
296 Int. J. Computational Science and Engineering, Vol. 4, No. 4, 2009

F2PY: a tool for connecting Fortran and Python

programs

Pearu Peterson

Centre for Nonlinear Studies,
Institute of Cybernetics at Tallinn Technical University,
Akadeemia tee 21, 12918 Tallinn, Estonia
E-mail: pearu.peterson@gmail.com

Abstract: In this paper we tackle the problem of connecting low-level Fortran programs
to high-level Python programs. The difficulties of mixed language programming between
Fortran and C are resolved in an almost compiler and platform independent way.
We provide a polished software tool F2PY that can (semi-)automatically build interfaces
between the Python and Fortran languages and hence almost completely hide the difficulties
from the target user: a research scientist who develops a computer model using a
high-performance scripting approach.

Keywords: high-performance scripting; Fortran; Python; code generation; F2PY.

Reference to this paper should be made as follows: Peterson, P. (2009) ‘F2PY: a tool for
connecting Fortran and Python programs’, Int. J. Computational Science and Engineering,
Vol. 4, No. 4, pp.296–305.

Biographical notes: Pearu Peterson is a Senior Researcher in the Laboratory of Systems
Biology at the Institute of Cybernetics at the Tallinn University of Technology, Tallinn,
Estonia. In 2001 he received his PhD in Natural Sciences from the Tallinn University
of Technology for the study on multi-soliton interactions. His research interests include
solitons, nonlinear integrable PDEs, water waves, hydrodynamics, scientific computing,
heart modelling, and confocal and florescence microscopy. He is co-author to many
open-source projects such as SciPy that focus on scientific computing within Python.

1 Introduction

Developing computer models is a natural part of
scientific research. These models typically combine
components of mature scientific software of varying
levels of complexity. Using low-level software libraries
leads to a better performance when running the
computer model, but slows down and distracts from
model development because of the need to deal with
software related technical details. High-level interactive
programming environments such as Python simplify
and speed up development of computer models but
the speed of solving the model may be unacceptable
for many research problems. Since the developers of
computer models are often scientists with no training
in the development of software (Wilson, 2006), they
prefer to focus on solving scientific problems rather
than software problems. This leads to the dilemma of
how to best enable non-professional programmers to
develop high-performance and robust computer models
efficiently. One solution to this difficult software problem
is to use interfaces to low-level high-performance
software in a high-level programming environment
(Ousterhout, 1998).

This paper describes a solution based on combining
low-level Fortran code with the high-level Python

programming environment. F2PY (a Fortran to PYthon
interface generator) was specifically designed to create
Python wrappers to large Fortran libraries (Peterson
et al., 2001), and has already gained substantial
popularity: currently F2PY provides complete support
for wrapping Fortran 77 codes and partial support for
wrapping Fortran 90 or newer codes. By interfaces we
mean abstract descriptions of how Fortran subprograms
should be accessible from Python, or vice-versa.
Wrappers are implementations of such interfaces.

This paper describes the developments of F2PY,
and provides examples of possible ways that F2PY could
be used for scientific research. Note that we refer to
Fortran 77, Fortran 90, Fortran 95, and Fortran 2003
standards simply as Fortran and use the full name
only when particular details demand. Although F2PY
was initially developed to wrap Fortran 77 programs
to Python, it currently supports also newer Fortran
standards with the extend that will be discussed in this
paper.

Fortran has been the standard language of choice
for scientific computing for more than three decades.
Python is becoming an increasingly popular choice for
scientific computation because of its many features
that are attractive for scientists. Python is a scripting
language that has a very clean and easy-to-learn syntax;

Copyright © 2009 Inderscience Enterprises Ltd.

F2PY: a tool for connecting Fortran and Python programs 297

Python supports a very high-level object-oriented
programming paradigm with many predefined data
types and useful modules in the standard library;
Python is easy to extend and its programs are highly
portable. High-quality scientific computational packages
in Python have emerged within the last ten years
(Oliphant, 2007). For example, NumPy offers most of
the basic functionality of Matlab, and SciPy provides
a rich user-friendly scientific computing environment
with interfaces to different high-performance software
libraries written in C/C++ and Fortran (LAPACK, for
instance).

