, and the best
practice rules for ensuring deployment-wide compliance.

Table Permissions

The table permissions framework provides security for tables that reside in the database and
are available through the AOT. Annotating specific create, read, update, and delete operations
on tables, combined with assigning user group permissions on tables, enables the Application
Object Server (AOS) to authorize individual user permissions on tables.

For each table described in the AOT, a new property is introduced, called AOSAuthorization.
The property describes the operations that may be performed on a table when combined with
user permissions set on the User Group Permissions form. The illustration in Figure 11-13
shows the table property AOSAuthorization and its available values.

The AOSAuthorization property is an enumeration with the possible values described in
Table 11-3.

296 Part III Under the Hood
Figure 11-13 The table property form.

Table 11-3 AOSAuthorization Values

Value Description

None No AOS authorization validation is performed
(default value).

CreateDelete Create and delete authorization validation is
performed on the AOS.

UpdateDelete Update and delete authorization validation is
performed on the AOS.

CreateUpdateDelete Create, update, and delete authorization
validation is performed on the AOS.

CreateReadUpdateDelete All operations are validated on the AOS.

To secure the database tables even further, you must have a set of Data Manipulation
Language (DML) validation routines at the AOS server location when inserting, reading,
updating, or deleting records from the database tables. The following four system-defined
methods are included in the Override Method group to support the routine validation,
located in the AOT under Data Dictionary\Table\Methods:

■ AOSValdiateDelete

■ AOSValidateInsert

■ AOSValidateRead

■ AOSValidateUpdate

Chapter 11 Configuration and Security 297
Table 11-4 describes the behavior of the AOS when authorizing an authenticated user on a
table, including the user group permissions setting and the AOSAuthorization property value.

Table 11-4 AOSAuthorization Property Values

Property value

None Create Read Update Delete

User No Access Success Failure Failure Failure Failure

group View Success Failure Success Failure Failure

access Edit Success Failure Success Success Failure

value Create Success Success Success Success Failure

Full Success Success Success Success Success

Control

Code Access Security

The Code Access Security (CAS) framework provides methods that can make APIs more
secure against invocation attempts by non-trusted code (code that does not originate in the
AOT). If you extend the CodeAccessPermission class, a derived class can determine whether
code accessing the API is trusted by checking for the appropriate permission.

If the API executes on the server tier, the impact of malicious code that could exploit the API
is more severe in a shared environment, and the utilization should be secured. To secure a
class that executes on the server tier, follow these steps:

1.	 Derive a class that cannot be extended from the CodeAccessPermission class.

2.	 Create a method that returns the class parameters.

3.	 Create a constructor for all of the class parameters that store permission data.

4.	 Override the CodeAccessPermission::isSubsetOf method to compare the derived
permission class with CodeAccessPermission to determine the existence of the required
permissions for invoking the API that you want to secure.

5.	 Override the CodeAccessPermission::copy method to return a copy of an instance of the
class created in the first step. This helps prevent the class object from being modified
and passed to the API that is being secured.

6.	 Call the CodeAccessPermission::demand method before executing the API functionality
that you are securing. The method checks the call stack to determine whether the
permission required to invoke the API has been granted to the calling code.

Additional information about code access security and securing APIs is available in the
Microsoft Dynamics AX SDK.

298 Part III Under the Hood
Batch Jobs

Dynamics AX 4.0 introduces a new and more secure type of batch job that uses impersonation.
Rather than executing the batch job type as the user who is running the batch process, you
can now use the new runAs function to execute it as the Dynamics AX user who initially
submitted the job. When this type of batch processing is used, the user who initiates the batch
processing cannot interact with the batch job or view its output. Dynamics AX 4.0 includes
support for batch processing that does not use the runAs function. Batch-enabled classes in
Dynamics AX that do not use the runAs function can easily be changed to do so, if appropriate.

Note When you move batch jobs to use the runAs function, you must ensure that there are
no additional Dynamics AX application run-time interactions.

To identify possible run-time interactions, use any of the following methods:

■	 Perform a manual code review.

■	 Identify transition exceptions in the Infolog by converting the X++ class to a server-
bound batch job (see the following syntax example), submitting the X++ class for batch
processing, and checking the Infolog for transition exceptions.

■	 Identify client-server interactions using the client/server trace by submitting the unmod
ified X++ class for batch processing and checking the client/server trace for client/server
interactions.

If you discover any run-time interactions, you should eliminate them by refactoring the
application logic involved. When the class is ready to use the runAs function, you must
override a method shown to return true, as shown here.

public boolean runsImpersonated()
{

return true;
}

Note Classes in batch journals are executed according to whether they are legacy or use
runAs. In other words, a batch journal can contain a mixture of batch run modes.

Best Practice Rules

Applying the principles of Microsoft’s Trustworthy Computing effort involved adding about
50 new rules to the Best Practice tool to help you validate your application logic and ensure
that it complies with the new security initiatives. The new rules are grouped under General
Checks\Trustworthy Computing in the Best Practice Parameters dialog box, as shown in
Figure 11-14. The Best Practice Parameters dialog box is accessible from Tools\Options.

Chapter 11 Configuration and Security 299
Figure 11-14 The Best Practice Parameters dialog box with Trustworthy Computing rules.

Chapter Summary
This chapter described how IntelliMorph, licensing, configuration, security, and record-level
security affect the Dynamics AX application run-time experience. These features help
you implement Dynamics AX applications that must operate in multi-site, multi-user, or
multilanguage environments.

Chapter 12

The Database Layer

In this chapter:

Introduction .301

Transaction Semantics .302

Record Identifiers. .322

Company Identifiers .326

Unicode Support .331

Database Access .336

Database-Triggering Methods. .346

Temporary Tables. .351

Chapter Summary .359

The objectives of this chapter are to:

■	 Describe the transaction semantics of the X++ language and explain how database
transactions are supported by the Microsoft Dynamics AX 4.0 application runtime.

■	 Introduce record and company identification.

■	 Provide an overview of the Unicode support available in Dynamics AX 4.0.

■	 Introduce the database access layer in the application runtime.

■	 Discuss the database-triggering methods that are available on record buffer instances.

■	 Explain the concept of temporary tables and describe when and how they are used.

Introduction
The Dynamics AX 4.0 application runtime provides a set of strong features that can help you
quickly design international features. These runtime features store data in a database without
requiring you to consider user locales or the databases that Dynamics AX supports.

This chapter describes how the application runtime supports the concept of atomicity,
consistency, isolation, durability (ACID) transactions in a multiple-user environment and
explains the intricacies of the two supported concurrency models: optimistic concurrency
and pessimistic concurrency. When committing the transactions, identification is important
at both the individual record level and the company level. This chapter also describes
how identifiers work across application areas. Dynamics AX provides full support for the
301

302 Part III Under the Hood
concurrent handling of multiple languages, which is accomplished through full Unicode
support by the application runtime.

Two sections in this chapter focus on how the Dynamics AX implements a database abstraction
layer. Queries executed using specialized X++ methods provide operations support that is
independent of the supported databases. Combined with the ability to write X++ code tied to
specific database triggers, this makes it easy to write code that is reused all over the application,
whether specific data is accessed through a rich client or a Web client or through X++.

The last section of the chapter discusses the concept of temporary tables. Temporary tables
make it possible to have local database data that is isolated from other users, but that can be
accessed as if it were stored directly in the database with other shared data. The concept of
temporary tables is also important for understanding when you are designing an application
that allows the licensing of multiple modules; when designing the modules, you need not
consider whether they are enabled or disabled.

Transaction Semantics
The X++ language includes the statements ttsbegin, ttscommit, and ttsabort for marking the
beginning and ending of database transactions. It is important to understand how the execution
of X++ code outside and inside a transaction scope affects the data that is retrieved from the
database because of the difference in isolation levels, and also how the transaction scope
affects exception handling. This section describes tts-prefixed statements, isolations levels,
and exception handling, as well as the two concurrency models that Dynamics AX supports.

This section includes examples of how these X++ statements affect interaction with Microsoft
SQL Server 2000. The X++ statements executed in the application are written in lowercase
letters (select, for example), and SQL statements parsed to and executed in the database are
written in uppercase letters (SELECT, for example). This chapter also includes the use of
specific SQL hints and functions. These are not described completely, so you are advised to
consult the SQL Server Reference documentation for a detailed description.

An instance of a Dynamics AX table type is both a record object and a cursor object. The
remainder of this chapter refers to this combined object as a record buffer.

Transaction Statements

A transaction in X++ starts with ttsbegin and ends with either ttscommit or ttsabort. The use of
these statements does not necessarily result in the following equivalent statements being sent
to SQL Server 2000: BEGIN TRANSACTION, COMMIT TRANSACTION, and ROLLBACK
TRANSACTION. Instead, when a transaction is initiated with a ttsbegin statement, implicit
transactions are turned on. The transaction will not start until an SQL Data Manipulation
Language (DML) statement is executed, so it will start when SELECT, UPDATE, INSERT, or
DELETE is executed. When ttscommit or ttsabort is executed, the equivalent statements

Chapter 12 The Database Layer 303
COMMIT TRANSACTION and ROLLBACK TRANSACTION execute only if a transaction has
been initiated. This is illustrated in the following X++ code, in which the comments show the
SQL statements that will be sent and executed by the database. The remaining code samples
in this chapter contain the same notation, with the SQL statement shown as comments.

boolean b = true;
;
ttsbegin; // Transaction is not initiated here.
update_recordset custTable // First DML statement within transaction

 setting creditMax = 0; // SET IMPLICIT_TRANSACTIONS ON
if (b == true)

 ttscommit; // COMMIT TRANSACTION
else

 ttsabort; // ROLLBACK TRANSACTION

You can, however, have nested levels of transaction blocks to accommodate encapsulation
and allow for reuse of business logic. This involves the notion of transaction level, also known
as ttslevel, and nested transaction scopes involving inner and outer transaction scopes.

Note Consider a class developed to update a single customer record within a transaction.
This class would contain a ttsbegin/ttscommit block, which states the transaction scope for the
update of the single instance of the customer. This class can be consumed by another class,
which selects multiple customer records and updates them individually by calling the first
class. If the entire update of all the customers were executed as a single transaction, the
consuming class would also contain a ttsbegin/ttscommit block, stating the outer transaction
scope.

When X++ code is executed outside a transaction scope, the transaction level is 0. However,
when a ttsbegin statement is executed, the transaction level is increased by one, and when a
ttscommit statement is executed, the transaction level is decreased by one. Not until the first
DML statement is executed after the transaction level has changed from 0 to a higher level will
the SET IMPLICIT_TRANSACTIONS ON statement be sent to the database. And only when
the transaction level is decreased from 1 to 0 and a transaction has begun will the COMMIT
TRANSACTION statement be sent. Assuming that a transaction has begun, the execution of
ttsabort causes a ROLLBACK TRANSACTION statement to be sent to the database and the
transaction level to be reset to 0.

The following example illustrates the use of nested transactions and TRANSACTION
statements sent to the database, as well as the changes in the transaction level.

static void UpdateCustomers(Args _args)
{

 CustTable custTable;
 ;
 ttsbegin; // Transaction level changes from 0 to 1.

304 Part III Under the Hood
 while select forupdate custTable
where custTable.CustGroup == '40' // SET IMPLICIT_TRANSACTIONS ON

{
ttsbegin; // Transaction level changes from 1 to 2.

custTable.CreditMax = 1000;
custTable.update();

ttscommit; // Transaction level changes from 2 to 1.
}

 ttscommit;// COMMIT TRANSACTION - Transaction level changes from 1 to 0.
}

Note The current transaction level can always be queried by calling appl.ttslevel(). The
returned value is the current transaction level.

It is important that the number of ttsbegin statements balance the number of ttscommit
statements. If the Dynamics AX application runtime discovers that the ttsbegin and
ttscommit statements are not balanced, an error dialog box (shown in Figure 12-1) is
presented to the user, or an error with the following text is written to the Infolog: “Error
executing code: Call to TTSCOMMIT without first calling TTSBEGIN.”

Figure 12-1 An unbalanced transaction level error.

Note It might be necessary, in the event of an unbalanced TTS error, to log out of
the Dynamics AX client to reset the transaction level. This would also roll back the started
transaction in the database.

Isolation Levels

When Dynamics AX is installed running on a SQL Server 2000 database, two different
isolation levels are used. The first isolation level is READ UNCOMMITTED, which is used
when the Dynamics AX application runtime executes outside a transaction scope. The second
is the READ COMMITTED isolation level, which is used when a transaction scope is entered.
The default isolation level for every database process opened by the application runtime is
READ UNCOMMITTED; when the first ttsbegin statement executes, the isolation level in the
process changes to READ COMMITTED, and when a ttsabort statement or the final ttscommit
statement executes, the isolation level in the process switches back to READ UNCOMMITTED.

Chapter 12 The Database Layer 305
The change of isolation levels is accomplished by executing the following statements in SQL
Server 2000: SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED, SET
TRANSACTION ISOLATION LEVEL READ COMMITTED.

Note that changes in isolation levels always occur when the first ttsbegin statement, the first
ttsabort statement, and the final ttscommit statement execute. The following code is identical to
the previous example, except that the comments now track the changing isolation levels.

static void UpdateCustomers(Args _args)
{

 CustTable custTable;
 ;
 ttsbegin; // SET TRANSACTION ISOLATION LEVEL READ COMMITTED

 while select forupdate custTable

where custTable.CustGroup == '40'

{

ttsbegin;

custTable.CreditMax = 1000;
custTable.update();

ttscommit;

}

 ttscommit; // SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

}

The main reason for using the READ UNCOMMITTED isolation level outside a transaction
scope is to prevent readers from getting blocked behind writers. If the Dynamics AX application
runtime used only the READ COMMITTED isolation level inside and outside transactions,
any selection of records from a table that is currently being updated by another process and
not yet committed would be blocked because the other process would have an exclusive lock
on the record. Note that this is the default behavior when using SQL Server 2000. To under
stand how Dynamics AX uses other databases, refer to Appendix C, “Source Code Changes
Required for Upgrade.”

However, using the READ UNCOMMITTED isolation level implies that uncommitted changes
made by other processes are not isolated from the process that executes an uncommitted read
from the database. You should avoid manipulating the database with information that is read
uncommitted because the read information could potentially be rolled back or be in an
inconsistent state. If you want to manipulate the database, the information used should be a
committed version; it is important to re-read data inside the transaction scope or use other
means to ensure that inconsistent or rolled back data is not used. This subject is discussed in
greater detail in the section titled “Concurrency Models,” later in this chapter.

306 Part III Under the Hood
Note Transactions are generally defined as having four properties, known as ACID
(atomicity, consistency, isolation, durability) properties:

Atomicity: Every operation in the transaction is either committed or rolled back.

Consistency: When committed, the transaction should leave the database in a
consistent state.

Isolation: Uncommitted changes are not visible to other transactions.

Durability: After a transaction is committed, the changes are permanent, even in the event
of system failure.

Any scenario in Dynamics AX may use more than one database process when executing. The
Dynamics AX application runtime may use both a process with a READ UNCOMMITTED
isolation level and another process with a READ COMMITTED isolation level within the same
scenario. This generally occurs when a READ UNCOMMITTED process is used where an open
cursor still exists and the application runtime needs to start a transaction. In such a situation,
the application runtime uses an additional READ COMMITTED process for the execution of
statements within the transaction block.

This is illustrated in the following example, in which it is assumed that all records in custTable
are not fetched immediately when executing the select statement because of the number of
records in the table. This means that the cursor for selecting the custTable records is not closed
when the ttsbegin statement executes. The application runtime, therefore, uses an additional
process to update the vendTable record.

static void UpdateVendors(Args _args)
{

 CustTable custTable;
 VendTable vendTable;
 ;

 while select custTable // SELECT executed by process running
 // READ UNCOMMITTED isolation level

{
ttsbegin; // New process used running

 // READ COMMITTED isolation level
if (custTable.VendAccount)
{

vendTable = VendTable::find(custTable.vendAccount, true);

vendTable.custAccount = custTable.accountNum;
vendTable.update();

}
ttscommit;

 } // The READ UNCOMMITTED process is again used when fetching
 // additional records from the database.

}

Chapter 12 The Database Layer 307
Enforcing Uncommitted Reads in Transactions

As stated at the beginning of this section, readers can get blocked behind writers when
using the READ COMMITTED isolation level in SQL Server 2000. You can, however, select
uncommitted data within a transaction scope even though the isolation level is set to READ
COMMITTED. You accomplish this by executing selectLocked(false) on a record buffer before
selecting any rows with it. This adds the NOLOCK hint to the SELECT statement, which is
parsed to the database; consequently, uncommitted records are read, and the reader is not
blocked.

The previous code example can be changed so that all changes to the vendTable records are
committed on a set basis instead of row by row, while still reading uncommitted custTable
records, as shown here.

static void UpdateVendors(Args _args)
{

 CustTable custTable;
 VendTable vendTable;
 ;
 ttsbegin; // READ COMMITTED isolation level

 custTable.selectLocked(false); // enforcing uncommitted read
 while select custTable // SELECT … FROM CUSTTABLE WITH(NOLOCK) …
{

if (custTable.VendAccount)
{

vendTable = VendTable::find(custTable.vendAccount, true);

vendTable.custAccount = custTable.accountNum;
vendTable.update();

}
}

 ttscommit;
}

As explained earlier, enforcing uncommitted reads should be done with great care and
consideration.

Note The use of selectLocked(false) has no impact when used outside a transaction scope. It
will not enforce a committed read within a READ UNCOMMITTED isolation level.

Implicit Transactions

As explained earlier, implicit transactions are turned on when the first DML statement
executes within a transaction. Similarly, implicit transactions are turned off when the first
DML statement executes after the database process is used again outside the transaction

308 Part III Under the Hood
scope. This is done by issuing the SET IMPLICIT_TRANSACTIONS OFF statement in the
database. This causes any insert, update, or delete statement sent to the database in this mode
to be automatically committed. Although possible, it is generally not advisable or a best
practice to execute these statements outside a transaction scope because these statements are
committed instantly to the database. This prevents you from rolling back the database later in
the event of an error.

Transaction IDs

Each transaction in Dynamics AX may be given a unique transaction ID by the Application
Object Server (AOS). However, the AOS supplies such an ID only if one of the following
circumstances is true:

■ A record is inserted into a table in which the CreatedTransactionId property is set to Yes.

■ A record is updated on a table in which the ModifiedTransactionId property is set to Yes.

■ The X++ code explicitly requests a transaction by calling appl.curTransactionsId(true).

Allocation and type of the transaction ID are explained in the “Record Identifiers” section,
later in this chapter.

The AOS Process Pool

The AOS does not open a new process in the database every time a process is needed. An open
process that is no longer needed is placed in a pool of processes from which the AOS selects
when it needs an additional process. The processes in the pool use a READ UNCOMMITTED
isolation level and have implicit transactions turned off after they are used, unless they
will be used to start a transaction. If the intention is to start a transaction, the isolation level is
immediately changed and reverted before it is released to the pool.

Concurrency Models

The Dynamics AX application runtime has built-in support in metadata and in the X++
language for the two concurrency models used when updating data in the database: optimistic
concurrency and pessimistic concurrency.

The optimistic concurrency model is new with Dynamics AX 4.0. The previous version
supported only pessimistic concurrency. The optimistic model is also referred to as optimistic
concurrency control (OCC), which is the term used in properties and in the application
runtime.

The differences between the two models are the methods they use to avoid “last writer wins”
scenarios and, consequently, the timing of locks requested in the database.

Chapter 12 The Database Layer 309
Note In a “last writer wins” scenario, two or more processes select and update the same
record with different data, each believing that it is the only process updating that record. All
processes commit their data, assuming that their version has been stored in the database. In
reality, only the data from the last writing process is stored in the database. The data from
the other processes is stored only for a moment, but there is no indication that their data
was overwritten and lost.

Caution Dynamics AX allows you to develop “last writer wins” X++ code intentionally and
unintentionally. This can happen if you do not select records for update before actually
updating them, and simply skip the transaction check by calling skipTTSCheck(true) on the
record buffer.

The two models are managed very generically by the Dynamics AX runtime, and it is not
necessary for you to decide whether to use pessimistic or optimistic concurrency when
writing transactional X++ code. You can switch from using pessimistic concurrency to optimistic
concurrency by merely changing a property on a table.

The following example illustrates what happens from a locking perspective when executing
the X++ code by using pessimistic concurrency and running SQL Server 2000. The select
statement contains the forupdate keyword that instructs the application runtime to execute a
SELECT statement in the database with an UPDLOCK hint added. This instructs the database
to acquire an update lock on all the selected records, to be held until the end of the transaction,
thereby ensuring that no other process can modify the rows. But it does not prevent other
readers from reading the rows, assuming that they do not require an update lock. Later, when
the update method is called, an UPDATE statement is executed in the database, knowing that
no other process has been able to modify the record since it was selected. At the same time,
the update lock is transformed into an exclusive lock, which is held until the transaction is
committed to the database. The exclusive lock blocks readers requiring an update lock and
other writers. On SQL Server 2000, it even blocks readers merely requesting to read a committed
version of the record. The X++ code is shown here.

static void UpdateCreditRating(Args _args)
{

 CustTable custTable;
 ;
 ttsbegin;
 while select forupdate custTable // SELECT … WITH (UPDLOCK)

// Acquire an update lock.
{

if (custTable.CreditMax < custTable.balanceMST())
{

if (custTable.CreditMax < 1000)
custTable.CreditRating = 'Good customer';

else
custTable.CreditRating = 'Solid customer';

310 Part III Under the Hood
custTable.update(); // UPDATE … WHERE ACCOUNTNUM = <Id>
// Acquire an exclusive lock.

}
}

 ttscommit;
}

The following X++ code illustrates the same scenario shown in the preceding code, but it
uses optimistic concurrency and SQL Server 2000. The select statement contains the forupdate
keyword, which instructs the application runtime to execute a SELECT statement in the data
base with a NOLOCK hint added. This instructs the database to enforce an uncommitted
read—thus overriding the READ COMMITTED isolation level—and not acquire any locks.
Because no locks are held by the process, other processes can potentially modify the same
rows. When the update method is called, an UPDATE statement is executed in the database, at
which time a predicate is added to determine whether the RecVersion field still contains the
value that it contained when the record was originally selected.

Note The RecVersion field was introduced as part of the optimistic concurrency implemen
tation in Dynamics AX. The field is a 32-bit integer with a default value of 1, which is changed
to a random value when the record is updated.

If the RecVersion check fails when executing the UPDATE statement, another process has
modified the same record. If the check does not fail, an exclusive lock is acquired for the
record and the record is updated. In the event of a failure, the Dynamics AX application
runtime throws an update conflict exception. Code for optimistic concurrency is shown here.

static void UpdateCreditRating(Args _args)
{

 CustTable custTable;
 ;
 ttsbegin;
 while select forupdate custTable // SELECT … WITH (NOLOCK)

// Enforce uncommitted read.
{

if (custTable.CreditMax < custTable.balanceMST())
{

if (custTable.CreditMax < 1000)
custTable.CreditRating = 'Good customer';

else
custTable.CreditRating = 'Solid customer';

custTable.update(); // UPDATE … WHERE ACCOUNTNUM = <Id>
// AND RECVERSION = <RecVersion>
// Acquire an exclusive lock.

}
}

 ttscommit;
}

Chapter 12 The Database Layer 311
Update locks Exclusive locks

0

20

40

60

80

100

tt
sb

eg
in

fir
st

 u
p

d
at

e

se
le

ct
 f

or
up

d
at

e

la
st

 u
p

d
at

e

tt
sc

om
m

it

The two models differ in concurrency and throughput. The concurrency difference lies in the
number of locks held at the time of commit. Whether the preceding scenario is executed
using the optimistic or pessimistic model does not affect the number of exclusive locks held
by the process because the number of custTable records to update is the same. When you use
the pessimistic model, the update locks are held for the remainder of the custTable records
that were not updated. When you use the optimistic model, no locks are held on rows that
are not updated. The optimistic model allows other processes to update these rows, and the
pessimistic model prevents other processes from updating these rows, which results in lower
concurrency. However, the optimistic model involves a risk: The update could fail because
other processes can update the same rows.

Regarding throughput, the optimistic model is better than the pessimistic model. Fewer
database resources are used because fewer locks are acquired. However, in case of an update
failure, the optimistic model must retry, which leads to inferior throughput.

To illustrate the difference in the models, assume that the preceding X++ code example
selected 100 custTable rows. However, only 35 of these rows were updated, and the updated
rows were distributed evenly among the 100 selected rows. Using the pessimistic concurrency
model, a graphical representation would appear as shown in Figure 12-2.

Figure 12-2 Update and exclusive locks using the pessimistic concurrency model.

If, however, the optimistic concurrency model were used, the picture would look slightly
different, as shown in Figure 12-3. There would still be the same number of exclusive locks,
but there would be no update locks. Also notice that no locks would be held from the time of
the selection of the rows until the first record was updated.

312 Part III Under the Hood
Update locks Exclusive locks

0

20

40

60

80

100

tt
sb

eg
in

fir
st

 u
p

d
at

e

se
le

ct
 f

or
up

d
at

e

la
st

 u
p

d
at

e

tt
sc

om
m

it

Figure 12-3 Update lock and exclusive locks using the optimistic concurrency model.

When choosing between the two models, you must consider the potential risk or likelihood of
an update conflict. If the risk is minimal, the optimistic concurrency model will most likely fit
the scenario; if the risk is not minimal, the pessimistic concurrency model might be your best
choice. But the estimated cost of handling an update conflict and retrying can also influence
your decision.

Note Although all of the preceding examples mention updates only, the same RecVersion
check is made when deleting records, and it is therefore also applicable in those scenarios.

Concurrent Scenarios

When two processes attempt to update the same record at the same time, locking, blocking, or
potential failure could occur, depending on the concurrency model. The following scenario
illustrates the behavior differences when two processes using SQL Server 2000 attempt to
update two fields on the same records using pessimistic and optimistic concurrency.

Figure 12-4 illustrates pessimistic concurrency, in which Process 1 selects the CustTable record
with a forupdate keyword and holds an update lock on the records. When Process 2 attempts
to read the same record, also with a forupdate keyword, it is blocked behind the lock acquired
by Process 1. Process 1 continues to set the new customer group and updates the record, and
it converts the update lock into an exclusive lock. But Process 1 must commit before the locks
can be released and Process 2 can continue by acquiring the update lock and reading the
record. Process 2 can then set the new credit maximum, update the record, and commit the
transaction.

Chapter 12 The Database Layer 313
Process 1Process 1

ttsbegin;

select forupdate custTable

where custTable.AccountNum == '4000';

custTable.custGroup = '40';

custTable.update();

ttscommit;

Transaction
commits and all

locks are released

Record is
updated holding

exclusive lock

Record is
updated holding

exclusive lock

Transaction
commits and all

locks are released

Record is
fetched holding

update lock

Statement is
blocked

Lock has been released
and record is fetched
holding update lock

ttsbegin;

select forupdate custTable

where custTable.AccountNum == '4000';

...

...

...

Process 2Process 2

custTable.CreditMax = 50000;

custTable.update();

ttscommit;

Tim
e

Figure 12-4 Simultaneous update of the same record using pessimistic concurrency.

Figure 12-5 illustrates one possible outcome of the same two processes executing, using
optimistic concurrency. Process 1 selects the same CustTable record with the forupdate keyword,
but no locks are acquired or held for the remainder of the transaction. Process 2 can therefore
select the same record in the same way, and both processes will hold a record with a Rec-
Version value of 789. Process 1 again sets the customer group field to a new value, updates the
record, and acquires an exclusive lock. At the same time, the selected RecVersion is compared
to the value in the database to ensure that no other processes have updated the same record,
and then the RecVersion field is assigned a new value of 543. Process 2 takes over and assigns
a new credit maximum value and executes an update. As the database first attempts to acquire
an exclusive lock on the record, Process 2 gets blocked behind the lock of Process 1 on the
same record until Process 1 commits and releases its locks. Process 2 can then acquire the
lock, but because the selected RecVersion of 789 is not equal to the value of 543 in the data
base, the update fails and an update conflict is thrown.

If, however, Process 1 updates its changes before Process 2 selects the record, the two
processes would complete successfully. This is shown in Figure 12-6, in which Process 2
reads the updated version where the RecVersion value is 543. Although Process 2 is blocked
behind Process 1 when it tries to update the record, the RecVersion check does not fail
when Process 1 commits and releases its locks because Process 2 has read the uncommitted
version from Process 1.

314 Part III Under the Hood
Record is fetched
with RecVersion = 789

Process 1Process 1

ttsbegin;

select forupdate custTable

where custTable.AccountNum == '4000';

Process 2Process 2

ttsbegin;

Record is fetched
with RecVersion = 789

select forupdate custTable

where custTable.AccountNum == '4000';

Tim
e

custTable.custGroup = '40';
custTable.CreditMax = 50000;

custTable.update();
custTable.update();

...

Lock has been released and
RecVersion is not equal to 789
so an update conflict is thrown

Statement is
blocked

RecVersion still equals 789
and is updated to 543
holding exclusive lock

Transaction ends and
all locks are released

ttscommit;

Figure 12-5 Failing simultaneous update of the same record using optimistic concurrency.

Record is fetched
with RecVersion = 789

Process 1Process 1

ttsbegin;

select forupdate custTable

where custTable.AccountNum == '4000';

custTable.custGroup = '40';

Process 2Process 2

ttsbegin;

Record is fetched
with RecVersion = 543

select forupdate custTable

where custTable.AccountNum == '4000';

custTable.update();

Tim
e

custTable.CreditMax = 50000;

custTable.update();

...

...

Transaction commits and
all locks are released

Statement
is blocked

Lock has been released and
RecVersion still equals 543
and the field is updated to
879 holding exclusive lock

ttscommit; ttscommit;

RecVersion still equals 789
and is updated to 543
holding exclusive lock

...

Transaction commits and
all locks are released

Figure 12-6 Successful simultaneous update of the same record using optimistic concurrency.

Chapter 12 The Database Layer 315
The examples shown in Figures 12-5 and 12-6 illustrate how the application runtime behaves
when the same record is updated by two processes. The following section describes how the
runtime behaves when the same record is updated more than once within the same process.

Disconnected Updates of the Same Record

Consider a scenario in which two separate pieces of application logic in the same process
have copied the same record into two separate buffers, both with the intent of updating different
fields on each of the buffers. Both records would have been selected with the forupdate
keyword added to the select statement. In a pessimistic concurrency scenario, both select
statements would request an update lock, but because the select statements are both executed
with the same database process, they would not lock or block each other. In an optimistic
concurrency scenario, both select statement would retrieve the same value for the RecVersion
field but would not, of course, acquire any locks.

When the two pieces of application logic consequently changed and updated each of their
records, the Dynamics AX application runtime would not encounter a problem when using
pessimistic concurrency because each update statement would merely update its changed
fields by using the primary key to locate the record in the database. However, when the
application logic uses optimistic concurrency, the first update statement would determine
whether the selected RecVersion value was equal to the value in the database and also update
the RecVersion to a new value. But when the second update statement executed, it ought to
fail because the selected RecVersion value would no longer match the value in the database.
Fortunately, the Dynamics AX application runtime manages this situation. When the update
statement is executed, the application runtime locates all other buffers holding the same
record that have been retrieved with the forupdate keyword and changes the RecVersion value
on these buffers to the value in the database. The second update, therefore, does not fail.

The following X++ code illustrates the behavior of the Dynamics AX application runtime
when the same record is copied into three different buffers. Two of the select statements also
include the forupdate keyword and copy the record into the custTableSelectedForUpdate and
custTableUpdated buffers. When the creditMax field on the custTableUpdated buffer changes
and is later updated in the database, the RecVersion field in the custTableUpdated buffer
changes to the new value in the database—but now the RecVersion field in the custTableSelected-
ForUpdate buffer also changes to the same value. The RecVersion field in the custTableSelected
buffer does not change, however, because the record was retrieved without the forupdate
keyword. The X++ code is shown here.

static void RecVersionChange(Args _args)
{

 CustTable custTableSelected;
 CustTable custTableSelectedForUpdate;
 CustTable custTableUpdated;
;

 ttsbegin;

316 Part III Under the Hood
 select custTableSelected
where custTableSelected.AccountNum == '4000';

 select forupdate custTableSelectedForUpdate
where custTableSelectedForUpdate.AccountNum == '4000';

 select forupdate custTableUpdated
where custTableUpdated.AccountNum == '4000';

 // At this point, RecVersion in all three buffers are equal.

 custTableUpdated.CreditMax = custTableUpdated.CreditMax;
 custTableUpdated.update();

 // At this point, RecVersion is changed in the custTableUpdated
 // and custTableSelectedForUpdate buffers. CustTableSelected still
 // has its original value in RecVersion.

 ttscommit;
}

Caution When multiple processes want to simultaneously update the same record, the
application runtime prevents the “last writer wins” scenario by either acquiring update locks
when using pessimistic concurrency or performing the RecVersion check when using optimistic
concurrency. However, nothing in the database or the application runtime prevents the “last
writer wins” scenario if disconnected application logic within the same scenario and database
process changes the same field by using two different buffers.

Using Relative Updates to Prevent Update Conflicts

Dynamics AX has always included built-in support for relative updates. But it was not
until the introduction of optimistic concurrency that this support became truly useful.
Relative updates can be applied only to fields of type integer and real. You apply them by
changing the FieldUpdate property from the default value of Absolute to Relative, as
shown in Figure 12-7.

The difference between an absolute update and a relative update is that an absolute update
submits FIELD = <new value> in the UPDATE statement sent to the database, and a relative
update submits FIELD = FIELD + <delta value>. The delta value is the difference between the
originally selected value and the newly applied value. So if the SalesQty field on the SalesLine
table were changed from 2 to 5, the update statement would contain either SALESQTY = 5 or
SALESQTY = SALESQTY + 3, depending on whether the FieldUpdate property on the SalesQty
field was set to Absolute or Relative.

Chapter 12 The Database Layer 317
Figure 12-7 The FieldUpdate table field property.

When you use relative updates, it is neither what the previous value in the database was
nor what it will become that is important to the updating of the application logic. The only
important thing is that the difference is added to the value in the database. If all fields being
updated in an update statement use relative updates and the record was selected using
optimistic concurrency, the RecVersion check is not added to the update statement. This is
because the previous value is not important, and therefore it is not important whether any
other process changed the value between the select and the update.

Using relative updates on tables combined with pessimistic concurrency has no benefit
because an update lock will be acquired when the application logic selects the record, so no
other processes can update the same record between the select and the update.

Warning Relative updates should not be used for fields on which decisions are being
made by the application logic if the select is made using optimistic concurrency. You cannot
guarantee that any decision will be made based on the actual value of the field. For example,
a Boolean field should not be set to true or false based on whether a relative updated field
is equal to zero because another process could update the relative field at the same time.
The Boolean field would be set based on the value in memory, which might not be the value
that is eventually written to the database.

Choosing a Concurrency Model During Development

When developing applications in Dynamics AX, you can control the use of a concurrency model
on two levels; the first is at a table level by setting a property on the table definition in the Applica
tion Object Tree (AOT), and the second is by enforcing a specific model in X++ code.

Figure 12-8 shows the table-level setting, in which the OccEnabled property can be set to either
Yes (the default value) or No.

318 Part III Under the Hood
Figure 12-8 An optimistic concurrency control table property.

When the runtime has to execute a statement such as select forupdate custTable where
custTable.AccountNum == '4000', the application runtime consults the OccEnabled property
on the table and translates the statement into an SQL statement with either a NOLOCK
hint or an UPDLOCK hint added to the SELECT statement.

The concurrency model setting on the tables in Dynamics AX is based on an assessment of
whether the risk of update conflict is minimal for the majority of the daily business scenarios
in the application in which the specific table is updated or deleted. The scenarios can be
found by using the cross-reference system in Dynamics AX or by searching for places in the
X++ code where the table is either updated or deleted. If a table is never updated or deleted
in the X++ code, the execution of the code will not be influenced by whether the table is
OCC-enabled because the table will be manipulated only from a rich client form or a Web
client form. Because the form application runtime does not use the table-level setting when
updating records, the OccEnabled property is set to Yes by default on these tables.

Note Only about 25 tables of the approximately 2,100 tables in the SYS layer do not use
optimistic concurrency.

If a minority of the business scenarios require the use of a different concurrency model, they
should be handled individually by applying statement-level concurrency code.

Note No select statements needed to be rewritten for the development of Dynamics
AX 4.0 because of the new interpretation of the forupdate keyword. The code base for the
existing update scenarios was completely reusable. It was necessary to use the new keywords
only for the scenarios that needed a behavior different from the table setting.

The statement-level concurrency control can be applied by exchanging the forupdate keyword
with either optimisticlock or pessimisticlock. This enforces the use of either optimistic or pessi
mistic concurrency in a scenario in which the keyword is used and will overrule the table-level
setting. In case of enforced pessimistic concurrency, the select statement would be written as
follows: select pessimisticlock custTable where custTable.AccountNum == '4000'.

Chapter 12 The Database Layer 319
Note You can also control the concurrency model with the use of a variable by calling the
concurrencyModel(ConcurrencyModel concurrencyModel) method on a cursor and parsing the
concurrency model as the parameter. The ConcurrencyModel type is an enumeration type. A
similar method is available on the QueryBuildDataSource class, and you can even specify the
concurrency model in metadata when defining a query element in the AOT.

You should enforce pessimistic concurrency when serialization is necessary; serialization is
implemented by requiring an update lock on a record in the database. The lock prevents two
processes from entering the same scenario because entering requires an update lock. Only the
process holding the update lock can enter the scenario, and the other process is blocked until
the lock is released. The serializing select statement should therefore include the pessimistic-
lock keyword.

Best Practices Enforcing pessimistic concurrency by using the pessimisticlock keyword is
a best practice for developing serialization logic, although you can implement the same
pessimistic concurrency behavior by using the forupdate keyword on a table where pessimistic
concurrency is chosen at the table level. The X++ code explicitly states that an update lock is
required; more importantly, the scenario will not fail if the table property is changed. The
OccEnabled property can be changed through customization in higher layers.

You should enforce optimistic concurrency in situations in which it is apparent that the
optimistic model would improve concurrency and throughput compared to the pessimistic
model, especially when use of the pessimistic model would cause major blocking because of
update locks that are never converted into exclusive locks. For example, optimistic concurrency
is enforced in the Dynamics AX consistency check classes, where you can assume that only a
few records are in an inconsistent state and therefore need to be corrected and updated.

Best Practices You should explicitly state the use of optimistic concurrency in the X++
code if the scenario always qualifies for the use of this model.

Setting a Concurrency Model Globally

You can disable the table-level concurrency settings at run time. This has a global impact
on the business logic. You have access to a Concurrency Model Configuration form from the
Administration menu, in which you can override the table-level setting and enforce either
optimistic or pessimistic concurrency for all tables. The property on the tables will not change,
but when the Dynamics AX application runtime interprets the forupdate keyword, it uses the
global setting, rather than the table-level setting. The global setting honors the interpretation
of the optistimiclock or pessimisticlock keywords, so optimistic and pessimistic concurrency are
still enforced in scenarios in which these keywords are used.

320 Part III Under the Hood
Warning You should disable the table-level settings with great care only after considerable
testing in a non-production environment, and only if you completely understand and accept
all the consequences of the change.

Optimistic Concurrency and Exception Handling

Although exception handling is described in Chapter 5,“The X++ Programming Language,” it
deserves special attention in a discussion of optimistic concurrency because an UpdateConflict
exception is thrown when the application runtime discovers an update conflict. The Update-
Conflict exception is the only exception that can be caught both inside and outside a transac
tion scope. All other exceptions in the X++ programming language can be caught only outside
a transaction scope. When the update conflict exception is caught inside a transaction scope,
the database is not rolled back, as it is when caught outside a transaction scope.

Update conflict exceptions can be caught inside a transaction scope so that you can catch the
exception, execute compensating logic, and then retry the update. The compensating logic
must insert, update, or delete records in the database to get to a state in which you can retry
the application logic.

You might find it very difficult, however, to write compensation logic that reverts all changes
within a given scenario and makes it possible to retry the application logic from a consistent
state. This is especially true because it is possible to customize the update methods to
manipulate records in other tables. These changed records are then not compensated for by
the compensation logic, which might be located in a completely different element. Because of
these difficulties, the standard Dynamics AX application does not attempt to compensate for
changes to database records and retry within a transaction scope. The implemented X++ code to
catch the update conflict exception and retry outside transaction scopes uses the X++ code
pattern shown in the following example. The validation on the returned value from appl.ttsL
evel() determines whether the exception is caught inside or outside the transaction. If the
exception is caught inside a transaction scope, the exception is simply thrown again. If the
exception is caught outside a transaction scope, the transaction is retried unless the scenario
has already been retried a certain number of times, in which case the application logic stops
trying and throws an UpdateConflictNotRecovered exception. In Dynamics AX, the maximum
number, which is set in the OCCRetryCount macro element in the AOT, is 5.

 #OCCRetryCount
 catch (Exception::UpdateConflict)
{

if (appl.ttsLevel() == 0)
{

if (xSession::currentRetryCount() >= #RetryNum)
{

// Don’t retry anymore.
throw Exception::UpdateConflictNotRecovered;

Chapter 12 The Database Layer 321
}

else

{

// Transaction is rolled back, so retry.
// Possible additional code here
retry;

}

}

else

{

// Rethrow exception because execution is within transaction.

throw Exception::UpdateConflict;

}

}

Concurrency Models in Forms

The execution of the rich client and Web client form application runtime always uses optimistic
concurrency when updating and deleting records in forms. This means that the form application
runtime does not use the OccEnabled property on the tables.

In a Dynamics AX installation that uses SQL Server 2000, records are always read into the
form by using an uncommitted isolation level, and when records are updated or deleted, the
RecVersion check is performed. This prevents an extra round trip to the database to reselect
the record and requires an update lock. This was not the case in earlier versions of Dynamics
AX, in which optimistic concurrency was not implemented.

Repeatable Read

If a scenario does not need to modify any data and merely needs to be assured that the same
data can be read numerous times within a transaction scope without changes to data, the
scenario can use the new repeatable read option supported in Dynamics AX. You ensure
repeatable read by issuing the following select statement, which includes the repeatableread
keyword:

select repeatableread custTable where custTable.CustGroup == '40';

When Dynamics AX running with SQL Server 2000 executes the preceding statement,
it adds a REPEATABLEREAD hint to the SQL SELECT statement, which is parsed to the
database. This ensures that a shared lock is held until the end of the transaction on all
records selected by the statement. Because this prevents any other process from modifying
the same records, it guarantees that the same record can be reselected and that the field
values will remain the same.

322 Part III Under the Hood
Note The repeatableread option only prevents the records from being updated or deleted.
It does not prevent insertion of new records that match the criteria applied when the shared
locks were acquired. The same SELECT statement may therefore return more rows the second
time it is executed.

Record Identifiers
When a transaction scope is committed and a record set is inserted in the database table,
the inserted record gets a unique record identifier assigned by the Dynamics AX application
runtime. The record identifiers are also referred to as record IDs, and RecID is the column
name. The record IDs are 64-bit integers that are used throughout the application to ensure
data integrity. MorphX automatically creates RecID fields in all Dynamics AX application
tables and system tables. They cannot be removed from the tables like normal fields because
they are defined by the MorphX environment.

Note The Transaction ID framework uses the same numbering scheme for unique identification
transactions across the application and within the company accounts. It is also modified to use a
64-bit integer as the transaction identifier. This is the same approach used in earlier versions of
the application.

The record ID allocation method uses a sequential numbering scheme to allocate record
identifiers to all rows inserted in the Dynamics AX database. Sequential numbering is not
strictly required (numbers can be used out of sequence, manually modified, or skipped), but
duplicates are not allowed.

Allocation

Record identifiers are allocated by the AOS as needed when a record is about to be inserted in
the database. Each AOS allocates blocks of 250 record identifiers, which are allocated per
table. So each AOS holds an in-memory pool of up to 249 record identifiers per table. When
the entire pool for a table is used, the AOS allocates 250 new record identifiers for that table.

There is no guarantee that records inserted in the same table will have sequential record
identifiers if they are inserted by different instances of the AOS. There is also no guarantee that
the sequence of record identifiers will not be fragmented. Used record identifiers are not
reclaimed when transactions are aborted. Unused record identifiers are lost when an AOS is
stopped. Because of the 64-bit integer scheme, the available number of record identifiers is
inexhaustible, and the fragmentation has no practical impact.

The SystemSequences database table holds the next available record identifier block for each
table. Note that the allocation of record identifiers is not per company (as it was in earlier
versions of Dynamics AX), but per table.

Chapter 12 The Database Layer 323
Inserted records always have a record identifier, but they can also have a company account
identifier (DataAreaID) for grouping all data that belongs to a legal business entity. If data in
a table must be saved per company (meaning that the developer has set the SaveDataPer-
Company table property to Yes), the Dynamics AX application runtime will always apply the
DataAreaID column as part of every index and every database access command.

In Dynamics AX 4.0, you may have multiple instances of a record ID within the same
company, as long as they do not occur within the same table. The co-existence of identical
record IDs is possible because the generator that creates the individual identifier exists on a
per-table basis, and the uniqueness of the record includes the table ID in the reference. All
companies share the same record ID allocator per table, which ensures that there is only one
instance of each record identifier across all companies within a particular table.

Figure 12-9 shows the differences in generation and allocation between Dynamics AX 4.0 and
its predecessors.

Company ID
(DataAreaID)

System sequences
(RecID allocator)

Table1

Table2

Earlier versions

Table3

Table1
System sequences
(RecID allocator)

Dynamics AX 4.0

Company ID 1
(DataAreaID)

Table2
System sequences
(RecID allocator)

Company ID 2
(DataAreaID)

Figure 12-9 Record identifier allocation comparison.

In Dynamics AX 4.0, the record ID type changed from 32-bit to 64-bit integer to prevent
particularly high-volume customers from running out of available record IDs. Another reason
for the change was to balance the requirements for maximum performance, minimum impact
on customer and partner extensions, database upgrade time, and code upgrade time. The
64-bit integer enhancement allows for a total of 18,446,744,073,709,551,615 (0xFFFF FFFF
FFFF FFFF) record identifiers and provides more flexibility in allocating certain ranges for
specific purposes.

In Dynamics AX 4.0, the record ID range, equivalent to the entire 32-bit range used in earlier
versions, is reserved to support existing customers when they upgrade. This approach is the

324 Part III Under the Hood
safest and most efficient model and can be implemented without modifying any record identifiers,
including foreign key references to record identifiers. Only the content of the sequence
number allocation table is modified during upgrade. The range from 0x0000 0001 0000 0000
through 0x7FFF FFFF FFFF FFFF is used for new records in Dynamics 4.0 to prevent
possible conflict with data from previous versions.

Figure 12-10 illustrates the new allocation range for record IDs using the 64-bit integer,
and it also shows where the SystemSequences database table operates. The complete identifier
range is essentially divided into three groups (upgrade, new, and future), thus extending the
existing record ID range of use from 232 to 263-1 numbers.

0xFFFF FFFF FFFF FFFF

0xFFFF FFFF 8000 0000
0xFFFF FFFF 7FFF FFFF

0x8000 0000 0000 0000
0x7FFF FFFF FFFF FFFF

0x0000 0001 0000 0000
0x0000 0000 FFFF FFFF

0x0000 0000 8000 0000
0x0000 0000 7FFF FFFF

Upgrade range only

Reserved – do not use

All new record IDs

Figure 12-10 Record identifier allocation ranges.

Administration

The numbering scheme is administrated automatically by the Dynamics AX application
runtime and can be divided into administration of the individual record ID and the record ID
block. The record IDs are managed in memory at the AOS cache level, whereas the block
allocation uses the SystemSequences database to get information about the next record ID
block value (NextVAL), native Dynamics AX table IDs (TabID), and the corresponding Data-
AreaID. By default, the administration tool set provides very limited manipulation possibilities
for the database administrator, who can set the next block value but cannot manipulate

Chapter 12 The Database Layer 325
the next individually assigned record ID. However, the SystemSequence system class can be
used to manually alter the automatic record ID assignment behavior, but only for local block
assignment.

Caution To avoid destruction of data integrity and to maintain the inter-table referencing,
use the SystemSequence class with the utmost caution.

The entities in the SystemSequences table are not created when synchronizing the table
definition from the MorphX Data Dictionary, nor does the record ID block of 250 numbers
get allocated when starting the AOS. The entity is created the first time that a record is
inserted into the table.

Upgrade

The enhanced record identification is based on a 64-bit integer and requires existing 3.0
installations to upgrade. The upgrade process for the record ID requires changes to the 3.0
application that must be made before starting the application and data upgrade. The
record ID data pre-upgrade is handled by the Dynamics AX DB Upgrade Preparation tool.
However, some prerequisites must be met before you can use the tool. Additionally, the
existing application logic must be upgraded to support the 64-bit integer.

With the Dynamics AX DB Upgrade Preparation tool, partners and customers use a
stand-alone Microsoft Windows application tool that prepares the 3.0 database for the
automatic data upgrade handled by Dynamics AX 4.0. The database preparation is required
because the Dynamics AX 4.0 database has been subject to fundamental and significant
changes, including:

■ Unicode enabling.

■ Record identification extension (RecID).

■ OCC implementation.

The Dynamics AX DB Upgrade Preparation tool reads the 3.0 database and re-populates
the new database with Unicode data types (nchar, nvarchar, and ntext) in place of the
Multibyte Character Set (MBCS) data types. In addition, the record identification references
and the transaction identification reference fields are converted from 32 bit to 64 bit (data
type int64 instead of int). For relevant tables, optimistic concurrency control is enabled.

Focusing on the record identification, the Dynamics AX DB Upgrade Preparation tool comes
with some preliminary MorphX elements to query the AOT for possible elements that need
further investigation before initiation of the pre-upgrade process. The elements exist as an
export file called PrivateProject_UpgradeColumnList.xpo, which is available on the product
CD in the DatabaseUpgrade folder. Unfortunately, the Dynamics AX DB Upgrade Preparation
tool cannot locate existing record identifier references that are packed inside containers and

326 Part III Under the Hood
stored in the database. Such record identifier references must be moved to a dedicated field
before the upgrade. When investigating Microsoft Axapta 3.0 modifications for packed
containers containing record identifiers, look for:

■	 Classes that extends the SysPackable class.

■	 Fields that contains a record identification packed inside the pack() method of that class.

■	 The packed data containers that are subsequently saved to a database table.

If the 3.0 code has such modifications, you must do the following before running the Dynamics
AX DB Upgrade Preparation tool to ensure that data import and export can correctly handle
record identifications:

1.	 Create a dedicated field in the relevant table to store the record identification reference.

2. Unpack existing packed data and move it to the dedicated field.

Other tool prerequisites include the following:

■	 The Axapta 3.0 SPx system must be installed and running.

■	 A new and empty Dynamics AX 4.0 database must be created by using the installation
program.

When all prerequisites are met, the Dynamics AX DB Upgrade tool can be run, but only once.
The tool requires read access to the source database and write access to the target database.

The introduction of the 64-bit integer as record identifiers also requires the application logic
to be upgraded because the internal references do not comply with the Dynamics AX 4.0 best
practices. For changes to the application logic and metadata, see Appendix C, “Source Code
Changes Required for Upgrade.”

Company Identifiers
The business and system information in Dynamics AX is associated with company accounts
and their interaction with the database tables. Several company accounts can share the same
database infrastructure and use the same application logic. However, they must each have
their own set of data that cannot be directly accessed from other company accounts. Tables in
an application may also contain information that can be reused by several company accounts.
This design involves the following elements:

■	 Companies A company account can be based on one or more virtual company accounts.
When you add data to a table that is not in a virtual company account, the data is stored
directly in the company account.

■	 Virtual companies A virtual company account is a collection of data from several
company accounts that is common to all the companies and uses a list of one or more
table collections to define the tables that it contains. The data in the tables included in
the table collections is stored in the virtual company account. The end user cannot work

Chapter 12 The Database Layer 327
directly in a virtual company account, but the contents of the shared tables can be
changed through the company account.

■	 Table collections A table collection is a specification of a list of table names. Table
collections define a graph of tables that have no foreign-key relationships with tables
outside the table collection. Table collections are defined by developers. Each table and
view in the system can occur only once in any one table collection, but tables and views
can be added to more than one table collection. A table collection stores no table data;
only companies and virtual companies store data.

The Dynamics AX application runtime uses these components to provide a powerful
framework for integrating and optimizing the available and required business data across the
enterprise, allowing chosen processes and structures to be centralized. This also improves
data integrity because identical information is administrated only once and does not have to
be saved in multiple companies. Another significant benefit is that users do not perceive the
virtual company as a separate company account because it is completely transparent to users
who are using the current company account.

Figure 12-11 illustrates how the three virtual company accounts interact with company accounts
and how a virtual company account can have multiple table collections associated with the individual
virtual company account. Company AAA and Company BBB share the maintenance of currencies,
whereas Company CCC and Company DDD share the chart of accounts. All companies share
the maintenance of zip codes and countries. The last virtual company account also shows how
company accounts can use multiple virtual company accounts.

Table collection
“Currency”

Table collection
“Chart of Accounts”

Virtual company
“Chart of Accounts”

Virtual company
“Currency”

Company AAA Company BBB Company CCC Company DDD

Table collection
“Countries”

Table collection
“Zip codes”

Virtual company
“Zip codes”

Figure 12-11 Company account overview.

328 Part III Under the Hood
Company accounts translate the organizational structures of the enterprise into elements that
can be configured using Dynamics AX applications. Building the company structures by using
company accounts involves the following straightforward steps:

1. Create company accounts.

2. Create table collections.

3. Create virtual company accounts and associate the company accounts.

When you create a table collection, the foreign keys must not be part of the table in a virtual
company where the key is in the (non-virtual) company. When developing the table collection,
you might have to adjust the data model to get the full benefit of the collection. Figure 12-12
shows the location of the table collection within the AOT and the tables included in the
particular table collection.

Figure 12-12 Table collections in the AOT.

Identification

Company accounts are identified by any three characters within the Unicode-supported char
acter set in arbitrary combination, covering both real company accounts and virtual company
accounts. This enables the Dynamics AX application to host thousands of companies within
the same database using the same application logic. When choosing identification characters,
be aware of characters that can affect the generated SQL statement (such as reserved words,
!,’’,””, and so on) because the company identifier is an important part of the statement.

Note The company accounts feature is subject to licensing. You cannot create more
than three company accounts or unlimited virtual company accounts until you acquire the
Company Accounts license. This license removes the default three-company account limit.

The DataArea table, which is used by the application runtime when saving data, stores
information about company accounts. The SaveDataPerCompany table property determines,

Chapter 12 The Database Layer 329
on a table level, whether data should be saved per company or exist as general available data
without company account affiliation. If the property is set to Yes, the DataAreaID column is
applied automatically for storing the company account reference.

The data flow diagram in Figure 12-13 illustrates how records are evaluated before they are
inserted into tables. The process for inserting records into non-company-specific tables is
important to recognize because data will be related across companies, installation, database,
AOT, tracing, or OLAP and is therefore accessible from all company accounts.

Is SaveDataPer-
Company property

set to Yes?

Is company
using virtual
companies?

Is the table
part of a table

collection?

Insert data using virtual
company DataAreaID

Insert data using company
account DataAreaID

Insert data without
DataAreaID information

Data entry with updates

No

No

No

Yes

Yes

Yes

Figure 12-13 A data flow diagram for inserting data.

Changing the Company Account

The company account context can be changed at run time by using multiple methods, but you
can also change the context at startup time by using the configuration utility or by adding a
company parameter directly in the application shortcut. Within the application runtime,

330 Part III Under the Hood
users can launch the selection form to change the context by double-clicking the company
name in the system’s status bar or by clicking File\Open\Company on the menu bar.

Changing the company account from within the code is even more interesting when working
across company accounts, such as with consolidations, sales between operations, or multi-site
planning. MorphX supports changing of the company account by using the changeCompany
function in X++, which also exists as a reserved keyword. The changeCompany statement alters
the database settings to another (separate) company account. The syntax of the statement is:

changeCompany (expression) { statement }

In the preceding statement, expression is a string that defines the company to be used. The
statement is executed on the new company. The following code example shows how to use
this statement.

static void main()
{

 CustTable custTable;

 ;

 // Assume that we are running in company 'dat'.

 changeCompany('dmo') //Default company is now 'dmo'.

{

custTable = null;

while select custTable

{

// custTable is now selected in company 'dmo'.
}

}

 // Default company is now set back to 'dat'.

 changeCompany('int') // Default company is now 'int'.

{

 // Clear custTable to let the select work on the new default company.

custTable = null;

while select custTable

{

// custTable is now selected in company 'int'.

}

}

 // Default company is now 'dat' again.

}

The changeCompany function is heavily used by the classes tagged InterCompany*, but it can
also be found elsewhere.

Chapter 12 The Database Layer 331
External Accessibility

You can access the company-specific data in Dynamics AX from external sources by using
the COM Business Connector or the .NET Business Connector and the X++ application
logic for extracting or modeling the required datasets, or by using the Application Integration
Framework (AIF). You can also access the data by interacting directly with the database.

Working directly with the database is often the preferred approach for consultants not
experienced with Dynamics AX because the database tools are well known, but this approach
can be challenging if virtual company accounts are part of the company account dataset. The
database does not include any information about references between company accounts and
virtual company accounts.

You can use business views to expose a collection of data as self-contained database views
that provide an accurate picture of a company’s status translated into human-readable
format. Using business views can also provide valuable details about natively calculated
fields (based on either edit or display methods), enumeric field values, grouping of data, and
company accounts, thereby increasing the data visibility for external parties. The Dynamics
AX administrator defines and populates the business view to the database for further
external processing. Creating business views does not necessarily require changes to the
application logic or data dictionary because creation is handled from the application side
and is data driven. Business views use existing tables and views from the AOT, but they
create new database views within the same transactional database that the application
runtime uses.

The process for creating business views is as follows:

1. Create database view prefixes.

2. Manage the virtual company accounts from within business views.

3. Define the company accounts collection.

4. Define groups of particular values, such as colors, numbers, text, and so on.

5. Define calculated fields by company accounts.

6. Manage the enumeric field values.

7. Create and define the business view.

8. Synchronize the created business view with the database.

Unicode Support
In Dynamics AX 4.0, the application runtime completely supports Unicode and multiple-
locale input and output without the risk of data loss. The previous version of Dynamics AX
provided support for data storage in the database as Unicode data as well as handling of Asian

332 Part III Under the Hood
characters in double-byte character sets, but the application runtime did not support multiple
codepage characters or Unicode. In any given installation, only one character set was sup
ported because data from one character set written to the database might not get correctly
converted into another character set. This could lead to loss of data when incorrectly con
verted data was eventually written back to the database.

This problem is completely eliminated in Dynamics AX 4.0, but developers and end users
should still be aware that Unicode support does not imply multiple locale sorting and
comparison or other features such as multiple time zone functionality or multiple country-
specific functionality.

Note Dynamics AX 4.0 supports storing Unicode data only, so the option Initialize
database for Unicode in the Axapta 3.0 Configuration Utility is no longer available.

Databases

The Dynamics AX application runtime supports only Unicode data types in the database, so
all data persists in the N-prefixed versions of the data types in SQL Server and Oracle. These
are the NVARCHAR and NTEXT data types in SQL Server and the NVARCHAR2 and NCLOB
data types in Oracle. When you upgrade to Dynamics AX 4.0, the conversion from non-
Unicode to Unicode is handled as part of the upgrade process.

Note Although the upgrade process handles the conversion of text stored in VARCHAR,
TEXT, and the equivalent Oracle data types, text could still be stored in fields of type
container, which persists in columns in the database of type IMAGE in SQL Server and BLOB
in Oracle. These values are not converted during the upgrade process, but the Dynamics AX
application runtime will convert non-Unicode data to Unicode data when the values are read
from the database and extracted from the container field.

SQL Server 2000 and SQL Server 2005 store Unicode data using the UCS-2 encoding scheme,
and Oracle Database 10g stores Unicode data using the UTF-16 encoding scheme. This
means that every Unicode character generally uses 2 bytes, but in special cases 4 bytes, to
store the single character. The required disk space to store the database is therefore higher for
a Dynamics AX 4.0 installation than it is for installations of previous versions, given the same
amount of tables and data. The required disk space is not doubled, however, because only
string data is affected by the conversion to Unicode; the int, real, date, and container data types
do not consume additional space in the database.

As the amount of space needed to store the data increased, so did the time required to read
and write data because more bytes had to be read and written. This, of course, also affects
the size of packages sent between the client tier and the server tier, and on to the database

Chapter 12 The Database Layer 333
tier. Because the package size is the same in Axapta 3.0 and Dynamics AX 4.0, the number of
packages is increased in Dynamics AX 4.0.

When you create the database to be used for the Dynamics AX installation, you can specify a
collation. Collation determines the sorting order for data retrieved from the database and the
comparison rules used when searching for the data.

Note Although specification of collations at lower levels than the database instance (such
as at the column level) is supported by SQL Server 2000, SQL Server 2005, and Oracle Data
base 10g, it is not supported by the Dynamics AX application runtime.

Because the collation is specified at the database instance level, the Dynamics AX application
runtime supports sorting using the collation setting only; it does not support sorting using a
different locale. Dynamics AX supports input and output according to multiple locales, but
not sorting and comparison according to multiple locales.

The Application Runtime

The Dynamics AX application runtime supports Unicode through the use of UTF-16 encoding,
which is also the primary encoding scheme used by Microsoft Windows 2000, Windows
XP, and Microsoft Windows Server 2003. The use of UTF-16 encoding makes the Dynamics
AX application surrogate-aware; it can handle more than 65,536 Unicode characters, which
is the maximum number of Unicode characters supported by the UCS-2 encoding scheme.
Dynamics AX generally uses only 2 bytes to store the Unicode character, but it uses 4 bytes
when it needs to store supplementary Unicode characters. Supplementary characters are
stored as surrogate pairs of 2 bytes each. An example of a supplementary character is the
treble clef music symbol shown in Figure 12-14. The treble clef symbol has the Unicode code
point 01D120 expressed as hexadecimal number.

Figure 12-14 An example of a supplementary character.

Although the application runtime uses UTF-16 encoding and the SQL Server back-end data
base uses UCS-2 encoding, you will not experience loss of data. This is because the SQL
Server database is surrogate safe; it stores a Unicode character occupying 4 bytes of data as
two unknown 2-byte Unicode characters. It retrieves the character in this manner as well, and
returns it intact to the application runtime.

The maximum string length of a table field is, however, parsed directly as the string length to
use when creating the NVARCHAR type column in the database. This means that a string field

334 Part III Under the Hood
with a maximum length of 10 characters results in a new column in the SQL Server database
with a maximum length of 10 double bytes. A maximum length of 10, therefore, does not nec
essarily mean that the field can contain 10 Unicode characters. For example, a string field can
store a maximum of 5 treble clef symbols, with each occupying 4 bytes, totaling 20 bytes,
which is equivalent to the maximum length of 10 double bytes declared for the column in the
database. This does not cause problems, though, because the expected use of supplementary
characters is minimal, especially in an application such as Dynamics AX 4.0. Supplementary
characters are currently used, for example, for mathematical symbols, music symbols, and
rare Han characters.

The Dynamics AX application runtime also supports the use of temporary tables that are
stored either in memory or in files. The temporary tables use an indexed sequential access
method (ISAM)–based architecture, which does not support the specific setting of collations,
so data stored in temporary tables is sorted locale invariant and case insensitive. The indexes
on the temporary tables have a similar behavior, so searching for data in the temporary table
is also locale invariant and case insensitive.

The application runtime also performs string comparisons in a local-invariant and case-insen
sitive manner. However, some string functions, such as the strlwr and strupr functions, use the
user’s locale.

Important String comparison has changed slightly in Dynamics AX 4.0 compared to the
previous version. Dynamics AX 4.0 still ignores case when comparing strings, but it does not
ignore diacritics, meaning that the letter A is different from the letter Ä. The previous version
ignored most, but not all, diacritics. For example, the letter A was equal to Ä, but not equal
to Å.

The MorphX Development Environment

The MorphX development environment also supports Unicode. You can write X++ code and
define metadata that contains Unicode characters. However, you can define elements only in
the dictionary, which conforms to the ASCII character set, and you can declare variables only
in X++, which also conforms to the ASCII character set. The remaining metadata and language
elements allow the use of all Unicode characters. This means that you can write comments in
X++ using Unicode characters, as well as string constants in X++ and in metadata.

All strings and string functions in the X++ language support Unicode characters, so the strlen
function returns the number of Unicode characters in a string, not the number of bytes or
double bytes used to store the Unicode characters. Therefore, a string that contains only the
treble clef symbol, as shown earlier, has a string length of 1, rather than 2, even though it uses
two double bytes to store the single Unicode character.

Chapter 12 The Database Layer 335
Important Because SQL Server stores Unicode characters using UCS-2 encoding, it could
return a different value when using the LEN function in Transact-SQL (T-SQL). A column that
contained a single treble clef symbol stored by the Dynamics AX application would return a
length of 2 when using the LEN function because the treble clef symbol is stored as two
unknown Unicode characters in the database. The Dynamics AX application runtime does not
use or expose the LEN function, so this behavior is not an issue for users of the Dynamics AX
application; it arises only if the database is accessed directly from other programs or if you
write direct SQL statements from within X++, thereby circumventing the database access
layer.

Files

File support in Dynamics AX 4.0 has been extended to support reading, creation, and writing
of Unicode files. All text files written by the Dynamics AX application runtime are created as
Unicode files, and all text files that are part of the Dynamics AX installation are Unicode files.
The application runtime also, however, supports reading of non-Unicode files.

Two new file I/O classes have been introduced that allow you to implement X++ code that
reads and writes Unicode text files: TextIO and CommaTextIO. These classes are equivalent to
the AsciiIO and CommaIO ASCII character set classes. You should use these classes instead of
the ASCII file I/O classes to avoid losing data when writing to files. However, you might
encounter scenarios in which market, legal, or proprietary requirements demand the use of
the ASCII file I/O classes.

DLLs and COM Components

All areas of Dynamics AX 4.0 that use DLLs and COM components use the Unicode-enabled
versions of the DLLs. The createFile method in the WinApi class has been replaced with
the CreateFileW implementation, rather than the CreateFileA implementation of the createFile
function, because CreateFileW supports Unicode and CreateFileA supports ANSI. When parsing
parameters to the functions in X++ code, the parameters are defined as ExtTypes::WString
when parsing in Unicode characters, whereas the ExtTypes::String expects non-Unicode
characters to be parsed.

The code highlighted in bold in the following copy of the createFile method in Dynamics AX
4.0 has been changed to support Unicode.

#winapi
client static int createFile(str fileName, int flags = #OPEN_ALWAYS,

 int access = 0)
{

DLL _winApiDLL = new DLL(#KernelDLL);
 DLLFunction _createFile = new DLLFunction(_winApiDLL,'CreateFileW');

 _createFile.returns(ExtTypes::DWord);

336 Part III Under the Hood
 _createFile.arg(ExtTypes::WString);

 _createFile.arg(ExtTypes::DWord);

 _createFile.arg(ExtTypes::DWord);

 _createFile.arg(ExtTypes::DWord);

 _createFile.arg(ExtTypes::DWord);

 _createFile.arg(ExtTypes::DWord);

 _createFile.arg(ExtTypes::DWord);

 return _createFile.call(fileName,access,0,0,

 flags,#FILE_ATTRIBUTE_ARCHIVE,0);

}

The Binary helper class used for COM interoperability and DLL function calls has also been
changed. A wString function has been added to support Unicode characters to complement
the existing string function.

Database Access
The Dynamics AX application runtime supports the following three database platforms:

■ SQL Server 2000

■ SQL Server 2005

■ Oracle Database 10g

However, as mentioned earlier, it is usually not necessary for you to focus on the underlying
database because most of the differences in the databases are abstracted away by the application
runtime. Unless an individual database offers very specific features, you can be almost certain
that application logic developed using one database platform will execute without problems
on the other platforms.

The Dynamics AX application runtime also supports the concurrent use of temporary tables
where data is stored in files. You use these tables for temporary storage of records, and the
application runtime uses them to mirror database records. Temporary tables are described
near the end of this chapter.

Figure 12-15 shows how the execution of an update method on a record buffer in the application
logic results in subsequent execution of application runtime logic. The database layer
decides how to issue the correct statement through the appropriate API based on the installed
database, the table itself, and how the table is mapped to the underlying database.

As shown in the diagram, database statements to the SQL Server 2000 and SQL Server
2005 database platforms are invoked through the Open Database Connectivity (ODBC)
interface, and statements to Oracle Database 10g are invoked through the Oracle Call
Interface (OCI).

Chapter 12 The Database Layer 337
ISAM ODBC OCI

call

call

call super()

call

cursor.update()

xrecord.update()

custTable.update()

call

Write file

Application

Application runtime

Dynamics AX runtime

Database layer

UPDATE UPDATE UPDATE

SQL Server SQL Server Oracle
2000 2005 Database 10g

Figure 12-15 The database abstraction layer and platform support.

Database Synchronization

When tables with fields and indexes are defined by using the AOT, they eventually become
tables in a database. Through its database layer, the Dynamics AX application runtime
synchronizes the tables defined in the application with the tables in the database. Synchroniza
tion is invoked when:

■ A Dynamics AX application is installed or upgraded.

■ Newly licensed modules and configurations are enabled.

■ A table is created, changed, or deleted.

■ An extended data type is changed.

The Dynamics AX application runtime uses one-way synchronization in which the table
definitions in the Dynamics AX application are the master, and the database schemas in the
database reflect the definitions inside Dynamics AX. If the database schemas do not match the
table definitions in Dynamics AX, the schemas are modified to match the table definitions in
Dynamics AX when the application is synchronized against the database.

338 Part III Under the Hood
Not all tables, fields, and indexes defined in Dynamics AX are reflected in the database. A
table is synchronized to the database if it is not defined in metadata as a temporary table
(its temporary property is set to Yes) and the associated configuration key is not disabled.
The configuration key could be explicitly disabled, or it could be implicitly disabled if
the associated license key is not enabled. A field is synchronized to the database if the
content should be stored in the database (its SaveContents property is set to Yes) and the
associated configuration key is not disabled. An index will be synchronized to the database
if it is enabled (its Enabled property is set to Yes) and the associated configuration key
is not disabled.

When you compare a table defined in Dynamics AX to the corresponding table in the data
base, the database table could contain fewer columns than defined fields in Dynamics AX and
fewer indexes than defined in Dynamics AX. The indexes in the database could also contain
fewer columns than defined because a defined field might not be enabled, preventing it from
appearing in the database index.

Important There is no guarantee that the application runtime can synchronize the data
base if a configuration key is disabled while there is data in the database because re-creating
the indexes could result in duplicate values in the index.

However, the Dynamics AX runtime applies several system fields to each table, which
are synchronized to the database. The database table could therefore contain more columns
than shown when you view the table definition in the AOT. Also, in certain circumstances,
the Dynamics AX runtime includes an extra column in a database index to make it unique.

The Dynamics AX application runtime applies the columns shown in Table 12-1 to the tables
in the database based on whether the following system fields are enabled on the table.

Table 12-1 Dynamics AX System Fields

Dynamics AX system field Database column Table property

RecID RECID Always

recVersion RECVERSION Always

dataAreaId DATAAREAID SaveDataPerCompany = Yes

createdBy CREATEDBY CreatedBy = Yes

createdDate CREATEDDATE CreatedDate = Yes

createdTime CREATEDTIME CreatedTime = Yes

createdTransactionId CREATEDTRANSACTIONID CreatedTransactionId = Yes

modifiedBy MODIFIEDBY ModifiedBy = Yes

modifiedDate MODIFIEDDATE ModifiedDate = Yes

modifiedTime MODIFIEDTIME ModifiedTime = Yes

modifiedTransactionId MODIFIEDTRANSACTIONID ModifiedTransactionId = Yes

Chapter 12 The Database Layer 339
The Dynamics AX application runtime requires a unique index on each table in the database
to ensure that it can specifically identify each record in the database through the use of an
index. The application runtime always ensures that at least one unique index exists on
each table in the database; if no indexes are defined on the table or they are all disabled, the
application runtime creates a RecID index as if the CreateRecIdIndex property had been set to
Yes on the table. If indexes exist but none are unique, the application runtime estimates the
average key length of each index, chooses the index with the lowest key length, and make this
index unique by appending the RECID column.

If you want data in the tables to be saved per company (you set the SaveDataPerCompany
property to Yes), the application runtime always applies the DATAAREAID column as the first
column on every index.

Note Because a table definition inside the Dynamics AX application is the master definition,
and the database schemas are always changed to reflect the Dynamics AX table definitions, it is
difficult—if not impossible—to attach a Dynamics AX application to an existing legacy database.

Table, Column, and Index Naming

The tables and columns in the database generally have the same name as defined in Dynamics
AX. Indexes, however, are prefixed with I_<table id>. Any index on the SALESTABLE
table in the database is therefore prefixed with I_366 because the ID for the SalesTable table
in Dynamics AX is 366. The Dynamics AX application runtime allows a maximum of
30 characters for names in the database, so if names of tables, fields, or indexes exceed this
number, they are truncated to 30 characters including the appended ID of the table, field, or
index. For example, a table named LedgerPostingJournalVoucherSeries with an ID of 1014
becomes LEDGERPOSTINGJOURNALVOUCHE1014.

Tip If the name method is called on a dictTable, dictField, or dictIndex object with DbBack
end::Sql as a parameter, as in dictTable.name(DbBackend::Sql), the method will return the exact
name in the database.

Left and Right Justification

The Dynamics AX application runtime provides support for left and right justification of fields
of type string. By default, string fields are left justified, and values are stored without modification
in the database. However, if a string field is right justified, the value is prefixed with enough
blanks when inserted into the database that all available space in the field is used. When
values from a right-justified field are selected from the database, the application runtime
removes the blanks. The application logic does not know whether a field is right or left justified
because both left-justified and right-justified fields appear the same when used in the X++
application code.

340 Part III Under the Hood
When the application runtime formulates WHERE clauses in DML statements, it must
determine whether fields are left justified or right justified because it adds extra blanks to a
search value when searching for values equal to, lower than, higher than, and not equal to a
field in the database. The application runtime adds extra blanks to the variable in a statement
like the following when parsing the statement to the database. In the following statement,
assume that the accountNum field is right justified.

select custTable where custTable.accountNum == ‘4000’

The statement parsed to the database looks like this.

SELECT … FROM CUSTTABLE A WHERE A.ACCOUNTNUM = ‘ 4000’

But if the search condition contains wildcard characters, as in the following X++ select
statement, the application runtime must remove the blanks from the field being searched by
applying LTRIM to the statement.

select custTable where custTable.accountNum like ‘4%’;

This produces the expected result of selecting all custTable records where the accountNum field
starts with ‘4’, and the preceding X++ statement produces a statement like the following.

SELECT … FROM CUSTTABLE A WHERE LTRIM(A.ACCOUNTNUM) LIKE ‘4%’

The introduction of the LTRIM function in the WHERE clause prevents both of the supported
databases from searching in an index for the value in accountNum, which could have a severe
effect on the performance of the statement.

Note None of the preceding SQL statements are a clear match to the statement parsed to
either of the databases; they are intended to serve as examples only. The application runtime
applies some additional functions when the LIKE operator is used.

The application runtime also applies LTRIM if a right-justified field is compared with a left-
justified field. In the following select statement written in X++, assume that accountNum is
right justified and accountRelation is left justified.

select priceDiscTable
notexists join custTable
where priceDiscTable.accountRelation == custTable.accountNum

Chapter 12 The Database Layer 341
The statement parsed to the database wraps the right-justified column in an LTRIM function,
and looks like this.

SELECT … FROM PRICEDISCTABLE A

WHERE NOT EXISTS (SELECT 'x' FROM CUSTTABLE B

WHERE A.ACCOUNTRELATION=LTRIM(B.ACCOUNTNUM))

As mentioned earlier, this behavior could have a severe effect on performance, so you should
decide whether this possible degradation of performance is acceptable before you change a
field from left to right justification.

Placeholders and Literals

The database layer in the Dynamics AX application runtime formulates SQL statements con
taining either placeholders or literals—that is, variables or constants. Whether the application
runtime chooses to use placeholders instead of literals has nothing to do with using variables
or constants when the statements are formulated in either X++ or the application runtime.
The following X++ select statement that selects the minimum price for a given customer con
tains constants and a variable.

select minof(amount) from priceDiscTable
where priceDiscTable.Relation == PriceType::PriceSales &&

 priceDiscTable.AccountCode == TableGroupAll::Table &&

 priceDiscTable.AccountRelation == custAccount

The statement is parsed to the SQL Server 2000 database when placeholders are used, as
shown here.

SELECT MIN(A.AMOUNT) FROM PRICEDISCTABLE A

WHERE DATAAREAID=@P1 AND RELATION=@P2

AND ACCOUNTCODE=@P3 AND ACCOUNTRELATION=@P4

The statement is parsed as follows when literals are used. Assume that the statement is exe
cuted in the ‘dat’ company and that you are searching for the lowest price for customer ‘4000’.

SELECT MIN(A.AMOUNT) FROM PRICEDISCTABLE A

WHERE DATAAREAID=N'dat' AND RELATION=4

AND ACCOUNTCODE=0 AND ACCOUNTRELATION=N'4000'

As you can see, the use of constants or variables in the formulation of the statement in X++
has no effect on the use of placeholders or literals when the SQL statement is formulated.
However, using join or specific keywords in the statement when formulating the statement in
X++ does have an effect.

342 Part III Under the Hood
The default behavior of Dynamics AX is that placeholders are used, but if the Dynamics
AX Server Configuration Utility option Use Literals In Complex Joins From X++ is selected,
statements containing joins will use literals if the application runtime considers the statement
to be a complex join. The application runtime determines that a join is complex if the statement
contains two or more tables associated with the following table groups: Main, Worksheet-
Header, WorksheetLine, Transaction, and Miscellaneous. Tables associated with the Group and
Parameter table groups are not included when determining whether the join is complex.

Note The SYS layer in Dynamics AX contains approximately 1,800 ordinary tables, and
about 700 of these are associated with the Group and Parameter table groups.

Figure 12-16 shows an example of the TableGroup property in the list of metadata properties
for a table.

Figure 12-16 The TableGroup property defined for CustTable.

Note The Dynamics AX Server Configuration Utility option Use Literals In Complex Joins
From X++ is selected by default when you install Axapta 3.0 and cleared when you install or
upgrade to Dynamics AX 4.0.

The difference between using placeholders and literals lies mainly in the ability of the
database to reuse execution plans and the accuracy of the calculated execution plan. When
literals are used in a statement, the query optimizer in the database knows the exact values
being searched for and can therefore use its statistics more accurately; when placeholders are
used, the optimizer does not know the values. But because the execution plan is based on the
exact values when literals are used, it cannot be reused when the same statement is parsed
again with different search values. Placeholders, however, do allow reuse of the execution
plan. Whether placeholders or literals result in the best performance depends on three factors:

■ How often the same statement is executed with different values

Chapter 12 The Database Layer 343
■	 How much better the query optimizer is at calculating the optimal execution plan when
the exact values are known

■	 The total time required to execute the actual statement

Usually, however, both approaches result in similar execution plans; placeholders are generally
preferred because execution plans can be reused, which results in better performance overall.

You can explicitly state that a join statement should always use placeholders when the SQL
statement is formulated by the application runtime, regardless of the table group settings on
the tables in the statement and the Server Configuration Utility options. You do this by adding
the forceplaceholders keyword to the statement in X++, as shown in the following select statement
(which would use literals if the previously mentioned Server Configuration Utility option
were selected).

select forceplaceholders priceDiscTable
notexists join custTable
where priceDiscTable.accountRelation == custTable.accountNum

The alternate keyword forceliterals is also available in X++. This keyword explicitly causes
literals to be used when the application runtime formulates the SQL statements.

Tip The Query framework also allows you to explicitly state whether placeholders or literals
should be used for a given query by calling query.literals(1) to enforce literals, query.literals(2)
to enforce placeholders, and query.literals(0) to let the application runtime decide which to
use. Unfortunately, no enumeration is available from the Dynamics AX application runtime to
use in place of these integer constants, but the macros #QueryLiteralsDefault, #QueryForce-
Literals, and #QueryForcePlaceholders are available from the Query macro library.

The Dynamics AX Type System vs. the Database Type System

Because Dynamics AX application table definitions are the master for the table definitions in
the database, the Dynamics AX application runtime also explicitly controls the mapping
between the Dynamics AX data types and types in the supported databases. Table 12-2
describes the mapping between the Dynamics AX type system and the database type systems.

Table 12-2 Dynamics AX and Database Type Systems

Dynamics AX SQL Server 2000 SQL Server 2005 Oracle Database 10g

int INT INT NUMBER(10,0)

real NUMERIC(28,12) NUMERIC(28,12) NUMBER(32,16)

string NVARCHAR(length) NVARCHAR(length) NVARCHAR2(length)
(fixed length)

344 Part III Under the Hood
Table 12-2 Dynamics AX and Database Type Systems

Dynamics AX SQL Server 2000 SQL Server 2005 Oracle Database 10g

string
(memo)

date

NTEXT

DATETIME

NTEXT

DATETIME

NCLOB

DATE

time

enum

container

INT

INT

IMAGE

INT

INT

IMAGE

NUMBER(10,0)

NUMBER(10,0)

BLOB

guid

int64

UNIQUEIDENTIFIER

BIGINT

UNIQUEIDENTIFIER

BIGINT

RAW(16)

NUMBER(20,0)

Database types that are not shown in this table are not supported by the Dynamics AX
application runtime.

The Database Log and Alerts

Dynamics AX includes two features that base their functionality on the fact that data has
been manipulated in tables: the Database Log and Alerts. Both features use information
exposed by the Dynamics AX application runtime when specific data is manipulated and
when the application runtime uses configuration data entered into a Dynamics AX framework
table from the application. The configuration that identifies which statements to trace and log
is stored in the Databaselog table provided by the application runtime. When a statement is
executed that should be traced and logged, the application is notified by executing a callback
method on the Application class.

Figure 12-17 illustrates a scenario in which Dynamics AX is configured to log updates to
custTable records. When the custTable.update method is called, it invokes the base version
of the update method on the xrecord object by calling super(). The base version method
determines whether database logging has been configured for the given table and the update
statement by querying the Databaselog table. If logging is enabled, a call is made to the log-
Update method on the Application object, and the X++ application logic inserts a record into
the SysDataBaseLog table.

The scenario is the same for inserts, deletes, and renaming of the primary key, as well as for
raising of events that triggers alerts.

You can use the application runtime table Databaselog to configure all the logging and eventing
because it contains a logType field of type DatabaseLogType, which is an enumeration that contains
the following four values for the Database Log feature: Insert, Delete, Update, and RenameKey.
It also contains the following four values for the Alert feature: EventInsert, EventDelete,

Chapter 12 The Database Layer 345
EventUpdate, and EventRenameKey. When the application runtime queries the Databaselog
table, it therefore queries for the configuration of a specific type of logging on a given table.

Application

Application runtime

custTable.update()

Xrecord.update()

application.logUpdate() SysDataBaseLog

Databaselog

INSERT

SELECT
call

super()

DataBase

Figure 12-17 Logging database updates.

Table 12-3 shows the correlation between the Database Log and Alert configuration. It shows
what triggers the log or event, which method on Application the callback is made to, and to
which table the log or event is logged.

Table 12-3 Database Log and Alert Implementation Details

Logged event
Triggering method
on Xrecord class

Callback method on
Application class Where logged

Database insert insert method logInsert method SysDataBaseLog

Database update update method logUpdate method SysDataBaseLog

Database delete delete method logDelete method SysDataBaseLog

Database rename renamePrimaryKey logRenameKey method SysDataBaseLog
primary key method

Insert event insert method eventInsert method EventCUD

Update event update method eventUpdate method EventCUD

Delete event delete method eventDelete method EventCUD

Rename primary key renamePrimaryKey eventRenameKey method EventCUD
event method

Note The application runtime does not query the Databaselog table in the database every
time a trigger method is executed because the AOS caches all records in memory when first
needed. When records are changed in the Databaselog table, the cached version must therefore
be flushed. You do this by calling SysFlushDatabaseLogSetup::main() from X++, which not only
flushes the cached memory on the current AOS, but also informs other AOSs that they should
flush their caches as well. The other AOSs read the flush information from the database at
pre-defined intervals, so they are flushed with a minor delay.

346 Part III Under the Hood
Database-Triggering Methods
A record buffer contains a variety of instance methods, and when called directly or indirectly,
it results in statements or affects the number of statements sent to the database. Some of the
methods can be called explicitly, and some are called implicitly by the Dynamics AX application
runtime. Some of the methods are final, and others can be overridden. All the base versions of
these methods are implemented on the xRecord system class. This section offers an overview
of these methods and describes how the Dynamics AX application runtime interprets the
execution of these methods and other built-in constructs in the X++ language. It also explains
how this interpretation results in different SQL statements being parsed to the database for
execution.

The insert, update, and delete Methods

 The three main methods used on the record buffer to manipulate data in the database are the
insert, update, and delete methods. Each method when called results in an INSERT statement,
an UPDATE statement, or a DELETE statement being parsed from the AOS to the database
where each statement manipulates a single row.

Note If a RecID index exists on the table when the Dynamics AX application runtime formulates
an UPDATE or a DELETE statement, RECID is used as a predicate in the WHERE clause to find the
record. Otherwise, the shortest unique index will be used as the predicate.

All three methods can be overridden on each table individually, and they all follow the
same pattern as the insert method, shown in the following code. The super call to the base
class method makes the application runtime formulate the SQL DML statement and parse it
to the database. Consequently, with an overridden method implemented by a developer, an
application can execute additional X++ code before or after the statement is parsed to the
database.

public void insert()
{

// Additional code before insertion record
super(); // The SQL statement is formulated when executing super();
// Additional code after insertion of record

}

Although none of the three methods explicitly contains the server or client method modifier,
all three methods are always executed on the tier where the data source is located. This means
that the methods are executed on the server tier, but the methods on a temporary table may
be executed on either the client tier or the server tier. Applying the server or client method
modifier to these methods does not change this behavior.

Chapter 12 The Database Layer 347
There are also three equivalent methods for inserting, updating, and deleting: doInsert, doUpdate,
and doDelete. Each method executes the same run-time logic as the base class version of
the insert, update, and delete methods; using these methods circumvents any X++ logic in
the overridden versions of insert, update, and delete, so use them with caution. The doInsert,
doUpdate, and doDelete methods cannot be overridden.

Caution If you override the insert, update, and delete methods, you should honor the
application runtime logic in the base class methods. If the logic in the methods is moved
to a class hierarchy, make sure that the X++ code there executes the equivalent doInsert,
doUpdate, and doDelete methods on the record buffer. If this is not possible because of an
error, an exception should be thrown.

In addition to the insert and update methods, the record buffer also contains a write method
that can be overridden. Execution of this methods leads to execution of either the update
method or the insert method, depending on whether the record has already been inserted.

Caution Any X++ application logic written in an overridden version of the write method
will be executed only if the method is explicitly called from other X++ code, or when records
are inserted or updated from rich client forms or Web client forms. If you have written X++
code using this method, you should be aware of this limitation and consider migrating the
code to the insert or update method.

As with the insert, update, and delete methods, the write method is forced by the application
runtime to execute on the tier where the data source is located, no matter what is stated in the
definition of the method.

Selecting Rows

The record buffer also contains the overridable method postLoad. It is not necessary to
execute postLoad from X++ because the application runtime executes it when records are
retrieved from the database by the AOS. When you override the method, the super call copies
the retrieved buffer to the original record buffer that is accessible through the orig method.
Before an overridden postLoad method calls the base class method, the state of the original
buffer is undefined.

Caution Any application logic written in the postLoad method should be light-weight code
because it executes every time a record of this type is retrieved from the database. You should
always consider whether the X++ code could be written elsewhere, such as in a display method.

The application runtime also forces the postLoad method to execute on the tier where the data
source is located. Assuming that the table is not temporary and multiple records are retrieved
by a client, the postLoad method executes on all the retrieved records sent from the database
to the AOS before they are sent individually by the AOS to the client.

348 Part III Under the Hood
Validating Rows

The record buffer contains two sets of validation methods that can be overridden. These
are the previously existing methods (validateField, validateWrite, and validateDelete) and the
new set of methods introduced in Dynamics AX 4.0: aosValidateRead, aosValidateInsert,
aosValidateUpdate, and aosValidateDelete.

The difference between the two sets of methods is that the validateField, validateWrite, and
validateDelete methods are invoked only from rich client and web client forms or if called
directly from X++ code; aosValidateInsert, aosValidateUpdate, and aosValidateDelete are
invoked implicitly from the insert, update, and delete base version methods, respectively,
and the aosValidateRead method is invoked when the application retrieves records from the
database.

The aosValidate methods prevent reading, writing, or deleting, so they should return a Boolean
value of false if the user is not allowed to perform the operation that the method is validating.
If the method returns false, an error is written to the Infolog and an Exception::Error is thrown
by the Dynamics AX application runtime. The form application runtime also writes an error to
the Infolog if any of the validate methods return false. When a validate method is called from
X++ code, the calling method determines how to handle a validate method that returns false.

Changing the Default Behavior

The record buffer contains a dozen methods used to change the default behavior of DML
statements issued in X++ code. All the methods except one can be called with a Boolean
parameter to change the default behavior, and they can all be called without a parameter to
query the current status. None of the methods can be overridden.

The following methods on the record buffer influence how the application runtime interprets
select statements that use the record buffer.

The SelectForUpdate Method

Calling selectForUpdate(true) on a record buffer replaces the use of the forupdate keyword in a
select statement. The following piece of X++ code

custTable.selectForUpdate(true);

select custTable where custTable.AccountNum == '4000';

is equal in behavior to this code.

select forupdate custTable where custTable.AccountNum == ‘4000’;

Depending on the concurrency model settings on the table, a NOLOCK or UPDLOCK hint is
added to the SELECT statement parsed to SQL Server 2000.

Chapter 12 The Database Layer 349
Tip If you use the Query framework instead of select statements to retrieve records, it is
also possible to retrieve these records as if a forupdate keyword had been used by calling
update(true) on the QueryBuildDataSource object.

The concurrencyModel Method

Calling concurrencyModel(ConcurrencyModel::OptimisticLock) on a record buffer replaces the
use of the optimisticlock keyword, and calling concurrencyModel(ConcurrencyModel::Pessimistic-
Lock) replaces the use of the pessimisticlock keyword. The following piece of X++ code

custTable.concurrencyModel(ConcurrencyModel::OptimisticLock);
select custTable where custTable.AccountNum == ‘4000’;

is equal in behavior to this code.

select optimisticlock custTable where custTable.AccountNum == ‘4000’;

This method overrules any concurrency model setting on the table and causes the addition of
a NOLOCK or UPDLOCK hint to the SELECT statement parsed to SQL Server 2000. The type
of hint depends on whether the OptimisticLock or the PessimisticLock enumeration value was
parsed as a parameter when the application logic called the concurrencyModel method.

Tip If you use the Query framework instead of select statements to retrieve records, it is
possible to retrieve these records by using a specific concurrency model by calling concurrency-
Model(ConcurrencyModel::OptimisticLock) or concurrencyModel(ConcurrencyModel::Pessimistic-
Lock) on the QueryBuildDataSource object.

The selectWithRepeatableRead Method

Calling selectWithRepeatableRead(true) on a record buffer replaces the use of the repeatableread
keyword in a select statement. The following piece of X++ code

custTable.selectWithRepeatableRead(true);
select custTable where custTable.AccountNum == ‘4000’;

is equal in behavior to this code.

select repeatableread custTable where custTable.AccountNum == ‘4000’;

350 Part III Under the Hood
Using this keyword results in the addition of a REPEATABLEREAD hint to the SELECT
statement parsed to SQL Server 2000.

Tip If you use the Query framework instead of select statements to retrieve records, it is
possible to retrieve these records with a REPEATABLEREAD hint as well, by calling selectWith-
RepeatableRead(true) on the QueryBuildDataSource object.

The readPast Method

Calling readPast(true) on a record buffer results in the addition of a READPAST hint to the
SELECT statement parsed to SQL Server 2000, which causes the database to skip rows on
which an exclusive lock is held. The record is simply not read. This method has no equivalent
keyword that can be used in a select statement.

Note Enforcing readPast in an installation using SQL Server 2005 on a select statement
with no additional hints has no effect. SQL Server 2005 does not skip records on which an
exclusive lock is held; it only returns the previous committed version.

The selectLocked Method

Calling selectLocked(true) on a record buffer results in the addition of a NOLOCK hint to the
SELECT statement parsed to SQL Server 2000, which causes the select statement to allow the
reading of uncommitted records. Calling this method outside a transaction scope has no
effect because the default isolation level in SQL Server 2000 is READ UNCOMMITTED, and
the method has no equivalent keyword that can be used in a select statement.

 The skipTTSCheck Method

The record buffer also contains a method that affects the behavior of updates and deletes.
Calling skipTTSCheck(true) on a record buffer makes it possible to later call update or delete on
the record buffer without first selecting the record for update. The following code, in which a
custTable record is selected without a forupdate keyword and is later updated with
skipTTSCheck set to true, will therefore not fail.

static void skipTTSCheck(Args _args)
{

CustTable custTable;

ttsbegin;

select custTable where custTable.AccountNum == '4000';
custTable.CreditMax = 1000;

Chapter 12 The Database Layer 351
custTable.skipTTSCheck(true);

custTable.update();

ttscommit;

}

The execution of the update method will not throw an error in this example because the Dynamics
AX application runtime will not verify that the buffer was selected with forupdate or an equivalent
keyword. In a pessimistic concurrency scenario, no update lock would be acquired before the
update, and in an optimistic concurrency scenario, the RecVersion check would not be made.
This could lead to “last writer wins” scenarios, as described earlier in this chapter.