The task of creating interfaces between programming
environments such as Fortran and Python is nontrivial
due to both the complexity of the low-level application
programming interfaces, that often contain many
technical details, and the extra knowledge regarding
mixed-programming techniques between both Fortran
and C, and C and Python. Finding a portable and
compiler independent way of accessing some Fortran
constructions from C can require a considerable amount
of research and resources. For a scientific programmer,
the threshold of learning all of the required technical
details and resolving different portability issues, is
prohibitively high. As a result, the developer often
chooses to program everything either in a low-level
language or in a high-level language, with a resultant
computational model that is often far from optimal.

The aim of developing F2PY was to find an optimal
solution to the Fortran and Python connection problem.
The design criteria were that the programming solution
should be appropriate and easy to use both for a scientist,
who occasionally needs to use a Fortran subprogram
from Python, and for a Python package developer, who
needs to provide flexible and Python friendly interfaces
to large Fortran libraries. The results of this work will
be important for scientific programming groups that have
developed large Fortran libraries over decades and now
need to increase both the development productivity of
their products and widen their code base to new users.

The following general design criteria describe the
optimal software solution:

• No prior knowledge of mixed-programming
techniques should be required to create and to use
the interfaces between Python and Fortran
programs.

• The development of a Fortran library of
subprograms and a Python program using that
library, should be independent. That is, neither the
Fortran nor the Python user need not to be
familiar with the other language.

• Creating robust and immediately usable wrappers
between Fortran and Python programs should be
automatic and triggered by a single command.
However, there should also be an opportunity to
tune the interfaces.

• The interface generator tool should take advantage
of the information available in the Fortran source
code and create as Pythonic1 interface as possible.

• The interfacing solution should be as easy to use
for large Fortran libraries (with thousands of
subprograms) as for a simple Fortran procedure
(Fortran function or subroutine).

A number of tools exist that simplify connecting C/C++
to Fortran for wrapping Fortran (77/90/95/2003)
programs to Python like SWIG (Beazley, 2003), SIP,
Boost.Python, Babel, and others. However, not one
of them satisfies the single optimal solution criterion
stated above, even in the case of simple Fortran
procedures. To use these tools one needs, as a minimum,
to create a tool-dependent specification file containing
C/C++ declarations from which wrapper codes can be
generated. When interfacing Fortran code, one needs
to write pseudo-declarations for Fortran procedures
that describe them as if they are C functions. Such
an approach requires an extensive knowledge of both
Fortran-C mixed-programming techniques and compiler
specific issues, especially when interfacing Fortran 90 or
newer subprograms and data collections. For example,
some Fortran 90 compilers have rather poor support
for mixed-programming with C, thus it is impossible
to access Fortran module subprograms from C, see
Section 2.4. Very few scientists have the experience
required to create such interfaces in an efficient way using
these tools.

The following example illustrates the F2PY solution
to the Fortran and Python connection problem: with a
single command we can create Python wrappers to all
the 1301 LAPACK functions (the sh> line indicates a
command in a Unix or DOS terminal window, \ is line
continuation):

sh> f2py -m lapack LAPACK-3.0/SRC/*.f -c \
--link-blas_opt

and have them immediately usable from Python:

sh> python
>>> from numpy import array, float64
>>> from lapack import dgesv
>>> # Solve a system of linear equations A*x=b
>>> A = array([[1,2], [3,4]])
>>> b = array([[5], [6]], float64,\

order=’FORTRAN’)
>>> # see dgesv.__doc__ for argument information
>>> dgesv(2,1,A,[0,0],b,0)
>>> print b # the solution x is stored in b
[[-4.]
[4.5]]

To illustrate how much work F2PY can save a developer,
note that the source file for LAPACK Fortran-Python
bindings has about 290,000 lines of C code and it takes
about 10min on a standard 2007 laptop to generate and
to compile all sources. If the same task would be carried
out by an average C programmer, it would require about

298 P. Peterson

six years to complete (assuming that the productivity is
about 25 lines of code per hour (Prechelt, 2000)).

This paper is organised as follows. First, we present
an overview of the task of wrapping Fortran procedures
to Python. This will also include an original idea of
overcoming the difficult problem of accessing Fortran 90
symbols from C in a compiler independent way. Next we
show the use of F2PY as an automatic Fortran-Python
wrapper generation tool. Following this is a short
tutorial and feature overview, including F2PY usage
strategies, interface peculiarities, and limitations. Finally
conclusions and future work plans will be discussed.

2 Wrapping Fortran programs to python

A Python wrapper of a Fortran procedure (a Fortran
subroutine or function) is an adaptor-like function
(implemented as Python extension function) that
converts Python objects (function arguments) to objects
that can be used as Fortran procedure arguments, makes
the call to the Fortran procedure, and finally, converts
the results (changed arguments and return values) to
Python objects.