If the skipTTSCheck method had not been called in the preceding scenario, the application
runtime would have thrown an error and presented the following in the Infolog: “The
operation cannot be completed, since the record was not selected for update. Remember TTS
BEGIN/TTSCOMMIT as well as the FORUPDATE clause.”

Set-Based DML Statements

As explained in the preceding sections, insert, update, and delete methods are available on the
buffer to manipulate data in the database. The buffer also offers the less frequently used write,
doInsert, doUpdate, and doDelete methods for use when writing application logic in X++ code.
All these methods are recordset methods; when they are executed, at least one statement is
sent to the database, representing the INSERT, UPDATE, or DELETE statement being
executed in the database. Each execution of these statements therefore results in a call from
the AOS to the database server in addition to previous calls to select and retrieve the records.

The X++ language contains set-based insert, update, and delete operators, as well as
set-based classes, that can reduce the number of round trips made from the AOS to the
database tier. The Dynamics AX application runtime may downgrade these set-based
operations to row-based statements because of metadata setup, overriding of methods,
or the configuration of the Dynamics AX application. The record buffer, however, offers
methods to change this behavior and prevent downgrading. I discuss the set-based
statements and the remaining methods on the record buffer in Chapter 17, “Performance.”

Temporary Tables
By default, any table defined in the AOT is mapped in a one-to-one relationship to a table in
the underlying relational database. Any table may, however, be mapped to an ISAM file–based
table that is available only during the runtime scope of the AOS or a client. This mapping can
take place as follows:

■ At design time by setting metadata properties

352 Part III Under the Hood
■ At configuration time by enabling licensed modules or configurations

■ At application run time by writing explicit X++ code

The ISAM file contains data and all the indexes defined on the table that maps to the temporary
table that the file represents. Because working on smaller datasets is generally faster than
working on larger datasets, the Dynamics AX application runtime monitors the space needed
for the dataset. If the number exceeds 128 kilobytes (KB), the dataset is written to the ISAM file;
everything is kept in memory if the consumed space is less than 128 KB. Switching from
memory to file has a significant effect on performance. A file with the syntax $tmp<8 digits>.$$$
is created when data is switched from memory to file. You can monitor the threshold limit by
noting when this file is created.

Note A small test run by the product development team using the Dynamics AX demo
data showed that 220 CustTable records could be stored in the temporary table before data
was written to the file. However, this number will vary depending on the amount of data in
each record.

Although the temporary tables do not map to a relational database, all the DML statements
in the X++ language are valid for tables operating as temporary tables. Some of the statements
are executed by the application runtime in a downgraded fashion because the ISAM file
functionality does not offer the same amount of functionality as a relational database. There
fore, set-based operators always execute as record-by-record operations.

Using Temporary Tables

Any table that acts as a temporary table is, indeed, temporary. When you declare a
record buffer of a temporary table type, the table will not contain any records, so you
must insert records to work with the temporary table. The temporary table and all the
records will be lost when no more declared record buffers point to the temporary dataset.

Memory and file space are not allocated to the temporary table before the first record is
inserted, and the table resides on the tier where the first record was inserted. For example,
if the first insert occurs on the server tier, the memory is allocated on this tier, and eventually
a file will also be created on the server tier. The tier on which the record buffer is declared or
subsequent inserts, updates, or deletes are executed is insignificant.

Important A careless temporary table design could lead to a substantial number of round
trips between the client and the server and result in degraded performance.

A declared temporary record buffer contains a pointer to the dataset. If two temporary
record buffers are used, they point to different datasets by default, even though the
table type is the same. To illustrate this, the X++ code in the following example uses
the TmpLedgerTable temporary table defined in Dynamics AX 4.0. The table contains three

Chapter 12 The Database Layer 353
fields: AccountName, AccountNum, and CompanyId. The AccountNum and CompanyId fields
are both part of a unique index, AccountNumIdx. This is illustrated in Figure 12-18.

Figure 12-18 The TmpLedgerTable temporary table.

The following X++ code shows two record buffers of the same type and how the same record
can be inserted in both of the record buffers. Because the record buffers point to two different
datasets, a “duplicate value in index” failure will not result, as it would if both record buffers
had pointed to the same temporary dataset or if the record buffers had been mapped to a
database table.

static void TmpLedgerTable(Args _args)
{

TmpLedgerTable tmpLedgerTable1;
TmpLedgerTable tmpLedgerTable2;
;
tmpLedgerTable1.CompanyId = 'dat';
tmpledgerTable1.AccountNum = '1000';
tmpLedgerTable1.AccountName = 'Name';
tmpLedgerTable1.insert(); // Insert into tmpLedgerTable1’s dataset.

tmpLedgerTable2.CompanyId = 'dat';
tmpledgerTable2.AccountNum = '1000';
tmpLedgerTable2.AccountName = 'Name';
tmpLedgerTable2.insert(); // Insert into tmpLedgerTable2’s dataset.

}

To share the same dataset, you must call the setTmpData method on the record buffer, as
illustrated in the following similar X++ code in which the setTmpData method is called on the
second record buffer and parsed in the first record buffer as a parameter.

static void TmpLedgerTable(Args _args)
{

TmpLedgerTable tmpLedgerTable1;

354 Part III Under the Hood
TmpLedgerTable tmpLedgerTable2;
;
tmpLedgerTable2.setTmpData(tmpLedgerTable1);

tmpLedgerTable1.CompanyId = 'dat';
tmpledgerTable1.AccountNum = '1000';
tmpLedgerTable1.AccountName = 'Name';
tmpLedgerTable1.insert(); // Insert into shared dataset.

tmpLedgerTable2.CompanyId = 'dat';
tmpledgerTable2.AccountNum = '1000';
tmpLedgerTable2.AccountName = 'Name';
tmpLedgerTable2.insert(); // Insert will fail with dublicate value.

}

The preceding X++ code will fail on the second insert with a “duplicate value in index” error
because both record buffers point to the same dataset. You would notice similar behavior if,
instead of calling setTmpData, you simply assigned the second record buffer to the first record
buffer, as illustrated here.

tmpLedgerTable2 = tmpLedgerTable1;

However, the variables would point to the same object, which means that they use the same
dataset.

When you want to use the data method to copy data from one temporary record buffer to
another, where both buffers point to the same dataset, you should write the copy like this.

tmpLedgerTable2.data(tmpLedgerTable1);

Warning The connection from the two record buffers to the same dataset would be lost
if the code were written as tmpLedgerTable2 = tmpLedgerTable1.data(). The temporary record
buffer would be assigned to a new record buffer in which only the data part is filled in, but
with a connection to a new dataset.

As mentioned earlier, when no record buffer points to the dataset, the records in the
temporary table are lost, the allocated memory is freed, and the file is deleted. This is
illustrated in the following X++ code example, in which the same record is inserted twice
using the same record buffer. However, because the record buffer is set to null between the
two inserts, the first dataset is lost, so the second insert will not result in a duplicate value
in the index because the new record is inserted into a new dataset.

Chapter 12 The Database Layer 355
static void TmpLedgerTable(Args _args)
{

TmpLedgerTable tmpLedgerTable;

;

tmpLedgerTable.CompanyId = 'dat';

tmpledgerTable.AccountNum = '1000';

tmpLedgerTable.AccountName = 'Name';

tmpLedgerTable.insert(); // Insert into first dataset.

tmpLedgerTable = null; // Allocated memory is freed
// and file is deleted.

tmpLedgerTable.CompanyId = 'dat';

tmpledgerTable.AccountNum = '1000';

tmpLedgerTable.AccountName = 'Name';

tmpLedgerTable.insert(); // Insert into new dataset.

}

These temporary table examples do not include use of ttsbegin and ttscommit statements. This
is because you must call the ttsbegin, ttscommit, and ttsabort methods on the temporary record
buffer to work with transaction scopes on temporary tables. The ttsbegin, ttscommit, and ttsabort
statements only affect manipulation of data related to ordinary tables that are mapped to
relational database tables. This is illustrated in the following X++ code where the value of the
accountNum field is printed to the Infolog even though the ttsabort statement was executed.

static void TmpLedgerTableAbort(Args _args)

{

TmpLedgerTable tmpLedgerTable;

ttsbegin;

tmpLedgerTable.CompanyId = 'dat';

tmpledgerTable.AccountNum = '1000';

tmpLedgerTable.AccountName = 'Name';

tmpLedgerTable.insert(); // Insert into table.

ttsabort;

while select tmpLedgerTable

{

info(tmpLedgerTable.AccountNum);

}

}

To successfully abort the inserts of the table in the preceding scenario, you must instead call
the ttsbegin and ttsabort methods on the temporary record buffer, as shown here.

static void TmpLedgerTableAbort(Args _args)

{

TmpLedgerTable tmpLedgerTable;

356 Part III Under the Hood
tmpLedgerTable.ttsbegin();
tmpLedgerTable.CompanyId = 'dat';
tmpledgerTable.AccountNum = '1000';
tmpLedgerTable.AccountName = 'Name';
tmpLedgerTable.insert(); // Insert into table.
tmpLedgerTable.ttsabort();

while select tmpLedgerTable
{

info(tmpLedgerTable.AccountNum);
}

}

When you work with multiple temporary record buffers, you must call the ttsbegin, ttscommit,
and ttsabort methods on each record buffer because there is no correlation between the
individual temporary datasets.

Important When exceptions are thrown and caught outside the transaction scope, where
the ttsabort statement has already been called by the Dynamics AX application runtime,
temporary data is not rolled back.

When you work with temporary datasets, make sure that you are aware of how the datasets
are used inside and outside transaction scopes.

Important It is generally not a problem that the ttsbegin, ttscommit, and ttsabort statements
have no impact on temporary data if the temporary record buffer is not declared until after the
first ttsbegin statement is executed. This only means that the record buffer will be out of scope
and the dataset destroyed if an exception is thrown and caught outside the transaction scope.

The database-triggering methods on temporary tables behave in almost the same manner
as with ordinary tables, with a few exceptions. When the insert, update, and delete methods
are called on the temporary record buffer, they do not call any of the database-logging or
event-raising methods on the application class if database logging or alerts have been set up
for the table.

Note In general, you cannot set up logging or eventing on defined temporary tables. However,
because ordinary tables may be changed to temporary tables, logging or eventing could already
be set up. Changing the behavior of an ordinary table is described later in this chapter.

Delete actions are also not executed on temporary tables. Although you can set up delete
actions, the Dynamics AX application runtime does not try to execute them.

Tip You can query a record buffer for acting on a temporary dataset by calling the isTmp record
buffer method, which returns true or false depending on whether the table is temporary.

Chapter 12 The Database Layer 357
Dynamics AX allows you to trace SQL statements, either from within the rich client or
from the Dynamics AX Configuration Utility or the Dynamics AX Server Configuration Utility.
However, SQL statements can be traced only if they are sent to the relational database. Manip
ulation of data in temporary tables cannot be traced by using these tools.

Design-Time Setting

As explained earlier, you can make a table temporary during various phases of a Dynamics
AX implementation. To define a table as temporary, you change the Temporary property on the
table from the default value of No to Yes. This prevents a matching table from being created in
the underlying relational database when the table is synchronized against the database. Instead,
memory or a file is allocated for the table when needed. Figure 12-19 shows the Temporary
property on a table where the value is set to Yes, thereby marking the table as temporary at
design time.

Figure 12-19 Marking a table as temporary at design time.

Best Practices Tables that are defined as temporary at design time should have a table name
prefixed or postfixed with Tmp. This improves readability of the X++ code when temporary tables
are explicitly used.

Configuration-Time Setting

When you define a table by using the AOT, you can attach a configuration key to a table by
setting the ConfigurationKey property on the table. The property belongs to the Data section
of the table properties, as illustrated in Figure 12-19.

358 Part III Under the Hood
When the Dynamics AX application runtime synchronizes the tables to the database, it
synchronizes tables for licensed modules and enabled configurations only. Whether a table
belongs to a licensed module or an enabled configuration depends on the settings in the
ConfigurationKey property. If the configuration key is enabled, the table is synchronized to
the database; if the configuration key is not enabled, the table is disabled and behaves like a
temporary table. Therefore, a runtime error does not occur when the application runtime
interprets X++ code that accesses tables that are not enabled.

Note Whether a configuration key is enabled is not important to a table that is already set
as temporary. The table remains temporary, even though its configuration key is disabled,
and you can expect the same behavior regardless of the configuration key setting.

Application Runtime Setting

You may also use X++ code to turn an ordinary table into a temporary table and use it as such.
You do this by calling the setTmp method on the record buffer. From then on, the record buffer
will be treated as though the Temporary property on the table were set to Yes.

Note You cannot define a record buffer of a temporary table type and turn it into an
ordinary table. One reason for this, among many, is that there is no underlying table in the
relational database.

The following X++ code illustrates use of the setTmp method, in which two record buffers of
the same type are defined; one is made temporary, and all records from the database are
inserted into the temporary version of the table. The temporary record buffer will therefore
point to a dataset containing a complete copy of all the records from the database belonging
to the current company.

static void TmpCustTable(Args _args)
{

CustTable custTable;
CustTable custTableTmp;
;
custTableTmp.setTmp();
ttsbegin;
while select custTable
{

custTableTmp.data(custTable);
custTableTmp.doInsert();

}
ttscommit;

}

Chapter 12 The Database Layer 359
Notice that the preceding X++ code uses the doInsert method to insert records into the
temporary record buffer. It does this to prevent execution of the overridden insert method.
This method inserts and updates records in other tables that are not switched automatically
to temporary mode just because the custTable record buffer is temporary.

Caution You should use great care when changing an ordinary record buffer to a temporary
record buffer because application logic in overridden methods that manipulates data in ordinary
tables could be inadvertently executed. This could happen if the temporary record buffer is used
in a form and the form application runtime makes the call to the database-triggering methods.

Chapter Summary
This chapter described how the Dynamics AX application runtime supports database access,
record and company identification, transactions, and multiple languages. This support allows
you to implement applications within Dynamics AX that operate in a multi-user and multi-
language environment and can run on multiple databases and in different configurations.

Chapter 13

Advanced MorphX Forms

In this chapter:

Introduction .361

Capturing Form Instantiation .362

Adding Design Controls at Run Time .365

Populating the Control .366

Reacting to User Interface Events .367

Form Opt Out .368

The Final Result .369

Chapter Summary .374

The objectives of this chapter are to:

■	 Demonstrate features of MorphX forms that go beyond the features of typical data entry
forms.

■	 Describe how forms are instantiated.

■	 Describe how to modify multiple forms without modifying their definitions.

Introduction
Experienced business developers can very quickly create a suitable user interface with
MorphX forms. Sometimes, though, you might want more than just a form with a grid and
some tab pages. This chapter shows you, by example, how to leverage some of the more
advanced features of MorphX forms. But remember, when deviating from standard development
tasks, your progress will be slower and more complicated.

The example in this chapter builds an extension to several hundred forms in the system,
without modifying any of them. The change is entirely programmatic. The goal of the change
is to better integrate the Document Handling feature with forms. With Document Handling,
a user can attach a note to any record in Microsoft Dynamics AX 4.0. The note follows the
record throughout the system. You typically use this feature to keep track of correspondence
with customers, vendors, and other external entities. You can also attach files to notes, which
is useful for keeping track of design documents, such as blueprints and specifications.

By default, you can access the Document Handling feature only by clicking a toolbar icon. The
example in this chapter embeds the Document Handling functionality directly in all affected
361

362 Part III Under the Hood
forms. This gives the user easy access to attached documents and enables creation of new
documents with a single mouse click.

The example in this chapter is implemented in five chronological steps. The first step is to gain
control when a form is instantiated. The next step is to modify the form by adding controls
before the form is displayed. The added controls are then populated with data. At this point in
the example, the form looks good, but it lacks user interaction, so the next step is to react
accordingly to user interface events. Finally, the example provides mechanics that allow a
form to opt out of the extension of functionality.

Capturing Form Instantiation
You must first establish that you do not want to modify all the forms in the system manually.
You would never complete the task, and such an approach would cause problems during
future upgrades. This section offers a more intelligent solution.

All forms in Dynamics AX are created through the ClassFactory class. The Dynamics AX runtime
calls the formRunClassOnClient method to create instances of forms. The args parameter,
shown in the following code, contains the name of the form element to create.

client static FormRun formRunClassOnClient(Args args)
{

SysSetupFormRun sysSetupFormRun;

;

sysSetupFormRun = new SysSetupFormRun(args);

return sysSetupFormRun;

}

You can substitute certain forms by changing the form name in the args parameter before
the instance is created. But to achieve your goal, you must change the appearance of
forms, not substitute them. Notice that a specialization of the FormRun class is created. The
system defines the FormRun class, and you cannot change its implementation. However,
the specialization—called SysSetupFormRun—is an application-defined class, meaning that
you can modify it to accommodate your needs.

When a form is opened, init is the first method called. The init method creates instances of
all the form controls from the metadata definition in the Application Object Tree (AOT). Before
init is called, you have only a FormRun instance and a Form instance, which represents the
form element definitions. The FormRun instance is actually a SysSetupFormRun instance
(see Figure 13-2, later in this chapter, for this relationship). After init is executed, you also have
instances of all the form controls necessary to display the form. These include pixel positions,
widths, heights, and so on.

Chapter 13 Advanced MorphX Forms 363
The example for this chapter constructs a class named MyDocuPane. Here is the definition.

class MyDocuPane
{

SysSetupFormRun formRun;
Form form;

public void new(FormRun _formRun)
{;

formRun = _formRun;
form = formRun.form();

}
public void beforeInit()
{
}
public void afterInit()
{
}
public void update(common _common)
{
}

}

Notice how you extract the Form instance from FormRun in the new method. Also notice the
three empty methods, which are invoked from the SysSetupFormRun class. The following code
example shows how to apply the two init methods in the SysSetupFormRun class. The changes
to the SysSetupFormRun class appear in bold.

public class SysSetupFormRun extends FormRun
{

...
MyDocuPane docuPane;
public void init()
{;

docuPane = new MyDocuPane(this);

docuPane.beforeInit();
//Call init on the base class (FormRun).
super();

docuPane.afterInit();
SysSecurityFormSetup::loadSecurity(this);

}

}

Adding a member variable to a class in a hierarchy always requires a recompile of the class
and all classes that extend it. You can do this by running the Compile Forward tool found on
the Add-ins submenu. In addition, you must restart the Dynamics AX client because form
instances already exist in memory.

364 Part III Under the Hood
After a restart, the class is called each time a form is opened, regardless of the form. The
class is even called when the progress bar is displayed because the progress bar is also a
form. Because the goal of this example is to add Document Handling capabilities to forms,
limiting the forms you target makes sense. First, Document Handling must be active. Second,
target forms can be defined as forms with one data source that belong to the main table
group. The following code adds a method determining whether a form is a target to the
MyDocuPane class.

private boolean isTargetForm()
{

FormBuildDataSource formBuildDataSource;
DictTable dictTable;

//Only target forms when document handling is active.
if (infolog.docuHandlingActive())
{

if (form.dataSourceCount() == 1)
{

//Get the first (and only) data source.
formBuildDataSource = form.dataSource(1);
dictTable = new DictTable(formBuildDataSource.table());
if (dictTable &&

dictTable.tableGroup() == TableGroup::Main)
{

return true;
}

}
}
return false;

}

Notice how the FormBuildDataSource instance finds the table used as a data source on the
form and how reflection determines which group the table belongs to. Because the result of
this method is constant for each form, you call it only once and save the return value in a
member variable, as shown here.

class MyDocuPane
{

...
boolean isTargetForm;
public void new(FormRun _formRun)

{

...

isTargetForm = this.isTargetForm();
}
...

}

Chapter 13 Advanced MorphX Forms 365
Adding Design Controls at Run Time

The next step is to modify all forms that meet the target criteria. Everything you can do in the
AOT is also possible programmatically. You can modify the form programmatically before it is
initialized by using the form design-time API.

From a programming perspective, the easiest way to determine which steps are required
to add controls at run time is to perform the steps in the AOT and mentally note all steps
performed. The goal in the example is to add an HTML ActiveX control to the form, dock
it to the left side of the form, set a fixed pixel width, and set a dynamic height, so the control
resizes with the form. Doing this in the AOT is quite simple, and you can do it on any of
the target forms, such as CustTable.

Programmatically, you can accomplish the same by following the steps shown here.

public void beforeInit()
{

FormBuildDesign design = form.design();
FormbuildActiveXControl buildActiveX;
#Help

if (isTargetForm)
{

buildActiveX = design.addControl(FormControlType::ActiveX, 'myActiveX');
buildActiveX.className(#WebBrowserClassName);
buildActiveX.leftMode(FormLeft::LeftEdge);
buildActiveX.heightMode(FormHeight::ColumnHeight);
buildActiveX.width(150);

}
}

The className specified in the preceding code is the progId for the Microsoft WebBrowser
ActiveX control, which is part of Microsoft Internet Explorer. The progId is defined in the
Help macro. To learn more about ActiveX components in general, refer to MSDN. The control’s
leftMode property is set to FormLeft::LeftEdge, which docks the control on the left side of the
form; similarly, the heightMode property is set to FormHeight::ColumnHeight, which anchors
the control to the top and bottom of the form, and the width property is set to 150 pixels. Now
each target form has an ActiveX control capable of showing HTML text on the left side. You
can open any target from the main menu to validate it.

Tip You can find documentation of all kernel APIs under the System Documentation node
in the AOT.

366 Part III Under the Hood
Populating the Control
The controls are now laid out as planned. However, an HTML control without any content is
not very useful. This section shows how to find the run-time instance of the ActiveX control,
which is where you must send the HTML text. As already mentioned, the run-time controls
are instantiated in the form’s init method. The following code finds the run-time instance of
the ActiveX control from the form design.

class MyDocuPane
{

FormActiveXControl activeX;
...
public void afterInit()
{

if (isTargetForm)
{

activeX = formRun.design().controlName('myActiveX');
}

}
}

As the preceding code shows, you gain access to the run-time controls by calling the design
method on the formRun object, and you query the controls by their names. Notice the duality
between the beforeInit and afterInit methods. There are two sets of APIs: a design-time version
and a run-time version. The type names for the design-time version contain the word Build.

Tip The FormNotify method on the Info class is automatically invoked by the runtime when
certain form events, caused by user actions, occur. The following are supported events: form
opened, form closed, got focus, lost focus, record changed, and document handling icon
clicked. You can add event logic in this method as required.

To be notified each time the record in the form changes, go to the SysSetupFormRun class and
modify the docCursor method. The docCursor method is called from the formNotify method
on the Info class so that Document Handling can receive the selected record. The following
example changes the docCursor method on the SysSetupFormRun class by calling the update
method, so notification occurs when it is time to update the contents of the ActiveX control.

Common docCursor()
{ Common common;

if (infolog.docuHandlingActive())
{ common = super();

docuPane.update(common);
return common;

}
return null;

}

Chapter 13 Advanced MorphX Forms 367
Now it is time to implement the update method. Common is the base type for all table types. It
can contain a record from any table. The update method takes the currently selected record as
a common parameter, generates HTML text, and writes it to the ActiveX control, using a helper
method on the SysHelp class, as shown here.

class MyDocuPane
{

FormActiveXControl activeX;

...

public void update(common _common)

{

str html;

;

if (isTargetForm)

{

html = this.generateHTML(_common);

SysHelp::showHTML(activeX, html);

}

}

}

To see the contents of the generateHTML method, review the complete example listing at the
end of this chapter. For the purpose of this chapter, the HTML generation is kept as simple as
possible. If you want, you can fine-tune the styles to get exactly the output that you want.

Now all the target forms have an HTML ActiveX control on the left side that contains a list of
all the Document Handling notes for the currently selected record. The HTML content has a
hyperlink to create a new note and a hyperlink for each existing node. The steps in the next
section provide the ability to react when these hyperlinks are clicked.

Reacting to User Interface Events
Reacting to user interface events is usually simple—you just override the event method, or, for
ActiveX, choose the ActiveX event from the ActiveX Explorer. However, the form definition in
the AOT does not contain the ActiveX control because it was added at run time, so you need
another way to receive event notification.

The run-time form system can be told where to look for and invoke the event methods. This
subsystem is enabled by calling the controlMethodOverload method on the formRun class with
a true parameter. Then the form looks for methods on the formRun object. The method’s name
must adhere to a strict naming convention: <ControlName>_<MethodName>. An example of a
method name using this naming convention is myButton_clicked. When an event is fired, and
the method is not found on the formRun object, it defaults to the event method on the control.
The method must also have the same return type and parameters as the event method.

In this example, you cannot add the method to the formRun type because this requires that
you also change the definition of all target forms in the AOT. Instead, you can tell the form on

368 Part III Under the Hood
which object to look for the event methods by passing the object to the controlMethodOverload-
Object method. The following code enables this subsystem.

public void beforeInit()
{

...
if (isTargetForm)
{

formRun.controlMethodOverload(true);
formRun.controlMethodOverloadObject(this);
...

}
}

So far, this does not change anything because the class contains no event methods. The
following code adds an event method for the ActiveX event onevent_BeforeNavigate2, which
is fired when a user clicks a hyperlink.

void myActiveX_onEvent_BeforeNavigate2(
COM _pDisp,
COMVariant /* variant */ _URL,
COMVariant /* variant */ _Flags,
COMVariant /* variant */ _TargetFrameName,
COMVariant /* variant */ _PostData,
COMVariant /* variant */ _Headers,
COMVariant /* boolean */ _Cancel)

{
...

}

For the entire implementation, see the listing at the end of this chapter.

Form Opt Out
At this point in the example implementation, all the forms that constitute the target forms will
be affected. In some scenarios, however, you might want to exclude a specific form from the
targets. For example, you would want to exclude a form that already uses the controlMethod-
Overload subsystem, because only one class can be registered to receive the control method
events. The form is captured too early in the form initialization process to determine whether
controlMethodOverload will be used by the form itself. If the form itself uses controlMethodOver
load, it will inadvertently unregister your class, breaking your event-handling logic.

To give a form a chance to support opting out of a service or feature , you can determine whether
the form implements a certain method, and if it does, call it to see if it needs to opt out.

Note Forms in Dynamics AX cannot implement interfaces in the object-oriented sense.
Interfaces provide compile-time safe mechanisms for inter-object communication, which
is a stronger alternative than the late-binding mechanism used in this example. However,
interfaces are not supported for forms.

Chapter 13 Advanced MorphX Forms 369
The method profile to look for can be chosen arbitrarily. In this example, the following code
defines the method profile to look for.

public boolean useMyDocuPane()

{

}

Any form that needs to opt out can add this method as a new method and let it return false.
The following code calls this method in the isTargetForm method.

private boolean isTargetForm()
{

...

object formRunObj;

if (infolog.docuHandlingActive())
{

if (formHasMethod(formRun, IdentifierStr(useMyDocuPane)))
{

formRunObj = formRun;

if (!formRunObj.useMyDocuPane())

return false;

}

...

}

Notice how reflection is indirectly used to verify that the form implements the useMyDocuPane
method. If it does, it is invoked. Because the FormRun type does not have this method, you will
receive a compiler error if you try to call it directly on the formRun object. Because you have
already determined that the method exists, you can assign the formRun object to the general
object type. The compiler accepts any method called on the object type, and the runtime will
perform late binding to the method.

Now each form can opt out to prevent the Document Handling pane from being embedded in
the form.

The Final Result
The result of the code examples shown in the preceding sections can be seen in Figure 13-1.
The figure shows how the code modifies the customer form without actually modifying the
form definition itself.

Figure 13-2 shows a Unified Modeling Language (UML) object model diagram of the classes
used and modified in this chapter.

370 Part III Under the Hood
Figure 13-1 The customer form with MyDocuPane enabled.

Listings 13-1 and 13-2 show all the source code used to achieve the desired result. Listing 13-1
shows the implementation for capturing form instantiation. SysSetupFormRun is an existing
class. The changes made to the class appear in bold.

Listing 13-1 The changes to the SysSetupFormRun class.

public class SysSetupFormRun extends FormRun

{

...

MyDocuPane docuPane;
public void init()

{;

docuPane = new MyDocuPane(this);

docuPane.beforeInit();
super();
docuPane.afterInit();
SysSecurityFormSetup::loadSecurity(this);

}

Common docCursor()
{ Common common;

if (infolog.docuHandlingActive())

{

common = super();
docuPane.update(common);
return common;

}

return null;

}

}

Chapter 13 Advanced MorphX Forms 371
Figure 13-2 A UML object model of the final implementation.

Listing 13-2 shows the full implementation of the Document Handling pane constructed in
this chapter.

Sy
st

em
 C

la
ss

::F
o

rm
R

u
n

M
yD

o
cu

Pa
n

e

#
fo

rm
Ru

n
: S

ys
Se

tu
p

Fo
rm

Ru
n

#
fo

rm
 :

Fo
rm

#
is

Ta
rg

et
Fo

rm
 :

b
oo

le
an

#
ac

tiv
eX

 :
Fo

rm
A

ct
iv

eX
C

on
tr

ol

+
af

te
rl

ni
t(

)
+

be
fo

re
ln

it(
)

+
bu

tt
on

_c
lic

ke
d(

)
+

ge
ne

ra
te

H
TM

L(
)

-i
sT

ar
ge

tF
or

m
()

+
m

yA
ct

iv
eX

_o
nE

ve
nt

_B
ef

or
eN

av
ig

at
e2

()
+

ne
w

()
+

up
da

te
()

Sy
st

em
 C

la
ss

::F
o

rm

1

1

Sy
st

em
 C

la
ss

::F
o

rm
A

ct
iv

eX
C

o
n

tr
o

l

1
1

1

1

Sy
sS

et
u

p
Fo

rm
R

u
n

#
d

oc
uP

an
e

: M
yD

oc
uP

an
e

+
do

cC
ur

so
r(

) :
 C

om
m

on
+

in
it(

) :
 v

oi
d

+
lo

ad
U

se
rS

et
tin

g(
) :

 v
oi

d
+

ne
w

(in
 a

rg
s

: A
rg

s,
)

: v
oi

d
+

sa
ve

U
se

rS
et

tin
g(

) :
 v

oi
d

+
ta

sk
(in

_p
1

: i
nt

,)
 :

in
t

372 Part III Under the Hood
Listing 13-2 The complete source code for the MyDocuPane class.

class MyDocuPane
{

SysSetupFormRun formRun;
Form form;
boolean isTargetForm;
FormActiveXControl activeX;
#Define.myProtocol(@'myDocu:\\')

public void new(FormRun _formRun)
{;

if (_formRun)
{

formRun = _formRun;
form = formRun.form();
isTargetForm = this.isTargetForm();

}
}

private boolean isTargetForm()
{

FormBuildDataSource formBuildDataSource;
DictTable dictTable;
object formRunObj;

//Only target forms when document handling is active.
if (infolog.docuHandlingActive())
{

if (formHasMethod(formRun, IdentifierStr(useMyDocuPane)))
{

formRunObj = formRun;
if (!formRunObj.useMyDocuPane())

return false;
}

//Get the first (and only) data source.
if (form.dataSourceCount() == 1)
{

formBuildDataSource = form.dataSource(1);
dictTable = new DictTable(formBuildDataSource.table());
if (dictTable &&

dictTable.tableGroup() == TableGroup::Main)
{

return true;
}

}
}
return false;

}

public void beforeInit()
{

FormBuildDesign design = form.design();
FormbuildActiveXControl buildActiveX;
#Help

Chapter 13 Advanced MorphX Forms 373
if (isTargetForm)
{

buildActiveX = design.addControl(FormControlType::ActiveX, 'myActiveX');
buildActiveX.className(#WebBrowserClassName);
buildActiveX.leftMode(FormLeft::LeftEdge);
buildActiveX.heightMode(FormHeight::ColumnHeight);
buildActiveX.width(150);

}
}

public void afterInit()
{

if (isTargetForm)
{

activeX = formRun.design().controlName('MyActiveX');
}

}
public void update(common _common)
{

str html;
;

if (isTargetForm)
{

html = this.generateHTML(_common);
SysHelp::showHTML(activeX, html);

}
}
str generateHTML(Common _common)
{

DocuRef docuRef;
str html = '<html><body>';

html += @'<img border=0 src="'+
SysResource::getImagePath(ResourceStr(WebForm_NewRecord))+
'">New...<p>';

while select docuRef
where docuRef.RefCompanyId == _common.dataAreaId

&& docuRef.RefTableId == _common.TableId
&& docuRef.RefRecId == _common.RecId

{
html += '<a href="'+strfmt(#myProtocol+'%1',

record2Dynakey(docuRef))+'">';
html += docuRef.Name+'
';
html += docuRef.Notes+'
';
html += '';
html += strfmt("%1 %2", docuRef.createdDate,

docuRef.createdBy)+'<p>';
}

html += '<body><html>';
return html;

}
void myActiveX_onEvent_BeforeNavigate2(

COM _pDisp,

374 Part III Under the Hood
COMVariant /* variant */ _URL,

COMVariant /* variant */ _Flags,

COMVariant /* variant */ _TargetFrameName,

COMVariant /* variant */ _PostData,

COMVariant /* variant */ _Headers,

COMVariant /* boolean */ _Cancel)

{

Args args;

FormRun callFormRun;

str action;

FormObjectSet dataSource;

if (strStartsWith(_url.variant().bStr(), #myProtocol))
{

action = substr(_url.variant().bStr(),
strLen(#myProtocol)+1, maxInt());

//We take care of navigation from here...
_cancel.boolean(true);

args = new Args(formStr(DocuView));

callFormRun = ClassFactory::formRunClassOnClient(args);

callFormRun.init();

callFormRun.run();

dataSource = callFormRun.dataSource(1);

switch (action)

{

case 'new':
datasource.create();
break;

default:
datasource.findRecord(

dynaKey2Record(action, tableNum(DocuRef)));
break;

}

callFormRun.wait();

}

}

}

Chapter Summary
This chapter described how to implement a Document Handling pane that is automatically
added to certain forms. This included discussions on how to:

■ Capture form instantiation.

■ Use reflection on the form to find its methods.

■ Add controls at run time.

Chapter 13 Advanced MorphX Forms 375
■ Capture events to the automatically added controls.

■ Call a method on forms and validate its existence.

The techniques used in the chapter, especially those that describe how to add controls at run
time, can be applied in many scenarios.

The implementation approach used in this chapter is also used in the Dynamics AX
application, in which the same approach is leveraged through the SysListPanel framework.
The framework shows two list panels with buttons that allow you to move items between
them. An example of this is the Users form, on which you assign users to user groups.

Chapter 14

Reflection

In this chapter:

Introduction .377

Reflection System Functions .378

Reflection APIs .382

Chapter Summary .392

The objectives of this chapter are to:

■	 Introduce the concept of reflection.

■	 Demonstrate the capabilities and limitations of the available reflection system functions
and APIs.

Introduction
Reflection is a programmatic discoverability mechanism of the application model. In other
words, reflection gives you APIs for reading and traversing the element definitions. By using
the reflection APIs in the MorphX development environment, you can query metadata as
though it were a table, an object model, or a tree structure.

You can do interesting things with the reflection information. The Reverse Engineering tool is
an excellent example of the power of reflection. Based on element definitions in MorphX, the
tool generates Unified Modeling Language (UML) models that can be browsed in Microsoft
Office Visio. Chapter 13, “Advanced MorphX Forms,” shows how reflection is used at run
time to determine whether a form meets certain criteria.

Reflection also allows you to invoke methods on objects. This will be of little value to business
application developers who construct class hierarchies properly. For framework developers, it is
much more valuable. Suppose, for example, you want to programmatically write any record to an
XML file that includes all of the fields and display methods. Reflection allows you to determine
the fields and their value and also invoke the display methods to capture their return values.

X++ features a set of system functions that can be used for reflection, as well as three reflection
APIs. The reflection system functions are:

■	 Intrinsic functions A set of functions that allows you to refer to an element’s name or
ID in a compile time–safe manner
377

378 Part III Under the Hood
■	 The TypeOf system function A function that returns the primitive type for a variable

■	 The ClassIdGet system function A function that returns the ID of the class for an
instance of an object

The reflection APIs are:

■	 Table data A set of tables that contains all element definitions. The tables give you
direct access to the contents of the .aod files. You can query for the existence of elements
and certain properties, such as created by, created time, and created date. You cannot
retrieve information about the contents or structure of each element.

■	 Dictionary A set of classes that provides a type-safe mechanism for reading metadata
from an object model. Dictionary classes provide basic and more abstract information
about elements in a type-safe manner. With few exceptions, this API is read-only.

■	 Treenodes A class hierarchy that provides the Application Object Tree (AOT) with
an API that can be used to create, read, update, and delete any piece of metadata or
source code. This API can tell you everything about anything in the AOT. You navigate
the treenodes in the AOT through the API and query for metadata in a non-type-safe
manner. This API also allows you to programmatically create, update, and delete
elements and sub-elements in the AOT. This topic is, however, beyond the scope of
this chapter.

Reflection System Functions
The X++ language features a set of system functions that can be used to reflect on elements.
They are described in the following sections.

Intrinsic Functions

You should use intrinsic functions whenever you need to reference an element from within
X++ code. Intrinsic functions provide a way to make a type-safe reference. The compiler
will recognize the reference and verify that the element being referenced exists. If the
element does not exist, the code will not compile. Because elements have their own life
cycles, a reference does not remain valid forever; an element may be renamed or deleted.
Using intrinsic functions ensures that you will be notified at compile time of any broken
references. A compiler error early in the development cycle is always better than a run-time
error later.

All references made by using intrinsic functions are captured by the Cross-Reference tool.
This means that you can determine where any element is referenced, regardless of whether
the reference is in metadata or code. Note that this works only for the elements included in
the Cross-Reference tool. The Cross-Reference tool is described in Chapter 4, “The MorphX
Development Tools.”

Chapter 14 Reflection 379
Consider these two implementations:

print "MyClass"; //Prints MyClass

print classNum(MyClass); //Prints MyClass

They result in exactly the same thing: the string "MyClass" is printed. As a reference, the first
implementation is weak. It will eventually break, which will result in time spent debugging.
The second implementation is strong and unlikely to break. If you were to rename or delete
MyClass, you could use the Cross-Reference tool to do an impact analysis of your changes and
correct any broken references.

You can reference all elements in the AOT by their names by using the intrinsic function
<ElementKind>Str. Some elements also have an ID by which they can be referenced with the
intrinsic function <ElementKind>Num. Intrinsic functions are not limited to parent objects;
they also exist for class methods, table fields, indexes, and methods. More than 50 intrinsic
functions are available. Here are a few examples of intrinsic functions.

print fieldNum(MyTable, MyField); //Prints 50001

print fieldStr(MyTable, MyField); //Prints MyField

print methodStr(MyClass, MyMethod); //Prints MyMethod

print formStr(MyForm); //Prints MyForm

An element’s ID is assigned when the element is created. The ID is an application model
layer–dependant sequential ID. In the preceding example, 50001 is the ID assigned to the
first element created in the USR layer. The ID scheme is explained in Chapter 1, “Architectural
Overview.”

Two other intrinsic functions are worth noting: identifierStr and literalStr. IdentifierStr allows
you to refer to elements when a more feature-rich intrinsic function is not available. IdentifierStr
provides no compile-time checking and no cross-reference information. Using the IdentifierStr
function is much better than using a literal, however, because the intention of referring to an
element is captured. If a literal is used, the intention is lost—the reference could be to user
interface text, a file name, or something completely different. The Best Practices tool detects
use of identifierStr and issues a best practice warning.

The Microsoft Dynamics AX runtime automatically converts any reference to a label identifier
to the label text for the label identifier. In most cases, this is the desired behavior; however, you
can avoid the conversion by using LiteralStr. LiteralStr allows you to refer to a label identifier
without converting the label ID to the label text, as shown here.

print <;$QD>@SYS1<;$QD>; //Prints time transactions

print literalStr(<;$QD>@SYS1<;$QD>); //Prints @SYS1

380 Part III Under the Hood
In the first line of the example, the label identifier (@SYS1) is automatically converted to the
label text (Time transactions). In the second line, the reference to the label identifier is not
converted.

The TypeOf System Function

The TypeOf system function takes a variable instance as a parameter and returns the primitive
type of the parameter. Here is an example.

int i = 123;

str s = "Hello world";

MyClass c;

Guid g = newGuid();

print typeOf(i); //Prints Integer

print typeOf(s); //Prints String

print typeOf(c); //Prints Class

print typeOf(g); //Prints Guid

pause;

The return value is an instance of the Types system enumeration. It contains an enumeration
for each primitive type in X++.

The ClassIdGet System Function

The ClassIdGet system function takes an object as a parameter and returns the class ID for the
class element of which the object is an instance. If the parameter passed is Null, the function
returns the class ID for the declared type. Here is an example.

MyBaseClass c;

print classIdGet(c); //Prints 50001

c = new MyDerivedClass();

print classIdGet(c); //Prints 50002

pause;

This function is particularly useful when determining the type of an object instance. Suppose
you need to determine whether a class instance is a particular class. The following example
shows how ClassIdGet can be used to determine the class ID of the _anyClass variable
instance. If the _anyClass variable really is an instance of MyClass, it is safe to assign it to the
variable myClass.

void myMethod(object _anyClass)
{

MyClass myClass;

Chapter 14 Reflection 381
if (classIdGet(_anyClass) == classNum(MyClass))
{

myClass = _anyClass;

...

}

}

Notice the use of the intrinsic function, which evaluates at compile time, and the use of
classIdGet, which evaluates at run time.

Because it does not take inheritance into account, this sort of implementation is likely
to break the object model. In most cases, any instance of a derived MyClass class should
be treated as an actual MyClass instance. The logic to handle inheritance was rather
cumbersome to implement correctly in the previous version of Dynamics AX, but two new
static methods on SysDictClass in version 4.0 make it trivial. The new methods are is and
as, which you will recognize if you are familiar with C#. The is method returns true if the
object passed in is of a certain type, and the as method can be used to cast an instance to
a particular type. The as method returns null if the cast is invalid.

These two methods also take interface implementations into account. So with the as method,
you can cast your object to an interface. Here is a revision of the preceding example using the
as method.

void myMethod(object _anyClass)
{

MyClass myClass = SysDictClass::as(_anyClass, classNum(MyClass));

if (myClass)

{

...

}

}

Here is an example of an interface cast.

void myMethod2(object _anyClass)

{

SysPackable packableClass =

SysDictClass::as(_anyClass, classNum(SysPackable));

if (packableClass)

{

packableClass.pack();

}

}

382 Part III Under the Hood
Note This book promotes customization through inheritance using the Liskov substitution
principle. In object-oriented programming, the Liskov substitution principle is a particular
definition of subtype that was introduced by Barbara Liskov and Jeannette Wing in a 1993
paper entitled “Family Values: A Behavioral Notion of Subtyping.” When you follow the Liskov
substitution principle, you substitute one implementation of a class with another implementation
by using inheritance. The class being substituted must have its constructor encapsulated, so
the developer has to modify the construction of the original class in only one place. This is why
you will find static construct methods on most classes in Dynamics AX. The substituted class
must inherit from and behave as the original class. The primary benefit is minimization of the
layering shadow, which makes code upgrade much easier. Dict classes and SysDict classes,
good examples of class substitution, are discussed later in this chapter.

Reflection APIs
The X++ system library includes three APIs that can be used to reflect on elements. They are
described in the following sections.

The Table Data API

Suppose that you want to find all classes whose names begin with Invent and that have been
modified within the last month. The following example shows one way to do it.

static void findInventoryClasses(Args _args)
{

UtilElements utilElements;

while select name from utilElements
where utilElements.RecordType == UtilElementType::Class

&& utilElements.Name like 'Invent*'
&& utilElements.ModifiedDate == today()-30

{
info(strfmt("%1", utilElements.Name));

}
}

The UtilElements table provides access to all elements. The RecordType field holds the element
kind. Other fields in the UtilElements table that can be reflected on are Name, CreatedBy,
CreatedTime, CreatedDate, ModifiedBy, ModifiedTime, and ModifiedDate.

Because of the nature of the table data API, the UtilElements table can also be used as a
data source in a form or report. A form showing the table data is available from Tools\
Development Tools\Application Objects\Application Objects. In the form, you can use the
standard query capabilities to filter and search the data.

Chapter 14 Reflection 383
As you learned in Chapter 2, “The MorphX Development Environment,” some elements
have sub-elements associated with them. For example, a table has fields and methods. This
parent/child association is captured in the ParentId field of the sub-element. The following job
finds all static method elements on the CustTable table element by selecting only table static
method elements whose parentId equals the CustTable’s table ID.

static void findStaticMethodsOnCustTable(Args _args)
{

UtilElements utilElements;

while select name from utilElements

where utilElements.recordType == UtilElementType::TableStaticMethod

&& utilElements.parentId == tableNum(CustTable)

{

info(strfmt("%1", utilElements.name));

}

}

Notice the use of field lists in the select statements in the examples in this section. Each record
in the table also has a binary large object (BLOB) field that contains all the metadata, source
code, and bytecode. This BLOB field cannot be interpreted from X++ code, so you do not need
to fetch it. When you specify a file list to the select statement with fields from the primary
index, fetching the actual record is avoided, and the select statement will return the result
much faster. The primary index contains these fields: RecordType, ParentId, Name, and
UtilLevel.

The UtilLevel field contains the layer of the element. The following job finds all parent
elements in the USR layer.

static void findParentElementsInUSRLayer(Args _args)
{

UtilElements utilElements;

while select recordType, name from utilElements

where utilElements.parentId == 0

&& utilElements.utilLevel == UtilEntryLevel::usr

{

info(strfmt("%1 %2", utilElements.recordType, utilElements.name));

}

}

As you learned in Chapter 1, elements can have IDs. The UtilElements table cannot provide ID
information. To get ID information, you must use the UtilIdElements table. The two tables are
both views on the elements in the .aod files; the only difference is the inclusion of the ID field in
the UtilIdElements table. The following is a revision of the previous job that also reports IDs.

384 Part III Under the Hood
static void findParentElementsInUSRLayer(Args _args)
{

UtilIdElements utilIdElements;

while select RecordType, Id, Name from utilIdElements
where utilIdElements.ParentId == 0

&& utilIdElements.UtilLevel == UtilEntryLevel::usr
{

info(strfmt("%1 %2 %3",
utilIdElements.RecordType,
utilIdElements.Name,
utilIdElements.Id));

}
}

Although this section has discussed two tables that contain the .aod files, all of the application
data files have a table reflection API similar to the ones discussed so far. Table 14-1 provides an
overview.

Table 14-1 Reflection Tables

Table names Description

UtilElements UtilIdElements Tables containing the .aod files, which contain elements.

UtilElementsOld UtilIdElements-
Old

Tables containing the .aod files in the Old application folder.
This information is useful during code upgrades.

UtilApplHelp Tables containing the .ahd files, which contain end-user online
Help information.

UtilApplCodeDoc Tables containing the .add files, which contain developer
documentation information for elements.

UtilCodeDoc Tables containing the .khd files, which contain developer
documentation information for Dynamics AX system APIs.

All the tables listed in Table 14-1 have an associated helper class. These classes contain a set of
static methods that are generally helpful. All of the classes have the same name as the table,
prefixed with an x.

Suppose that you want to report the AOT path for MyForm from the table utilIdElements. You
could use the xUtilIdElements function to return this information, as in the following code.

static void findAOTPathForMyForm(Args _args)
{

UtilIdElements utilIdElements = xUtilIdElements::find(
UtilElementType::Form, FormStr(MyForm));

if (utilIdElements)
info(xUtilIdElements::getNodePath(utilIdElements));

}

Chapter 14 Reflection 385
Note When you use the table data API in an environment with version control enabled,
the values of some of the fields will be reset during the build process. In the build process,
.xpo files are imported into empty layers in Dynamics AX. The values of the CreatedBy,
CreatedTime, CreatedDate, ModifiedBy, ModifiedTime, and ModifiedDate fields are set during
this import process and therefore do not survive from build to build.

The Dictionary API

The dictionary API is a type-safe reflection API that can reflect on many elements. The
following code sample is a revision of the preceding example that finds inventory classes by
using the dictionary API. You cannot use this API to get information about when an element
was modified. Instead, this example reflects a bit more on the class information and only lists
abstract classes.

static void findAbstractInventoryClasses(Args _args)
{

Dictionary dictionary = new Dictionary();
int i;
DictClass dictClass;

for(i=1; i<=dictionary.classCnt(); i++)
{

dictClass = new DictClass(dictionary.classCnt2Id(i));

if (dictClass.isAbstract() &&
strStartsWith(dictClass.name(), 'Invent'))

{
info(strfmt("%1", dictClass.name()));

}
}

}

The Dictionary class provides information about which elements exist. With this information,
you can instantiate a DictClass object that provides specific information about the class,
such as whether the class is abstract, final, or an interface, which class it extends, whether it
implements any interfaces, and its methods. Notice that the DictClass class can also reflect on
interfaces. Also notice how the class counter is converted into a class ID; this is required
because the IDs are not listed consecutively.

When you run this job, you will notice that it is much slower than the implementation that
uses the table data API—at least the first time you run it! The job performs better after the
information is cached.

Figure 14-1 shows the object model for the dictionary API. As you can see, some elements
cannot be reflected upon by using this API.

386 Part III Under the Hood
DictType

DictEnum

DictSecurityKey

DictConfigurationKey

DictLicenseCode

DictClass

DictMethodDictView

DictTable

Dictionary

DictField

DictFieldGroup

DictRelation

DictIndex

DictMethod

Figure 14-1 The object model for the dictionary reflection API.

Starting at the Dictionary class level is unnecessary when using this API. The following
example revises the FindStaticMethodsOnCustTable from the preceding code by using the
dictionary API. It also reports the method parameters of the methods.

static void findStaticMethodsOnCustTable(Args _args)
{

DictTable dictTable = new DictTable(tableNum(CustTable));
DictMethod dictMethod;
int i;
int j;
str parameters;

for (i=1; i<=dictTable.staticMethodCnt(); i++)
{

dictMethod = new DictMethod(
UtilElementType::TableStaticMethod,
dictTable.id(),
dictTable.staticMethod(i));

parameters = '';
for (j=1; j<=dictMethod.parameterCnt(); j++)
{

parameters += strfmt("%1 %2",
extendedTypeId2name(dictMethod.parameterId(j)),
dictMethod.parameterName(j));

if (j<dictMethod.parameterCnt())
parameters += ', ';

}
info(strfmt("%1(%2)", dictMethod.name(), parameters));

}
}

Chapter 14 Reflection 387
As mentioned earlier, reflection can also be used to invoke methods on objects. This example
invokes the static Find method on the table CustTable.

static void invokeFindOnCustTable(Args _args)
{

DictTable dictTable = new DictTable(tableNum(CustTable));
CustTable customer;

;
customer = dictTable.callStatic(

tableStaticMethodStr(CustTable, Find), '4000');

print customer.Name; //Prints Light and Design
pause;

}

Notice the use of the intrinsic function tableStaticMethodStr to make a reference to the Find
method.

You can also use this API to instantiate class and table objects. Suppose that you want to select
all records in a table with a given table ID. The following example shows how.

void findRecords(TableId _tableId)
{

DictTable dictTable = new DictTable(_tableId);
Common common = dictTable.makeRecord();
FieldId primaryKeyField = DictTable.primaryKeyField();

while select common

{

info(strfmt("%1", common.(primaryKeyField)));

}

}

First, notice the call to the makeRecord method that instantiates a table cursor object that
points to the correct table. You can use the select statement to select records from the table. If
you wanted to, you could also insert records by using the table cursor. Notice the syntax used
to get a field value out of the cursor object; this syntax allows any field to be accessed by its
field ID. This example simply prints the content of the primary key field. The makeObject
method on the class DictClass can be used to create an object instance of a class.

All the classes in the dictionary API discussed so far are defined as system APIs. On top of each
of these is an application-defined class that provides even more reflection capabilities. These
classes are named SysDict<ElementKind>, and each class extends its counterpart in the system
API. For example, SysDictClass extends DictClass.

Consider the following example. Table fields have a property that specifies whether the field
is mandatory. The DictField class returns the value of the mandatory property as a bit set in

388 Part III Under the Hood
the return value of its flag method. Testing of a bit set is somewhat cumbersome, and if the
implementation of the flag changes, the consuming applications will break. The SysDictField
class encapsulates the bit-testing logic in a mandatory method. Here is how the method is
used.

static void mandatoryFieldsOnCustTable(Args _args)
{

DictTable dictTable = new DictTable(tableNum(CustTable));

SysDictField sysDictField;

int i;

for (i=1; i<=dictTable.fieldCnt(); i++)

{

sysDictField = new SysDictField(

dictTable.id(), dictTable.fieldCnt2Id(i));

if (sysDictField.mandatory())

info(sysDictField.name());

}

}

You might also want to browse the SysDict classes for static methods. Many of these provide
additional reflection information and better interfaces.

Notice how all the examples instantiate the dictionary classes by using their new constructor.
An alternative way exists that some developers find helpful, but it should be avoided. Recall
the hierarchy of the objects shown in Figure 14-1. A parent object can return an instance of a
child object, as shown here.

DictTable dictTable = new DictTable(tableId);

DictField firstField, nextField;

firstField = dictTable.fieldObject(dictTable.fieldNext(0));

nextField = dictTable.fieldObject(dictTable.fieldNext(dictField.id()));

The primary reason to avoid this construct is that you cannot substitute Dict classes with
SysDict classes. If you ever need reflection methods available only on the SysDict classes, you
must refactor the code. Writing the code so that it is easy to substitute the class will make
refactoring easier and lower the risk of introducing bugs in the refactoring process. Another
reason to avoid this construct is the lack of API consistency. The examples used in this section
that instantiate dictionary classes all follow the same structure, which is consistent for all the
classes in the dictionary API.

The Treenodes API

The two reflection APIs discussed so far both had limitations. The table data API can reflect
only on the existence of elements and a small subset of element metadata. The dictionary API

Chapter 14 Reflection 389
can reflect in a type-safe manner but only on the element types that are exposed through
this API.

The treenodes API can reflect on everything, but as always, power comes at a cost. The treenodes
API is harder to use than the other reflection APIs discussed. It can cause memory and perfor
mance problems, and it is not type-safe.

The following example revises the example from the section “The Table Data API” to find
inventory classes by using the treenodes API.

static void findInventoryClasses(Args _args)
{

TreeNode classesNode = TreeNode::findNode(@'\Classes');

TreeNodeIterator iterator = ClassesNode.AOTiterator();

TreeNode classNode = iterator.next();

ClassName className;

while (classNode)
{

className = classNode.treeNodeName();

if (strStartsWith(className, 'Invent'))

info(strfmt("%1", className));

classNode = iterator.next();

}

}

First, notice how you find a node in the AOT based on the path as a literal. The AOT macro
contains definitions for the primary AOT paths. For readability reasons, the examples in this
chapter do not use the macro. Notice the use of a TreeNodeIterator class to loop over the
classes.

If you stay at the class level in the AOT, you will not encounter problems, but be careful if you
go any deeper. Tree nodes in MorphX contain data that is not managed by the Dynamics AX
runtime, and the memory of the nodes is not automatically deallocated. For each parent node
that is expanded, the TreenodeRelease method should be called to free the memory. For an
example of this, see the doTreeNode method on the SysBpCheck class.

The following small job prints the source code for the doTreeNode method by calling the
AOTgetSource method on the treenode object for the doTreeNode method.

static void printSourceCode(Args _args)

{

TreeNode treeNode =

TreeNode::findNode(@'\Classes\SysBpCheck\doTreenode');

;

info(treeNode.AOTgetSource());

}

390 Part III Under the Hood
The treenodes API provides access to the source code of nodes in the AOT. You can use
the class ScannerClass to turn the string that contains the source code into a sequence of
compilable tokens.

The following code revises the preceding example to find mandatory fields on the table
CustTable.

static void mandatoryFieldsOnCustTable(Args _args)

{

TreeNode fieldsNode = TreeNode::findNode(

@'\Data Dictionary\Tables\CustTable\Fields');

TreeNode field = fieldsNode.AOTfirstChild();

while (field)

{

if (field.AOTgetProperty('Mandatory') == 'Yes')

info(field.treeNodeName());

field = field.AOTnextSibling();

}

}

Notice the alternate way of looping over sub-nodes. Both this and the iterator approach work
equally well. The only way to determine that a field is mandatory with this API is to know that
your node models a field and that field nodes have a property named Mandatory, which is set
to Yes (not to True) for mandatory fields.

Use the Properties macro when referring to property names. It contains text definitions for
all property names. By using this macro, you avoid using literal names, as in reference to
Mandatory in the preceding example.

Unlike the dictionary API, which cannot reflect all elements, everything can be reflected with
the treenodes API. This fact is exploited in the SysDictMenu class, which provides a type-safe
way to reflect on menus and menu items by wrapping information provided by the treenodes
API in a type-safe API. The following job prints the structure of the MainMenu menu, which
typically is shown in the Navigation Pane.

static void printMainMenu(Args _args)
{

void reportLevel(SysDictMenu _sysDictMenu)

{

SysMenuEnumerator enumerator;

if (_sysDictMenu.isMenuReference() ||

_sysDictMenu.isMenu())

{

setPrefix(_sysDictMenu.label());

Chapter 14 Reflection 391
enumerator = _sysDictMenu.getEnumerator();

while (enumerator.moveNext())

reportLevel(enumerator.current());

}

else

info(_sysDictMenu.label());

}

reportLevel(SysDictMenu::newMainMenu());

}

Notice how the setPrefix function is used to capture the hierarchy and how the reportLevel
function is called recursively.

The treenodes API also allows you to reflect on forms and reports, as well as their structure,
properties, and methods. The Compare tool in MorphX uses this API to compare any
node with any other node. The SysTreeNode class contains a TreeNode class and implements a
cascade of interfaces, which makes TreeNode classes consumable for the Compare tool and the
Version Control tool. The SysTreeNode class also contains a powerful set of static methods.

The TreeNode class is actually the base class of a larger hierarchy. You can cast instances to
specialized TreeNode classes that provide more specific functionality. The hierarchy is not fully
consistent for all nodes. You can browse the hierarchy in the AOT by clicking System
Documentation, clicking Classes, right-clicking TreeNode, pointing to Add-Ins, and then
clicking Application Hierarchy.

The xUtil classes shown in the table data API examples contain methods for transitioning
between the class paradigm of TreeNode classes and the table paradigm of UtilElements
tables. Here is an example.

TreeNode node1 = TreeNode::findNode(@'\Data Dictionary\Tables\CustTable');

UtilElements utilElements = xUtilElements::findTreeNode(custTableNode);

TreeNode node2 = xUtilElements::getNodeInTree(utilElements);

Although this section has only discussed the reflection functionality of the treenode API, you
can use the API just as you would use the AOT designer. You can create new elements and
modify properties and source code. The Wizard Wizard uses the treenode API to generate
the project, form, and class implementing the wizard functionality. You can also compile and
get layered nodes and nodes from the Old Application folder (located in Documents And
Settings\All Users\Application Data\Microsoft\Dynamics AX 4.0\Ax Application\Appl\
Standard\Old). The capabilities that go beyond reflection are very powerful, but proceed with
great care. Obtaining information in a non-type-safe manner requires caution, but writing in a
non-type-safe manner can lead to cataclysmic situations.

392 Part III Under the Hood
Chapter Summary
This chapter introduced the concept of reflection and showed examples of the three
reflection APIs. The examples are designed so that you can compare the APIs and pick the
one that matches your needs. You are encouraged to try using the reflection APIs, especially
the dictionary API. This chapter also explained why you should always use intrinsic
functions, rather than hard-coded text, when referring to elements.

For more examples on the use of reflection APIs, review the SysBPCheck classes. These classes
essentially validate anything worth validating in metadata and source code for any node in the
AOT, and they make heavy use of all three of the reflection APIs.

Chapter 15

System Classes

In this chapter:

Introduction .393

The Global Session Classes .393

The Global Class .398

The Collection Classes .400

Chapter Summary .413

The objectives of this chapter are to:

■	 Introduce the global session classes: appl, infolog, classFactory, and versionControl.

■	 Explain the startup sequence of Microsoft Dynamics AX 4.0.

■	 Show how to extend the X++ function library by using the Global class.

■	 Introduce the collection classes in Dynamics AX 4.0 and show examples of how they can
be used.

■	 Discuss how to use collections optimally and effectively.

Introduction
Dynamics AX 4.0 provides a rich set of classes on which to build your application. Some of
these classes are defined by the system and are sometimes referred to as kernel classes. Others
are defined in X++ in the Application Object Tree (AOT) and are typically prefixed with Sys.

This chapter is a collection of important classes not covered elsewhere in this book. The
chapter describes only the most commonly used system classes. The product documentation
included with Dynamics AX 4.0 includes additional class documentation.

The Global Session Classes
The Dynamic AX runtime features a wide range of classes that can be instantiated when
needed. Also, five objects are globally available for the duration of the client session: appl
(an instance of Application), infolog (an instance of Info), classFactory (two instances of Class-
Factory), and versionControl (an instance of VersionControl). Only four objects are listed
because two objects share the name classFactory. (This is explained later in the chapter.) By
using the debugger, you can access these objects on the Globals tab in the Variables window.
393

394 Part III Under the Hood
All of the global session classes are defined in the AOT, so you can modify existing methods
and add new methods. Because they are special classes, they appear after all other classes
in the Classes category.

The primary purpose of these classes is to provide type-safe run-time support for event
generation. These classes provide a set of methods that are invoked by the runtime and
can be overridden by the application. This provides a type-safe event implementation. If a
method is not overridden, the system-defined implementation is invoked. By overriding
methods, the application can take action based on parameters passed to the methods. For
example, the formNotify method on the infolog object is invoked by the runtime when
certain form events occur.

The classes also serve a secondary purpose. They provide a set of useful API-like methods that
can return various static information about the client and the server, such as their location on
the network, their version numbers, and so on.

The Startup Sequence

The global session classes are instantiated as soon as the runtime is initialized. Figure 15-1
shows the startup sequence.

The first call from the runtime into X++ is when the appl object is created as an instance of
the Application class. An interesting thing happens next—the Application constructor calls
the syncApplTables method. You might know that during installation of Dynamics AX, the
Installation Checklist includes a synchronization step that prepares the database for storing
data. You might wonder, then, how the database stores information entered before the
synchronization step, such as license codes and the progress in the checklist. All kernel-defined
tables are synchronized every time Dynamics AX starts. The same applies to the application
tables defined in the syncApplTables method. For performance reasons, synchronization
occurs only when the table definitions have changed.

After instantiation of appl come the instantiation of infolog on the client tier, classFactory on the
server, classFactory on the client, and finally, versionControl on the client tier. At this point, all
the global session classes are instantiated. You should not place logic in the constructors of
these classes. If the logic fails for some reason, you might not be able to start the Application
Object Server (AOS) because it follows the same startup sequence as the client. If you cannot
start the AOS, you cannot start any clients, you cannot debug, and you cannot fix the problem.
You would have to find a system backup in your archives.

If you need to execute logic during startup, you should implement it in one of the startupPost
methods. If you want the logic to run on the server tier, you must implement it in the Application
.startupPost method; if you want it to run on the client tier, implement it in the Info.startupPost
method. These two methods are reserved for your business logic needs. They are intentionally
kept empty in the SYS layer and will not be modified in future versions of Dynamics AX. The
startupPost methods are provided to allow you to avoid changing to the two startup methods.

Chapter 15 System Classes 395
The startup methods are for system initialization, and they are modified with each version. If
you overlayer one of the startup methods, Dynamics AX will probably not start after an
upgrade because your changes prevent new initialization logic from executing.

«client»
Runtime

new()

syncApplTables()

new

new()

«server»
appl : Application

«client»
infolog : Info

«server»
classFactory : ClassFactory

«client»
classFactory : ClassFactory

new()

new()

startup
(StartupCmd) startupPost()

startup

«client»
versionControl : VersionControl

startupPost

init()

Figure 15-1 The startup sequence.

If you require business logic to be executed on a startup command passed to the client in the
format ax32.exe –startupcmd=<myCommand>, you can use the SysStartupCmd framework.
The SysStartupCmd framework is called from both Application.startup and Info.startup.

The Application Class

The most important feature of the Application class is that it runs on the server. Each client
session has its own instance of this class on the server. The Application class cannot be used
for client-to-client communication. You always have an instance of the class available in the
global object appl; you should never create your own instance.

396 Part III Under the Hood
Here is an example of the appl object used in X++.

appl.setDefaultCompany('DAT');

The setDefaultCompany method changes the current company accounts.

Methods on this class are called when database synchronization starts, when records are
inserted, updated, or deleted, and when transaction scope begins, is aborted, or is committed.

The Info Class

The Info class runs on the client tier. You always have an instance of the class available named
infolog; you should never create your own instance of this class.

Methods on this class are called when a form is opened and closed, when the data source
in a form changes record, and when the client enters idle mode. The Info class also provides
visualization of messages sent to the Infolog message logging subsystem. When an exception
is thrown or the error, warning, info, or checkFailed methods are called, a message is posted to
the Infolog message queue. When the client enters idle mode, it processes all the messages
and displays them in the Infolog form. You can find methods such as copy, cut, clear, add,
import, and export on the Info class. These methods allow you to modify the queue before it is
processed. The following example illustrates the queue.

container data;

print infolog.line(); //Prints 0

info("Post this information message to the Infolog queue");

warning("Post this warning message to the Infolog queue");

error("Post this error message to the Infolog queue");

print infolog.line(); //Prints 3
data = infolog.cut(2, 3); //From = 2, To = 3
print infolog.line(); //Prints 1
...
infolog.view(data);

The ClassFactory Class

As the name of this class indicates, ClassFactory is a factory. At run time, two instances of
the ClassFactory class exist, and they share name classFactory. However confusing the
implementation details might sound, this is a powerful concept. When you call a method
on classFactory from code running on the client, you are calling the classFactory object on the
client tier; when you call a method on classFactory from code running on the server, you are
calling the classFactory object on the server tier. Therefore, you will never make a call across

Chapter 15 System Classes 397
tiers, which impedes performance, when calling a method on classFactory. If the appl and
infolog objects are thought of as cousins that reside on the two tiers, the two classFactory
objects are twins.

Because they are two instances of the same class, the classFactory objects do not share member
variables. If you set a value on the client instance, you cannot retrieve it on the server instance.
Remember this when debugging the ClassFactory class.

The classFactory objects are called when the runtime must instantiate forms, reports, and
certain system dialogs, such as the Label Editor, Query form, and Compiler Output form. If
you need to instantiate a new form or report, you should use the factory. The following code
shows how to correctly instantiate a form.

Args args = new Args(formStr(<FormName>));

FormRun formRun = classFactory.formRunClass(args);

By instantiating all forms through the same factory, you can substitute forms and, at run time,
change forms. This is discussed in detail in Chapter 13, “Advanced MorphX Forms.”

The VersionControl Class

The VersionControl class is used for MorphX version control of elements and is covered in
depth in Chapter 4, “The MorphX Development Tools.”

The SysGlobalCache Class

As you consider possible uses for these global session class instances, the first thing you might
think of is storage of global variables. This is exactly what these classes should be used for,
and you do not even have to modify them. The appl, infolog, and classFactory objects each hold
an instance of the SysGlobalCache class. This means that you have a cache on the client, the
server, and your current tier.

If your design calls for the use of global variables, you should reconsider your design. Global
variables accessed and modified from multiple places can make your source code fail in
unpredictable ways, typically far from the real problem. This makes debugging hard. Steve
McConnell, in his book Code Complete, Second Edition, expressed it well:

While the road to programming hell is paved with global variables, class data presents
far fewer risks.

As the SysGlobalCache name implies, it should be used for caching of information, preferably
static information. If the cache is not updated, it will remain there for the duration of the client
session.

Here is an example of the correct use of the SysGlobalCache class.

398 Part III Under the Hood
public static client server List myStaticList()

{

SysGlobalCache cache = classFactory.globalCache();

List list = cache.get(classStr(MyClass), funcName(), null);

if (!list)
{

// Populate list.

list = new List(...);

...

cache.set(classStr(MyClass), funcName(), list);

}

return list;

}

First, notice the use of the global cache on classFactory. The classFactory object is used because
the static method can run on both the client and server tiers. The first time it is called on
each tier, you populate the list and cache it.

Also notice the parameters to the get method. The first two parameters are the key to
the cached values inside the global cache. You use an intrinsic function to indicate which
class owns this cached information. You use the system function funcName as the second
parameter. This function returns the type name of the class and the name of the current
method. In the preceding example, this is MyClass.myStaticList.

The example could also have used the intrinsic function staticMethodStr(MyClass, myStatic-
List). However, the use of funcName makes the implementation more robust because it ensures
encapsulation. If the code is copied into another method, it will not access the same cache
because funcName will evaluate to something different. If the intrinsic function approach
were used, it would access the same cache, and you would have taken the first step toward
“programming hell.”

The third parameter to the get method is the value returned if the cache is empty. This is
required on the API because the cache can hold instances of any type, even primitive types,
table types, and container types.

The Global Class
The Global class contains about 250 default static methods. Each of these methods can
be considered an extension to the built-in functions in the X++ language. Normally, when
referring to a static method on a class in X++, you must use the following syntax.

ClassName::methodName(...);

Chapter 15 System Classes 399
However, the compiler treats the methods on the Global class in a special way. It allows you to
omit the reference to the class name. These two lines have the same meaning.

Global::info(...);

info(...);

The info method on the Global class is typically used to send an informational message to the
Infolog form.

This compiler feature can make X++ code more readable. If you find yourself referring to the
same method from many places or repeatedly implementing the same trivial functionality, you
should consider adding new methods to the Global class.

In Dynamics AX 4.0, the strStartsWith method is added to the Global class, as shown here.

static boolean strStartsWith(str _string, str _potentialStart)

{

if (substr(_string, 1, strlen(_potentialStart)) == _potentialStart)

return true;

return false;

}

This method qualifies for the Global class because it is generally useful, and because it hides the
trivial implementation details of determining whether the start of a string matches another
string. If the implementation changes (because a faster algorithm is found, for example), only
the single method that encapsulates the implementation details must be changed, rather than
all instances across the program. This encapsulation also makes the X++ code simpler, allowing
you to focus on the problem domain instead of on low-level string implementation details.

To decide whether a method belongs on the Global class or is better suited to another class,
you must consider the context provided by the class name when it is used. When it is placed
on Global, the context is effectively lost because the class name is omitted. Other classes also
have a collection of static methods, such as the SysDictClass and WinApi classes. Consider the
context provided by specifying the class name in these two cases.

WinApi::getTickCount();

SysDictClass::as(...);

In the first example, the reference to WinApi tells the developer consuming the method that it
will call into a wrapped Microsoft Windows API. In the second example, the SysDictClass tells
the developer that the functionality is related to reflection of classes. This information will be
lost if the getTickCount and as methods are placed on Global.

400 Part III Under the Hood
You should also consider the discoverability of your methods. When you place a method on
Global, the user will not benefit from IntelliSense functionality unless he or she explicitly
writes the name of the Global class; in this case, the readability will suffer if the method name
is left in the written source code. If you place your method on a class, where it logically
belongs, the user needs to know only of the existence of that particular class. The user can
then browse to it when necessary. Most experienced X++ developers are aware of the WinApi
class. Very few, if any, know all 200 methods on the class, nor do they need to.

If you are still learning the X++ language, you might want to browse the Global class for useful
methods that can make your work easier. The built-in functions available in X++ complement
the methods on the Global class by providing general-purpose functions easily consumable
from X++. You can find all the X++ functions listed in the AOT under System Documenta
tion\Functions.

The Global class is also a special class and is therefore listed at the end of the Classes category
in the AOT, along with the global session classes discussed in the preceding section.

The Collection Classes
The class library in Dynamics AX contains a useful set of collection classes. A collection class
can contain instances of any valid X++ type, including objects. The collection classes, Set, List,
Map, Array, and Struct, are sometimes referred to as foundation classes or, in earlier versions
of the product, Axapta Foundation Classes (AFC).

All collection classes are kept in memory, so pay attention to their size when you insert
instances in them. If you need to handle huge amounts of data, you should consider alterna
tives such as temporary tables or partly on-disk X++ arrays.

The elements inserted in the collections can be retrieved by traversing the collection class or
by performing a lookup in it. To decide which collection class to use, you must consider your
data and how you want to retrieve it. The following sections explain each collection class.

The Set Class

A Set object is a collection that may hold any number of distinct values of any given X++ type.
All values in the Set must have the same type. An added value that is already stored in
the Set is ignored and does not increase the number of elements in the Set. The elements are
stored in a way that facilitates looking up the elements. The following example illustrates this
by creating a Set object with integers and adding 100, 200, and 200 (again) to the set.

Set set = new Set(Types::Integer);

;

set.add(100);

set.add(200);

set.add(100);

Chapter 15 System Classes 401
print set.toString(); //{100, 200}
print set.elements(); //2
print set.in(100); //true
print set.in(150); //false
pause;

A set is particularly useful in situations in which you want to sort elements as the elements in
the set are sorted when inserted, or when you want to track objects. Here is an example from
the AxInternalBase class.

protected boolean isMethodExecuted(str _methodName, ...)
{

if (setMethodsCalled.in(_methodName))
return true;

setMethodsCalled.add(_methodName);
...
return false;

}

The setMethodsCalled object keeps track of which methods have been executed.

As Figure 15-2 shows, you can perform logical operations on a Set. You can create a union of
two sets, find the difference between two sets, or find the intersection between two sets.

Union Intersection Difference

Figure 15-2 Set operations.

The logical operations are illustrated programmatically here.

Set set1 = new Set(Types::String);
Set set2 = new Set(Types::String);
;
set1.add('a');
set1.add('b');
set1.add('c');

set2.add('c');
set2.add('d');
set2.add('e');

print Set::union(set1, set2).toString(); // {a, b, c, d, e}
print Set::intersection(set1, set2).toString(); // {c}
print Set::difference(set1, set2).toString(); // {a, b}
print Set::difference(set2, set1).toString(); // {d, e}
pause;

402 Part III Under the Hood
The List Class

List objects are structures that may contain any number of elements that are accessed
sequentially. A List may contain values of any X++ type. All the values in the List must be
of the type defined when creating the List. Elements may be added at either end of the List.
A List is similar to a Set, except a List can contain the same element several times, and
elements in a List are kept in the order in which they were inserted. Here is an example that
shows insertion of integers into a list of integers. Note that the last integer values are
inserted at beginning of the list.

List list = new List(Types::Integer);

;

list.addEnd(100);

list.addEnd(200);

list.addEnd(100);

list.addStart(300);

print list.toString(); // 300, 100, 200, 100

print list.elements(); // 4

pause;

The Map Class

Map objects associate one key value with another value. Figure 15-3 illustrates this.

”Car”

”Bike”

”Walk”

Noun

Verb

Adjective
”Nice”

Keys Values

Figure 15-3 An example of Map.

You can use any type as the key and value, including class and record types. The key and the
value do not have to be of the same type. Lookups in a Map are efficient, which makes Map
objects useful for caching of information.

Multiple keys may map to the same value, but one key can map to only one value at a time.
Adding a key and value pair to a place where the key is already associated with a value changes
the association so that the key maps to the new value.

Chapter 15 System Classes 403
The following example shows how to populate a Map with the keys and values shown in
Figure 15-3 and subsequently perform a lookup.

Map map = new Map(Types::String, Types::Enum);

Word wordType;

;

map.insert("Car", Word::Noun);

map.insert("Bike", Word::Noun);

map.insert("Walk", Word::Verb);

map.insert("Nice", Word::Adjective);

print map.elements(); //4;

wordType = map.lookup("Car");

print strfmt("Car is a %1", wordType); //Car is a Noun

pause;

A Map throws an exception if lookup is called for a non-existing key. You can call exists to verify
that a key exists before calling lookup. This is particularly useful inside transactions, where you
cannot catch the exception gracefully. Here is an example.

if (map.exists("Car"))

wordType = map.lookup("Car");

The Array Class

An Array object may hold instances of any one given type, including objects and records
(unlike the arrays built into the X++ language). The values are stored sequentially. An Array
can expand as needed, so you do not have to specify its size at the time of instantiation. As
with arrays in X++, the indexing of Array objects is one-based (that is, counting of elements
begins with one, not zero).

Array array = new Array(types::class);

array.value(1, new Point(1, 1));

array.value(2, new Point(10, 10));

array.value(4, new Point(20, 20));

print array.lastIndex(); //4

print array.value(2).toString(); //(10, 10)

pause;

The Point class is declared in a later example, in the section on serialization.

404 Part III Under the Hood
The Struct Class

Struct objects may hold a variety of values of any X++ type. A Struct collects information about
a specific entity. For example, you can store information such as inventory item identifier,
name, and price and treat this compound information as one instance.

Struct objects allow you to store information in much the same way that you do with classes and
tables. You can think of a Struct as a lightweight class. A Struct object exists only in the scope
of the code in which it is instantiated. It does not provide polymorphism like most classes, or
persistence like tables. The main benefits of using a Struct are that you can dynamically add new
elements and you are not required to create a new type definition in the AOT.

As shown in the following example, accessing elements in a Struct is not strongly typed
because you reference Struct objects by using a literal string. You should use a Struct only
when absolutely necessary. The Struct was introduced as a collection class to communicate
with the property sheet API, described in Chapter 3, “The MorphX Designers.”

Here is an example of how to use a Struct.

Struct item = new Struct("int Id; str Name");

;

item.value("Id", 1000);

item.value("Name", "Bike");

print item.toString(); //id=1000; Name="Bike"

item.add("Price", 299);

print item.toString(); //id=1000; Name="Bike"; Price=299

print item.fields(); //3

print item.fieldName(1); //Id

print item.fieldType(1); //int

print item.value("Id"); //1000

pause;

Performance is an interesting topic related to the use of classes, tables, and the Struct class.
Suppose you needed a composite type to store values. For this discussion, the composite type
is a point composed of two real values: x and y. You could model this in three ways:

■	 By using a Struct with two fields, x and y.

■	 By defining a new class, in which the constructor takes x and y as parameters, and using
two access methods to retrieve the values.

■	 By defining a table with two fields, x and y. You do not have to insert records into the
physical (or temporary) table; you use the record only to store the point in memory.

You could benchmark these three implementations by creating 5,000 instances of points,
adding these to a Set, traversing the Set, and accessing all the point values. Figure 15-4 shows
the remarkable result.

Chapter 15 System Classes 405
2281 ms
1782 ms

312 ms

Struct Class Table

Figure 15-4 Performance of Struct objects, classes, and tables as composite types.

The first two implementations are comparable, but the third is five to seven times faster.
The difference in performance is a result of the overhead in instantiation of objects and the
number of method calls. A method call in X++ has a small overhead, which, in scenarios
involving the database, is negligible. However, in this case, instantiation and method calls
are the slowest operations performed.

The performance difference between the Struct and class implementations is simply a
result of the difference in the number of method calls. In the Struct implementation, you
must instantiate the Struct and call the value method for both x and y. For the class
implementation, you can instantiate and set the values through the constructor in one
method call. For the table implementation, you can set the field values directly without
a single method call, and also without instantiating an object. The following code was used
to measure the performance.

//Struct implementation
for (i=1; i<=5000; i++)
{

pointStruct = new struct("real x; real y");
pointStruct.value("x", i);
pointStruct.value("y", i);

set.add(pointStruct);
}

//Class implementation
for (i=1; i<=5000; i++)
{

pointClass = new Point(i, i);

set.add(pointClass);
}

//Table implementation
for (i=1; i<=5000; i++)
{

pointTable.x = i;
pointTable.y = i;

set.add(pointTable);
}

406 Part III Under the Hood
When accessing the values, the struct and class implementations perform poorly because a
method call is required; the table implementation is much faster.

Note When you insert a table type into a collection class, a memory copy operation is
performed. Although table types in X++ are reference types, they behave as value types
when inserted in collection classes.

If your implementation calls for fast in-memory storage and retrieval of composite types,
you should favor using a table implementation. The tree view provided by the Permissions
tab in Administration\User Permissions is built with the table approach. This implementation
generates a deep and complex tree structure in a matter of seconds. Earlier versions of Dynamics
AX applied the class approach, and in those versions it took significantly longer to build a
much simpler tree. For more information about improving performance, see Chapter 17,
“Performance.”

Traversal

You can traverse your collections by using either an enumerator or an iterator. When the
collection classes were first introduced in Dynamics AX, the iterator was the only option. But
because of a few obscure drawbacks that appear as hard-to-find errors, enumerators were
added, and iterators were kept for backward compatibility. To highlight the subtle differences,
the following code shows how to traverse a collection with both approaches.

List list = new List(Types::Integer);
ListIterator iterator;
ListEnumerator enumerator;
;
//Populate list.
...

//Traverse using an iterator.
iterator = new ListIterator(list);
while (iterator.more())
{

print iterator.value();
iterator.next();

}

//Traverse using an enumerator.
enumerator = list.getEnumerator();
while (enumerator.moveNext())
{

print enumerator.current();
}

The first difference is the way in which the iterator and enumerator instances are created.
For the iterator, you call new, and for the enumerator, you get an instance from the

Chapter 15 System Classes 407
collection class by calling the getEnumerator method. In most cases, both approaches will
work equally well. However, when the collection class resides on the opposite tier from the
tier on which it is traversed, the situation is quite different. For example, if the collection
resides on the client tier and is traversed on the server tier, the iterator approach fails
because the iterator does not support cross-tier referencing. The enumerator does not
support cross-tier referencing either, but it doesn’t have to because it is instantiated on the
same tier as the collection class. Traversing on the server tier using the client tier enumer
ator is quite network intensive, but the result is logically correct. Because some code is
marked as Called From, meaning that it can run on either tier, depending on where it is
called from, you could have broken logic if you use iterators, even if you test one execution
path. In many cases, hard-to-track bugs such as this surface only when an operation is
executed in batch mode.

Note In earlier versions of Dynamics AX, this problem was even more pronounced
because development and testing sometimes took place in two-tier environments, and this
issue surfaces only in three-tier environments.

The second difference between iterators and enumerators is the way in which the traversing
pointer moves forward. In the iterator approach, you must explicitly call both more and next;
in the enumerator approach, the moveNext method handles these needs. Most developers
have inadvertently implemented an endless loop at least once, simply because they forgot to
move a pointer. This is not a significant problem, but it does cause an annoying interruption
during the development phase.

If you always use the enumerator, you will not encounter either of the preceding issues. The
only situation in which you cannot avoid using the iterator is when you must remove elements
from a List collection. The following code shows how this is accomplished.

List list = new List(Types::Integer);
ListIterator iterator;
;
list.addEnd(100);
list.addEnd(200);
list.addEnd(300);

iterator = new ListIterator(list);
while (iterator.more())
{

if (iterator.value() == 200)
iterator.delete();

iterator.next();
}
print list.toString(); //{100, 300}
pause;

408 Part III Under the Hood
Serialization

Serialization is the operation of converting an object to a bit stream of data that is easily
persisted or transported over the network. Deserialization is the opposite operation, in which
an object is created from a bit stream. Serializing an object into a stream and later deserializing
the stream into a new object must create an object whose member variables are identical to
the original object.

Note The Application frameworks RunBase and SysLastValue rely heavily on serialization.
Classes in these frameworks implement the SysPackable interface, which requires implementation
of pack and unpack methods.

All collection classes support serialization. The bit stream generated is in the form of a
container, which is a value type. This is particularly useful when you are collecting information
on one tier and want to transfer it to the opposite tier.

The following code shows a typical example, in which several records are placed in a map
on the server tier and are consumed on the client tier. The benefit of using this approach
(rather than simply returning a reference to the map object on the server tier) is the reduced
number of client/server calls. The following implementation contains only one client/server
call, calling the generateMap OnServer method. If the reference approach were used, each call
to the enumerator would also be a client/server call, typically resulting in at least two client/
server calls per element in the map. Here is the implementation using serialization.

client class MyClass
{

private static server container generateMapOnServer()
{

Map map = new Map(typeId2Type(typeId(RecId)), Types::Record);
// Populate map.
...
// Serialize the map.
return map.pack();

}
public void consumeMap()
{

// Deserialize the map.
Map map = Map::create(MyClass::generateMapOnServer());
mapEnumerator enumerator = map.getEnumerator();

//Traverse map.
while (enumerator.moveNext())
{

...
}

}
}

Chapter 15 System Classes 409
In the preceding example, the Map object contains types, which are easy to serialize. The
collection class is capable of serializing primitive X++ types and records. If a collection
contains classes, the classes must provide an implementation of a pack method and a create
method for the collection to be serializable. Here is an implementation of a serializable Point
class.

class Point
{

real x;

real y;

public void new(real _x, real _y)
{;

x = _x;

y = _y;

}

public container pack()

{

return [x, y];

}

public static Point create(container _data)
{

real x;

real y;

[x, y] = _data;

return new Point(x, y);

}

public str toString()

{

return strfmt('(%1, %2)', x, y);

}

}

The following example is just one way of modeling a line by using a Set of Point classes. Notice
how a new line instance is created by serializing and deserializing the line object.

Set line = new Set(Types::Class);

Set newLine;

;

line.add(new Point(0, 0));

line.add(new Point(2, 5));

print line.toString(); // {(0, 0), (2, 5)}

//Create a new instance.

newLine = Set::create(line.pack());

print newLine.toString(); // {(0, 0), (2, 5)}

pause;

410 Part III Under the Hood
Bringing It All Together

You have seen how collection classes allow you to collect instances of objects and values. The
collection classes provide conceptually simple structures. The classes Set, List, Map, Array,
and Struct are easy to understand and just as easy to use. If you do a cross-reference to find all
the places in the existing code where they are used, their usefulness is evident.

Sometimes, however, these collection classes are too simple to meet certain requirements.
Suppose you needed to model a shape. In this case, having a List of points would be useful.
Points can be modeled as a Struct because the collection classes can contain objects, and
an instance of a collection class is an object. You can combine collections classes to create,
for example, a list of maps, a set of lists, or a set of lists of maps.

The SysGlobalCache class, described earlier in this chapter, is a good example of combining
collection classes. It uses a map of maps of a given type. An example of a global cache instance
is illustrated in Figure 15-5.

Value as anytype Keys as anytype

8

1
4

“Value1”

object1

object2

1

2

”MyClass”

”MyOtherClass”

Owners as str

Figure 15-5 An example of internal structure in SysGlobalCache.

The values in the first Map are always strings (type str); this string is referred to as the owner
of the entry in the cache. Each of these values maps to another instance of Map in which
the types of the key and value are determined by the consumer of the cache. This way, the
cache can be used to store instances of several types.

Chapter 15 System Classes 411
The values in the SysGlobalCache example shown in Figure 15-5 could be inserted by this
code.

globalCache.set(classStr(MyClass), 1, object1);

globalCache.set(classStr(MyClass), 2, object2);

globalCache.set(classStr(MyOtherClass), "Value1", myIntegerSet);

Now examine how this is implemented inside the SysGlobalCache class, shown in the next
code sample. The class has only one member variable, maps, which is instantiated in the new
method as a mapping of strings to classes. The first time a value of type value is inserted in the
cache, using the set method, a new instance of Map, named map, is created. The owner string
is mapped to this map object in the maps member variable. The map object maps values of
the key type to values of the value type. The types are determined by using the typeOf function.
The key and value pair is then inserted in map. The get method is implemented to retrieve
values from the cache. To retrieve the values, the following two lookups must be performed:

■ A lookup in the owner-to-map Map to get the key-to-value Map.

■ A lookup in the key-to-value Map using the key to find the value.

If either lookup fails, the default return value specified as a parameter is returned.

class SysGlobalCache

{

Map maps;

private void new()

{

maps = new Map(Types::String, Types::Class);

}

public boolean set(str owner, anytype key, anytype value)
{

Map map;

if (maps.exists(owner))

{

map = maps.lookup(owner);

}

else

{

map = new Map(typeOf(key), typeOf(value));
maps.insert(owner, map);

}

return map.insert(key, value);

}

public anytype get(str owner, anytype key, anyType returnValue = '')
{

Map map;

if (maps.exists(owner))

412 Part III Under the Hood
{

map = maps.lookup(owner);

if (map.exists(key))

return map.lookup(key);

}

return returnValue;

}

...

}

Other Collection Classes

A few other collection classes are worth mentioning. They do not share the same structure as
the collection classes explained so far, but you can use them for collecting instances.

The Stack Class

A stack is a structure in which you can add and remove instances from the top. This kind of
structure, resembling a stack of plates, is sometimes described as a last in, first out (LIFO)
structure. You add an instance to the top by calling push, and you remove the top instance by
calling pop. The Stack class in Dynamics AX can hold only instances of containers. Because
containers can contain any value type, you can still create a stack of integers, strings, dates,
and so on.

Here is an example of how to use Stack.

Stack stack = new Stack();

;

stack.push([123]);

stack.push(["My string"]);

print conpeek(stack.pop(), 1); //My string

print conpeek(stack.pop(), 1); //123

pause;

The StackBase Class

Because the Stack class is limited to holding container instances, an improved stack was
implemented called StackBase. The StackBase class provides the same functionality as the Stack
class, except that it can hold instances of any given type.

Here is an example of how to use StackBase.

StackBase stack = new StackBase(Types::Class);

;

stack.push(new Point(10, 10));

stack.push(new Struct("int age;"));

Chapter 15 System Classes 413
print stack.pop().toString(); //(age:0);

print stack.pop().toString(); //(10, 10)

pause;

The RecordSortedList Class

If you have a list of records that you must either sort or pass as a parameter, you can use the
RecordSortedList class. This collection class can hold only record types. When you insert a
record in the list, it is sorted according to one or more fields that you specify. Because sorting
takes place in memory, you can specify any fields, rather than just those for which a table
index already exists. The combined sorting fields must constitute a unique key. If you need to
sort by a non-unique field, you can add the RecId field, which is guaranteed to be unique, as a
sorting field.

Here is an example in which customers are sorted by city by using RecordSortedList.

RecordSortedList list = new RecordSortedList(tableNum(CustTable));

CustTable customer;

boolean more;

;

//Sort by City, RecId.

list.sortOrder(fieldNum(CustTable, City), fieldNum(CustTable, RecId));

//Insert customers in the list.

while select customer

{

list.ins(customer);

}

//Traverse the list.

more = list.first(customer);

while (more)

{

info(strfmt("%1, %2", customer.Name, customer.City));

more = list.next(customer);

}

Chapter Summary
This chapter covered three important concepts. First, it introduced the global session classes.
You learned when these classes are instantiated and how to reference their global instances.
You also learned about the objectives and uses of global session classes. This chapter also
discussed extending the X++ language by adding your own methods to the Global class. Finally,
this chapter introduced collection classes and provided examples of their use. You learned
how to traverse the collections by using enumerators, and you also saw how to create more
complex collections by combining collection classes.

Chapter 16

Unit Testing

In this chapter:

Introduction .415

Test Cases .416

Test Suites .420

Test Projects .422

The Test Toolbar .423

Code Coverage .423

Test Listeners .424

Object Model .425

Chapter Summary .426

The objectives of this chapter are to:

■ Introduce the practice of unit testing.

■ Describe how to write unit tests.

■ Provide insight into the design of the Unit Test framework and explain how to extend it.

Introduction
A complete Unit Test framework is a new feature in Microsoft Dynamics AX 4.0. A unit
test is a piece of code that exercises another piece of code and ascertains that it behaves
correctly. The developer who implements the unit to be tested typically writes the unit test.
Thought leaders in this area recommend writing unit tests as early as possible, even before
writing a single line of the unit’s code. This principle is called test-driven development.

Writing unit tests early forces you to consider how your code will be consumed; this in turn
makes your APIs easier to use and understand, and it results in constructs that are more likely
to be robust and long-lasting. With this technique, you must have at least one unit test for each
requirement; a failing unit test indicates an unfulfilled requirement. Development efforts
should be targeted at making the failing unit test succeed—no more, no less.

To reap the full benefits of unit testing, you should execute test cases regularly, preferably each
time code is changed. The Unit Test framework in Dynamics AX supports you regardless of
your approach to writing unit tests. For example, the unit test capabilities are fully embedded
in MorphX, and you can easily toggle between writing test cases and writing business logic.
415

416 Part III Under the Hood
When implementing unit tests, you write a test class, also referred to as a test case. Each test
case has several test methods that exercise the object being tested in a particular way. As you
build your library of test cases, you will find that you need to organize them into groups. Test
cases can be grouped into test suites. The simplest way to do this is to use test projects, which
are simply special kinds of Application Object Tree (AOT) projects.

Test Cases
To implement a unit test case, you must create a new class that extends the SysTestCase class,
which is a part of the Unit Test framework. You should give the class the same name as the
class it is testing, suffixed with Test. This is illustrated in the following example, where a unit
test for the Stack class is declared.

class StackTest extends SysTestCase

{

}

If you were to run the unit test at this point, you would find that zero tests were run and zero
tests failed.

This default naming convention tells the Unit Test framework which test class to collect code
coverage data for. If the default test class name does not suit your needs, you can override the
testsElementName method. You can also override the testsElementType method to set the kind
of element for which the framework will collect code coverage data.