The connection between Fortran and Python is
achieved via C. While Python and C interoperability is
well defined by the Python/C API then there are two
major issues when creating Python wrappers to Fortran
procedures:

• Fortran and C interoperability was not
standardised at all until Fortran 2003 was
published. This causes a number of portability
issues that are related to compiler dependent name
mangling and different binary representations of
data types (e.g., different array storage order in C
and Fortran, different array dope vectors when
using different Fortran compilers, etc.). Resolving
these portability issues sometimes require the usage
of complex wrapping techniques.

• There are differences in Fortran and Python/C
languages such as the lack of direct counterparts of
certain features (e.g., Fortran allocatable arrays,
alternative returns, etc.) or the usage of
contradicting philosophy (e.g., mutability or
immutability of arguments in Fortran and Python,
respectively, etc.). Solutions must be found to
smoothen out such language differences that would
not require transforming the original sources or
would not contradict the philosophy of the target
language.

This section gives an overview of how these issues can
be resolved while striving to achieve the goals stated
in the Section 1. Solutions to these problems are given
and many are also applicable for wrapping Fortran
procedures to other scripting languages. In particular,
the solutions and design decisions under discussion are
implemented in the F2PY tool (see Section 3).

2.1 Basic steps to create wrappers

Creating a Python wrapper to a Fortran procedure
means creating a Python C/API extension module
(called as wrapper module) that implements a Python
extension function (written in C, called as wrapper
function) which in turn calls the given Fortran
procedure. In the wrapper function, before the actual call
to Fortran, Python arguments must be converted to C
data structures that are suitable for use as arguments to
Fortran procedures. After the call, the wrapper function
must convert the computed results to Python objects,
and finally, return to the Python program. The wrapper
module must be compiled and linked with the Fortran
libraries to form a shared library that can be imported
into Python.

Each of these steps requires some technical
knowledge. To produce portable, robust, and easy to use
wrappers, one needs to have experience with each of the
various issues. It turns out that the greatest difficulties
are due to variability of mixed-programming techniques
within different Fortran compilers. A tool that automates
the creation of wrappers, must implement algorithms
that are independent of a particular choice of Fortran
compiler. This task is not always as straightforward as
one would wish, as we shall see in Section 2.4.

2.2 Collecting signature information from
Fortran files

The signature of a Fortran procedure represents a
complete set of information needed to call a Fortran
procedure from a C program. Collecting the signatures
from Fortran files is an important step towards
automating interface generation because this interface
information determines how the wrapper functions will
convert Python argument objects to C data structures,
how they will call Fortran procedures, and how they need
to convert the results back to Python objects.

Fortran sources contain much information that is
relevant to signatures. There are a number of possible
approaches for implementing a program to extract
signature information from Fortran source codes. The
most obvious approach is to implement a Fortran parser
or reuse some existing parser provided by a Fortran
compiler. However, this approach has the disadvantage
of requiring a huge amount of effort: implementing a
full Fortran parser from scratch is a big project in itself,
and reusing an existing Fortran compiler parser can
be technically complicated because Fortran compilers
usually do not provide interfaces to their parsers or they
are hard to use for other applications such as wrapper
generation tools that might need to extend the syntax.

An alternative and simpler approach is to implement
a program that would scan Fortran source codes for
signature patterns. Such a scanner should pick up only
those Fortran statements that define the signatures
of Fortran procedures. For example, only those type
declaration statements need to be parsed that declare the
types and dimensions of Fortran procedure arguments.

F2PY: a tool for connecting Fortran and Python programs 299

In general, the conversion methods of arguments in
the wrapper function need to know about how different
Fortran types may be represented as C objects and the
size and shape of Fortran procedure arguments in the
case of arrays. The size and shape information of array
arguments are usually present as Fortran dimension
specifications in a Fortran procedure. The basic Fortran
types such as INTEGER, REAL, etc. can be immediately
mapped to the corresponding C types int, float, etc.,
respectively. Of course, such a mapping must take into
account the actual byte sizes of Fortran types that must
match the byte sizes of the corresponding C types.

Note that, compared to Fortran subprograms,
C programs contain typically less of the signature
information required to create wrappers automatically
(for example, arrays in C are declared as simple pointers
without dimension information). This explains why
tools designed to wrap C/C++ libraries to scripting
languages need additional specification files describing
the signatures, and why the task of wrapping C programs
to scripting languages cannot be fully automated at the
level that is possible with Fortran subprograms.