To create a useful test, you must add one or more test methods to the class. All test method
names must start with test. The test methods must return void and take no parameters. In the
following code, a test method is added to the StackTest class.

void testPushPop()
{

//Create an instance of the class to test.

Stack stack = new Stack();

;

//Push 123 to the top of the stack.

stack.push([123]);

//Pop the value from the stack and assert that it is 123.

this.assertEquals([123], stack.pop());

}

Within each test method, you should exercise the object you test and confirm that it behaves
correctly. Running the unit test at this point tells you that one test was run and zero tests failed.

Your testing needs should be met by the assertion methods available on SysTestCase (which
extends SysTestAssert), as shown in Table 16-1.

Chapter 16 Unit Testing 417
Table 16-1 Assertion Methods on the SysTestCase Class

Method Parameters Action

assertEquals (anyType, anyType) Asserts that two values are
equal. When the argument is of
type object, the equal method is
called to compare them.

assertFalse (boolean) Asserts that the value is false.

assertNotEqual (anyType, anyType) Asserts that two values are different.

assertNotNull (object) Asserts that the value is not null.

assertNotSame (object, object) Asserts that the objects referenced
are not the same.

assertNull (object) Asserts that the value is null.

assertRealEquals (real, real [, real delta]) Asserts that real values differ with no
more than the delta.

assertSame (object, object) Asserts that the objects referenced
are the same.

assertTrue (boolean) Asserts that the value is true.

If an assertion fails, the test method fails. You can configure the framework to stop at first
failure or continue with the next test method in the Unit Test Parameters dialog box at Tools\
Development Tools\Unit Test\Parameters. The following code adds a new failing test method.

//Test the qty method, which returns the quantity of values on the stack.
void testQty()
{

//Create an instance of the class to test.
Stack stack = new Stack();
;
//Push 123 to the top of the stack.
stack.push([123]);
//Pop the value from the stack and assert that it is 0.
this.assertEquals(0, stack.qty());

}

Running the unit test at this point shows that two tests were executed and one failed. The failing
test appears in the Infolog, as shown in Figure 16-1. Clicking Edit opens the X++ editor on
the assert call that failed.

You can also do your own validation logic and call fail if none of the assertion methods suit
your needs. Here is an example in which a performance criterion of three seconds for
1000 push/pop operations is tested.

Figure 16-1 A failing unit test in the Infolog.

418 Part III Under the Hood
void testPerformance()
{

Stack stack = new Stack();

//Get the number of milliseconds since the PC was started.

int startTick = WinApi::getTickCount();

int i;

;

for(i=1; i<=1000; i++)

{

stack.push([i]);
stack.pop();

}

//Must complete in 3000 milliseconds.

if (WinApi::getTickCount() - startTick > 3000)

{

this.fail("Performance criteria not met!");

}

}

You might have noticed code redundancy in the three test methods shown so far. In
many cases, initialization code is required before the test method can run. Instead of
duplicating this code in all test methods, you can refactor it into the setUp method. If
teardown logic is required, you can place it in the tearDown method. When the framework
runs a test method, it instantiates a new test case class, which is followed by calls to
setUp and test methods, and finally a call to the tearDown method. This prevents in-
memory data from one test method from affecting another test method. Test suites,
which are covered in the next section, provide ways to isolate data persisted in the data
base between test case and methods. The following code uses the setUp method to refactor
the sample code.

class StackTest extends SysTestCase

{

Stack stack;

public void setUp()
{;

super();

//Create an instance of the class to test.

stack = new Stack();

}

void testPushPop()

{;

stack.push([123]);
this.assertEquals([123], stack.pop());

}

...

}

Chapter 16 Unit Testing 419
The Unit Test framework also supports testing of exceptions. If a method is expected to
throw an exception, you can instruct the framework to gracefully handle this. If you expect an
exception and none is thrown, the framework reports the test case as failed. You inform the
framework that an exception is expected by calling parmExceptionExpected([boolean, str]).
You can specify an exception text that must exactly match the text thrown with the exception,
or the test case will fail. You should not write more asserts after the method call expected to
throw an exception because execution should never get that far. The following code adds a
test method that expects an exception message to be thrown.

void testFailingPop()
{;

//Assert that an exception is expected.
this.parmExceptionExpected(true, "Stack is empty!");

//Call the method expected to throw an exception.
stack.pop();

}

The sample test case now has four test methods. By following these steps, you can run the test
case from MorphX:

1.	 Right-click the method, point to Add-ins, and then click Run tests.

2.	 Type the name in the Test toolbar, and then click Run.

3.	 Start the Dynamics AX client with the command line

-StartupCmd=RunTestProject_<Name of test case class>

If you wanted to run the test case programmatically, you could use a test runner class. To do
this, you would typically place the following logic in your test class’s main method, which is
invoked when you press F5 in the X++ editor.

static void main(args _args)
{

SysTestRunner runner = new SysTestRunner(classStr(StackTest));
SysTestListenerXML listener =

new SysTestListenerXML(@"c:\tmp\StackTest.xml");
;
runner.getResult().addListener(listener);
runner.run();

}

Notice that you also register a listener. If you did not register a listener, you would not know
the result of the test. Listeners are described later in this chapter.

mailto:SysTestListenerXML(@"c:\tmp\StackTest.xml");

420 Part III Under the Hood
Test Suites
Test suites serve two purposes:

■	 Collection of test cases and test suites A test suite can contain any number of test
cases and other test suites. This allows test cases to be grouped in a hierarchy.

■	 Test case isolation Each test case could have different needs for isolation, depending
on what data it will change. In fact, each method within the test case could have a need
for isolation.

Dynamics AX includes the following four test suites that provide different levels of
isolation:

■	 SysTestSuite This is the default test suite. It provides no isolation. You can override the
setUp and tearDown methods, if necessary. Note that these methods are not the same as
the setUp and tearDown methods on the test case.

■	 SysTestSuiteCompanyIsolateClass This test suite constructs an empty company
account for the entire test class and runs each test method in the company account. After
all test methods have been executed, the company account is deleted.

■	 SysTestSuiteCompanyIsolateMethod This test suite constructs an empty company
account for each test method and runs the test method in the company account. After
the test methods have been executed, the company account is deleted. This is the high
est isolation level provided. It does, however, have a noticeable effect on performance.

■	 SysTestSuiteTTS This test suite wraps each test method in a transaction. After the test
method has been completed, the transaction is aborted. This provides a fast alternative
to the company isolation suites, but it has a couple of limitations:

❑	 Exceptions cannot be handled gracefully. Exceptions thrown inside a transaction
abort the transaction automatically and cannot be caught inside the transaction.

❑	 Test cases that require data to be committed cannot use this test suite.

For each test case, you can override the createSuite method to select the appropriate suite for
your test case. The following code shows how to use the company isolation test suite in the
StackTest class.

public SysTestSuite createSuite()

{;

return new SysTestSuiteCompanyIsolateClass(this);

}

Chapter 16 Unit Testing 421
Using test projects to group test cases into suites is recommended. You can, however, create
your own class extending from SysTestSuite and programmatically add test cases and other test
suites to it. You can run each test suite in one of the following ways:

■ Type the name in the Test toolbar, and then click Run.

■ Start the Dynamics AX client with the command line
-StartupCmd=RunTestProject_<Name of test suite class>

■ Implement a static main method similar to the one shown in the test case example.

The following code shows the entire StackTest test case. Notice the refactoring and the changes
in testQty to make the test case succeed.

class StackTest extends SysTestCase

{

Stack stack;

public SysTestSuite createSuite()

{;

return new SysTestSuiteCompanyIsolateClass(this);

}

public void setUp()

{;

super();
stack = new Stack();

}

void testPushPop()

{;

stack.push([123]);
this.assertEquals([123], stack.pop());

}

void testQty()

{;

stack.push([100]);

this.assertEquals(1, stack.qty());

stack.push([200]);

this.assertEquals(2, stack.qty());

stack.clear();

this.assertEquals(0, stack.qty());

}

void testPerformance()

{

int startTick = WinApi::getTickCount();

int i;

;

for(i=1; i<=1000; i++)

{

stack.push([i]);
stack.pop();

}

//Must complete in 3 seconds

if (WinApi::getTickCount() - startTick > 3000)

422 Part III Under the Hood
{
this.fail("Performance goals not met!");

}

}

void testFailingPop()

{;

this.parmExceptionExpected(true, "Stack is empty!");
stack.pop();

}

static void main(args _args)

{

// This method illustrates how to run a test case programmatically.
SysTestRunner runner = new SysTestRunner(classStr(StackTest));
SysTestListenerXML listener =

new SysTestListenerXML(@"c:\tmp\StackTest.xml");
;
runner.getResult().addListener(listener);
runner.run();

}

}

Test Projects
The easiest way to group test cases is to use a test project. You can create a test project with
the project designer in MorphX. The test project can contain groups of test case classes and
references to other test projects. You create a new test project by selecting the project type
Test Project when creating either a shared or private project. A test project can also contain
references to other test projects, which allows the project to scale across many development
teams. You create a reference by right-clicking the project root node and selecting New Reference
To Test Project.

Figure 16-2 shows a test project that includes a group of common tests containing the test
case example and references to two other test projects.

Figure 16-2 A test project that contains references and a test case.

Each test project has its own settings that are persisted with the project definition. This allows
you to specify test project settings that follow the project, even through import and export,
redeployment, and so on.

mailto:SysTestListenerXML(@"c:\tmp\StackTest.xml");

Chapter 16 Unit Testing 423
You can run a test project in several ways:

■	 Right-click it, and then click Run.

■	 Type the name in the Test toolbar, and then click Run.

■	 Start the Dynamics AX client with the command line
-StartupCmd=RunTestProject_<Name of test project>

■	 Use the version control functionality during check-in. Check-in stops if the test fails.
You specify the project to run during check-in in Tools\Development Tools\Version
Control\Setup\System Settings.

The Test Toolbar
When you are working with unit testing, you should open the Test toolbar. You access the Test
toolbar, shown in Figure 16-3, from Tools\Development Tools\Unit Test\Show Toolbar.

Figure 16-3 The Test toolbar.

You can type the name of the test case, test suite, or test project that you want to run,
click Run to execute it, and then, to get information about the result, click Details to
open the Test Jobs window. The Test Jobs window shows you the following information
collected during the test execution:

■	 The status of each test case

■	 Environmental information

■	 Timing (when the test started and stopped, the duration of the test, and so on)

■	 Code coverage, when enabled

■	 Information sent to the Infolog during the test case execution

Note The information displayed in the Test Jobs window is collected by the database
listener. It is automatically registered when you run a test by using the toolbar.

Code Coverage
The Unit Test framework can collect code coverage information during execution, including a
percentage value that indicates how thoroughly you have tested your unit. It also allows you to
focus your implementation of the test cases on the parts not covered by other test cases. The Test
Jobs window also offers a line-by-line view of the code lines visited. You can enable code coverage
in the Unit Test Parameters dialog box at Tools\Development Tools\Unit Test\Parameters.
However, because much more data is collected, enabling code coverage when executing unit tests

424 Part III Under the Hood
affects performance during execution dramatically. Figure 16-4 shows an example of the code
coverage recorded by the testFailingPop method from the preceding test case example.

Figure 16-4 Visualization of code coverage.

The lines highlighted in grey are the lines visited during execution (lines 1–5 and 15–16). The
lines not highlighted have not been visited (lines 6–14).

Test Listeners
The value of running a test case is dramatically increased if good reporting options exist. When
running a test case or a suite of tests, you can enable one or more listeners. Each listener
produces its unique output. Dynamics AX includes many listeners, allowing output to text files,
XML files, the database, the Infolog, the Message window, the Print window, and the Progress
bar. You can enable test listeners in the Unit Test Parameters dialog box.

Here is the XML generated by the XML listener when you run the StackTest unit test.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<!-- Created by SysTestListenerXML -->

<test-results date="11-12-2005" time="10:51:34" success="false">

<test-suite name="stacktest" time="52" success="true" coverage="61.54">
<results>
<test-case name="stacktest.testConstruct" time="0" success="true" coverage="9.62" />
<test-case name="stacktest.testFailingPop" time="31" success="true"

coverage="23.08" />
<test-case name="stacktest.testPushPop" time="0" success="true" coverage="50.00" />
<test-case name="stacktest.testQty" time="21" success="true" coverage="30.77" />

</results>

</test-suite>

</test-results>

Chapter 16 Unit Testing 425
Note Listeners that generate a file write the file to the application log directory. The only
way to change the file name and location is to manually register a listener, which was shown
in the complete listing of a test suite earlier in the chapter.

If you must create a new listener to output to a type of media not supported by default, you
can do so by following these steps:

1.	 Create your own listener class implementing the SysTestListener interface. Alterna
tively, you can inherit from one of the existing test listeners. The methods on your
class are invoked when events such as the start and end of test suites and test cases
occur and when test cases fail. A SysTestListenerData object is passed to each
method. The object contains information about the test case or suite, coverage
data, and much more. By extracting the information, you can generate output to
suit your needs.

2.	 Modify the base enumeration SysTestListeners. You must add an entry that has the same
name as your listener class and a label of your choice. This causes the listener to appear
in the test parameters form.

Object Model
This chapter has so far described the classes in the Unit Test framework and how they interact.
Figure 16-5 shows this information as a Unified Modeling Language (UML) object model.

Note that the SysTestCase class implements quite a few interfaces. In fact, the Unit Test
framework can use any class that implements the SysTestable interface as a test case. The
other interfaces can be implemented for more control. It is, however, far easier to create
test case classes that extend the SysTestCase base class. (For simplicity, Figure 16-5 does
not show the SysTestSuite derived classes or the SysTestListener derived classes.)

426 Part III Under the Hood
+getListenerInformation()

«interface»
SysTestListener

InformationProvider

SysTestRunner

SysTestRunner
Project

«interface»
SysTestListener

+startTest()
+endTest()
+startSuite()
+endSuite()
+open()
+close()
+addFailure()
+addInformation()

SysTestCase

my test cases

+run()
+getName()
+numberOfTests()

«interface»
SysTestExecutable

+createSuite()
+setUp()
+tearDown()

«interface»
SysTestSuiteProvider

+exceptionExpected()
+exceptionMessage()

«interface»
SysTestableExceptionExpected

«interface»
SysTestable

+testMethods()
+testsElementName()
+testsElementType()

SysTestSuite SysTest

-methodName
1 1

1 1

1

1

1

1

*

«uses»-GetResult

-GetTest

-GetListeners

«uses»
«uses»

«uses»

«uses»

SysTestResult

SysTestAssert

Figure 16-5 A UML diagram of the Unit Test framework.

Chapter Summary
This chapter introduced the unit testing capabilities of Dynamics AX and provided an example
of how to write a unit test. If you are managing an implementation project for Dynamics AX,
you should advocate testing and support your team members in any way required. At first
glance, it might seem like more work, but the investment will be well worth the effort. If you
are a team member on a project that does not do unit testing, you should convince your manager
of the benefits. Plenty of recent literature describes this in great detail. If you have a hard time
convincing your manager of the benefits of writing unshippable code, you have several options.
One dubious option is to secretly write your own test cases for your own features. As the benefits
become obvious to your managers and peers, you may win them over. Another option is to find
an employer that takes software construction more seriously.

Chapter 17

Performance

In this chapter:

Introduction .427

Client/Server Performance .428

Transaction Performance .432

Dynamics AX Monitoring Tools .457

Chapter Summary .461

The objectives of this chapter are to:

■	 Describe how to control the execution of logic in a three-tier environment and what to
consider when designing and implementing X++ code.

■	 Explain how to optimize database performance and minimize database interaction
by using set-based operators and caching, limiting locking, and optimizing select
statements.

■	 Introduce the tools available in the Microsoft Dynamics AX 4.0 development environment
for monitoring client/server calls, database calls, and code execution.

Introduction
Performance is often an afterthought. Many development teams rarely pay attention to
performance until later in the development process or, more critically, after a customer reports
severe performance problems in the production environment. After a feature is implemented,
making more than minor performance improvements is often too difficult. But if you know
how to use the performance optimization features in Dynamics AX, you can create designs
that allow for optimal performance within the boundaries of the Dynamics AX development
and run-time environments.

In this chapter, I describe what to consider when developing features to be executed in a
three-tier environment in which X++ code can be executed on either the client tier or
the server tier. I also introduce the performance-enhancing features available within the
development environment, such as set-based operators for database interaction, caching,
which can be set up in metadata or directly in code, and the optimistic concurrency control
for limiting database locking. I conclude the chapter by describing some of the performance-
monitoring tools available within the Dynamics AX development environment that provide a
reliable foundation for monitoring client/server calls, database activity, and X++ code execution.
427

428 Part III Under the Hood
Client/Server Performance
As described in Chapter 1, “Architectural Overview,” Dynamics AX is a three-tier client/server
application; the Dynamics AX application runtime supports the execution of application
runtime logic on either the client tier or the server tier.

Note The Dynamics AX application runtime does not support development of application
logic to be executed on the database tier.

By default, all X++ code is defined as “called from,” meaning that the method is executed on
the tier from which the call is made. Class instance methods, however, execute on the tier
where the object is instantiated.

It is preferable to execute database-intensive application logic as close to the database as
possible, which is on the server tier, and to execute user-interaction application logic as close
to the end user as possible, which is on the client tier. This minimizes round trips from the
client to the server. Round trips involve sending packages between the two tiers, which
usually occurs across a network with a certain bandwidth and latency, affecting performance.
At the same time, communication between the client and server is synchronous, meaning that
the client waits until the server has finished executing the call from the client to the server,
and vice versa.

Note It is debatable whether CPU-intensive application logic that does not involve user
and database interaction should be allowed to execute on the client tier or should always
be pushed to the server tier. The client tier normally serves only one user and his or her
applications, and the server serves processes from multiple users. However, the power of
the server is greater than that of the client, so at development time it is difficult to determine
which tier has the most resources to execute the logic at run time. Minimizing the client/
server traffic has been a development goal in the last several versions of Dynamics AX, but
moving execution of CPU-intensive application logic to a specific tier has not been a goal.

Controlling the Execution of Logic

To control where application logic is executed, the Dynamics AX application runtime
supports setting metadata or writing specific method modifiers by using X++. The client and
server method modifiers can be applied to instance and static table methods and static class
methods. When you apply the client modifier, the method is always executed on the client tier,
and when you apply the server modifier, the method is always executed on the server tier. If
the caller is on a tier other than the tier specified on the calling method, the application logic
continues to execute on the tier specified in the calling method. The calling tier then waits
until the calling method exits or the called tier invokes a method, which forces it back.

Chapter 17 Performance 429
The specific execution of class instance methods is controlled by the RunOn property on the
class. The property can be set to Called from, Server, or Client. If the property is set to Called
from, an object of that type is instantiated on the instantiating tier, and all instance methods
are also executed on that tier. If the property is set specifically to Server or Client, the object is
instantiated on the specified tier, and all instance methods are also executed on this tier. You
can change the RunOn property on a derived class only if the RunOn property on the base
class is set to Called from. A derived class inherits the property value of the parent class if the
property is set to Client or Server.

By default, table instance and static methods are executed as “called from” if neither the server
nor the client modifier is specified. You can, however, specify both client and server as modifiers
in the same method, but doing so does not influence where the method is executed; it signals
that the developer of the method has evaluated the method and decided that it should be
executed as “called from” and should not be client bound or server bound.

Note By default, insert, update, and delete methods on the tables are always server
bound, even though it is not stated in the definition of the method. The methods cannot
be forced to the client because any client modifier is simply ignored by the Dynamics AX
application runtime.

If neither the client nor the server modifier is specified in static class methods, the methods are
executed on the tier specified by the RunOn property on the class. Specifying both client and
server in these methods does, however, force the methods to be executed as “called from”
and thereby disregard the property value on the class.

Note You can specify the client and server modifiers on class instance methods and in form
and report methods, but these are ignored by the application runtime.

When a class is executed from a menu item, it is possible to specify on the menu item whether
the class should be executed on the server, the client, or the calling tier. This is because the
menu item elements also contain a RunOn property, which can be set to the same values and
the equivalent class property. However, the menu item property cannot overrule the class
setting.

Optimizing Client/Server Calls

When you develop classes and table methods, you should consider whether the class should
be allowed to be instantiated on both the client and server tiers, or only on one tier. This
decision depends on the application logic implemented in the methods. When you develop
classes, you should also think about the application programming interface (API), especially
when you develop server-bound classes to be used by application logic executed on the client tier.

430 Part III Under the Hood
Consider the following X++ example, in which the server-bound ServerClass class is instantiated.
Two variables are parsed to the object, and then a result is returned. This X++ code results in
at least five round trips between the client and the server: one when instantiating the server-
bound class, two when parsing the variables, one when requesting the result, and a final call
when the ServerClass object handle loses scope. The object will subsequently be destroyed
on the server tier.

static void CallingServerClass(Args _args)
{

ServerClass serverClass;
int result;
;
serverClass = new ServerClass(); // Call to server
serverClass.parmVariable1(20); // Call to server
serverClass.parmVariable2(30); // Call to server
result = serverClass.result(); // Call to server

// Destroy object - Call to server

}

You can reduce the number of calls by bundling the calls to the parm methods with the call to
the result method, as shown in the following X++ code.

static void CallingServerClass(Args _args)
{

ServerClass serverClass;
int result;
;
serverClass = new ServerClass(); // Call to server
result = serverClass.result(20, 30); // Call to server

// Destroy object - Call to server

}

This reduces the number of server calls by two and reduces the total calls to three. The
optimal solution is not to instantiate the server-bound object on the client tier, but merely to
call a server-bound static method on the class, as shown in the following X++ code.

static void CallingServerClass(Args _args)
{

int result;
;
result = ServerClass::calcResult(20,30); // Single call to server

}

Chapter 17 Performance 431
The same optimization can be considered for server-bound table methods. If multiple server-
bound methods are called sequentially from the client tier, the individual calls can be bundled
into a single server-bound method, which then makes the individual calls to the other methods.

Parsing Parameters by Reference and Value

 When the client tier has an object handle to a server object, the server sometimes queries the
client tier by calling the client to determine whether the tier still contains handles to the
object. Otherwise, the server tier will destroy the object. If the server tier also has handles to
client objects, the client performs the same query. This, of course, happens as shown in the
preceding examples when a server-bound object is instantiated on the client tier. However, it
also happens if an object is instantiated on the client tier and is then parsed as a parameter to
a server-bound method. In this case, object handles to the same object exist on both tiers,
which results in extra client/server calls to determine whether these objects can be destroyed.

Instead of parsing the object by reference from one tier to the other, you may consider parsing
it by value. This means that values are parsed to the other tier, which is then used to instantiate
a new object of the same type. Then two different and disconnected objects exist on either tier,
making it unnecessary for the tier to keep track of object handles across the tier.

Note Parsing by value is automatically supported by the RunBase framework. The RunBase
framework packs variables in a container, parses the container to the opposite tier, and then
unpacks the container and instantiates a new object from the variables in the container.

Reports and Forms

Dynamics AX reports can be executed on either the client or the server. Exactly where to
execute the report is defined by the menu item that opens the report. If reports are executed
on the server but displayed on the client, the individual pages are generated on the server and
sent to the client. If a report is executed on the client, the client renders and generates the
report pages.

Rich forms are always executed on the client, which results in client/server traffic when
fetching and manipulating records. In addition, display methods can degrade form performance
because the displayed methods are executed by the form application runtime whenever it
refreshes the forms control displaying the value. A server-bound display method could cause
a substantial number of client/server calls, especially if the display method is shown in a grid
in which the returned value from multiple display methods is shown at the same time. You
can, however, cache the value from the display methods by calling the cacheAddMethod
method on the FormDataSource object. The form application runtime then caches the
returned values and refreshes them only when the record is modified or re-read.

432 Part III Under the Hood
Transaction Performance
The previous section focused on limiting traffic between the client and server tiers, but these
tiers are just two of the three tiers involved when a Dynamics AX application is executed.
The last tier is the database tier, and it is also important to optimize the exchange of packages
between the server tier and the database tier. This section focuses on optimizing the transac
tional part of the execution of application logic. The Dynamics AX application runtime helps
you minimize calls made from the server tier to the database tier by supporting set-based
operators and caching of data. However, you should also focus on reducing the amount of
data sent from the database tier to the server tier. Not only will the data be fetched faster from
the database, but fewer packages will be sent back and less memory will be consumed. All
these efforts will promote faster execution of application logic, which will result in smaller
transaction scopes, less locking and blocking, and improved concurrency and throughput.

Set-Based Data Manipulation Operators

As briefly mentioned in Chapter 12, “The Database Layer,” in the discussion of database-
triggering methods, the X++ language contains specific operators and classes to enable
set-based manipulation in the database. The set-based constructs have an advantage over
record-set constructs—they make fewer round trips to the database. The following X++ code
example, showing the selection of several custTable records and where each is updated with a
new value in the creditMax field, illustrates that a round trip is required for the execution of
the select statement and for each execution of the update.

static void UpdateCustomers(Args _args)
{

CustTable custTable;

;

ttsbegin;

while select forupdate custTable
where custTable.CustGroup == '40' // Round trip to database

{

custTable.CreditMax = 1000;

custTable.update(); // Round trip to database

}

ttscommit;

}

In a scenario in which 100 custTable records qualify for the update because the custGroup fields
is equal to '40', the number of round trips would be 1 select + 100 updates = 101 round trips.
The number of round trips for the select statement might be slightly higher, depending on the
number of custTable records that can be retrieved simultaneously from the database and sent
to the Application Object Server (AOS).

Chapter 17 Performance 433
Theoretically, the preceding scenario could be rewritten to result in only one round trip to the
database by changing the X++ code as indicated in the following example. The example shows
how to use the update_recordset operator, resulting in a single SQL UPDATE statement being
parsed to the database.

static void UpdateCustomers(Args _args)
{

CustTable custTable;
;
ttsbegin;

update_recordset custTable setting creditMax = 1000
where custTable.CustGroup == '40'; // Single round trip to database

ttscommit;
}

For several reasons, however, the specific use of a custTable record buffer would not result
in only one round trip. This is described in the following sections on each of the set-based
constructs supported by the Dynamics AX application runtime. These sections also describe
features available that would allow you to modify the preceding scenario to ensure a single
round trip to the database, even with the use of a custTable record buffer.

Important None of the following set-based operations improves performance when used
on temporary tables. The Dynamics AX application runtime always downgrades set-based
operations on temporary tables to record-based operations. This is true regardless of how
the table became a temporary table (whether specified in metadata in the table properties,
disabled because of the configuration of the Dynamics AX application, or explicitly stated in
the X++ code using the table). Also, the downgrade by the application runtime always
invokes the doInsert, doUpdate, and doDelete methods on the record buffer, so no application
logic in the overridden methods is executed.

The insert_recordset Operator

The insert_recordset operator enables the insertion of multiple records into a table in one
round trip to the database. The following X++ code illustrates the use of the operator as the
code copies sizes from one item to another item. The item to which the sizes are copied is
selected from inventTable.

static void CopySizes(Args _args)
{

InventSize inventSizeTo;
InventSize inventSizeFrom;
InventTable inventTable;
;

434 Part III Under the Hood
ttsbegin;
insert_recordset inventSizeTo (ItemId, InventSizeId, Description, Name)

select itemId from inventTable
where inventTable.ItemId == 'PB-Metal Shade'

join inventSizeId, description, name from inventSizeFrom
where inventSizeFrom.ItemId == 'PB-Plastic Shade';

ttscommit;
}

The round trip to the database involves the execution of three statements in the database:

■	 The select part of the insert_recordset statement is executed where the selected rows are
inserted into a temporarily created new table in the database. The syntax of the select
statement when executed in Microsoft SQL Server 2000 is similar to SELECT <field list>
INTO <temporary table> FROM <source tables> WHERE <predicates>.

■	 The records from the temporary table are inserted directly into the target table using
syntax such as INSERT INTO <target table> (<field list>) SELECT <field list> FROM
<temporary table>.

■	 The temporary table is dropped with the execution of DROP TABLE <temporary table>.

This approach has a tremendous performance advantage over inserting the records one by
one, as shown in the following X++ code, which addresses the same scenario as the previous
X++ code.

static void CopySizes(Args _args)
{

InventSize inventSizeTo;

InventSize inventSizeFrom;

InventTable inventTable;

;

ttsbegin;

while select itemId from inventTable

where inventTable.ItemId == 'PB-Metal Shade'
join inventSizeId, description, name from inventSizeFrom

where inventSizeFrom.ItemId == 'PB-Plastic Shade'
{

inventSizeTo.ItemId = inventTable.ItemId;
inventSizeTo.InventSizeId = inventSizeFrom.InventSizeId;
inventSizeTo.Description = inventSizeFrom.Description;
inventSizeTo.Name = inventSizeFrom.Name;
inventSizeTo.insert();

}

ttscommit;

}

If 10 sizes were copied, this scenario would result in one round trip caused by the select
statement and an additional 10 round trips caused by the inserts, totaling 11 round trips.

Chapter 17 Performance 435
The insert_recordset operation could be downgraded, however, from a set-based operation to a
record-based operation. This occurs if any of the following is true:

■ The table is entire-table cached.

■ The insert method or the aosValidateInsert method is overridden on the target table.

■ Alerts have been set to be triggered by inserts into the target table.

■ The Database Log has been configured to log inserts into the target table.

The Dynamics AX application runtime automatically handles the downgrade and internally
executes a scenario similar to the while select scenario shown in the preceding example.

Important When the Dynamics AX application runtime checks for overridden methods, it
only determines whether the methods are implemented. It does not determine whether the
overridden methods contain only the default X++ code. A method is therefore considered to
be overridden by the application runtime, even though it contains the following X++ code:

public void insert()
{

 super();

}

Any set-based insert is then downgraded. It is therefore important that you delete such a
method to avoid the downgrade with its performance ramifications.

You can, however, avoid any downgrade caused by the previously mentioned functionality,
unless the table is entire-table cached. The record buffer contains methods that turn off the
checks that the application runtime performs when determining whether the insert_recordset
operation should be downgraded. Calling skipDataMethods(true) prevents the check that
determines whether the insert method is overridden, and calling skipAosValidation(true)
prevents the check on the aosValidateInsert method. Calling skipDatabaseLog(true) prevents
the check that determines whether the Database Log is configured to log inserts into the
table, and calling skipEvents(true) prevents the check that determines whether any alerts have
been set to be triggered by the insert event on the table. The following X++ code, which
includes the call to skipDataMethods(true), therefore ensures that the insert_recordset operation is
not downgraded because the insert method is overridden on the InventSize table.

static void CopySizes(Args _args)
{

InventSize inventSizeTo;
InventSize inventSizeFrom;
InventTable inventTable;
;
ttsbegin;
inventSizeTo.skipDataMethods(true) // Skip override check on insert.
insert_recordset inventSizeTo (ItemId, InventSizeId, Description, Name)

select itemId from inventTable

436 Part III Under the Hood
where inventTable.ItemId == 'PB-Metal Shade'

join inventSizeId, description, name from inventSizeFrom

where inventSizeFrom.ItemId == 'PB-Plastic Shade';

ttscommit;

}

Skip methods must be used with extreme caution to avoid implementing X++ code in the
insert method that will not get executed, events not being raised, logs not being created,
and so on. If you override the insert method, you should use the cross-reference system to
determine whether any X++ code calls skipDataMethods(true), or the X++ code could fail to
execute the insert method. Moreover, when you implement calls to skipDataMethods(true),
make sure that not executing the X++ code in the overridden insert method will not lead to
data inconsistency.

Note that the skip methods can be used only to influence whether the insert_recordset operation
is downgraded. If a call to skipDataMethods(true) is implemented to prevent downgrading
because the insert method is overridden, the overridden version of the insert method will
eventually be executed if the operation is still downgraded. The operation would be down
graded, if, for example, the Database Log had been configured to log inserts into the table.
In the previous example, the overridden insert method on the InventSize table would be
executed if the Database Log were configured to log inserts into the InventSize table because
the insert_recordset operation would then revert to a while select scenario in which the overrid
den insert method would get called.

The update_recordset Operator

The behavior of the update_recordset operator is very similar to that of the insert_recordset
operator. This is illustrated by the following piece of X++ code, in which all sizes for an item
are updated with a new description.

static void UpdateSizes(Args _args)
{

InventSize inventSize;
;
ttsbegin;
update_recordset inventSize

setting Description = 'This size is for item PB-Metal Shade'
where inventSize.itemId == 'PB-Metal Shade';

ttscommit;
}

The execution of the update_recordset operation results in one statement being parsed to the
database, which in SQL Server 2000 uses a syntax similar to UPDATE <table> <SET> <field and
expression list> WHERE <predicates>. As with the insert_recordset operator, this operator also
provides a tremendous improvement in performance over the record-based version, in which

Chapter 17 Performance 437
each record is updated individually. This is shown in the following X++ code, which serves the
same purpose as the preceding example. The code selects all the records qualified for update,
sets the new description value, and updates the record.

static void UpdateSizes(Args _args)
{

InventSize inventSize;
;
ttsbegin;
while select forupdate inventSize

where inventSize.itemId == 'PB-Metal Shade'
{

inventSize.Description = 'This size is for item PB-Metal Shade';
inventSize.update();

}
ttscommit;

}

If 10 records qualified, one select statement and 10 update statements would be parsed to
the database, rather than the single update statement that would be parsed by using the
update_recordset operator.

The update_recordset operation could also be downgraded if specific methods have been
overridden or because of the configuration of the Dynamics AX application. This occurs if any
of the following is true:

■	 The table is entire-table cached.

■	 The update method, the aosValidateUpdate method, or the aosValidateRead method is
overridden on the target table.

■	 Alerts have been set up to be triggered by update queries into the target table.

■	 The Database Log has been configured to log update queries into the target table.

The Dynamics AX application runtime automatically handles the downgrade and internally
executes a scenario similar to the while select scenario shown in the preceding example.

You can avoid any downgrade caused by the previously mentioned functionality, unless the
table is entire-table cached. The record buffer contains methods that turn off the checks that
the application runtime performs when determining whether the update_recordset operation
should be downgraded. Calling skipDataMethods(true) prevents the check that determines
whether the update method is overridden, and calling skipAosValidation(true) prevents the
checks on the aosValidateUpdate and aosValidateRead methods. Calling skipDatabaseLog(true)
prevents the check that determines whether the Database Log is configured to log updates to
records in the table, and calling skipEvents(true) prevents the check to determine whether any
alerts have been set to be triggered by the update event on the table.

438 Part III Under the Hood
As I explained earlier, the skip methods should be used with great caution, and you should take
the same precautions before using the skip methods in combination with the update_recordset
operation. Again, using the skip methods only influences whether the update_recordset
operation is downgraded to a while select scenario. If the operation is downgraded, the database
logging, alerting, and execution of overridden methods will occur, even though the respective
skip methods have been called.

Tip If an update_recordset operation is downgraded to a while select scenario, the select
statement uses the concurrency model specified at the table level. You can apply the optimistic-
lock and pessimisticlock keywords to the update_recordset statements and enforce a specific
concurrency model to be used in case of downgrade.

The delete_from Operator

The delete_from operator is similar to the insert_recordset and update_recordset operators in that
it parses a single statement to the database to delete multiple rows. The following X++ code
shows deletion of all sizes for an item.

static void DeleteSizes(Args _args)
{

InventSize inventSize;
;
ttsbegin;
delete_from inventSize

where inventSize.itemId == 'PB-Metal Shade';
ttscommit;

}

This code parses a statement to SQL Server 2000 in a similar syntax to DELETE <table>
WHERE <predicates> and executes the same scenario as the following X++ code that uses
record-by-record deletes.

static void DeleteSizes(Args _args)
{

InventSize inventSize;
;
ttsbegin;
while select forupdate inventSize

where inventSize.itemId == 'PB-Metal Shade'
{

inventSize.delete();
}
ttscommit;

}

Chapter 17 Performance 439
Again, the use of delete_from is preferred with respect to performance because a single
statement is parsed to the database, rather than the multiple statements that the record-by
record version parses.

Like the downgrading insert_recordset and update_recordset operations, the delete_from
operation could also be downgraded, and for similar reasons. Downgrade occurs if any of the
following is true:

■	 The table is entire-table cached.

■	 The delete method, the aosValidateDelete method, or the aosValidateRead method is

overridden on the target table.

■	 Alerts have been set up to be triggered by deletes into the target table.

■	 The Database Log has been configured to log deletes into the target table.

Downgrade also occurs if delete actions are defined on the table. The Dynamics AX application
runtime automatically handles the downgrade and internally executes a scenario similar to
the while select scenario shown in the preceding example.

You can avoid downgrade caused by the previously mentioned functionality, unless the
table is entire-table cached. The record buffer contains methods that turn off the checks that
the application runtime performs when determining whether to downgrade the delete_from
operation. Calling skipDataMethods(true) prevents the check that determines whether the
delete method is overridden, and calling skipAosValidation(true) prevents the checks on the
aosValidateDelete and aosValidateRead methods. Calling skipDatabaseLog(true) prevents the
check that determines whether the Database Log is configured to log deletion of records in
the table, and calling skipEvents(true) prevents the check that determines whether any alerts
have been set to be triggered by the delete event on the table. Calling skipDeleteActions(true)
prevents the check that determines whether any delete actions are defined in metadata on the
table.

The preceding descriptions about the use of the skip methods, the no-skipping behavior in
the event of downgrade, and the concurrency model for the update_recordset operator are
equally valid for the use of the delete_from operator.

Note The record buffer also contains a skipDeleteMethod method. Calling the methods as
skipDeleteMethod(true) has the same effect as calling skipDataMethods(true). It actually invokes
the same Dynamics AX application runtime logic, so you can use the skipDeleteMethod in
combination with insert_recordset and update_recordset, although it might not improve the
readability of the X++ code.

440 Part III Under the Hood
The RecordInsertList and RecordSortedList Classes

In addition to the set-based operators, Dynamics AX also allows you to use the RecordInsertList
and RecordSortedList classes when inserting multiple records into a table. When the records
are ready to be inserted, the Dynamics AX application runtime packs multiple records into a
single package and sends it to the database. The database executes individual inserts for each
record in the package. This is illustrated in the following example, in which a RecordInsertList
object is instantiated and each record to be inserted into the database is added to the Record-
InsertList object. When all records are inserted into the object, the insertDatabase method is
called to ensure that all records are inserted into the database.

static void CopySizes(Args _args)
{

InventSize inventSizeTo;
InventSize inventSizeFrom;
InventTable inventTable;
RecordInsertList recordInsertList;
;
ttsbegin;
recordInsertList = new RecordInsertList(tableNum(InventSize));

while select itemId from inventTable
where inventTable.ItemId == 'PB-Metal Shade'

join inventSizeId, description, name from inventSizeFrom
where inventSizeFrom.ItemId == 'PB-Plastic Shade'

{
inventSizeTo.ItemId = inventTable.ItemId;
inventSizeTo.InventSizeId = inventSizeFrom.InventSizeId;
inventSizeTo.Description = inventSizeFrom.Description;
inventSizeTo.Name = inventSizeFrom.Name;
recordInsertList.add(inventSizeTo); // Insert records

// if package is full.
}
recordInsertList.insertDatabase(); // Insert remaining records

// into database.

ttscommit;

}

If the Dynamics AX application runtime discovers that enough records have been added
to the RecordInsertList object to constitute a package, the records are packed, parsed to the
database, and inserted individually on the database tier. This check is made when the add
method is called. When the insertDatabase method is called from the application logic, the
remaining records are therefore inserted with the same mechanism.

Using these classes has an advantage over the while select scenario: Fewer round trips
are made from the AOS to the database because multiple records are sent simultaneously.
However, the number of INSERT statements in the database remains the same.

Chapter 17 Performance 441
Note Because the timing of insertion into the database depends on the size of the record
buffer and the package, you should not expect a record to be selectable from the database
until the insertDatabase method has been called.

The preceding scenario can be rewritten to use the RecordSortedList class instead of the
RecordInsertList class, as shown in the following X++ code.

static void CopySizes(Args _args)
{

InventSize inventSizeTo;
InventSize inventSizeFrom;
InventTable inventTable;
RecordSortedList recordSortedList;
;
ttsbegin;
recordSortedList = new RecordSortedList(tableNum(InventSize));
recordSortedList.sortOrder(fieldNum(InventSize, ItemId),

fieldNum(InventSize, InventSizeId));

while select itemId from inventTable
where inventTable.ItemId == 'PB-Metal Shade'

join inventSizeId, description, name from inventSizeFrom
where inventSizeFrom.ItemId == 'PB-Plastic Shade'

{
inventSizeTo.ItemId = inventTable.ItemId;
inventSizeTo.InventSizeId = inventSizeFrom.InventSizeId;
inventSizeTo.Description = inventSizeFrom.Description;
inventSizeTo.Name = inventSizeFrom.Name;
recordSortedList.ins(inventSizeTo); //No records will be inserted.

}
recordSortedList.insertDatabase();//All records are inserted in database.
ttscommit;

}

When the application logic uses a RecordSortedList object, the records are not parsed and
inserted in the database until the insertDatabase method is called. The number of round trips
and INSERT statements executed is the same as for the RecordInsertList object.

Both RecordInsertList objects and a RecordSortedList objects can be downgraded in application
logic to record-by-record inserts, in which each record is sent in a separate round trip to the
database and the INSERT statement is subsequently executed. This occurs if the insert
method or the aosValidateInsert method is overridden, or if the table contains fields of type
container or memo. Downgrade does not occur if the Database Log is configured to log
inserts or alerts that have been set to be triggered by the insert event on the table. The database
logging and eventing occurs on a record-by-record basis after the records have been sent and
inserted into the database.

442 Part III Under the Hood
When instantiating the RecordInsertList object, you can specify that the insert and aosValidate-
Insert methods be skipped. You can also specify that the database logging and eventing be
skipped if the operation is not downgraded.

Restartable Jobs and Optimistic Concurrency

In multiple scenarios in the Dynamics AX application, the execution of some application
logic involves manipulating multiple rows from the same table. Some scenarios require that
all rows be manipulated within a single transaction scope; if something fails and the transaction
is aborted, all modifications are rolled back, and the job can be restarted manually or auto
matically. Other scenarios commit the changes on a record-by-record basis; in case of failure,
only the changes to the current record are rolled back, and all previously manipulated records
are already committed. When a job is restarted in this scenario, it starts where it left off by
skipping all the records already changed.

An example of the first scenario is shown in the following code, in which all update queries to
the custTable records are wrapped into a single transaction scope.

static void UpdateCreditMax(Args _args)
{

CustTable custTable;
;
ttsbegin;
while select forupdate custTable where custTable.creditMax == 0
{

if (custTable.balanceMST() < 10000)
{

custTable.creditMax = 50000;

custTable.update();

}

}

ttscommit;

}

An example of the second scenario, executing the same logic, is shown in the following code,
in which the transaction scope is handled on a record basis. Note that you must reselect each
individual custTable record inside the transaction for the Dynamics AX application runtime to
allow the update of the record.

static void UpdateCreditMax(Args _args)
{

CustTable custTable;

CustTable updateableCustTable;

;

while select custTable where custTable.creditMax == 0

{

if (custTable.balanceMST() < 10000)

Chapter 17 Performance 443
{

ttsbegin;

select forupdate updateableCustTable

where updateableCustTable.AccountNum == custTable.AccountNum;

updateableCustTable.creditMax = 50000;

updateableCustTable.update();

ttscommit;

}

}

}

In a scenario in which 100 custTable records qualify for the update, the first example would
involve one select and 100 update statements being parsed to the database, and the second
example would involve one large select query and 100 single ones, plus the 100 update state
ments. So the first scenario would execute faster than the second, but the first scenario would
also hold the locks on the updated custTable records for a longer period of time because it
would not commit for each record. The second example demonstrates superior concurrency
over the first example because locks are held for a short period of time.

The implementation of the optimistic concurrency model in Dynamics AX 4.0 resulted in the
ability to take advantage of the benefits offered by both of the preceding examples. In Dynamics
AX 4.0, you can select records outside a transaction scope and update records inside a
transaction scope, but only if the records are selected optimistically. This is shown in the
following example, in which the optimisticlock keyword is applied to the select statement while
maintaining a per-record transaction scope. Because the records are selected with the optimistic-
lock keyword, it is not necessary to reselect each record individually within the transaction
scope. For a detailed description of the optimistic concurrency model, see Chapter 12.

static void UpdateCreditMax(Args _args)
{

CustTable custTable;

;

while select optimisticlock custTable where custTable.creditMax == 0

{

if (custTable.balanceMST() < 10000)
{

ttsbegin;

custTable.creditMax = 50000;

custTable.update();

ttscommit;

}

}

}

This approach provides the same number of statements parsed to the database as in the first
example, with the improved concurrency from the second example because commits execute
on a record basis. This example will still not perform as fast as the first because it has the extra

444 Part III Under the Hood
burden of the per-record transaction management. You could optimize the example even
further by committing on a scale somewhere between all records and the single record,
without decreasing the concurrency considerably. However, the appropriate choice of commit
frequency always depends on the circumstances of the job.

Best Practices You can use the forupdate keyword when selecting records outside the
transaction if the table has been enabled for optimistic concurrency at the table level. However,
the best practice is to explicitly use the optimisticlock keyword because the scenario will not fail if
the table-level setting is changed. Using the optimisticlock keyword also improves the readability
of the X++ code because the explicit intention of the developer is stated in the code.

Caching

The Dynamics AX application runtime supports the enabling of single-record and set-based
caching of records. Set-based caching can be set in metadata by switching a property on a
table definition or writing explicit X++ code, which instantiates a cache. Regardless of how
caching is set up, you do not need to know which caching method is used because the
application runtime handles the cache transparently. But to optimize the use of the cache, you
must understand how each caching mechanism works.

The Microsoft Dynamics AX SDK contains a good description of the individual caching
possibilities and how they are set up. This section focuses on how the caches are implemented
in the Dynamics AX application runtime and what you should expect when using the individual
caching mechanisms.

Record Caches

You can set up three types of record caching on a table by setting the CacheLookup property on
the table definition. The following are the three record-caching values:

■ Found

■ FoundAndEmpty

■ NotInTTS

One additional value (besides None) is EntireTable, which is a set-based caching option that is
described later in this section.

The three record-caching possibilities are fundamentally the same. The difference lies in what
is cached and when cached values are flushed. For example, the Found and FoundAndEmpty
caches are preserved across transaction boundaries, but a table that uses the NotInTTS cache
does not use the cache when first accessed inside a transaction scope—it uses it in consecutive
select statements, unless a forupdate keyword is applied to the select statement. The following
X++ code example describes when the cache will be used inside and outside a transaction
scope, when a table uses the NotInTTS caching mechanism, and where the AccountNum

Chapter 17 Performance 445
field is the primary key. The comments in the X++ code describe when the cache will be
used and when it will not. In the example, it appears that the first two select statements after
the ttsbegin command will not use the cache. The first will not use the cache because it is the
first statement inside the transaction scope, and the second will not use the cache because the
forupdate keyword is applied to the statement. The use of the forupdate keyword forces the
application runtime to look up the record in the database because the previously cached
record was not selected with the forupdate keyword applied.

static void NotInTTSCache(Args _args)
{

CustTable custTable;
;
select custTable // Look up in cache. If record

where custTable.AccountNum == '4000'; // does not exist, look up
// in database.

ttsbegin; // Start transaction.

select custTable // Cache is invalid. Look up in
where custTable.AccountNum == '4000'; // database and place in cache.

select forupdate custTable // Look up in database because
where custTable.AccountNum == '4000'; // forupdate keyword is applied.

select custTable // Cache will be used.
where custTable.AccountNum == '4000'; // No lookup in database.

select forupdate custTable // Cache will be used because
where custTable.AccountNum == '4000'; // forupdate keyword was used

// previously.

ttscommit; // End transaction.

select custTable // Cache will be used.
where custTable.AccountNum == '4000';

}

If the table had been set up with Found or FoundAndEmpty caching in the preceding example,
the cache would have been used when executing the first select statement inside the transac
tion, but not when the first select forupdate statement was executed.

Note By default, all Dynamics AX system tables are set up using a Found cache. This
cannot be changed.

For all three caching mechanisms, the cache is used only if the select statement contains equal-to
(==) predicates in the where clause that exactly match all the fields in the primary index of the
table. The PrimaryIndex property on the table must therefore be set to the unique index used
when accessing the cache from application logic.

446 Part III Under the Hood
The following X++ code examples show when the Dynamics AX application runtime will try
to use the cache and when it will not. The cache will be used in the first select statement only;
the remaining three statements do not match the fields in the primary index, so they will all
perform lookups in the database.

static void UtilizeCache(Args _args)
{

CustTable custTable;
;
select custTable // Will use cache because only

where custTable.AccountNum == '4000'; // the primary key is used as
// predicate.

select custTable; // Cannot use cache because no
// “where” clause exists.

select custTable // Cannot use cache because
where custTable.AccountNum > '4000'; // equal to (==) is not used.

select custTable // Will not use cache because
where custTable.AccountNum == '4000' // where-clause contains more
&& custTable.CustGroup == '40'; // predicates than the primary

// key.
}

Note The RecId index, which is always unique on a table, can be set as the PrimaryIndex in
the table’s properties. You can therefore set up caching using the RecId field.

The Dynamics AX application runtime ensures that all fields on a record are selected before
they are cached. The application runtime therefore always changes a field list to include all
fields on the table before submitting the SELECT statement to the database when it cannot
find the record in the cache. The following X++ code illustrates this behavior.

static void expandingFieldList(Args _args)
{

CustTable custTable;
;
select creditRating // The field list will be expanded to all fields.

from custTable
where custTable.AccountNum == '4000';

}

If the preceding select statement does not find a record in cache, it will expand the field
to contain all fields, not just the creditRating field. This ensures that the fetched record
from the database contains values for all fields before it is inserted into the cache. Although
performance when fetching all fields is inferior compared to performance when fetching a few

Chapter 17 Performance 447
fields, this is regarded as acceptable because the performance gain in subsequent use of the
cache outweighs the performance loss from populating it.

Tip You can disregard the use of the cache by calling the disableCache() method on the
record buffer with a Boolean true parameter. This forces the application runtime to look up
the record in the database, and it also prevents the application runtime from expanding the
field list.

The Dynamics AX application runtime creates and uses caches on both the client tier and the
server tier. The client-side cache is local to the rich client, and the server-side cache is shared
among all connections to the server, including connections coming from rich clients, Web
clients, the Business Connector, or any another connection.

The cache used depends on which tier the lookup is made from. If the lookup is made on
the server tier, the server-side cache is used. If the lookup is executed from the client tier, the
client first looks in the client-side cache; if nothing is found, a lookup is made in the server-side
cache. If there is still no record, a lookup is made in the database. When the database returns
the record to the server and on to the client, the record is inserted into both the server-side
cache and the client-side cache.

The caches are implemented using AVL trees (which are balanced binary trees), but the trees
are not allowed to grow indefinitely. The client-side cache can contain a maximum of 100
records for a given table in a given company, and the shared server-side cache can contain a
maximum of 2,000 records. When a new record is inserted into the cache and the maximum
is reached, the application runtime removes approximately 5 to 7 percent of the oldest records
by scanning the entire tree.

Note You cannot change the maximum number of records to be cached in metadata or
from the X++ code.

The scenarios that repeat lookups on the same records and expect to find the records in
cache may therefore suffer performance degradation if the cache is continuously full—not only
because records will not be found in the cache because they were removed based on the
aging scheme, forcing a lookup in the database, but also because of the constant scanning of
the tree to remove the oldest records. The following X++ code shows an example in which all
SalesTable records are looped twice, and each loop looks up the associated CustTable record. If
this X++ code were executed on the server and the number of CustTable record lookups was
more than 2,000, the oldest records would be removed from the cache, and the cache would
not contain all CustTable records when the first loop ended. When the code loops through
the SalesTable records again, the records might not be in the cache, and the selection of the
CustTable record would continue to go to the database to look up the record. The scenario
would therefore perform much better with fewer than 2,000 records in the database.

448 Part III Under the Hood
static void AgingScheme(Args _args)
{

SalesTable salesTable;
CustTable custTable;
;
while select SalesTable order by custAccount
{

select custTable // Fill up cache.
where custTable.AccountNum == salesTable.CustAccount;

// More code here
}

while select SalesTable order by custAccount
{

select custTable // Record might not be in cache.
where custTable.AccountNum == salesTable.CustAccount;

// More code here
}

}

Important If you test code on small databases, the preceding issue cannot be tracked
by only tracing the number of statements parsed to the database. When you execute such
code in a production environment, you can encounter severe performance issues because
this scenario does not scale very well.

Before the Dynamics AX application runtime searches for, inserts, updates, or deletes records
in the cache, it takes a mutually exclusive lock, which is not released until the operation is
complete. This means that two processes running on the same server cannot perform these
operations in the cache at the same time; only one process can hold the lock at any given time,
and the remaining processes are blocked. Blocking occurs only when the application runtime
accesses the server-side cache. So although the caching possibilities supported by the application
runtime are useful features, they should not be abused. If you can reuse a record buffer that is
already fetched, you should do so. The following X++ code shows the same record fetched
twice: The second fetch uses the cache, even though the first fetched record buffer could have
been used. When you execute the following X++ code on the server tier, the process might get
blocked when the application runtime searches the cache.

static void ReuseRecordBuffer(Args _args)
{

CustTable custTable;
;
select custTable

where custTable.AccountNum == '4000';

// Some more code, which does not change the custTable record

Chapter 17 Performance 449
select custTable // The cache will be used, but
where custTable.AccountNum == '4000'; // blocking might occur.

// Reuse the record buffer
// instead.

}

The EntireTable Cache

In addition to the three caching methods described so far, a fourth caching option can be set
on a table. This option is the EntireTable, which enables a set-based cache. The option causes
the AOS to mirror the table in the database by selecting all records in the table and inserting
them into a temporary table when any record from the table is selected for the first time. The
first process to read from the table could therefore experience a longer response time because
the application runtime reads all records from the database. Subsequent select queries then
read from the entire-table cache instead of from the database.

A temporary table is usually local to the process that uses it, but the entire-table cache is
shared among all processes that access the same AOS. Each company (as defined by the
DataAreaId field) has an entire-table cache, so two processes requesting records from the
same table from different companies use different caches, and both could experience a
longer response time to instantiate the entire-table cache.

The entire-table cache is a server-side cache only. When requesting records from the client tier
on a table that is entire-table cached, the table behaves as a Found cached table. If a request for
a record is made on the client tier that qualifies for searching the record cache, the client first
searches the local Found cache. If the record is not found, the client calls the AOS to search the
entire-table cache. When the application runtime returns the record to the client tier, it inserts
the record into the client-side Found cache.

The entire-table cache is not used when executing a select statement by which an entire-table
cached table is joined to a table that is not entire-table cached. In this situation, the entire select
statement is parsed to the database. However, when select statements are made that access
only the single entire-table cached table, or when joining other entire-table cached tables, the
entire-table cache is used.

The Dynamics AX application runtime flushes the entire-table cache when records are
inserted, updated, or deleted in the table. The next process, which selects records from the
table, suffers a degradation in performance because it must re-read the entire table into cache.
In addition to flushing its own cache, the AOS that executes the insert, update, or delete also
informs other AOSs in the same installation that they must flush their caches on the same
table. This prevents old and invalid data from being cached for too long in the entire Dynamics
AX application environment. In addition to this flushing mechanism, the AOS flushes all the
entire-table caches every 24 hours.

450 Part III Under the Hood
Because of the flushing that results when modifying records in a table that has been entire-
table cached, you should avoid setting up entire-table caches on frequently updated tables.
Rereading all records into the cache results in a performance loss, which could outweigh the
performance gain achieved by caching records on the server tier and avoiding round trips to
the database tier. The entire-table cache setting on a specific table can therefore be overwritten
at run time when you configure the Dynamics AX application.

Even if the records in a table are fairly static, you might achieve better performance by
not using the entire-table cache if the number of records in the table is large. Because the
entire-table cache uses temporary tables, it changes from an in-memory structure to a file-
based structure when the table uses more than 128 kilobytes (KB) of memory. This results in
performance degradation during record searches. The database search engines have also
evolved over time and are faster than the ones implemented in the Dynamics AX application
runtime. It might be faster to let the database search for the records than to set up and use an
entire-table cache, even though a database search involves round trips to the database tier.

The RecordViewCache Class

The RecordViewCache class allows you to establish a set-based cache from the X++ code. The
cache is initiated by writing the following X++ code.

select nofetch custTrans where custTrans.accountNum == ‘4000’;

recordViewCache = new RecordViewCache(custTrans);

The records to cache are described in the select statement, which must include the nofetch
keyword to prevent the actual selection of the records from the database. The records are
selected when the RecordViewCache object is instantiated with the record buffer parsed as a
parameter. Until the RecordViewCache object is destroyed, select statements will execute on the
cache if they match the where clause defined when it was instantiated. The following X++ code
shows how the cache is instantiated and used.

static void RecordViewCache(Args _args)
{

CustTrans custTrans;
RecordViewCache recordViewCache;
;
select nofetch custTrans // Define records to cache.

where custTrans.AccountNum == '4000';

recordViewCache = new RecordViewCache(custTrans); // Cache the records.

select firstonly custTrans // Use cache.

where custTrans.AccountNum == '4000' &&

custTrans.CurrencyCode == 'USD';

}

Chapter 17 Performance 451
The cache can be instantiated only on the server tier. The defined select may contain only
equal-to (==) predicates in the where clause and is accessible only by the process instantiating
the cache object. If the table buffer used for instantiating the cache object is a temporary table
or it uses EntireTable caching, the RecordViewCache object is not instantiated.

The records are stored in the cache as a linked list of records. Searching therefore involves a
sequential search of the cache for the records that match the search criteria. When defining
select statements to use the cache, you can specify a sort order. This causes the Dynamics AX
application runtime to create a temporary index on the cache, which contains the requested
records sorted as specified in the select statement. The application runtime iterates the temporary
index when it returns the individual rows. If no sorting is specified, the application runtime
merely iterates the linked list.

If the table cached in the RecordViewCache is also record-cached, the application runtime can
use both caches. If a select statement is executed on a Found cached table and the select state
ment qualifies for lookup in the Found cache, the application runtime performs a lookup in
this cache first. If nothing is found and the select statement also qualifies for lookup in the
RecordViewCache, the runtime uses the RecordViewCache and updates the Found cache after
retrieving the record.

Inserts, updates, and deletes of records that meet the cache criteria are reflected in the cache
at the same time that the Data Manipulation Language (DML) statements are sent to the data
base. Records in the cache are always inserted at the end of the linked list. A hazard associated
with this behavior is that an infinite loop can occur when application logic is iterating the
records in the cache and at the same time inserting new records that meet the cache criteria.
An infinite loop is shown in the following X++ code example, in which a RecordViewCache
object is created containing all custTable records associated with CustGroup '40'. The code
iterates each record in the cache when executing the select statement, but because each cached
record is duplicated and still inserted with CustGroup '40', the records are inserted at the end
of the cache. Eventually, the loop fetches these newly inserted records as well.

static void InfiniteLoop(Args _args)
{

CustTable custTable;
RecordViewCache recordViewCache;
custTable custTableInsert;
;
select nofetch custTable // Define records to cache.

where custTable.CustGroup == '40';
recordViewCache = new RecordViewCache(custTable); // Instantiate cache.

ttsbegin;
while select custTable // Loop over cache.

where custTable.CustGroup == '40'
{

custTableInsert.data(custTable);
custTableInsert.AccountNum = 'dup'+custTable.AccountNum;

452 Part III Under the Hood
custTableInsert.insert(); // Will insert at end of cache.
// Records will eventually be selected.

}
ttscommit;

}

To avoid the infinite loop, simply sort the records when selecting them from the cache; this
creates a temporary index that contains only the records in the cache from when the records
were first retrieved. Any inserted records are therefore not retrieved. This is shown in the
following example, in which the order by operator is applied to the select statement.

static void FiniteLoop(Args _args)
{

CustTable custTable;
RecordViewCache recordViewCache;
custTable custTableInsert;
;
select nofetch custTable // Define records to cache.

where custTable.CustGroup == '40';
recordViewCache = new RecordViewCache(custTable); // Instantiate cache.

ttsbegin;
while select custTable // Loop over a sorted cache.

order by CustGroup // Create temporary index.
where custTable.CustGroup == '40'

{
custTableInsert.data(custTable);
custTableInsert.AccountNum = 'dup'+custTable.AccountNum;
custTableInsert.insert(); // Will insert at end of cache.

// Records are not inserted in index.
}
ttscommit;

}

Changes made to records in a RecordViewCache object cannot be rolled back. If one or
more RecordViewCache objects exist, if the ttsabort operation executes, or if an error is thrown
that results in a rollback of the database, the RecordViewCache objects still contain the same
information. Any instantiated RecordViewCache object that is subject to modification by the
application logic should therefore not have a lifetime longer than the transaction scope in
which it is modified. The RecordViewCache object must therefore be declared in a method that
is not executed until after the transaction has begun. In the event of a rollback, the object and
the cache are both destroyed.

As described earlier, the RecordViewCache object is implemented as a linked list that allows
only a sequential search for records. This involves a performance degradation in search when
you use the cache to store a large number of records. The use of the cache should be weighed
against the extra time spent fetching the records from the database where the database uses a
more optimal search algorithm. This is especially true when you search only for a subset of the

Chapter 17 Performance 453
records; the application runtime must continuously match each record in the cache against
the more granular where clause in the select statement because no indexing is available for the
records in the cache.

However, for small sets of records, or for situations in which the same records are looped
multiple times, RecordViewCache offers a substantial performance advantage compared to
fetching the same records multiple times from the database.

Limiting Field Lists

Most of the X++ select statements in Dynamics AX retrieve all fields on a record, although the
values in only a few of the fields are actually used. The main reason for this coding style is that
the Dynamics AX application runtime does not report compile-time or run-time errors if a
field on a record buffer is accessed and it has not been retrieved from the database. The
following X++ code, which selects only the AccountNum field from the CustTable table but
evaluates the value of the CreditRating field and sets the CreditMax field, will not fail because
the application runtime does not detect that the fields have not been selected.

static void UpdateCreditMax(Args _args)
{

CustTable custTable;
;
ttsbegin;
while select forupdate accountNum from custTable
{

if (custTable.CreditRating == '')
{

custTable.CreditMax = custTable.CreditMax + 1000;
custTable.update();

}
}
ttscommit;

}

This code therefore updates all CustTable records to a CreditMax value of 1,000, regardless
of the previous value in the database for the CreditRating and CreditMax fields. Adding the
CreditRating and CreditMax fields to the field list of the select statement might not solve the
problem because the application logic could still update other fields incorrectly. This is
because the update method on the table could be evaluating and setting other fields on the
same record.

Important You could, of course, examine the update method for other fields accessed in
the method and then select these fields as well, but new problems would surface soon. For
example, if you customize the update method to include application logic that uses additional
fields, you might not be aware that the X++ code in the preceding example also needs to be
customized.

454 Part III Under the Hood
However, limiting the field list when selecting records does result in a performance gain
because less data is retrieved from the database and sent to the AOS. The gain is even bigger
if you can retrieve the fields by using the indexes without lookup of the values on the table.
This performance gain can be experienced and the select statements written safely when you
use the retrieved data within a controlled scope, such as a single method. The record buffer
must be declared locally and not parsed to other methods as a parameter. Any developer
customizing the X++ code can easily see that only a few fields are selected and act accordingly.

But to truly benefit from a limited field list, you must understand that the Dynamics AX
application runtime sometimes automatically adds extra fields to the field list before parsing
a statement to the database. One example was explained earlier, in the section titled “Caching.”
In this example, the application runtime expands the field list to include all fields if the select
statement qualifies for storing the retrieved record in the cache. In another example that I
explained in Chapter 12, the application runtime ensures that the fields contained in the
unique index, used by the application runtime to update and delete the record, are always
retrieved from the database.

To illustrate how the application runtime adds additional fields and how to optimize some
select statements, the following X++ code is used as a basis. The code calculates the total
balance for all customers in customer group '40' and converts it into the company’s currency
unit. The amountCur2MST method converts the value in the currency specified by the currency-
Code field to the monetary unit of the company.

static void BalanceMST(Args _args)
{

CustTable custTable;
CustTrans custTrans;
AmountMST balanceAmountMST = 0;
;
while select custTable

where custTable.CustGroup == '40'
join custTrans

where custTrans.AccountNum == custTable.AccountNum
{

balanceAmountMST += Currency::amountCur2MST(custTrans.AmountCur,
custTrans.CurrencyCode);

}
}

When the select statement is parsed to the database, it retrieves all CustTable record fields and
all CustTrans record fields, even though only the AmountCur and CurrencyCode fields on the
CustTrans table are used. The result is the retrieval of more than 100 fields from the database.

The field list can be optimized by simply selecting the AmountCur and CurrencyCode fields
from CustTrans and, for example, only the AccountNum field from CustTable, as shown in the
following code.

Chapter 17 Performance 455
static void BalanceMST(Args _args)
{

CustTable custTable;
CustTrans custTrans;
AmountMST balanceAmountMST = 0;
;
while select AccountNum from custTable

where custTable.CustGroup == '40'
join AmountCur, CurrencyCode from custTrans

where custTrans.AccountNum == custTable.AccountNum
{

balanceAmountMST += Currency::amountCur2MST(custTrans.AmountCur,
custTrans.CurrencyCode);

}
}

As explained earlier, the application runtime expands the field list from the three fields
shown in the preceding X++ code example to five fields because it adds the fields used when
updating the records. This happens even though neither the forupdate keyword nor any of the
specific concurrency model keywords are applied to the statement. The statement parsed to
the database therefore starts as shown in the following example, in which the RECID column
is added for both tables.

SELECT A.ACCOUNTNUM,A.RECID,B.AMOUNTCUR,B.CURRENCYCODE,B.RECID

FROM CUSTTABLE A,CUSTTRANS B

To prevent retrieval of any CustTable fields, you can rewrite the select statement to use the exists
join operator, as shown here.

static void BalanceMST(Args _args)
{

CustTable custTable;
CustTrans custTrans;
AmountMST balanceAmountMST = 0;
;
while select AmountCur, CurrencyCode from custTrans

exists join custTable
where custTable.CustGroup == '40' &&

custTable.AccountNum == custTrans.AccountNum
{

balanceAmountMST += Currency::amountCur2MST(custTrans.AmountCur,
custTrans.CurrencyCode);

}
}

This code retrieves only three fields (AmountCur, CurrencyCode, and RecId) from the CustTrans
table and none from the CustTable table.

456 Part III Under the Hood
In some situations, however, it might not be possible to rewrite the statement to use exists join.
In such cases, including only TableId as a field in the field list will prevent the retrieval of any
fields from the table. The original example is modified as follows to include the TableId field.

static void BalanceMST(Args _args)
{

CustTable custTable;
CustTrans custTrans;
AmountMST balanceAmountMST = 0;
;
while select tableid from custTable

where custTable.CustGroup == '40'
join AmountCur, CurrencyCode from custTrans

where custTrans.AccountNum == custTable.AccountNum
{

balanceAmountMST += Currency::amountCur2MST(custTrans.AmountCur,
custTrans.CurrencyCode);

}
}

This code causes the application runtime to parse a select statement to the database with the
following field list.

SELECT B.AMOUNTCUR,B.CURRENCYCODE,B.RECID
FROM CUSTTABLE A,CUSTTRANS B

If you rewrite the select statement to use exists join or only include TableId as a field, the select
statement sent to the database retrieves just three fields, instead of more than 100. Therefore,
you have much to gain in regard to performance by rewriting queries to retrieve only the
necessary fields.

Best Practices A best practice warning is implemented in Dynamics AX 4.0 to analyze
X++ code for the use of select statements and recommend whether to implement field lists
based on the number of fields accessed in the method. The best practice check is made if
(in the Best Practice Parameters dialog box) the AOS Performance Check under General
Checks is enabled and the Warning Level is set to Errors And Warnings.

Other Performance Considerations

You can further improve transactional performance by giving more thought to the design
of the application logic. For example, ensuring that various tables and records are always
modified in the same order will help prevent deadlocks and ensuing retries. Spending time
preparing the transactions before starting a transaction scope to make it as brief as possible

Chapter 17 Performance 457
can reduce the locking scope and resulting blocking, and ultimately improve the concurrency
of the transactions. Database design factors, such as index design and use, are also important.
These topics are addressed in other books, however, so they are not discussed here.

Dynamics AX Monitoring Tools
Without a way to monitor the execution of the implemented application logic, you would
implement features almost blindly with regard to performance. Fortunately, the Dynamics
AX development environment contains a set of easy-to-use tools to help you monitor client/
server calls, database activity, and application logic. These tools provide good feedback on the
feature being monitored. The feedback is integrated directly with the development environment,
making it possible for you to jump directly to the relevant X++ code.

Monitoring Client/Server Calls

When you develop and test the Dynamics AX application, you can monitor the client and
server calls by turning on the Client/Server Trace option, found on the Development tab in
the Options dialog box, which can be accessed from the Tools menu. The Development tab
shows the calls made that force the application runtime to parse from one tier to the other.
Figure 17-1 shows an example of the client/server trace for one of the previous X++ examples.

Figure 17-1 A client/server trace message window.

Monitoring Database Activity

You can also trace the database activity when developing and testing the Dynamics AX
application logic. Tracing can be enabled on the SQL tab in the Options dialog box. You can
trace all SQL statements or just the long queries, warnings, and deadlocks. SQL statements
can be traced to the Infolog, a message window, a database table, or a file. If statements are
traced to the Infolog, you can use the context menu to open the statement in the SQL Trace
dialog box, in which it is easier to view the entire statement, as well as the path to the method
that executed the statement. The dialog box is shown in Figure 17-2.

You can open the Statement Execution Plan dialog box from the SQL Trace dialog box, as
shown in Figure 17-3. This dialog box shows a simple view of the execution plan to help you
understand how the statement will be executed by the underlying database.

458 Part III Under the Hood
Figure 17-2 The SQL Trace dialog box.

Figure 17-3 The Statement Execution Plan dialog box.

Important To trace SQL statements, you must select the Allow Client Tracing On Application
Object Server Instance option on the Tracing tab in the Server Configuration Utility.

From either of the two dialog boxes, you can copy the statement and, if you are using
SQL Server 2000, paste it into SQL Server Query Analyzer to get a more detailed view of the
execution plan. If the Dynamics AX application runtime uses placeholders to execute the

Chapter 17 Performance 459
statement, the placeholders are shown as question marks in the statement. These must be
replaced by variables or constants before they can be executed in the SQL Server Query
Analyzer. If the application runtime uses literals, the statement can be pasted directly into the
SQL Server Query Analyzer and executed.

When you trace SQL statements in Dynamics AX, the application runtime displays only the
DML statement. It does not display other commands sent to the database, such as transaction
commits or isolation level changes. With SQL Server 2000, you can use the SQL Profiler to
trace these statements using the event classes RPC:Completed and SP:StmtCompleted in the
Stored Procedures collection, and the SQL:BatchCompleted event in the TSQL collection, as
shown in Figure 17-4.

Figure 17-4 SQL Profiler trace events.

The Code Profiler Tool

The previous version of Dynamics AX included a Code Profiler tool that could trace all
method calls within a traced scenario and display the trace in a tree structure. You could
traverse the tree to see the method calls made and their durations.

This tool is greatly enhanced in Dynamics AX 4.0. It calculates the profile much faster, and
it includes a new view of the code profile, providing a better user experience. Figure 17-5
shows the new traverse view, in which each of the called methods in the profiled scenario
appears in the top grid. The view also displays a duration count that shows the number of
ticks that it took to execute the method and a method count that shows the number of
times the methods have been called. The grid for parent calls and children calls shows the
methods that called the specific method and the other methods calling the specific method,
respectively.

460 Part III Under the Hood
Figure 17-5 The Traverse view in the Code Profiler.

If you use the Code Profiler as a performance optimization tool, you can focus on the
methods with the longest duration to optimize the internal structure of the method, or you
can focus on the methods called the most and try to limit the number of calls to those
methods. You can inspect the internal operation of the methods by clicking the Profile
Lines button, which opens the view shown in Figure 17-6. This view shows the duration of
every line in the method.

Figure 17-6 The Profile Lines view in the Code Profiler.

With these changes, the Code Profiler has become an important and powerful tool for finding
issues such as problem areas in the X++ code, code that does not have to be executed in
certain scenarios, and code that makes multiple calls to the same methods.

Chapter 17 Performance 461
Chapter Summary
Is poor performance an implementation issue with a feature, or is it a bug? It may depend
on the user’s expectations. You should therefore consider performance when implementing a
feature, rather than trying to address performance issues with bug fixes. As described in this
chapter, the Dynamics AX application development environment and runtime support a set of
features that assist you with implementation of optimized application logic in a three-tier envi
ronment. This chapter also described a set of tools for monitoring the execution before releas
ing it to a production environment. However, it is not enough merely to know about the these
tools—understanding the other software products that integrate with the Dynamics AX execu
tion environment is equally important.

Chapter 18

Upgrade and Data Migration

In this chapter:

Introduction .463

Upgrading from an Earlier Version .464

Applying Service Packs and Hotfixes .472

Migrating Data .473

Chapter Summary .480

The objectives of this chapter are to:

■ Describe an upgrade of Microsoft Dynamics AX 4.0 that includes modifications.

■ Explain how to apply a service pack or hotfix.

■ Discuss migration of data from a legacy system when implementing Dynamics AX.

Introduction
This chapter provides an overview of how to upgrade from one version of Dynamics AX to a
newer version in a live environment. This process includes upgrading of modifications to
reflect the changes in the standard application and upgrading of the design and contents of
the database to reflect schema changes.

An upgrade process can involve a change to a major version (this chapter describes an upgrade
from version 3.0 to 4.0), or it can involve applying a service pack to the running version. The
routine is basically the same in either case; however, the workload is much greater when
changing major versions.

Single critical errors can be corrected by applying a hotfix. A hotfix is typically an export
of a small number of application objects. A hotfix can also contain a new version of the
executables.

Migration of data is the process of initializing a Dynamics AX environment with data from a
legacy system. You perform this task when implementing Dynamics AX as a replacement for
the previous enterprise resource planning (ERP) system.
463

464 Part III Under the Hood
Upgrading from an Earlier Version
The upgrade process consists of six major steps:

1. Plan the upgrade.

2. Back up code and data.

3. Perform the code upgrade in a development environment.

4. Perform the data upgrade in a test environment.

5. Test the upgraded code and data.

6. Perform the production upgrade in the live environment.

Note The process of upgrading from version 3.0 to version 4.0 is thoroughly described in
the Microsoft Dynamics AX 4.0 Implementation Guide supplied with the product. Refer to this
document for all process-specific information.

Upgrade Planning

Upgrade planning is often affected by decisions concerning the extensions or modifications
made to the current version. When you have decided what must be upgraded, you will
want to estimate the cost of upgrading the customer’s application. The process of making the
upgrade entails costs for resources used. It is critical to clear any potential costs with
the customer before the work is started. If the costs outweigh the benefits of the upgrade, the
customer might decide to postpone the upgrade.

An upgrade cost estimate requires a detailed analysis of the number and extent of modifications
performed on the previous version of the standard application. A good starting point could
be a list of the number of different types of application object in the current layer and the
number of shadows, as illustrated in Figure 18-1. A shadow is an application object from
the standard application that is modified. The modification is performed by making a copy
of the object, which hides the original object. Any changes to the object in the lower layers will
not be visible because it is shadowed by the modification.

Such a list can be generated by using the UtilElements table, which contains a record for
each application object in each layer it represents. The preceding example contains quite a
few objects in the current layer, but only a small fraction of these constitutes modifications to
standard objects. Many of the shadows are object and instance methods, which are usually
easy to upgrade. The main concern in the preceding example is the forms, which should be
further analyzed to investigate the work involved for the upgrade.

The amount of time between when the production environment running the previous version
is stopped and when the new upgraded production environment is started is critical for
the customer because the ERP system will not be available during this time. The time spent

Chapter 18 Upgrade and Data Migration 465
depends on the amount of data, hardware, and infrastructure involved in the upgrade. The
data upgrade performed in the test environment can be used as a guideline for the time that
will be required, but only if the test is performed in an environment that is comparable to
the production environment.

Figure 18-1 Modified application objects.

Figure 18-2 illustrates the steps in an upgrade across several environments.

The base for the upgrade is the live environment at the customer site. Because this environment
runs live until the time of the production upgrade, you establish a copy of the 3.0 environ
ment. You transfer code by copying the layer files. Use the 3.0 environment to prepare
the modifications before the code upgrade. If, for example, you have modifications in the
current application that prevent you from starting the new Dynamics AX 4.0 environment, you
should work in the 3.0 environment to start the 4.0 environment with the layer files (with
the extension .aod) from the current environment.

You establish the environment to be used for the code upgrade by installing Dynamics AX 4.0
and copying the modifications from the version 3.0 development environment. All .aod files
from the production environment should be copied to the folder named Old in the version 4.0
environment. In the first step of the process, only the application files are transferred;
processing of the data upgrade is postponed until the data upgrade step.

You test the data upgrade in a following step. The primary purpose of this environment is to
verify the data upgrade scripts, including the extensions implemented during the code
upgrade. A secondary objective is to get an estimate of the time needed to perform the live
data upgrade.

Functional Test 4.0, as illustrated in Figure 18-2, is a copy of Data Upgrade Test 4.0. The test
is often executed at the customer site. The purpose is to let end users verify that the functions
used are still working correctly on their dedicated hardware setup.

466 Part III Under the Hood
Production
environment

Production
3.0

Production
4.0

Development
3.0

Development
4.0

Data Upgrade
Test 4.0

Functional Test
4.0

Test
environment

Development
environment

Layer files
(*.aod)

Layer files
(*.aod)

Layer files
(*.aod)

Layer files
(*.aod) +

SQL instance

Layer files
(*.aod)

SQL
instance

SQL
instance

Figure 18-2 Steps in an upgrade.

Finally, you perform the live upgrade by copying the code from Functional Test 4.0 and the
data from Production 3.0. You must get a new copy of the data because data will have changed
since you started the upgrade.

Backup of Code and Data

Performing an initial backup makes it possible to perform a rollback if something goes wrong.
At a minimum, the backup should include the directory structure that holds the application;
this includes all the layer files with the file extension .aod. A backup should also include a
copy of the databases with the live data.

You should plan when you will perform backups during the upgrade process and what your
backup process will include. Dynamics AX 4.0 provides a Version Control tool that helps
you identify the versions of objects in the Application Object Tree (AOT).

Chapter 18 Upgrade and Data Migration 467
Code Upgrade in a Development Environment

This section describes the challenges that result from modifications to the standard application.
This includes discussion of upgrading the code to comply with the changes in the standard
application, as well as information about how to extend the data upgrade to include upgrade
of the data in the tables and columns implemented by the modifications.

Making modifications to a Dynamics AX installation involves making copies of application
objects from the lower layers. These copies form a shadow of the underlying application
object. If the original object is modified in the new version, it will be hidden by the copy in
the modified layer. A major task in the code upgrade process is to resolve such conflicts by
merging the changes in the modification with the changes between the two versions. The .aod
files hold the original and changed objects. For details, see the discussions about layers in the
Microsoft Dynamics AX 4.0 Implementation Guide. Also study the contents of Appendix C,
“Source Code Changes Required for Upgrade.” The change of the RecId field from 32 bits to
64 bits requires some source code changes, and this appendix provides guidelines for that
process.

The amount of work required to perform a code upgrade depends largely on the number of
modifications. The first task in the process is to make sure not to spend time on upgrading
unnecessary code. Some of the initial work should be performed in the original 3.0 development
environment prior to establishing the 4.0 code upgrade environment.

If it is feasible, review the list of application objects in the current layer to identify unnecessary
or obsolete modifications. Some of the modifications in the original version may be replaced
by using new or changed functions in the standard application. You should consider keeping
the tables and columns related to the original modification. The information that they stored
can be used in the data upgrade to populate the tables and columns used by the standard
application.

Placing modifications in multiple layers will complicate the upgrade. The code in each layer
should be upgraded in its own environment. If you try to upgrade multiple layers in one
environment, you cannot delete modifications in lower layers, which is sometimes appropriate
in the code upgrade. As an alternative, you can consolidate all the layers into one, but doing so
will create another challenge in regard to the IDs of the application objects because they are
generated individually for each layer. One strategy is to consolidate the layers but keep the
original IDs. This solves the problem, but it prevents use of the deleted layers for other
purposes because some of the IDs related to this layer are already used. Another strategy is to
change all IDs to comply with the consolidated layer. However, this introduces issues with the
existing database, as will be explained shortly. Note that even if the primary purpose of
the IDs is to support the synchronization, the IDs are also used as references in the data. If you
choose to change the IDs, you should make an extension to the upgrade scripts to update the
fields, which hold a reference to the changed ID.

468 Part III Under the Hood
You will experience a conflict if your modifications contain any application objects with names
that are introduced by the new standard version. Duplicate database-related objects (such
as tables, fields, or indexes) will cause a synchronization error. To resolve this, you must
rename conflicting objects before you perform the upgrade.

If an object is not related to the database, a shadow is introduced in the new version that
was not present in the previous version. The object must be included in the upgrade project
because the shadow is presumably not correct because the original modification was not
made by copying the object from the standard version. Conflicts of this type can be avoided by
using a prefix while adding new application objects on the top level. Fields and other objects
in added tables do not require this prefix because the conflict is resolved by prefixing the
table. The same applies to methods on added classes.

In the code upgrade environment, the application files from the 3.0 environment are
used when copying all the version 3.0 application files. The main task in the code upgrade
environment is to resolve the conflicts collected in the upgrade project.

Sometimes an application object is inadvertently copied to the current layer. For example, if
you browse a standard element in the AOT, the kernel assumes that you have modified the
object, and it saves an identical copy in the current layer. If the object is modified in the new
standard version, it will be shadowed by the copy in the current layer. If you specify that you
want to delete obsolete objects while generating the upgrade project, shadows will be
removed automatically and will not be included in the upgrade project.

There are four application object versions to consider when generating an upgrade project:

■ C4 The object version on the current layer in version 4.0

■ L4 The object version on the layer just below the current layer in version 4.0

■ C3 The object version on the current layer in version 3.0

■ L3 The object version on the layer just below the current layer in version 3.0

When an existing object was modified in the previous version, a copy was taken from the
original layer (L3) and placed in your current layer (C3). In the upgrade process, the old layers
are copied to the Old folder. The object in question in the new version (4.0) of the standard
application is called L4, and the copy of the object that you modified is C4. Initially, C4 is equal
to C3, but C4 should be modified (upgraded) to reflect the differences between L3 and L4.

Not all four versions of the application object need to be present. The flow chart in Figure 18-3
illustrates the criteria for inclusion in the upgrade.

The upgrade project includes all application objects that have been modified by you and that
are changed between the two versions. This kind of conflict can be solved by using one of
the following strategies:

■ Re-implement the difference between L3 and C3 in L4.

■ Implement the changes between L3 and L4 in C4.

Chapter 18 Upgrade and Data Migration 469
L4 ? L3 ?No

C3 ?

L4 == L3

L3 == C3Yes Yes

No

No

No

Yes

Yes

Yes

No

No

C4 == L4
Delete

obsolete?

Skip C4
(no action)

Object in
current

layer (C4)

Delete C4

Include C4

C4 == L3

Yes

Yes

Yes

L3 ?

No

Yes

No No

Figure 18-3 Generation of an upgrade project.

You can select a strategy individually for each application object. If you are in doubt,
you should take the first approach because you are more familiar with the modifications
performed in the previous version than you are with the changes in the lower layers.

You can compare L3 with L4 to analyze the changes in the standard application by using the
Compare tool. The original modifications can be analyzed by comparing L3 with C3. C3
would initially be equal to C4 until C4 is modified during the code upgrade process.

470 Part III Under the Hood
Suppose that you discover that the only modification to a form is the addition of a new tab
page with several new field groups and fields. The easiest way to re-implement this modification
is to delete C4 and open a new window showing C3 by using the Add-ins menu. Then you can
drag the tab page from C3 to L4 and save the result as a new version C4. You could also copy
the source code in the Compare tool and paste it into the X++ editor.

Another interesting task is to find references to obsolete application objects in the modifications.
You can find the references to the objects in the X++ code by using the compiler because
the source code will still hold the name without the prefix. To find the references in
the properties, you can use the Find tool. You can also use the Cross-Reference tool, but
this requires you to make a global update including all the current modifications. You can
activate the list of application objects from Tools\Development Tools\Cross Reference\
Names. Applying the filter DEL_* in the name column provides a list of all dropped objects.
Unfortunately, all the fields in tables are cross-referenced to all dynamic query data sources
on the same table. Consequently, you must ignore references to objects that originate from
individual queries or queries embedded in a report.

When you modify the application, you change the X++ methods in some existing methods.
Other methods are just referenced by a method call. Some of the methods referenced can
have changed signatures (parameters). These are fairly easy to find because they will result in
a compiler error during compilation of the method you modified. It is important to analyze
changes in signatures and to comply with them.

The most difficult part of the code upgrade involves methods from the standard application
that are referenced in the modified code whose contents, but not signatures, have changed.
Such situations can result in errors when you test the upgraded code before applying it to the
production environment. The important last step of a test upgrade should be a functional test
that involves all the processes used by the customer. You might want to set up a test installa
tion at the customer site and let regular users test their individual workflows.

Data Upgrade in a Test Environment

The version upgrade typically includes some adjustments to the database. Some tables and
columns become obsolete, and other tables and columns are added. The data contained in
the obsolete tables and columns is often used to populate some of the newly added tables and
columns. The data upgrade framework handles the upgrade of the data structure and data in
the standard application, but you must handle any changes that affect the modified layers.
This means that you must determine whether changes in the data structure will affect any
modification in the application.

The data upgrade consists of two steps. One occurs before the new schema is applied, and
the other occurs immediately after the schema changes are synchronized with the database.
The pre-synchronization step prepares the existing data so that new unique indexes are not
violated. When programming scripts are executed before synchronization, you cannot refer

Chapter 18 Upgrade and Data Migration 471
to new tables and fields, because they are not present in the database before the schema
changes are applied.

The post-synchronization step populates the new tables and columns and updates the existing
data where necessary. The tables and fields that are dropped are not deleted from the database
when the schema changes are applied; they are merely renamed with the added prefix DEL_.
This strategy allows for access to the data in the post-synchronization script. The tables and
fields in question will be related to a configuration key, which can be disabled when the data
upgrade is complete. When the key is disabled, the database is synchronized and the dropped
tables and fields are deleted.

When Dynamics AX 4.0 is installed, the necessary scripts for upgrading the schema changes
in the standard application are automatically installed as well. They will be executed when
the upgrade checklist is executed.

Tip For details on the upgrade checklist, see the Microsoft Dynamics AX 4.0 Implementa
tion Guide.

Some of the modifications might also need data upgrade scripts. The following list describes
situations that are solved by modifying and extending the upgrade scripts:

■	 The modifications in the previous version have introduced some data that is now
present in the standard application. The column added in the previous version by the
modifications should be used to populate the new column in the standard application.
After the upgrade, both the standard application and the modifications with upgraded
code should use the field in the standard application.

■	 The modifications in the previous version use standard application data that is no longer
used by the standard application. If the data is still needed by the modifications, it
should be transferred to a new table created during the code upgrade.

■	 The modifications in the previous version have added one or more entries to a base
enumeration introduced by the standard application. The new version of the standard
application has added one or more entries to the same base enumeration. If the numeric
values of the entries conflict, an extension to the upgrade script should convert the
values of the existing data to reflect the new values that result after adding the modified
entries and merging the new version.

Testing of Upgraded Code and Data

The purpose of the data upgrade test performed in a test environment is to:

■	 Ensure that all code upgrades are performed correctly.

■	 Ensure that no data upgrade errors will occur when performing the production data
upgrade.

472 Part III Under the Hood
■	 Measure the time used for performing the data upgrade, which is also the system down
time estimate you should use for the production data upgrade. Upgrades in the produc
tion environment typically have a narrow time window in which the task must be
completed.

Some code and data upgrade problems can be identified and easily solved, but other problems
cannot be identified automatically. Always perform a test of all your business-critical functions
in Dynamics AX to ensure that they are working as expected after the upgrade. It is a good idea
to involve your end users in this task, giving them an opportunity to become more familiar with
the new version before it goes live. The process should be considered a learning experience,
as well as a sign-off of the functionality.

Production Upgrade in the Live Environment

The production upgrade process is similar to the data upgrade process performed in the test
environment. But because the live data has been changed during the test, the process must
be repeated from the beginning.

Applying Service Packs and Hotfixes
This section explains how to apply service packs and hotfixes for Dynamics AX 4.0. The
task is less complicated than upgrading to a major version because the number of changes is
limited.

Service Packs

Service packs are collections of bug fixes that are released at regular intervals. A Dynamics AX
service pack typically includes a new kernel (executables) and one or more .aod files with
the corrected application objects.

The advisability of applying a released service pack should depend on an evaluation of the
benefits and costs of making the upgrade. You may skip one or more service packs and apply
a later service pack, because the contents of the individual service packs are cumulative. For
example, the contents of Service Pack 2 (SP2) include all corrections included with SP1. Also,
an upgrade to the next version of Dynamics AX can normally be performed directly from any
service pack.

Service packs are accompanied by detailed documentation to help you analyze the possible
benefits of applying the service pack in the current installation. If only a few of the corrections
are significant, you might consider extracting these application objects and importing them
manually in the current layer. Remember to document this so that you can remove the
objects from the current layer when you apply the next service pack. When you extract the
application objects to an export file, you should remember to specify that you want to keep
the original ID. This will allow you to apply a later service pack without having to change IDs.

Chapter 18 Upgrade and Data Migration 473
The process of applying a service pack is much like upgrading to a new version. However, the
number of changed application objects is smaller, and the changes to the database schema are
minimal, so the number of upgrade scripts is also smaller. The tasks that you must perform
when applying a service pack are the same as for a version upgrade, but each task typically
takes less time.

Hotfixes

A hotfix is a fix of a single severe error that must be corrected as soon as possible. Dynamics
AX hotfixes are released on the Microsoft Dynamics PartnerSource portal. You should
consider applying a hotfix only if the current installation is affected by the correction.

A hotfix can be an updated kernel (executable) or an export file that contains application
objects. The export file is imported in the current layer of the installation. This means that the
hotfix will be placed with the modifications. Before you apply a hotfix, you should determine
whether the hotfix contains application objects that are already modified. You can use the
Compare tool in the Import dialog box to examine the hotfix before the import executes. If
it contains objects that are already modified, they should be merged with the changes per
formed in the hotfix.

Released hotfixes are typically added to the next service pack. If you have applied any
hotfixes, you should remove them from the current layer when you apply the next service
pack. If the change in the hotfix is identical to the change in the next service pack, you can
delete the application object in the current layer when you generate the upgrade project.

Migrating Data
Data migration is the process of transferring data from a legacy system to an initial implemen
tation of Dynamics AX. Migration from a legacy system to Dynamics AX can include the
steps illustrated in Figure 18-4.

The data migration process is composed of the following steps:

1.	 The requirements for the new Dynamics AX implementation arise from the customer
and from the current legacy system.

2.	 The requirements are used as input for creating specifications of the necessary
modifications to Dynamics AX.

3.	 The specifications are used as the guide for programming the necessary modifications,
including implementation of scripts needed for data migration.

4.	 The data migration procedure is tested by transferring data from the live legacy system
to a test environment.

5.	 A test environment is established at the customer site to test the functional modifications
implemented and to verify that the data migration procedure is valid.

474 Part III Under the Hood
6.	 Finally, a production environment in the new Dynamics AX installation is created. This
includes the modifications previously tested. But the data could have changed in the
legacy system during the process, so you must carry out a new live data migration while
switching the production environment to Dynamics AX.

Production
environment

Production
legacy system

Production
Dynamics AX

Specification
Dynamics AX

Development
Dynamics AX

Data migration
 test

Dynamics AX

Functional test
Dynamics AX

Test
environment

Development
environment

Specification

Requirements

Layer files
(*.aod)

Layer files
(*.aod) +

SQL instance

Layer files
(*.aod)

Data
Data

Figure 18-4 Steps in data migration.

Data To Be Migrated

The data in a Dynamics AX database can be categorized as follows:

■	 Parameters and setup

■	 Main tables

■	 Worksheets

Chapter 18 Upgrade and Data Migration 475
■ Transactions

■ Journals

Parameters and Setup

The parameters and setup usually must be entered manually because they are specific
to Dynamics AX. The legacy system will not contain corresponding data for all setup and
parameters in Dynamics AX.

Main Tables

The data in the legacy system that describes ledger accounts, customers, vendors, employees,
and items is used to populate the corresponding tables in Dynamics AX.

Worksheets

Worksheets that include ledger journals and inventory journals can be used to import
opening figures regarding the ledger, customers, vendors, and inventory. Sales and purchase
orders are also treated as worksheets in Dynamics AX because they specify future packing
slips and invoices.

Transactions

The transaction tables contain many relations between the individual records that cannot be
reconstructed by importing data. The correct way to populate these tables is to import the
transactions into a journal and post it.

Journals

Journals include posted packing slips and invoices. If journals are posted in Dynamics AX,
they will have references to the transactions in the ledger and inventory module. But if the
data migration includes transfer of journals, they will not have these references, because the
transactions can be populated with opening figures only. The transferred journals can still be
used for inquiry and reporting without these relations to the transactions.

Data Migration Techniques

Several data entry techniques can be used to migrate the data from a legacy system:

■ Manual data entry

■ Microsoft Office Excel export/import

■ Data import

■ Individually programmed import

476 Part III Under the Hood
The migration process typically includes a mix of all these techniques, as illustrated in
Figure 18-5.

Production
environment

Test
environment

Development
environment

Automatic
data migration

Specification

Data
export/import

Layer files

(*.aod) +

SQL instance

Data
export/import

Production
legacy system

Production
Dynamics AX

Specification
Dynamics AX

Manual setup
and migration

Data migration
 test

Dynamics AX

Functional test
Dynamics AX

Requirements

Layer files
(*.aod)

Automatic
data migration

Manual data
migration

Figure 18-5 Data migration techniques and flow.

Some of the parameters and setup data will not exist in the legacy system. They must be
specified and entered manually. As an alternative to manual entry, you can generate Office
Excel templates from Dynamics AX, enter the legacy data in Excel, and import the Excel
spreadsheets.

Part of the data in the legacy system will be of a static nature and will not change until the
system is replaced by Dynamics AX. The import functionality can be used to import this data.
However, the dynamic data can only be transferred to the final Dynamics AX version after the
legacy system has been shut down. You must make a preliminary migration of this data to be
able to test the implemented modifications and the routines for data migration. If it is possible

Chapter 18 Upgrade and Data Migration 477
to make an automated data migration of this data, you can avoid a great deal of manual work
(which can be time-consuming and can introduce new errors) during the live migration.

Figure 18-5 illustrates how to avoid entering manual data directly into the environment,
which is also the target of the automated migration. By making the manual data entry in a
dedicated environment, you can repeat the process without repeating the manual entry. This
also isolates the manual data to be transferred during the live migration, at which time it will
be merged with the final version of the dynamic data from the legacy system.

Manual Data Entry

Manual data entry is often used on smaller amounts of data. This data typically includes the
setup of groups and other parameters that must be analyzed and designed while specifying
the new implementation.

Many of the groups and parameters are used as mandatory foreign keys on accounts, customers,
vendors, and items. You must define these keys before the main tables can be imported. Some
of the parameters can be the same key for all records in a specific table; the value of the key are
hard-coded in the import definition. Since the parameters are cached, you should be careful to
reset the cache if the parameters are modified in a live environment.

If the reliability of the data in the legacy system is questionable, the manual transfer can be
supplemented by a critical review of the data. This could include verification of the customer
addresses, deletion of inactive accounts, and so on.

Office Excel Export/Import

An alternative to manual entry of data into the Dynamics AX forms is the use of the Office
Excel export/import function. This function generates Office Excel spreadsheets with
templates and existing data from Dynamics AX. After modification, the spreadsheets can be
imported back to Dynamics AX.

More Info For an in-depth description of the use of the Office Excel export/import func
tion, refer to the online Help for Dynamics AX 4.0.

Data Import

Another approach to data transfer is to generate comma-separated files from the legacy system
and import these files by using the data import function in Dynamics AX. Use of the data
import function is documented in the online Help for Dynamics AX 4.0.

Individually Programmed Import

An alternative to using the parameter-controlled import mentioned in the preceding section is
to create individual scripts to carry out the import. This requires some additional programming

478 Part III Under the Hood
knowledge, but it can be a more flexible method because all functions and classes in the
development environment will be available. This approach also allows for a more automated
data migration that can be repeated without much manual work; this is beneficial if your
migration is designed using multiple cycles of programming and testing of the data migration.

If you can access the data in the legacy system by using an ODBC connection, you might
consider reading directly from the original data and inserting the data into the Dynamics AX
database by using X++. This approach makes it possible to dynamically select data from
different data sources in the legacy system.

When you program the import, you can choose to use the interface classes implemented
in Dynamics AX as an alternative to inserting the physical records. The AxBC (business
component) classes are especially useful when importing transactions into the worksheets.
The following AxBC classes wrap the tables with the worksheet lines:

■ AxLedgerJournalTrans

■ AxInventJournalTrans

■ AxSalesTable and AxSalesLine

■ AxPurchTable and AxPurchLine

The AxBC classes have implemented parm methods for all the fields in the table and keeps
track of which fields are assigned a value. When you save the record, the class tries to assign
default values to the fields in which values were not assigned during the import. The classes
will also assign the various number sequence IDs and line numbers. The following code
example illustrates the use of AxInventJournalTrans.

InventJournalNameId inventJournalNameId = 'MOV';

InventJournalTable inventJournalTable;

AxInventJournalTrans axInventJournalTrans;

;

ttsbegin;

inventJournalTable.JournalNameId = inventJournalNameId;

inventJournalTable.insert();

axInventJournalTrans = new AxInventJournalTrans();

axInventJournalTrans.parmJournalId(inventJournalTable.JournalId);

axInventJournalTrans.parmTransDate(systemDateGet());

axInventJournalTrans.parmItemId('I1234');

axInventJournalTrans.axInventDim().parmInventLocationId('MAIN');

axInventJournalTrans.parmQty(100.00);

axInventJournalTrans.parmCostPrice(50.00);

axInventJournalTrans.save();

ttscommit;

Chapter 18 Upgrade and Data Migration 479
When you import large amounts of data, pay attention to performance. As with upgrades from
one version of Dynamics AX to another, the time between stopping the legacy system and
starting the new system is critical for the customer. Using the interface classes to encapsulate
data can increase the time needed for the import. To reduce the number of database calls, you
can also use the RcordInsertList class to make array inserts when you insert the physical
records.

Automated Data Migration

It is important that the part of the migration that must be executed after the legacy system is
shut down and before the new system is running be automated as much as possible. One way
to automate the process is to control the client by using XML files. When you activate
ax32.exe, you can specify a startup command that will execute the commands in an XML file.
Some of the possible commands are useful with respect to data migration. Here are a few
examples of tasks that can be executed in this way:

■ Make an import of application objects from a file.

■ Activate data import with a specified file.

■ Run a main method on a class.

Data Model

Table 18-1 illustrates the destination of the data migration for the most common types of data.

Table 18-1 Destination of Migrated Data

Information Destination Notes

Chart of accounts LedgerTable

LedgerTableInterval

The second table is used to specify setup of sum
accounts.

Ledger transactions LedgerJournalTrans Migrate only opening amounts. The data in the
journal are transferred to LedgerTrans when
the journal is posted. Do not transfer amounts
for customer, vendor, and inventory because they
are generated when posting journals, as explained
in this table.

Customers CustTable

Customer transactions LedgerJournalTrans Migrate only the opening amount or open
transactions.

Vendors VendTable

Vendor transactions LedgerJournalTrans Migrate only the opening amount or open
transactions.

Items InventTable Each item should have three related records in

InventTableModule

InventItemLocation

InventTableModule and at least one record in
InventItemLocation with the InventDimId specify
ing the blank inventory dimensions.

480 Part III Under the Hood
Table 18-1 Destination of Migrated Data

Stock on hand InventJournalTrans The data in the journal are transferred to

Information Destination Notes

InventTrans when the journal is posted.

Bills of material BOMTable

BOMVersion

The table BOMVersion relates the Bill of material
to the items in InventTable.

BOM

Sales orders SalesTable

SalesLine

Migrate only open sales orders with no updated
delivery or invoice.

Sales prices PriceDiscAdmTrans The data in the journal are transferred to
PriceDiscTable by posting the journal.

Posted sales invoices CustInvoiceJour

CustInvoiceTrans

InventTransId should be blank for migrated
invoices.

Purchase orders PurchTable

PurchLine

Migrate only open purchase orders with no
updated delivery or invoice.

Purchase prices PriceDiscAdmTrans The data in the journal are transferred to
PriceDiscTable by posting the journal.

Posted purchase VendInvoiceJour InventTransId should be blank for migrated
invoices VendInvoiceTrans invoices.

Employees EmplTable

Chapter Summary
This chapter examined the process of upgrading from an existing installation to Dynamics
AX 4.0, focusing on the issues introduced by the modifications to the standard application.
An upgrade from one version to another is a major task; the installation of a service pack or a
hotfix is less complicated, because the number of changes is limited. The initial implementation
of Dynamics AX usually includes migration of data from a legacy system. This migration is
typically performed by using a combination of tools and manually programmed scripts.

Part IV

Appendixes

In this part:

Appendix A: Application Files .483

Appendix B: Microsoft SQL Server 2000, SQL Server 2005, and
Oracle Database 10g Comparison .485

Appendix C: Source Code Changes Required for Upgrade487

Appendix A

Application Files
All application model elements are stored in application files in an application folder on a file
system that is usually located on an Application Object Server (AOS). Deploying application
extensions, customizations, and patches requires changes to the application files. Application
files have the file extensions listed in the following table.

Application File Extensions

First letter Second letter Third letter

A (for “application”) O (for “object”) D (for “data”)

The file is an application file. The file contains application
model elements.

The file is a data file. The
“data” designation is historical,
not factual. The file can contain
model elements, X++ source
code, and corresponding byte
code.

K (for “kernel”) L (for “label”) I (for “index”)

The file is a kernel (system) file
and should not be modified.

The file contains label resources. The file is an index file to a
data file. If the index file is
not found, the application
server recreates it.

H (for “help”) T (for “temporary”)

The file contains online The file contains data that will
documentation. be written to a data file.

D (for “developer help”) C (for “cache”)

The file contains online The file contains cached data.
documentation for application
developers.

It can be deleted without
compromising integrity—only
performance is compromised.

T (for “text”)

The file contains system text.

This letter is used only in .ktd

files.

In light of the preceding table, the following file extensions, which are drawn from the file
types that typically make up a Microsoft Dynamics AX application, are readily comprehensible:

■	 The .aod files contain the application object data, or more precisely, the model element,
X++ source code, and byte code data for a specific model element layer.

■	 The .aoi file contains the index to the .aod file.
483

484 Part IV Appendixes
■	 The .khd files contain kernel help data (system documentation in the Application
Object Tree).

■	 The .ald files contain the application label data.

■	 The .alc files contain the application label cache.

Note In Dynamics AX 4.0, the application object cache file is named .auc (application
Unicode object cache). In earlier versions, it was named .aoc, which strictly followed the
naming conventions outlined in the table. The new name reflects the fact that the objects are
now stored in Unicode format.

The file name itself can also contain comprehensible information:

■	 All of the object, label, help, and developer help files contain model elements from
specific model element layers. One file is created for each layer, and the layer name is
part of the file name.

■	 All label, help, and developer help files are localizable. There is one file for each locale,
and the locale is a part of the file name. Here are a few examples:

❑	 AxSys.aod

❑	 AxSysEn-us.ald

❑	 AxSysEn-us.ahd

Note The Help system is different in Dynamics AX 4.0 than it was in earlier versions. The
Help system used to be an integral part of the integrated development environment (IDE),
using the internal editor to create Help topics. In Dynamics AX 4.0, Help is generated as
stand-alone Help files (.chm files). Although the Help content must be customized and
updated by using an external authoring tool, the IDE still contains elements of the application
and system Help. For details about the documentation, refer to the Microsoft Dynamics AX
SDK.

Appendix B

Microsoft SQL Server 2000,
SQL Server 2005, and Oracle
Database 10g Comparison

The following table shows the statements that are sent to the supported databases when
database transactions are handled.

Microsoft Dynamics AX 4.0 SQL Server 2000 SQL Server 2005 Oracle Database
10g

First ttsbegin statement SET TRANSACTION SET TRANSACTION No statement sent
ISOLATION LEVEL ISOLATION LEVEL
READ COMMITTED READ COMMITTED

First SQL DML statement SET IMPLICIT_ SET IMPLICIT_ No statement sent
inside a transaction scope TRANSACTIONS ON TRANSACTIONS ON

Final ttscommit statement COMMIT TRANSACTION COMMIT TRANSACTION COMMIT

SET TRANSACTION I SET TRANSACTION
SOLATION LEVEL READ ISOLATION LEVEL
UNCOMMITTED READ COMMITTED

ttsabort statement ROLLBACK ROLLBACK ROLLBACK
TRANSACTION TRANSACTION

SET TRANSACTION SET TRANSACTION
ISOLATION LEVEL ISOLATION LEVEL
READ UNCOMMITTED READ COMMITTED

First SQL DML statement SET IMPLICIT_ SET IMPLICIT_ No statement sent
outside a transaction scope TRANSACTIONS OFF TRANSACTIONS OFF

selectLocked(false) WITH (NOLOCK) Not supported, so Not supported, so
hint added to SELECT no hint added no hint added
statement

Select optimisticlock WITH (NOLOCK) hint No hint No hint
concurrencyModel added to SELECT
(ConcurrencyModel:: statement
OptimisticLock)

Select pessimisticlock WITH (UPDLOCK) WITH (UPDLOCK) FOR UPDATE OF
concurrencyModel hint added to SELECT hint added to SELECT clause added to
(ConcurrencyModel:: statement statement SELECT statement
PessimisticLock)
485

486 Part IV Appendixes
Microsoft Dynamics AX 4.0	 SQL Server 2000

readPast(true)	 WITH (READPAST)

added to SELECT

statement

Select repeatableread WITH (REPEATABLEREAD)
selectWithRepeatableRead added to SELECT
(true) statement

SQL Server 2005

WITH (READPAST) added
to SELECT
statement

WITH (REPEATABLEREAD)
added to SELECT
statement

Oracle Database
10g

Not supported, so
no hint added

FOR UPDATE OF
clause added to
SELECT statement

Appendix C

Source Code Changes

Required for Upgrade

When you upgrade to Microsoft Dynamics AX 4.0 from an earlier version, you must make
changes to the source code to ensure that the internal references comply with the new best
practices. This includes code changes, metadata changes, and table modifications, as
described in the following sections.

Code Changes
For fields of the int64 data type assigned to a 32-bit integer value, the assigned-to variable
must be rewritten as a variable of the same type, or explicitly cast to an int value. For example,

int recId = table.recId;

must be rewritten like this:

RecId recId = table.recId;

When a variable that derives from int64 is used as an index to an array, the code must be
refactored to use a map. For example,

int array[,1];

array[table.recId] = 123;

must either be written as a map (in memory, used for few records), as shown here,

Map map = new Map(TypeId2Type(TypeId(recId)),Types::Integer);

map.insert(table.recId, 123);

or as a temporary table (on disk, used for many records), as shown here:

TmpTable tmp;

tmp.recIdRef = table.recId;

tmp.value = 123;

tmp.insert();

487

488 Part IV Appendixes
For fields of the type int64 that are placed into a collection class, as shown here,

Set set = new Set(Types::integer);

Set.insert(tableA.recId);

the code must be updated to use the appropriate data type, as shown here:

Set set = new Set (TypeId2Type(TypeId(recId)));

Set.insert(tableA.recId);

When a record ID is used inside a pack method, the code should be refactored to persist that
record ID to a table field.

Metadata Changes
You should notice that the extended data type RefRecId derives from the RecID system data
type and will automatically be increased to 64 bits. The following are the extended data type
requirements:

■	 Extended data types used by fields that contain RecIDs must derive from the RecID data
type or one of its derived extended data types to automatically increase the extended
data type to 64 bits.

■	 Extended data types used by fields that contain RecIDs must derive from the RefRecID
extended data type or one of its derived types.

■	 Extended data types must define a relation to the RecID column of a table if:

❑	 The extended data type has RefRecId as an ancestor type.

❑	 The extended data type has a deterministic relationship to exactly one other table.

■ Extended data types must not define a relation to the RecID column of a table if:

❑	 It does not have RefRecId as an ancestor type.

❑	 The extended data type, or one of its derived types, may be used to refer to RecIDs
in more than one table.

■	 Extended data types used by fields that contain table IDs must derive from the tableID
data type.

■	 Extended data types used by fields that contain table IDs should derive from the
RefTableId extended data type.

Appendix C Source Code Changes Required for Upgrade 489
Table Modifications
The following are the required table modifications for upgrade:

■	 Table fields that contain a RecID (other than the system-defined RecID field itself) must
be associated with an extended data type of RefRecId or one of its derived types.

Note The RecID extended data type should be used only by the system RecID fields.

■	 Table fields that contain a RecID (other than the system-defined RecID field) should be
associated with an extended data type that is strictly derived from the RefRecId data type
(not including the RefRecId data type itself).

■	 Existing table fields that have RecID or RefRecId as an ancestor and define their own
deterministic single-field relation should have that relation removed.

■	 Relations must be defined for every table field associated with a RecID-derived extended
data type (hereafter called RecID-derived field) that does not define its own single
fixed-field relations. Fixed-field relations (defined with the Related Field Fixed option
when adding a relation on an extended data type) are those in which the related table
depends on the value of another field.

■	 If the table to which a RecID-derived field is related depends on the value of another
field, and that other field contains an enumeration (or other value) to indicate the table
to relate to for each row, one relation in the table must be defined for each value in
the enumeration using a combination of a Related Field Fixed relation and a Normal
relation.

■	 If the table to which a RecID-derived field is related depends on the value of another
field, and that other field contains table IDs, one of the following approaches must be
adopted:

❑	 A relation must be defined for each legal value of the field containing the table ID.
(From inspecting the Application Object Tree, this is a very common approach.)

❑	 A single relation must be defined in the table to express that relationship in terms
of the Common table.

■	 All fields that are used to refer to a table ID must be associated with the RefTableId
extended data type or a derived type.

Note The tableID system type should be used only by the system-created tableID
fields.

■ All fields that are used to refer to a table ID should be associated with a type strictly
derived from RefTableId.

Glossary

The following list contains terms and abbreviations used throughout the book. For an in-depth
terminology list, refer to the product documentation.

ACID Abbreviation for Atomicity, Consistency, Isolation, Durability. Atomicity: Every opera
tion in the transaction is either committed or rolled back. Consistency: When commit
ted, the transaction should leave the database in a consistent state. Isolation: Any
uncommitted changes are not visible to other transactions. Durability: After a transaction
is committed, the changes are permanent, even in the event of system failure.

.add	 The file extension for application developer documentation data. For details on appli
cation files, refer to Appendix A, “Application Files.”

.ald The file extension for application label data. For details on application files, refer to
Appendix A, “Application Files.”

.ahd	 The file extension for application Help data. For details on application files, refer to
Appendix A, “Application Files.”

AIF Abbreviation for Application Integration Framework.

AOC	 Abbreviation for Application Object Cache.

.aod	 The file extension for Application Object Data (AOD). Files with the extension .aod
contain application objects—more precisely, the model element, X++ source code, and
byte code data for a specific model element layer. An .aod file contains all the code for a
layer and is used to distribute solutions.

AOI	 Abbreviation for Application Object Index (index to the AOD).

AOS	 Abbreviation for Application Object Server.

AOT	 Abbreviation for Application Object Tree. The AOT is a development tool whose nodes
are populated with the System Dictionary element metadata and X++ source code.
Some elements in the tree are class and interface definitions that specify the structure and
behavior of application logic and framework types. The top-level nodes in the AOT, such
as Forms and Reports, are element categories that organize the elements of the dictionary.

AUC	 Abbreviation for Application Unicode Object Cache.

AutoDataGroup A control property that, if set to Yes, inherits the field group design dynami
cally from the specific table. This removes the option to further customize the group
layout at the control level in the AOT, but you may do so from the code when the form
is executed.

AVL A data structure of self-balanced binary search trees. The term is named after its two
inventors, G. M. Adelson-Velskii and E. M. Landis, who described it in their 1962 paper
“An algorithm for the organization of information.”
491

492 Glossary
Axd classes Dynamics AX document classes.

B2B Short for business-to-business.

CLR Abbreviation for the Microsoft .NET Common Language Runtime.

DataGroup A form and report control property that references a field group on a table.

DDE Abbreviation for Dynamic Data Exchange.

DML Abbreviation for Data Manipulation Language.

EAI Abbreviation for enterprise application integration.

element The unit in which metadata and source code are stored in the .aod file. The AOT

contains many nodes, some of which are elements.

element category A classification of elements. Category types include Forms, Reports,
Classes, and Macros.

enum Short for enumeration element.

ERP Abbreviation for enterprise resource planning.

field group A grouping of fields for a table with similar characteristics or purposes, used to
optimize the design of forms and reports.

GUID Abbreviation for globally unique identifier.

IDE Abbreviation for integrated development environment.

IIS Abbreviation for Microsoft Internet Information Services.

information worker An individual who creates, uses, transforms, consumes, or manages
information in the course of his or her work. Also referred to as IWorker or IW.

IntelliMorph A control layout technology. The Dynamics AX runtime uses IntelliMorph to lay
out controls on both rich client and Web client forms and reports.

ISAM Abbreviation for indexed sequential access method. ISAM is a method for storing data
for fast retrieval.

.khd The file extension for kernel Help data. For details, refer to Appendix A, “Application
Files.”

Liskov substitution principle A particular definition of subtype in object-oriented program
ming that was introduced by Barbara Liskov and Jeannette Wing in a 1993 paper titled
“Family Values: A Behavioral Notion of Subtyping.”

LTRIM A SQL function that returns a character expression after removing leading blanks.

MorphX The Microsoft Dynamics AX integrated development environment (IDE).

MSMQ Abbreviation for Microsoft Message Queuing. MSMQ is a Microsoft technology that
enables applications running at different times to communicate across heterogeneous
networks and systems that may be temporarily offline.

node The term used in the AOT for leaves and folders.

Glossary 493
object An instance of a type.

OCC	 Abbreviation for optimistic concurrency control.

OCI	 Abbreviation for Oracle Call Interface.

ODBC Abbreviation for Open Database Connectivity.

rich client The Dynamics AX client built using the Microsoft Windows Graphics Device
Interface (GDI) API. The rich client is opened by executing Ax32.exe.

RPC	 Abbreviation for remote procedure call.

runtime The Dynamics AX runtime. The runtime comprises the virtual machine in which
Dynamics AX objects and the Dynamics AX System API operate.

System API The Dynamics AX System API. The System API is the system programming inter
face that X++ objects use to interact with Dynamics AX system objects.

System Dictionary The host for all metadata and X++ source code that comprise a Dynamics
AX application. The dictionary has a programmable Dynamics AX System API that can
be used from X++ code. Elements of the dictionary are either composite, such as Form,
Report, and Class, or primitive, such as method or class header. Elements are stored in
Application Object Files and are loaded into the UtilElement table by the Dynamics AX
runtime. Elements are copied between layers when there are modifications to lower-lay
ered elements. Elements are also versioned with the version control system.

table 1. Overloaded table semantics: Table reference objects have overloaded semantics. For
example, the MyTable myTable; variable can be interpreted both as a database record
(myTable.Field) and as a cursor (next myTable). The base type for tables is common,
and the methods for common are defined on the XRecord Dynamics AX system type.
2. Temporary tables: Temporary tables and database tables have different behaviors.
Temporary tables are managed as ISAM database tables. Joining temporary tables and
database tables requires that the temporary table be defined on the AOS, for example.

type	 A type is a child of Kind. Types can be declared by name in X++. An element can be a
type. For example, a table element or a class element may be a type, but not a form,
macro, or method element.

Web client The Dynamics AX client built on Web and Windows SharePoint Services
technologies.

X++	 The built-in Dynamics AX object-oriented programming language.

XAL Abbreviation for Extended Application Language.

.xpo The file extension for the export of Dynamics AX elements.

Index

Symbols
* (asterisk), 103

" (double quotation marks), referencing labels, 51

; (semicolon), 98

' (single quotation marks), referencing system text, 51

A
absolute updates, 316

abstract method modifier, 117

access operators, 98

access permissions, 27

accessing data, 206–207

accessor methods, 166

ACID (atomicity, consistency, isolation, durability), 306

actions, 40

Active Directory directory service, 287

ActiveX controls, 365–367

add-ins, 40

addProp method, 251

Admin domain, 290

administration, record identifiers and, 324

AFC (Axapta Foundation Classes), 400

afterInit method, 366

aggregate functions, 105

AIF (Application Integration Framework), 8, 191, 213

configuring endpoints, 230

external applications, 18

AifConstraint objects, 232

AifEntityKey class, 230

AifServiceable interface, 215

alerts, 344–345

allocating record identifiers, 322

AllowAdd property, 280–281

AllowEdit property, 124

AllowNegative property, 123

AllowUserSetup property, 280–281

anytype type, 94, 97

.aoc files, 40

AOD (Application Object Directory), 194

.aod files, 88, 91

AOS (Application Object Server), 8

integration technologies, 190

transaction IDs, 308

AOS process pool, 308

AOSAuthorization property, 295

AOSValidateDelete method, 296

aosValidateDelete method, 348

AOSValidateInsert method, 296

aosValidateInsert method, 348, 441

AOSValidateRead method, 296

aosValidateRead method, 348

AOSValidateUpdate method, 296

aosValidateUpdate method, 348

AOT (Application Object Tree), 5, 23, 35, 36–41, 214

adding controls to forms, 365

AOT root node, 31

Data Dictionary node, 28

Global class, 400

global session classes, 394

job model elements, 92

operational and programming elements, 26

Web elements, 11

Web node, 31

Windows SharePoint Services integration, 265

AOT queries, 214–216

AOT root node, 31

APIs, protected, 196

appl object, 393–396

Application class, 344, 395

application developer tasks, 3

application elements, 5

application framework, 17–18

Application Hierarchy Tree, 78

Application Integration Framework. See AIF

(Application Integration Framework)
application logic

controlling, 428

design considerations, 456

monitoring database activity, 457

transaction performance, 432–457

application model dictionary, 25

application model elements, 21, 25–34

application model layering, 13–17

components, 13

layer descriptions, 15

application modeling, 12

application modules, 26

application object cache, 40

Application Object Directory (AOD), 194

Application Object Layer, 41

Application Object Server (AOS), 8, 190

MorphX debugger, 62

transaction IDs, 308

495

496 Application Object Tree
Application Object Tree. See AOT (Application Object
Tree)

application objects, Dynamics AX upgrades and,
464–470

applications

Business Connector, 189–211

configuring, 18

migrating, 210

security framework, 290–295

Application.startupPost method, 394

appl.ttslevel(), 304

architecture of Microsoft Dynamics AX, 3–19
args parameter, 362

arithmetic operators, 99

ArrangeMethod property, 249

Array class, 403

as method, 95, 381

ASCII character set, 334

AsciiIO class, 335

assertEquals method, 417

assertFalse method, 417

assertion methods, 416

assertNotEqual method, 417

assertNotNull method, 417

assertNotSame method, 417

assertNull method, 417

assertRealEquals method, 417

assertSame method, 417

assertTrue method, 417

Assignment/Comparison loses precision warning

message, 58

assignment operator, object type and, 95

assignment statement, 99

asterisk (*), 103

atomicity, 306

atomicity, consistency, isolation, durability (ACID), 306

.auc files, 40

authentication, 6, 205, 287

authorization, 196

auto-refresh functionality, 39

Auto report design, 279

AutoDeclaration property, 278

automated data migration, 479

automatically generated projects, 42–44
avg function, 105

AVL trees, caching implementation and, 447

Ax prefix, 10, 37

Axapta, ii, iii

Axapta class, 202, 205

Axapta Foundation Classes (AFC), 400

AxaptaBuffer class, 202

AxaptaContainer class, 202

Axapta.Logon() method, 193

AxaptaObject class, 202

AxaptaRecord class, 202, 206, 207

AxBC (business component) classes, 220, 478

Axd classes, 214, 219–225

Axd prefix, 37

Axd Wizard, 226, 228

AxdBase

AX business logic, 214

method descriptions, 217–218

overriding methods, 218

AxdBaseCreate class, 230

AxdChartOfAccounts XML documents, 230

Axd<Document name> classes, 230

AxdPricelist XML documents, 230

AxdSend, 230

AxInternalBase, 214, 219–225

AxInventJournalTrans class, 478

AxLedgerJournalTrans class, 478

Ax<Table> class generator, 226

Ax<Table> classes, 214, 219–225

AxPurchLine class, 478

AxPurchTable class, 478

AxSalesLine class, 478

AxSalesTable class, 478

B
backups, 466

base enumeration elements, 28

base enumeration types, variable declarations and, 97

base types, 93–96

Batch application framework, 17

batch jobs, 298

batch operations, application frameworks and, 17

beforeInit method, 366

best practice errors, 61

best practices

accessor methods, 166

customization writing, 165

deviations, 57, 59, 60

Dynamics AX, 58

element naming conventions, 84

exception handling, 108, 109

field lists, 456

form customization, 132

forupdate keyword, 444

IntelliMorph, 277–279

inventDimDevelop macro, 131

labels, 123

model element IDs, 17

Operation Progress framework, 17

optimistic concurrency, 319

optimisticlock keyword, 444

patch layers, 16

referencing labels, 51

report customization, 140

rules, 59

serialization logic, 319

X++ code, 96

client configurations 497
Best Practices tool, 6, 24, 56, 59–62

rules, 59

Trustworthy Computing initiatives, 298

user interface text, 51

bike business examples

bike-tuning service, 170–187

retrieving list of bike-related inventory items,

206–207

bike-tuning service, 170–187

e-mailing offers, 170

menu items, 180

bitwise operators, 99

BLOB (binary large object) field, 383

body sections, empty, 145–147

BodyInventTable body section, 143, 145, 147

BodyReference body section, 144

BOM prefix, 37

boolean type, 97

Box Menu Web Part, 257

Break exception, 109

break statement, 100

Break statement found outside legal context warning

message, 58

breakpoint statement, 101

breakpoints

deleting, 64

displaying list, 63

setting/removing, 62, 63

Breakpoints window action, debugger and, 65

built-in data types, 92

BUS model element layer, 15

business area name, 37

business component (AxBC) classes, 220, 478

Business Connector, 8, 9, 189–211

CLR interoperability, 208–209

components, 189, 191

MorphX debugger, 62

security, 196

usage scenarios, 197–200

Business Connector proxy account, Enterprise Portal

and, 273

business data, comparing, 76

Business Data Lookup snap-in, 198

business logic, 13

AIF, 214

invoking, 207

business operation jobs, RunBase framework extension

and, 151, 165–187

business transaction class, 171

business transaction records, Number Sequence

framework and, 18

business transaction status logging, Infolog framework

and, 18

business transactions, AIF and, 18

business views, 331

BusinessConnectorInstanceInvalidException, 204

C
C3 application object version, 468

C4, i

C4 application object version, 468

cacheAddMethod method, 431

CacheLookup property, 444

CacheObject method, 229

cacheObjectIdx variable, 229

cacheRecordIdx variable, 229

CacheRecordRecord method, 229

caching

Map objects, 402

optimizing, 444–453

removing, 229

SysGlobalCache class, 397

call stack, 92

Call Stack window action, debugger and, 65

callback method, 344

CallStaticClassMethod method, 207

callWebMenuFunction method, 261

camel casing, 96

CAS (Code Access Security), 196, 297

Case Sensitive comparison option, 75

case sensitivity, 96, 112

CLR types, 96

string comparisons, 334

X++ programming language, 98

changeCompany function, 330

changecompany statement, 102

check method, 61

checkUseOfNames() method, 62

class declaration headers, 115

class description, implementing, 172

class elements, 10

class inheritance, cross-reference subsystem and, 78

class methods, 79, 117

class model elements, 31

Class names should start with an uppercase letter

warning message, 58

class types, 93

Class Wizard, 43

classes, 115–118

collection, 400

customizing, 122–132

derived, 116

global session, 393–398

Liskov substitution principle, 382

system, 393

upgrading, 74

ClassFactory class, 362, 396

classFactory objects, 393, 394, 396

ClassIdGet function, 378

ClassIdGet system function, 380

client configurations, Business Connector and,

197–199

498 client method modifier
client method modifier, 117, 346, 428

client/server

calls, monitoring, 457

optimizing calls, 429

performance, 428–431

CLR interoperability, 110–113, 190, 208–209

CLR operators/methods, 111

CLR types

case sensitivity, 96

reference elements, 27

CLRError exception, 109

Code Access Security (CAS), 196, 297

code coverage information, 423

Code generation, 48

code path, 64

Code Profiler tool, 459

code samples, iii, v

bike business, 170–187, 206–207

Cross-Reference tool, 24

HelloWorld, 205

Office Excel integration via COM Business

Connector, 197–198

PDA synchronization, 198

Web forms, 245

Web reports, 249

Weblets, 252

code upgrades, 467–470, 471

CodeAccessPermission class, 297

CodeAccessSecurity exception, 109

collations, 333

collection classes, 400

combining, 410

traversing collections, 406

collection types, 93

collections, traversing, 406

column-level security, 232

columns, naming conventions and, 339

COM Business Connector, 210

accessing data externally, 331

features, 191

COM (Component Object Model), 8

COM components, 335

COM interoperability, 113

comma-separated field list, 103

CommaIO class, 335

CommaTextIO class, 335

comments, 114

Commerce Gateway, 213

common type, 94

communication infrastructure/technologies, 6

company accounts, 326

building company structures, 328

changing, 329

test suites, 420

Company Accounts license, 328

company identifiers, 323, 326–331
Compare tool, 24, 56, 73–77

treenodes API, 391

using, 75

comparison options, 75

Compile action, X++ editor shortcut key and, 47

Compile Forward tool, 363

compiler, 56–58

Best Practices tool, 59

exporting compile results, 57

Component Object Model (COM), 8

compound statement, 99

concurrency models, 308–322

choosing during development, 317–319
setting globally, 319

concurrency, optimistic. See optimistic concurrency

concurrencyModel method, 319, 349

conditional operators, 99

configuration hierarchy, 282

configuration keys, 25, 26, 28, 282–286, 288

creating, 180

license codes, 282

Web menu items/ Weblet elements, 33

configuration systems, 275–286

ConfigurationKey property, 180, 357

consistency, 306

constraints, 232

construct methods, 382

constructors, 118, 172, 182–183

container type, 97

container type fields, 134

content

adding to wizards, 157–164
managing, 269

Content definition elements, 11

context menus

actions, 40

Compare tool, 73

controls, 51

element change tracking, 86

element check-in, 82

element creation, 81

element usage information, 79

element version, 85

Find tool, 71

Form Visual Designer, 52

generated report designs, 53

layer information, 41

Reverse Engineering tool, 66

test project references, 422

test projects, running, 423

Version Control tool, 80

continue statement, 100

controlMethodOverload method, 367

controlMethodOverload subsystem, 368

database transactions 499
controlName method, 243

controls

MorphX forms, 365–367

populating, 366

COS prefix, 37

count function, 105

CPU-intensive application logic, 428

Create access permission, 289

create method, 217

Create Upgrade Project option, 24

CreatedBy field, 382, 385

createdBy system field, 338

CreatedDate field, 382, 385

createdDate system field, 338

CreatedTime field, 382, 385

createdTime system field, 338

CreatedTransactionId property, 308

createdTransactionId system field, 338

createFile method, 335

CreateFileA, 335

CreateFileW, 335

createList method, 217

createList operations, AifEntityKey class and, 230

createProperties method, Weblets and, 252

CreateRecIdIndex property, 339

createSortIdx method, 282

createSuite method, 420

createTextFromWeblet method, 258

creating

application forms, 277

best practices rules, 61

business transaction class, 171

business views, 331

company structures, 328

configuration keys, 180

constructors, 172

default data wizards, 164

elements, 38, 81, 84

filters, 43

forms, 36, 51–53

inventory dimension types, 122–125

label files, 49

labels, 50, 51, 156, 170

menu items, 180

notes, 269

number sequences, 147

parm methods, 167

projects, 41, 43, 44

reports, 36, 51–53, 278

tables, 171

test projects, 422

upgrade projects, 44

Web Part Pages, 264

Cross-Reference tool, 56, 77–79

changes impact analysis, 24

code examples, 24

intrinsic functions, 378

table fields, 23

updating, 78

CSSClass property, 249

CurrentList macro, 168

currentRecord method, 223

CUS model element layer, 15

Cust prefix, 37

customer lists, displaying, 11

customers, comparing, 77

customizations, 121–150

actions, 40

application forms, 279–281

classes, 122–132

designers, 36

editor scripts, 48

forms, 132–139

layer information, 41

number sequences, 147–150

properties, 46

property sheet, 46

reports, 140–147

tables, 122–132

XML documents, 227–229

custTable records, 432, 443

D
Damgaard Data, i

Damgaard, Erik, ii, 45

data access, 206–207

data association model elements, 30

data-aware statements, 102–107

Data Crawler, 270

Data Dictionary node, 28

data method, 354

data migration, 463, 473–480

automated, 479

Office Excel export/import function, 477

steps, 474

techniques, 475–479

data model cross-reference subsystem, 78

data sources, displaying images and, 136–138

data type inheritance, cross-reference subsystem and,

78

data types, .NET Framework/Dynamics AX mappings

and, 201

data upgrade scripts, 471

data upgrades, 470, 471

DataArea table, 328

DataAreaID, 323

dataAreaId system field, 338

database element keys/indexes, 29

database model elements, 29

database tables, defining, 4

database transactions, 302–322

500 database-triggering methods
database-triggering methods, 346–351

database type system, 343

Databaselog table, 344–345

databases

accessing, 336–345

data type mappings, 343

design considerations, 456

Dynamics AX upgrades, 470

monitoring activity, 457

synchronization, 337

transaction performance, 432–457

Unicode support, 332

upgrading, 325

DataGroup attribute, 278

DataMethod property, 144

date type, 97

DDEerror exception, 109

Deadlock exception, 109

debugger, 24, 56, 62–65

interface, 63–65

shortcut keys, 65

using, 62

default data wizards, 154, 164

delete method, 346, 350, 351

DELETE statement, 346, 351

delete_from operator, 438

downgrading, 439

skip methods, 439

demo mode, 22

Deploy Page tool, 265

deployment scenarios, 7

derived classes, 116

design method, 366

design phase, 23

designers, 35–54

AOT, 36–41

customizing, 36

Form Visual Designer, 51–53

label editor, 48–51

Project Designer, 41–44

property sheet, 44–46

Report Visual Designer, 51–53

X++ editor, 46–48

development environment
architecture overview, 3–19
MorphX, 21–34

development tools, 43, 55–90

Dialog application framework, 17

dialog boxes, 17

embedded queries, 185

implementing, 173–175

dialog framework, 174

dialog method, 174, 179

Dict classes, 382

DictClass class, 385

dictionary API, 378, 385–388

object model, 381

vs. table data API, 59

Dictionary classes, 378, 385

dim2DimParm method, 128

dirty elements, 39

DIS model element layer, 15

disableCache() method, 447

disconnected updates, 315

display menu items, 155

display method modifier, 118

display methods, binding to report controls, 144–145

DLLs, 335

DML statements, 346

changing default behavior, 348–351
set-based, 351

do while statement, 100

docCursor method, 366

docking, property sheet and, 46

Document Handling feature, 269, 361

document management feature, 134, 136, 141

document types, 134, 141, 145

DocuRef data source, 136

DocuValue data source, 136

doDelete method, 347, 351

doInsert method, 347, 351, 359

domains, 290

doTreeNode method, 389

double quotation marks ("), referencing labels, 51

doUpdate method, 347, 351

durability, 306

DWPM (Dynamics Web Property Manager), 258

DynamicHeight property, 144

DynamicPropertyManager class, 46

Dynamics AX. See Microsoft Dynamics AX

Dynamics AX DB Upgrade Preparation tool, 325

Dynamics AX kernel, 191, 208

Dynamics AX SDK. See Microsoft Dynamics AX SDK

Dynamics AX Server Configuration Utility, 342

Dynamics Web Property Manager (DWPM), 258

E
e-mail messages, bike-tuning sample service and, 170

Edit access permission, 289

edit method modifier, 118

editing

elements, 39

properties, 44

wizard content, 157

editor scripts

customizing, 48

invoking, 48

EditorScripts class, 48

editProperties method, 258

forcenestedloop 501
EE<ElementKind>Num intrinsic function, 379

EE<ElementKind>Str intrinsic function, 379

elements

checked-out list, 87

comparing, 73–77

creating, 38, 81, 84

cross-referencing, 77–79

deleted list, 87

deleting, 84

dirty, 39

ensuring latest used, 39

getting latest version, 85

intrinsic functions, 79

life cycle, 81

modifying, 39

naming conventions, 36–38, 84

quality checks, 83

refreshing, 39

renaming, 82, 84

revision comparisons, 87

tracking changes, 86

usage information, 79

version types, 73

element.send method, 142

Empty compound statement warning message, 58

Enable block selection action, X++ editor shortcut key

and, 48

encryption, Enterprise Portal, 266

endBodySection method, 249

endPageHeaderSection method, 249

endProgrammableSection method, 249

endReport method, 249

Enterprise Portal Configuration Wizard, 273

Enterprise Portal (EP), 8, 10–12, 237–274

components of, 238

content management, 269

MorphX debugger, 62

page processing, 239

search functionality, 270

security, 272

topology, 241

enterprise resource planning (ERP), 3

application configurations, 8–10

integration technologies, 190

EntireTable cache, 449

entity key classes, 230

Enum property, 128

enumeration types, 93

enumerators, collections and, 406

enums, 28

EP. See Enterprise Portal (EP)

EPCustInvoiceJournalListCSS Web menu item, 260

ERP (enterprise resource planning), 3

application configurations, 8–10

integration technologies, 190

Error exception, 109

error method, 109, 110

errors/warnings, 60

best practice, 61

compiler, 56, 59

element quality checks, 83

suppressible, 60

event generation, global session classes and, 394

event methods, 367

examples. See code samples

Exception data type enumerations, 109

exception handling, 108–110, 320

.NET Business Connector, 204

testing exceptions, 419

Exception::Error, 348

Exchange Server, 8

Execute current element action, X++ editor shortcut key

and, 48

ExecuteStmt, 207

executionSection method, 145

exists operator, 106, 455

export files (.xpo), 74, 80

expressions, 98

extended data types, 28, 92, 96

inventory dimensions, 122–125

number sequences, 147

variable declarations, 97

wizards, 158

ExtendedDataType property, 124, 128

extending Microsoft Dynamics AX, 151–187

RunBase framework extension, 151, 165–187

wizard framework extension, 151–165

external applications, AIF and, 18

external reports, 53

F
failed tests, 417

field groups, 124, 125

field lists, limiting, 453–456

fields, 116

left/right justification and, 339

naming conventions and, 339

FieldUpdate property, 316

file resources, 27

filters, 43

final method modifier, 117

Find tool, 23, 24, 56, 71–72

findList method, 217, 231

firstfast keyword, 103

firstonly, 103

flush statement, 102

for statement, 101

forceliterals, 103

forceliterals keyword, 343

forcenestedloop, 103

502 forceplaceholders
forceplaceholders, 103

forceplaceholders keyword, 343

forceselectorder, 103

form elements, 32

Form Visual Designer, 24, 36, 51–53

FormBuildDataSource, 364

FormListControl, 293

FormNotify method, 366

FormRun class, 93, 362

formRunClassOnClient method, 362

forms, 125, 277, 431

creating, 36, 51–53

customizing, 132–139, 279–281

images displayed, 133–139

instantiating, 362–364

inventory dimensions enabled, 127

MorphX, 361

treenodes API, 391

UtilElements table, 382

wizards, 155

FormTreeControl, 293

FormWindowControl object, 137

forupdate, 103

forupdate keyword, 309–315, 318

record caching, 444

replaced with selectForUpdate method, 348

skipTTSCheck method, 350

Found caching mechanism, 444

EntireTable cache, 449

RecordViewCache class, 451

Found method, 207

FoundAndEmpty caching mechanism, 444

foundation classes, 400

Full control permission, 289

Function never returns a value warning message, 58

functions, reflection system and, 377–382

G
Generated report design, 279

generateHTML method, 367

Generic Web Part, 257

getActionList method, 217

getConstraintList method, 232

get_Field(), 207

getLabel method, 217

getName method, 217

getParm method, 243

getProp method, 251

getQueryName method, 217

getSchema method, 217

Global class, 398

global session classes, 393–398

AOT, 394

instantiating, 393–394

global variables, 64, 397

GLS model element layer, 15

Go to implementation action, X++ editor shortcut key

and, 48

Go to next error message action, X++ editor shortcut

key and, 48

Go To The Main Table Form functionality, 122, 125

Go to the next method action, X++ editor shortcut key

and, 48

Go to the previous method action, X++ editor shortcut

key and, 48

GroupMask property, 42

groups

automatically generated projects, 42

wizard framework, 158

guid type, 97

H
hanging semicolon (;), variable declarations and, 98

Height property, 144

HelloWorld Example, 205

Help Book projects, 44

HelpText property, 122, 123

bike frame/bike wheel size, 128

bike-tuning service menu items, 180

number sequences, 148

history of Microsoft Dynamics AX, i

hotfixes, 463, 472

HRM prefix, 37

HTML ActiveX control, 365–367

HTTP context integration, 192

I

ICellConsumer interface, 259

ICellProvider interface, 259

ID Server, 81

identifierStr intrinsic function, 379

IDs (unique identifiers)

labels, 156

model elements, 16

if statement, 100

IIS (Internet Information Services), 8

IISApplicationObject class, 195

IISContextObject class, 195

IISPostedFile class, 195

IISReadCookie class, 195

IISRequest class, 195

IISRequestDictionary class, 195

IISResponse class, 195

IISServer class, 195

IISSessionObject class, 195

IISStringList class, 195

IISVariantDictionary class, 195

IISViewState class, 195

IISWriteCookie class, 195

KM prefix 503
Image document type, 134

Image tab activated, displaying images and, 138

images, displaying, 133–139

impersonation, batch jobs and, 298

implementation phase, 23

implicit transactions, 307

Import Page tool, 265

Index operators, 111

indexes, 339

Info class, 396

info method, 399

Infolog application framework, 18

displaying output, 65

Exception::Error, 348

executing code error, 304

infolog object, 393, 394, 396

information messages, 60

Info.startupPost method, 394

inheritance

Liskov substitution principle, 382

RunBase framework extension, 165

init method, 362

inner function, 102

insert method, 107, 346, 351, 359

RecordInsertList/RecordSortedList objects, 441

skip methods, 435

INSERT statement, 346, 351

insertDatabase method, 440

insert_recordset operation

downgrading, 435

skip methods, 436

insert_recordset operator, 433

insert_recordset statement, 107

Installation Checklist, 394

int type, 97

int64 type, 97

integration client applications, 10

IntelliMorph, 31, 48, 276–281

best practices, 277–279

MorphX visual designers, 51–53

structure, 276

IntelliSense (Microsoft), 47

InterCompany* classes, 330

InterCompanyInventDim table, 129

interface declaration headers, 116

interface methods, 117

interface types, 93

interfaces, 115–118

Internal exception, 109

internal reports, 53

internationalization, IntelliMorph and, 276–281

Internet Information Services (IIS), 8

interoperability, 110–113

interpreter, .NET Business Connector and, 193

intrinsic functions, 79, 377, 378

Invent prefix, 37

InventDim table, 125, 128–130

InventDim::findDim lookup method, 130

InventDim::queryAddHintFromCaller method, 132

InventDimCombination table, 129

inventDimDevelop macro, 131, 132

InventDimExistsJoin macro, 129

InventDimGroupAllFields macro, 129

InventDim.initFromInventDimCombination defaulting

method, 130

InventDimJoin macro, 129

InventDimParm temporary table, 127–129

InventDimParm.isFlagSelective method, 132

InventDimSelect macro, 129

InventDim.validateWriteItemDim validation method,

130

inventory description field, 158

inventory dimensions, 121–132

extended data types, 122–125

forms, 127

queries, 129

tables, 125–127

InventStatusReportTmp table, 129

InventSumDeltaDim table, 129

InventTable lookup method, 145

invoice reports, promotion materials and, 141–147

invoices, customizing, 140

is method, 95, 381

ISAM file, 352

isFieldItemDim method, 126

isMethodExecuted method, 222

isolation, 306, 420

isolation levels, 304–308

isTargetForm method, 369

isTmp record buffer method,, 356

item dimensions, 122

item lots, 122

iterators, collections and, 406

J
JMG prefix, 37

job elements, 25, 27, 92

join conditions, 105

Join mode property, 226

join operators, 106

joins, placeholders/literals and, 341

journals, migrating, 475

K
kernel classes, 393

keys, 44

keywords, select statement and, 103

KM prefix, 37

504 L3 application object version
L
L3 application object version, 468

L4 application object version, 468

Label Editor, 24, 36, 48–51

Label File Wizard, 49

label files, 49

creating, 49

tips, 50

Label property, 122, 123

bike frame/bike wheel size, 128

bike-tuning service menu items, 180

number sequences, 148

LabelCSSClass property, 249

labels, 48, 170

creating, 50, 51, 156

finding, 50

referencing from X++, 51

tips, 50

Version Control tool, 84

last in, first out (LIFO) structure, 412

"last writer wins" scenarios, 308

layering feature. See application model layering

layers, 41

comparing, 44

customizing information, 41

layoutButton method, 243

layoutControls method, 243

layoutDate method, 243

layoutMenuFunction method, 259

layoutText method, 243

Ledger prefix, 37

Left property, 144

left/right justification, string fields and, 339

license codes, 25, 281–286

configuration keys, 282

unlocking, 281

license keys, 26, 281–286

licensing, i, 281–286

company accounts, 328

License Information form, 281

LIFO (last in, first out) structure, 412

LineAbove property, 144

LineBelow property, 144

LineLeft property, 144

LineRight property, 144

Liskov substitution principle, 382

List built-in functions action, X++ editor shortcut key

and, 47

List class, 402

List enumerations action, X++ editor shortcut key and,

47

List reserved words action, X++ editor shortcut key and,

47

literals, 341–343

literalStr intrinsic function, 379

loaded event, 245

loadViewState event, 245

loadXml method, 113

local variables, 64

localization, 48

logical component stack, .NET Business Connector

and, 192, 202

logical operators, 99

Logoff() method, 205, 207

Logon() method, 200, 205, 210

LogonAs() method, 200, 210

logs, 344–345
lookup functionality, 122, 125

LookupButton property, 243

LookupMethod property, 243

LOS model element layer, 15

LTRIM function, 340

M
macro elements, 25, 27

macros, 114, 168

inventDimDevelop, 131

queries, 129

main menu, 180

main method, 173

main tables, migrating, 475

makeRecord method, 387

managed classes

.NET Business Connector, 192, 201

request/response processing, 202

managed Web applications, 194

Mandatory property, 124, 390

Map class, 402, 409

map elements, 30

maps, 95

Math operators, 111

maxof function, 105

member variables, 64, 166

dialog boxes, 175

version number, 178

memory heap, 92

menu elements, 32

menu items, 32, 180

messages, info method and, 399

metadata, Reverse Engineering tool and, 66

method invocations, 99

method modifiers, 117

method parameters, 118

methods, 117–118

adding to Global class, 399

changing DML statements' default behavior,

348–351

client/server method modifiers, 428

database-triggering, 346–351

display, 144–145

MorphX designers 505
optimizing client/server calls, 429

promotional, 143

skip, 435–439

validation, 348

X++ editor, 46, 115

Microsoft

ASP.NET Web service, 6

BizTalk Server, 213

COM, 8

Exchange Server, 8

IIS, 8

IntelliSense, 47

RPC, 6

Visual SourceSafe, 80, 86

Windows Server, 6

Windows XP, 6

Microsoft ASP.NET Web service, 6

Microsoft Dynamics AX

application framework, 17–18

architecture, 3–19, 190

class elements and, 10

configuration systems, 275–286

customizing, 121–150

data type mappings, 201

database layer, 6

demo mode, 22

extending, 151–187

history, i

home page, iii

Installation Checklist, 394

licensing, i, 281–286

monitoring tools, 435–460

optimistic concurrency, 443

service packs/hotfixes, 472

startup sequence, 394

system requirements, iv

type system, 92–96, 343

upgrades, 44, 463–475

Version 4.0 new features

CAS, 196

.NET Business Connector, 189

optimistic concurrency, 308

Unit Test framework, 415

Version Control tool, 80

Microsoft Dynamics AX application runtime

string comparisons, 334

Unicode support, 333

Microsoft Dynamics AX EP. See Enterprise Portal (EP)

Microsoft Dynamics AX forms runtime, 125

Microsoft Dynamics AX Implementation Guide, iii

Microsoft Dynamics AX run-time environment, 6

Microsoft Dynamics AX runtime, 5, 9

Microsoft Dynamics AX SDK, iii, 21

code access security/securing APIs, 297

customizations, 150

display and edit methods, 294

.NET Business Connector, 204

table creation, 124

type system, 92, 94

Microsoft Dynamics AX Server Configuration Utility,

342

Microsoft Dynamics Enterprise Portal configuration,

272

Microsoft Dynamics Public configuration, 272

Microsoft Message Queuing (MSMQ), 8

Microsoft .NET components, 8

Microsoft .NET Framework. See .NET Framework

(Microsoft)
Microsoft Office Excel

export/import function, data migration and, 477

integration via COM Business Connector, 197–198

Microsoft Office SharePoint Portal Server, 8

Microsoft Office Visio 2003, 66

Microsoft RPC technology, 8

Microsoft Visual Studio, 6

Microsoft Windows forms, 277

Microsoft Windows Integrated Security, 6, 287

Microsoft Windows Server, 6

Microsoft Windows SharePoint Services. See Windows

SharePoint Services
migrating

applications, 210

data, 463, 473–480

minof function, 105

model-based architecture, 3

model element IDs, 16

model element layers, 14

modeling, 12

ModifiedBy field, 382, 385

modifiedBy system field, 338

ModifiedDate field, 382, 385

modifiedDate system field, 338

ModifiedTime field, 382, 385

modifiedTime system field, 338

ModifiedTransactionId property, 308

modifiedTransactionId system field, 338

monitoring tools, 435–460

MorphX, 4

AOT, 36–41

company account changes, 330

development environment, 21–34

development tools, 55–90

Dynamics AX demo mode, 22

RecID fields, 322

test projects, 422

Unicode support, 334

visual designers, 51–53

Web framework, 242–269

MorphX designers. See designers

506 MorphX forms
MorphX forms

advanced, 361

instantiating, 362–364

opt outs, 368

MorphX SDK, 55, 58

mouse clicks, 4

MSMQ (Microsoft Message Queuing), 8

MyDocuPane sample class, 363

definition, 363

source code, 370

N
Name field, 382, 383

Name property, bike-tuning service menu items and,

180

naming conventions

accessor methods, 166

database elements, 339

elements, 36–38, 84

event methods, 367

label files, 49, 50

test classes, 416

test methods, 416

navigation

Web menus/Web menu items, 256

wizards, 159–161

Navigation definition elements, 11

Navigation Pane, menu items and, 180

Navision, i

NCLOB data type, 332

nested transactions, 303

.NET Business Connector, 191, 200–208

accessing data externally, 331

invoking business logic, 207

logical component stack, 192, 202

Web interoperability, 194

.NET CLR interoperability statement, 102

.NET Framework (Microsoft), 190

data type mappings, 201

migrating applications, 210

new method, 116, 173, 182, 363

new operator, 93

Next() method, 207

No access permission, 289

nodes

changing order, 39

searching, 71

nofetch, 103

nofetch keyword, 450

NOLOCK hint, 318

NoOfColumns property, 249

NoOfDecimals property, 123

NoOfHeadingLines property, 144

Not all paths return a value warning message, 58

notes, 361. See also document handling

creating/attaching, 269

notexists operator, 106

NotInTTS caching mechanism, 444

NTEXT data type, 332

Number Sequence application framework, 18

Number Sequence Wizard, 148

number sequences

creating, 147

customizing, 147–150

NumberSeqReference class, 148

NumberSequenceReference table type, 149

Numeric exception, 109

NVARCHAR data type, 332

NVARCHAR2 data type, 332

O
object behavior, 99

object creation operators, 98

Object property, bike-tuning service menu items and,

180

object state

pack-unpack pattern and, 167–170

specifying, 99

object types, 95, 97

ObjectType property, bike-tuning service menu items

and, 180

OCC (optimistic concurrency control). See optimistic

concurrency

OccEnabled property, 317, 319

Office Excel (Microsoft)

export/import function, data migration and, 477

integration via COM Business Connector, 197–198

Open New Window action, 40

Open the Label Editor action, X++ editor shortcut key

and, 47

operands, 98

operation parameters, obtaining names of, 69

Operation Progress application framework, 17

operational model elements, 25–27

operations environment, 7

operators, 98

optimistic concurrency, 308–322

exception handling, 320

restartable jobs and, 442

optimisticlock keyword, 318

applied to select statement, 443

replaced with concurrencyModel method, 349

Oracle Database, 336

orig method, 347

outer operator, 106

OutOfMemoryException, 204

Output window action, debugger and, 65

Override Method group, 296

push 507
P
pack method, 167–170, 171

implementing, 178

modifying, 184

software upgrades, 326

pack-unpack pattern, 167–170

Page Title Web Part, 257, 263

pageActivated method, 138

parameters

migrating, 475, 476

parsing by reference/by value, 431

parent configuration keys, 283

Parent security keys, 287

parentheses, 98

ParentId field, 383

parm methods, 48, 182, 226

AxBC classes, 478

property methods, 167, 181

parm prefix, 166

parmItemId method, 229

parsing parameters by reference/by value, 431

Pascal casing, 96

patch layers, 16

pause statement, 92, 101

PBA prefix, 37

PBATreeInventDim table, 129

PDA synchronization, 198

performance, 427–461

client/server, 428–431

data migration, 479

Struct class, 404

transactions, 432–457

permissions, 289–292

table, 295

user group, 290, 291

personalizing. See customizations

perspective elements, 30

pessimistic concurrency, 308–322

pessimisticlock keyword, 318

placeholders, 341–343

planning phase, 22

pop, stacks and, 412

portal development environments, 6

portal run-time environment, 6

portals, 10

postbacks, 244

postLoad method, 347

prefixes, 37

prepareForQuery method, 217

prepareForSave method, 217

presentation model elements, 31

PriceDiscTmpPrintout table, 129

primitive types, 92, 110

print statement, 99, 110

printDebug static method, 65

printInventTable method, 145

PrintJobSettings class, 249

private projects, 42

PrivateProject_UpgradeColumnList.xpo file, 325

processing tasks, Operation Progress framework and,

17

ProcessingManager class, 209

Prod prefix, 37

product life cycle, 22

production upgrades, 472

Profile Lines view (Code Profiler tool), 460

progId, 365

program specification, 12

programming languages. See X++ programming

language

programming model elements, 25, 27

progress bars, Operation Progress framework and, 17

Proj prefix, 37

Project Designer, 24, 35, 41–44

vs. AOT, 38, 41

project types, 44

project life cycle, 22

ProjectGroupType property, 42

ProjectNode class, 44

projects, 41

automatically generated, 42–44

creating, 41, 43

shared/private, 42

specialized, 44

specifying type, 44

upgrade projects, 44

promotional materials

creating, 140

invoice reports, 141–147

promotional methods, implementing, 143

PromotionImage control, 144–147

PromotionText control, 144–147

propChanged callback, 258

properties

customizing, 46

inspecting/modifying, 44

read-only, 45

property method pattern, 166–167, 181

property methods, implementing, 181

Property operators, 111

property sheet, 23, 36, 44–46

customizing, 46

designer component, 46

docking, 46

inspecting/modifying properties, 39

Struct class, 404

Purch prefix, 38

push, stacks and, 412

508 queries
Q
queries, 183, 225

inventory dimensions, 129

placeholders/literals, 343

query elements, 30

query structure, 216

QueryBuildDataSource class, 319, 349

quotation marks

double ("), 51

single ('), 51

R
RcordInsertList class, 479

READ COMMITTED isolation level, 304–307, 310

read method, 217

READ UNCOMMITTED isolation level, 304–307

readList method, 217

readPast method, 350

real type, 97

RecId field, 413

32 bits vs. 64 bits, 467

caching, 446

RecID index, 339

RecID (record identifiers), 322–326

RecID system field, 338

record buffer, 302

record caching, 444–448

record context, 259, 266

record identifiers (record IDs), 322–326

record-level security, 292–295

enabling, 293

overriding, 232

record level security (RLS) framework, 292

Record Level Security wizard, 293

record-set constructs, set-based constructs and, 432

record types, 93, 94

RecordInsertList class, 440, 441

RecordSortedList class, 413

downgrading objects, 441

multiple records, 440

RecordType field, 382, 383

RecordViewCache class, 450

RecVersion field, 310–316

recVersion system field, 338

reference elements, 25, 27

reference layer, 44

reference types, 93

object type, 95

variable declarations, 96

referencing

labels from X++, 51

system text from X++, 51

reflection, 95, 377–392

reflection APIs, 382–391

reflection system functions, 377–382

reflection table helper classes, 384

reflection tables, 384

refreshing elements, 39

relational operators, 99

relative updates, 316

release phase, 24

remote procedure call (RPC), 6

remote procedure call (RPC)-related exceptions, 204

repeatable reads, 321

repeatableread keyword, replaced with

selectWithRepeatableRead method, 349

report controls, bound to display methods, 144–145

report elements, 32

Report Visual Designer, 24, 36, 51–53

Report Wizard, 43, 52

ReportOutputUser class, 248

ReportRun class, 93, 247

reports, 11, 247–251, 277, 278, 431

creating, 36, 51–53

customizing, 140–147

designs, 279

example, 249

securing, 253

treenodes API, 391

UtilElements table, 382

Req prefix, 38

request processing, 202

resource elements, 25, 27

resources for further reading

application model elements, 21

cross-reference subsystems, 78

Microsoft Dynamics AX snap-ins, 198

response processing, 203

restarting jobs, 442

retry statement, 101, 109

return statement, 101

Reverse Engineering tool, 23, 56, 66–69, 377

reverse keyword, 103

rich client applications, 9

rich client forms, 4, 431

rich client model elements, 31

rich client reporting feature, 4

RLS (record level security) framework, 292

role-based security, 6

rollback, 466

rows

selecting, 347

validating, 348

RPC (remote procedure call)-related exceptions, 204

RPC technology, 6

Run action, debugger and, 65

Run an editor script action, X++ editor shortcut key and,

47

run method, 172

showMenuFunction method 509
Run method, 247

run method

implementing, 176–177

Weblets, 252

run-time environment, 6, 8–10

run-time interactions

Business Connector, 193

identifying, 298

Run to cursor action, debugger and, 65

runAs function, 298

RunBase class, 165

RunBase framework, 17, 165–187

client/server considerations, 186

inheritance, 165

parsing parameters by reference/by value, 431

serialization, 408

RunBase framework extension, 151

RunBase sample class, 187

bike-tuning service, 151, 170, 171

inheritance, 165

RunBaseBatch class, 165

RunOn property, 140, 186

bike-tuning service menu items, 180

class instance methods, 429

runtime type system, 92–96

S
Sales prefix, 38

SalesParameters table, 150

SalesTableList Web form, 259

sample code. See code samples

SaveDataPerCompany property, 328, 339

saveViewState event, 245

ScannerClass class, 390

SDK (software development kit), 58

search functionality, Enterprise Portal and, 270

searching. See Find tool

SearchLinkRefName property, 270

SearchLinkRefType property, 270

security, 232, 272, 275, 287–289

Business Connector, 196

record-level, 292–295

role-based, 6

Web elements, 253

security coding, 295–299

security framework, 287–289

applying to Dynamics AX applications, 290–295

organizing security, 287

security groups, 27

security keys, 25, 27, 28, 180, 287

Business Connector, 196

SysOpenDomain, 290

Web elements, 253

Web menu items, 33, 256

Weblet elements, 33

SecurityKey property, bike-tuning service menu items

and, 180

select forupdate statement, 107

SELECT statement

NOLOCK hint, 310

Table Browser tool, 70

UPDLOCK hint, 309

select statements, 139, 309

data-aware features, 102–105

limiting field lists, 453–456

selectForUpdate method, 348

selectLocked method, 350

selectLocked(false), 307

selectWithRepeatableRead method, 349

semicolon (;), variable declarations and, 98

send framework, 230–233

sensitive data, record-level security and, 292

Sequence exception, 109

serialization, collection classes and, 408

server configurations, Business Connector and, 199

server method modifier, 117, 346, 428

ServerClass class, optimizing client/server calls and,

430

service packs, 463, 472

set-based caching, 444

set-based DML statements, 351

set-based manipulation operators, 432–442

Set class, 400

SetControls method, 243

setCurrentRecordFromExternal method, 225

setField method, 220

setMenuFunctionRecord method, 259, 260

setPaymMode method, 223

setPrefix function, 391

setTableFieldAsMandatory method, 217

setTableFields method, 225

setTmp method, 358

setTmpData method, 353

setup data, migrating, 475, 476

setUp method, 418

shadows, 464, 467

shared projects, 42

SharePoint Portal Server (Microsoft Office), 8

shift operators, 99

shortcut keys

debugger, 65

X++ editor, 47–48

Show Differences Only comparison option, 75

Show Help window action, X++ editor shortcut key and,

47

Show Line Numbers comparison option, 75

Show parameter information or IntelliSense list

members action, X++ editor shortcut key and, 48

ShowLabel property, 144

showMenuFunction method, 259

510 ShowZero property
ShowZero property, 123 Struct class, 404–406
single quotation marks ('), referencing system text, 51 performance, 404
site definitions, 263 property sheet, 404
skip methods, 435–439 Structured Query Language (SQL), data-aware
skipTTSCheck method, 350 statements and, 102
SMA prefix, 38 subnodes, 39
SMM prefix, 38 sum function, 105
software development kit (SDK), 58 super call, 346, 347
software upgrades, 463–475 support for this book, v
source code casing, updating, 83 Suppress Whitespace comparison option, 75
source code, searching, 71 switch statement, 101
Source Code Titlecase Update tool, 83, 96 synchronization, 85, 337
specialized projects, 44 data upgrades, 470
SQL Profiler, 459 logs, 86
SQL SELECT statement. See SELECT statement syntactic sugar, 93
SQL Server 2000, 336 SYS model element layer, 15
SQL Server 2005, 336 Sys prefix, 38, 393
SQL Server authentication, 287 SysAnyType class, 94
SQL Server Query Analyzer, 458 SysBpCheck class, 389
SQL statements, 302, 457 SysBPCheckMemberFunction class, 61
SQL (Structured Query Language), data-aware SysCom security key, 196

statements and, 102 SysComData security key, 196
stabilization phase, 24 SysComExecution security key, 196
Stack class, 412 SysComIIS security key, 196
StackBase class, 412 SysDefaultDataWizard, 155
StackTest class, 416, 420–424 SysDict classes, 382
standard wizards, 154 SysDictClass class, 95
startBodySection method, 249 SysDictMenu class, 390
startPageHeaderSection method, 249 SysDict<ElementKind> classes, 387
startProgrammableSection method, 249 SysGlobalCache class, 397, 410
startReport method, 249 SysHelp class, 367
startup methods, 394 SysLastValue framework, 18, 408
startup sequence, global session classes and, 394 SysLicenseCodeSort table, 282
startupPost method, 394 SysOpenDomain security key, 290
state, Web forms and, 244 SysPackable class, 326
statements, 99–113 SysPackable interface, 169

data-aware, 102–107 SysSetupFormRun class, 362, 366, 370
exception handling, 108–110 SysStartupCmd framework, 395
transaction, 106 SysTableBrowser, 70

static code analysis, 59 system classes, 393
static constructors, implementing, 172 system fields, 338
static method modifier, 117 system function, 102
static methods, 165, 398 system text, referencing from X++ code, 51
Step into action, debugger and, 65 SystemSequence system class, 324
Step out action, debugger and, 65 SystemSequences database table, 322
Step over action, debugger and, 65 SysTestable interface, 425
Stop debugging action, debugger and, 65 SysTestCase class, 416, 425
str type, 97 SysTestListener interface, 425
string concatenation, 99 SysTestSuite, 420
string fields, left/right justification and, 339 SysTestSuiteCompanyIsolateClass, 420
strings, comparing/Unicode support and, 334 SysTestSuiteCompanyIsolateMethod, 420
StringSize property, 148 SysTestSuiteTTS, 420

SysTreeNode class, 391
SysVersionControlSystem base class, 89
SysWizard, 155

Tutorial_CompareContextProvider class 511
T
Table Browser tool, 24, 56

table fields, 70

viewing records, 69

table collection elements, 30

table collections, 327

table data API, 378, 382–385

table elements, 29, 31

table fields, Table Browser tool and, 70

table IDs, 324

table maps, 95

table permissions, 295

Table property, 144

table relationships, cross-reference subsystem and, 78

TableGroup property, 293

TableId field, 456

TableListControl, 293

tables, 171

customizing, 122–132

inventory dimensions, 125–127

naming conventions, 339

Table Browser tool, 73

tableStaticMethodStr function, 387

tasks, 56, 115

Tax prefix, 38

tearDown method, 418

Temporary property, 294, 357

temporary tables, 334, 336, 351–359

defining, 357

set-based operations, 433

test cases, 416–419

case projects, 422

isolation, 420

running, 423

test suites, 420, 421

UML object model, 425

test classes, 416

test listeners, 424

test methods, 416

test projects, 44

creating, 422

running, 423

Test suffix, 416

test suites, 420

running, 421, 423

test cases, 420

Test toolbar, 423

testing, 415

design phase, 23

failed tests, 417

testsElementName method, 416

testsElementType method, 416

text resources, 48

TextIO class, 335

The new method of a derived class does not call

super()warning message, 58

The new method of a derived class may not call super()

warning message, 58

third-party managed components, 209

throw statement, 101, 108

Time Sheet Management snap-in, 198

timeofday type, 97

tips

label files, 50

labels, 50

TitleDatasource property, 278

to-do comments, 56, 115, 226

Toggle a breakpoint action, X++ editor shortcut key and,

47

Toggle breakpoint action, debugger and, 65

tools

AOT. See AOT (Application Object Tree)

Best Practices, 6, 56, 59–62

Compare, 56, 73–77

Cross-Reference, 56, 77–79

debugger, 56, 62–65. See also debugger

designers, 35–54

development, 55–90

Find, 56, 71–72

monitoring, 435–460

MorphX SDK, 55, 58

Reverse Engineering, 56, 66–69

Table Browser, 56, 69

Version Control, 56, 80–90

traces, displaying, 65

Transaction ID framework, 322

transaction IDs, 308

transaction levels, 65, 302

transaction semantics, 302–322

transaction statements, 106

transactions

migrating, 475

performance, 432–457

SysTestSuiteTTS, 420

transition layer, .NET Business Connector and, 193

transport layer of AIF, 214

Traverse view (Code Profiler tool), 459

traversing collections, 406

TreeNode class, 391

TreenodeRelease method, 389

treenodes API, 378, 388–391

Trustworthy Computing initiatives, security coding

and, 295–299

try statement, 101

ttsabort statement, 106, 108, 302–305, 355

ttsbegin statement, 106, 302–305, 355

ttscommit statement, 106, 302–305, 355, 356

Tutorial_Comparable class, 76

Tutorial_CompareContextProvider class, 76

512 TutorialDefaultDataWizard
TutorialDefaultDataWizard, 165

tutorial_Form_freeform, 52

type hierarchies, 93–96

type hierarchy cross-reference subsystem, 78

Type property, 123, 124, 128, 148

type systems, 343

TypeOf function, 378, 380

types, naming, 98

Types system enumeration, 380

U
UML associations., 68

UML data models, 66

UML object model, 68, 369, 425

UML (Unified Modeling Language), 23, 369

uncommitted reads, 307

Unicode files, 335

Unicode support, 331–336

Unified Modeling Language (UML), 23, 369

unique identifiers (IDs)

labels, 156

model elements, 16

Unit Creation Wizard, 164

Unit Test framework, 415, 425

unit testing, 415

assertion methods, 394

failed tests, 417

unpack method, 167–170

implementing, 171, 178

initParmDefault method, 184

Unreachable code warning message, 58

update method, 309, 310, 346, 351

ActiveX controls, 366

limiting field lists, 453

skipTTSCheck method, 350

UPDATE statement, 309, 310, 346, 351

UpdateConflict exception, 109, 320

UpdateConflictNotRecovered exception, 109, 320

updateNow method, 218

update_recordset operator, 433, 436

downgrading, 437

skip methods, 438

update_recordset statement, 107

updates

absolute, 316

conflict exceptions, 320

disconnected, 315

relative, 316

restarting jobs, 442

UPDLOCK hint, 309, 318

upgrade projects, 44

upgrading Microsoft Dynamics AX, 463–475

checklist, 471

planning, 464

steps in, 466

usage data, SysLastValue framework and, 18

usage scenarios, Business Connector and, 197–200

user dialog boxes, implementing, 173–175

user group permissions, 290, 291

user interface events, reacting to, 367

user settings, SysLastValue framework and, 18

users

Enterprise Portal, 237

personalizing application forms, 279–281

USR model element layer, 15

UtilApplCodeDoc, 384

UtilApplHelp, 384

UtilCodeDoc, 384

UtilElements table, 382, 384, 464

UtilElementsOld, 384

UtilIdElements table, 383, 384

UtilIdElementsOld, 384

UtilLevel field, 383

V

Vacation Scheduler snap-in, 198

validate method, 175

validateAccNum method, 209

validateDelete method, 348

validateDocument method, 218

validateField method, 348

validateWrite method, 348

validation methods, 348

value pairs, 44

value type conversions, 110

value type model elements, 28

value types, 92

SysAnyType class, 94

variable declarations, 96

values, 98

VAR model element layer, 15

variables, 98

declarations, 96–98

inspecting, 64

naming, 97

record types, 93

reference types, 93

value types, 93

Variables window action, debugger and, 65

Vend prefix, 38

version control systems

advantages, 80

Dynamics AX integration, 88

Wizard Wizard, 156

Version Control tool, 23, 56, 80–90, 466

checking elements in/out, 81

element change tracking, 86

element revision comparisons, 87

labels, 84

treenodes API, 391

Wizard application framework 513
VersionControl class, 88, 397

versionControl object, 393, 394

View access permission, 289

view elements, 29

Viewing filters, 291

ViewState, Web forms and, 244

virtual company accounts, 326

Visio Reverse Engineering tool. See Reverse Engineering

tool

Visual MorphXplorer, 66

Visual SourceSafe (Microsoft), 80, 86

Visual Studio, 6

W
warnings. See errors/warnings

Watch window action, debugger and, 65

Web applications, Business Connector and, 199

Web client applications, 9

Web client model elements, 31, 33

Web content, 11

Web content elements, 34

Web content node, 253

Web elements, 11

Web file elements, 34

Web files, 263

Web Form Web Part, 247, 257, 259

Web forms, 11, 242, 243–248

controls, 243

elements, 34

example, 245

securing, 253

Web framework, 194, 242–269

Web interoperability, 194

Web menu elements, 33

Web menu item elements, 34

Web menu items, 11, 242, 256

Web Menu Web Part, 257, 259, 263

Web menus, 11, 242, 256

Web node, 31

Web pages

development flow, 266–269

elements, 33

Web forms, 243–248

Web menu items, 256

Web menus, 256

Web Parts, 257–262, 263

Web reports, 247–251

Weblets, 251–253

Web Part connection mechanism, 258

Web Part Pages, 10, 257–262

creating/editing, 264

Web files, 263

Web Parts, 10–12, 257–262

life cycle, 261

Web files, 264

Web prefix, 38

Web report elements, 34

Web Report Web Part, 257

Web reports, 11, 242, 247–251

example, 249

securing, 253

WebButton control, 243

WebCheckBox control, 243

WebComboBox control, 243

WebDate control, 243

WebEdit control, 243

WebFormHTML class, 243

WebFormRun class type, 93

WebGrid control, 243

WebGroup control, 243

WebGuid control, 243

WebImage control, 243

WebInt64 control, 243

WebInteger control, 243

WebLet class, 251

Weblet class, 258

Weblet control, 243

Weblet elements, 34

Weblets, 11, 242, 251–253

example, 252

securing, 253

Web forms, 243

WebLink class, 256

WebMenuItemName property, 249

WebMenuItemType property, 249

WebRadioButton control, 243

WebReal control, 243

WebReportBase class, 248

WebReportHTML class, 248

WebReportRunEx class, 247

WebStaticText control, 243

WebTab control, 243

WebTabPage control, 243

WebUserDefined control, 243

WHERE clause, left/right justification and, 340

while select statement, 106, 440

while statement, 100

Width property, 144

window statement, 101

Windows authentication, 196, 287

Windows Client, 62

Windows Integrated Security, 6

Windows Server, 6

Windows SharePoint Services, 6, 8

AOT integration, 265

Enterprise Portal, 10, 238

searches, 270

Web Parts, 11, 257–262

Windows XP, 6

Wizard application framework, 18

514 wizard framework extension
wizard framework extension, 151–165

Wizard Wizard, 43, 153, 391

wizards, 151–165

adding content, 157–164

Class, 43

creating, 153

default data, 154

Dynamics AX main menu, 164

guidelines, 151

Label File, 49

navigation, 159–161

Navigation Pane, 164

Record Level Security, 293

Report, 43, 52

standard, 154

TutorialDefaultDataWizard, 165

Unit Creation, 164

Wizard, 43, 153, 391

WMS prefix, 38

worksheets, migrating, 475

write method, 347

X

x, prefixing reflection table helper classes, 384

X++ application framework, 6

X++ compiler, 57, 91

X++ editor, 23, 36, 46–48, 91

color coding, 47

Find tool, 72

inspecting/modifying code, 39

shortcut keys, 47–48

X++ programming language, i, 5, 13, 91–118

case sensitivity, 96, 98, 112

Global class, 398, 400

inspecting/modifying code, 39

intrinsic functions, 79

runtime type system, 92–96

syntax, 96–115

Unicode support, 334

X++ statements, 302–305

XAL, i

XML document framework, 213–233

XML documents

automated data migration, 479

customizing, 227–229

sending, 230–233

structure, 216

XML schema definition (XSD), 216

.xpo files

Compare tool, 74

generating .aod files, 88

Version Control tool, 80

xRecord class, 345, 346

XSD (XML schema definition), 216

xVersionControl class, 88

About the Authors
Hans Jørgen Skovgaard joined Microsoft in 2003 as product unit manager
for the Microsoft Dynamics AX product line. As part of Microsoft’s Navision
acquisition process, Hans facilitated and managed the introduction of
engineering excellence initiatives, aligned developer competence, created
new teams, and organized training for new developers. Hans joined
Microsoft with more than 20 years of professional software development
and management experience. Prior to his engagement with Microsoft
Dynamics AX, Hans was vice president of engineering at Mondosoft, a
search engine company, for three years. Before that, he was vice president
of CRM development in the ERP company Baan for 10 years, during which time he architected
a product configuration technology and associated tools. Hans has an MSc in AI (artificial
intelligence) and an MBA from IMD, one of the world’s leading business schools. Hans lives in
Denmark with his wife, Nomi, and his three lovely daughters, Ristil, Simone, and Mikala. He
holds a black belt in karate and is an avid mountain biker.

Arthur Greef is a software architect on the Microsoft Dynamics AX team at
the Microsoft Development Center in Copenhagen, Denmark. Prior to
working in this position in Denmark, he worked on the Microsoft Business
Network product team that was part of bCentral in Redmond. Before
he joined Microsoft in 1991, Arthur was chief architect at Edifecs, a small
company that developed the XML business collaboration protocols for the
RosettaNet Consortium, a standards organization for the information
technology industry. He also held the position of chief architect for two
years at the RosettaNet Consortium. During this time, he was on executive
loan from IBM, where he worked on e-commerce Web catalog and sales configuration products.
Arthur has a BSc and an MSc in mechanical engineering from the University of Natal in South
Africa, he has a PhD in industrial engineering from the University of Stellenbosh in South
Africa, and he spent two years in an industrial engineering post-doctoral program at the
University of North Carolina in the United States. Arthur has a passion for delivering innovative
technology to mid-market manufacturing and distribution companies who need to manage
their supply chains and who need to plan, schedule, and control their production and logistics
activities.

Michael Fruergaard Pontoppidan joined Damgaard Data in 1996 as a
software design engineer on the MorphX team, delivering the developer
experience for the first release of Microsoft Dynamics AX after graduating
from DTU (Technical University of Denmark). In 1999, he became the
program manager and lead developer for the Application Integration and
Deployment team that delivered on the Load ’n Go vision. For version 4.0,
he worked as a software architect on version control, unit testing, and
Microsoft’s Trustworthy Computing initiative, while advocating code
515

516 About the Authors
quality improvements through Engineering Excellence, tools, processes, and training. He has
been a highly rated and frequent speaker at technical briefings, conferences, and other road
shows. Michael lives in Denmark with his wife, Katrine, and their daughter, Laura.

Lars Dragheim Olsen joined Damgaard Data in 1998 as a software design
engineer for the Internet and Trade team. This was shortly after the first
version of Microsoft Dynamics AX was released. While continuing his
development work, he has since also held positions as program manager
and project manager. His work has mainly focused on the Supply Chain
Management modules within Dynamics AX and the integration of these
modules with other modules, such as Financials and Project. During the
development of version 4.0, he worked as a software architect, focused
primarily on optimizing performance within the Supply Chain Management
modules. Before working for Damgaard Data, Navision, and Microsoft, he worked for seven
years as a system consultant on another ERP product. He lives in Denmark with his three
children, Daniel, Christian, and Isabella, and his girlfriend, Camilla.

Palle Agermark joined Microsoft as an application developer in 2003 after
spending more than 10 years in the ERP industry specializing in Concorde
XAL and Microsoft Dynamics AX solutions. Palle works on the Control
team and has primarily worked with the General Ledger, Accounts
Receivable, and Accounts Payable feature areas. For Microsoft Dynamics
AX 4.0, Palle worked as a developer in the following areas: unit testing,
payment proposal, dimension hierarchy, the Financial Dimension Wizard,
EU-115 Sales Tax Directive, and audit trail. Palle lives in Denmark with his
wife, Rikke, and daughter, Andrea.

Per Baarsoe Jorgensen joined Damgaard Data in 1998 as a software design
engineer for the Financials team, and he has delivered content for all
releases of Microsoft Dynamics AX ever since. Over the years, he has held
positions as team lead and lead developer for the Financials team. For
version 4.0, he worked as lead developer on two teams that delivered the
Alerts and Integration framework functionality. He has been a frequent
speaker at Microsoft on Dynamics AX feature area implementations. He has
more than 20 years of development experience; prior to his work with
Dynamics AX, he was a development consultant for more than 10 years. Per
lives in Denmark with his wife, Jeanette, and their two lovely daughters, Karoline and
Natascha.

About the Authors 517
Thomas Due Kay is a program manager who joined Damgaard Data in
1997. In addition to program management, he has worked in various product
areas such as product management, support engineering, and product
quality management. For Microsoft Dynamics AX 4.0, he was involved in
the development of version control integration, Microsoft Visio Unified
Modeling Language add-on integration, user interface brush-up, re-branding,
and many other technology-oriented features. He has also been deeply
involved in Microsoft’s Trustworthy Computing effort. He is a frequent
speaker at customer and technical briefings, conferences, and other road
shows. Thomas lives in Denmark with his wife, Theresa, and his two sons, Marcus and Lucas.

Karl Tolgu is a program manager for Microsoft Dynamics. He is responsible
for the delivery of a variety of platform features in Microsoft Dynamics AX.
Previously, Karl worked on project accounting modules in Microsoft
Dynamics SL and Microsoft Dynamics GP. He has worked in the software
industry in both the UK and the United States since graduating. He has
held various software development management positions at Oracle
Corporation and Niku Corporation. Karl resides in Seattle, Washington,
with his wife, Karin, and three sons, Karl Christian, Sten Alexander, and
Thomas Sebastian.

Mey Meenakshisundaram is a program manager on the Microsoft Dynamics
product team who focuses on the Enterprise Portal. He has 14 years of
experience in software engineering, consulting, and management, the last
5 of which were spent at Microsoft. Prior to his current role, he led the
engineering team that developed and implemented the portal, content
management, and sales operations systems for Microsoft Global Sales
teams. He lives in Sammamish, Washington, with his wife, Amutha, and his
children, Meena and Shammu. Mey regularly posts blog entries at http://
blogs.msdn.com/solutions.

Bjørn Møller Pedersen works at thy:development, a Microsoft partner
specialized in skills transfer related to development in Microsoft Dynamics
AX. Bjørn joined Damgaard Data in 1990 as an application developer, so
he has in-depth knowledge of the Dynamics AX application. He played
an important part in the development of Concorde XAL from the first
version and beyond, and he was later heavily involved in the transition
from Concorde XAL to Dynamics AX. Since 1997, he has trained and
coached Microsoft Dynamics partners in Dynamics AX. His focus is
development, including quality assurance activities. Bjørn has an MSc
degree in business administration, accountancy, and auditing.

	Cover
	Copyright Page

	Contents at a Glance
	Table of Contents
	Foreword
	Acknowledgments
	Introduction
	Who Is This Book For?
	The History of Microsoft Dynamics AX
	Organization of This Book
	Reading Guide
	Product Documentation
	Product Web Site
	Naming
	Code
	Glossary
	Special Legend

	System Requirements
	Pre-Release Software
	Technology Updates
	Code Samples
	Support for This Book
	Questions and Comments

	Part I: A Tour of the Development Environment
	Chapter 1: Architectural Overview
	Introduction
	The Operations Environment
	The Application Development and Run-Time Environments
	Rich Client Application
	Web Client Application
	Integration Client Application

	The Enterprise Portal and Web Parts
	Application Modeling and Program Specification
	The Application Model Layering System
	The Application Framework
	The RunBase Framework
	The Batch Framework
	The Dialog Framework
	The Operation Progress Framework
	The Number Sequence Framework
	The SysLastValue Framework
	The Application Integration Framework
	The Wizard Framework
	The Infolog Framework

	Chapter Summary

	Chapter 2: The MorphX Development Environment
	Introduction
	Developing with MorphX
	Plan
	Design
	Implement
	Stabilize
	Release

	Application Model Elements
	Operational and Programming Model Elements
	Value Type, Database, and Data Association Model Elements
	Class Model Elements
	Presentation Model Elements

	Chapter Summary

	Chapter 3: The MorphX Designers
	Introduction
	The Application Object Tree
	Navigating the AOT
	Creating New Elements
	Modifying Elements
	Refreshing Elements
	Element Actions
	Element Layers

	The Project Designer
	Creating a New Project
	Automatically Generated Projects
	Project Types

	The Property Sheet
	The X++ Editor
	Shortcut Keys
	Editor Scripts

	The Label Editor
	Creating a New Label
	Referencing Labels from X++

	The Form Visual Designer and Report Visual Designer
	The Form Visual Designer
	The Report Visual Designer

	Chapter Summary

	Chapter 4: The MorphX Development Tools
	Introduction
	The Compiler
	The MorphX SDK
	The Best Practices Tool
	Understanding Rules
	Adding Custom Rules

	The Debugger
	Using the Debugger
	The Debugger Interface

	The Visio Reverse Engineering Tool
	Data Model
	Object Model

	The Table Browser Tool
	The Find Tool
	The Compare Tool
	Starting the Compare Tool
	Using the Compare Tool
	Compare APIs

	The Cross-Reference Tool
	The Version Control Tool
	Element Life Cycle
	Check-out
	Undo Check-out
	Check-in
	Quality Checks
	Updating Source Code Casing
	Creating New Elements
	Renaming Elements
	Deleting Elements
	Labels
	Get Latest
	Synchronization
	Synchronization Log
	Show History
	Revision Comparison
	Pending Elements
	Build
	Integration with Other Version Control Systems

	Chapter Summary

	Chapter 5: The X++ Programming Language
	Introduction
	Jobs
	The Type System
	Value Types
	Reference Types
	Type Hierarchies

	Syntax
	Variable Declarations
	Expressions
	Statements
	Macros
	Comments

	Classes and Interfaces
	Fields
	Methods

	Chapter Summary

	Part II: Developing with Microsoft Dynamics AX
	Chapter 6: Customizing Microsoft Dynamics AX
	Introduction
	Table and Class Customization
	Creating New Dimension Types
	Adding New Dimensions to a Table
	Enabling New Dimensions in Forms
	Customizing Other Tables
	Adding Dimensions to Queries
	Adding Lookup, Validation, and Defaulting X++ Code

	Form Customization
	Displaying an Image
	Displaying an Image on a Form

	Report Customization
	Creating Promotional Materials
	Adding Promotional Materials to an Invoice Report

	Number Sequence Customization
	Chapter Summary

	Chapter 7: Extending Microsoft Dynamics AX
	Introduction
	Wizard Framework Extension
	Creating a New Wizard
	Creating Labels
	Adding Content to the Wizard
	Adding the Wizard to the Navigation Pane and Main Menu
	Creating a Default Data Wizard

	RunBase Framework Extension
	Inheritance in the RunBase Framework
	The Property Method Pattern
	The Pack-Unpack Pattern
	Bike-Tuning Service Offers Example
	Adding Property Methods
	Adding Constructors
	Adding a Query
	Client/Server Considerations

	Chapter Summary

	Chapter 8: The Business Connector
	Introduction
	Integration Technologies
	Inside the Business Connector
	The Logical Component Stack
	Run Time
	Web Interoperability
	Security

	Usage Scenarios
	Client
	Web
	Server

	Working with the .NET Business Connector
	Data Types and Mappings
	Managed Classes
	Request and Response Processing
	Exception Handling
	HelloWorld Example
	Accessing Data
	Invoking Business Logic

	CLR Interoperability
	Migrating Applications
	Chapter Summary

	Chapter 9: XML Document Integration
	Introduction
	AIF Architectural Overview
	The XML Structure
	The AxdBase API
	The AxInternalBase API
	The Query
	The Axd Wizard
	Customizing an Existing XML Document
	The Entity Key Class
	The Send Framework
	Security
	Chapter Summary

	Part III: Under the Hood
	Chapter 10: The Enterprise Portal
	Introduction
	Inside the Enterprise Portal
	Page Processing
	The Web Framework
	Web Forms
	Reports and Web Reports
	Weblets
	Securing Web Elements
	Web Menu Items and Web Menus
	Web Parts and Web Part Pages
	Web Files
	The Import Page and Deploy Page Tools
	Record Context and Encryption
	Web Page Development Flow

	Content Management
	Common Search
	Security
	Chapter Summary

	Chapter 11: Configuration and Security
	Introduction
	IntelliMorph
	Best Practices
	Working with IntelliMorph

	Licensing and Configuration
	The Configuration Hierarchy
	Configuration Keys
	Using Configuration Keys

	The Security Framework
	Organizing Security
	Applying Security
	Security Coding

	Chapter Summary

	Chapter 12: The Database Layer
	Introduction
	Transaction Semantics
	Transaction Statements
	Isolation Levels
	Concurrency Models

	Record Identifiers
	Allocation
	Administration
	Upgrade

	Company Identifiers
	Identification
	Changing the Company Account
	External Accessibility

	Unicode Support
	Databases
	The Application Runtime
	The MorphX Development Environment
	Files
	DLLs and COM Components

	Database Access
	Database Synchronization
	Table, Column, and Index Naming
	Left and Right Justification
	Placeholders and Literals
	The Dynamics AX Type System vs. the Database Type System
	The Database Log and Alerts

	Database-Triggering Methods
	The insert, update, and delete Methods
	Selecting Rows
	Validating Rows
	Changing the Default Behavior
	Set-Based DML Statements

	Temporary Tables
	Using Temporary Tables
	Design-Time Setting
	Configuration-Time Setting
	Application Runtime Setting

	Chapter Summary

	Chapter 13: Advanced MorphX Forms
	Introduction
	Capturing Form Instantiation
	Adding Design Controls at Run Time
	Populating the Control
	Reacting to User Interface Events
	Form Opt Out
	The Final Result
	Chapter Summary

	Chapter 14: Reflection
	Introduction
	Reflection System Functions
	Intrinsic Functions
	The TypeOf System Function
	The ClassIdGet System Function

	Reflection APIs
	The Table Data API
	The Dictionary API
	The Treenodes API

	Chapter Summary

	Chapter 15: System Classes
	Introduction
	The Global Session Classes
	The Startup Sequence
	The Application Class
	The Info Class
	The ClassFactory Class
	The VersionControl Class
	The SysGlobalCache Class

	The Global Class
	The Collection Classes
	The Set Class
	The List Class
	The Map Class
	The Array Class
	The Struct Class
	Traversal
	Serialization
	Bringing It All Together
	Other Collection Classes

	Chapter Summary

	Chapter 16: Unit Testing
	Introduction
	Test Cases
	Test Suites
	Test Projects
	The Test Toolbar
	Code Coverage
	Test Listeners
	Object Model
	Chapter Summary

	Chapter 17: Performance
	Introduction
	Client/Server Performance
	Controlling the Execution of Logic
	Optimizing Client/Server Calls
	Parsing Parameters by Reference and Value
	Reports and Forms

	Transaction Performance
	Set-Based Data Manipulation Operators
	Restartable Jobs and Optimistic Concurrency
	Caching
	Limiting Field Lists
	Other Performance Considerations

	Dynamics AX Monitoring Tools
	Monitoring Client/Server Calls
	Monitoring Database Activity
	The Code Profiler Tool

	Chapter Summary

	Chapter 18: Upgrade and Data Migration
	Introduction
	Upgrading from an Earlier Version
	Upgrade Planning
	Backup of Code and Data
	Code Upgrade in a Development Environment
	Data Upgrade in a Test Environment
	Testing of Upgraded Code and Data
	Production Upgrade in the Live Environment

	Applying Service Packs and Hotfixes
	Service Packs
	Hotfixes

	Migrating Data
	Data To Be Migrated
	Data Migration Techniques
	Automated Data Migration
	Data Model

	Chapter Summary

	Part IV: Appendixes
	Appendix A: Application Files
	Appendix B: Microsoft SQL Server 2000, SQL Server 2005, and Oracle Database 10g Comparison
	Appendix C: Source Code Changes Required for Upgrade
	Code Changes
	Metadata Changes
	Table Modifications

	Glossary
	Index
	About the Authors