2.3 Ways to enhance the signature information

The choice of programming idioms used in a computer
program depends strongly on the programming
language. For example, in a typical Fortran 77 procedure
computed results are often returned by updating the
content of subroutine arguments (i.e., arguments are
passed by reference or as addresses):

subroutine foo (i1, i2, n1, n2, io3, o4,\
m1, m2, o5)

integer n1, n2, m1, m2
real i1, i2(n1, n2), io3
real o4(m1, m2), o5(m1)

c Input arguments: i1, i2
c Input-output arguments: io3
c Output arguments: o4, o5

...
end

In Python, however, changing arguments in-place is
considered as poor Python programming style where
output data from a function would, preferably, be
returned as (multiple) objects. Note also that dimension
information is included within array objects and,
therefore, does not need to be passed via the argument
list:

def foo(i1, i2, io3):
...
return io3, o3, o4, o5

The above code examples represent so-called function
signatures of Fortran and Python programs, respectively,
in a notation used throughout this paper.

In general, Fortran procedures contain sufficient
signature information to automatically generate wrappers.
However, situations exist where the signature information
needs to be changed by either adding more signature
information or fixing the scanned signature information.

The most typical case for enhancing signature
information comes when wrapping Fortran 77
procedures as these contain no information about
the intention of arguments: whether the arguments
contain just input data, or just results, or both. Such
information can be very difficult or impossible to
determine automatically without full program analysis
while the user can often easily provide this additional
information from documentation notes.

An example of where fixing signature information
might be necessary is when wrapping legacy Fortran 77
code which abuses certain features of the Fortran 77
standards and compilers. An example is when array
arguments of a Fortran procedure are declared to have
size one but the callers may provide arrays with different
sizes to the procedure (the actual sizes are specified
in other arguments to the procedure). Obviously, no
automatic tool can detect such abuses and automatically
fix them.

One of the most common enhancements is to add
intent information to argument declarations. This may
be achieved either by

• Inserting the information via specially formatted
comment in the Fortran source that can be
detected by the scanner.

• Saving the scanned information to an intermediate
specification file where the information can be
modified by user. This modified file can be used to
create the wrapper. The given approach is termed
semi-automatic.

The syntax of both the specially formatted comment
lines and intermediate specification files should follow the
syntax of recent Fortran standards to reduce the learning
curve for users with existing Fortran knowledge. Ideally,
the scanner should be able to detect the errors when
editing either the Fortran sources or the specification
files.

2.4 Mixed language programming using
Fortran and C

Technically, there are no difficulties in generating
extension modules from a set of well-defined signatures.
The generator must ensure that reference counting of
Python objects is done correctly and that the generated
code follows C standards to guarantee portability.

The difficult part of generating extension modules lies
in mixed language programming between C and Fortran
because the techniques for accessing Fortran symbols
from C in a portable way, can be complex.

The internet and some Fortran compiler vendors
provide technical documentations about mixed language
programming techniques between C/C++ and Fortran
77/90/95, but there exists no standard specification
about the techniques that all Fortran compilers
would follow (except compilers that follow standard
Fortran 2003). However, with at least one exception
(the F compiler), all Fortran compilers (see Section 2.5)

300 P. Peterson

have support for compiling fixed form Fortran sources
containing standard Fortran 77 code. Moreover,
the basic methods of mixed language programming
techniques between Fortran 77 and C seem to be
universal among all Fortran compilers assuming that
only Fortran subroutines are used – this will be our
assumption when discussing portable techniques. Recall
that Fortran 77 is a subset of newer Fortran standards
and the assumption does not put applicability restrictions
to wrapping newer Fortran codes.

First, one needs to know how to access Fortran
symbols from C. Different Fortran compilers map the
names of Fortran symbols (the names of procedures,
common blocks, modules, module data, module
procedures, etc.) to the corresponding object names
differently (name mangling). However, most Fortran
compilers provide command line switches that can
be used to achieve a particular naming convention.
Such a convention can be used consistently in the
wrapper generator. So, in the following we assume that
when proper compiler switches are used, the name of
a Fortran symbol (recall that names in Fortran are
case-insensitive), say FOO, can be accessed from a C
program as foo_, that is, all cases are lowered and
exactly one underscore is appended to the name of
a Fortran symbol. Note that sometimes the Fortran
libraries provided by a system, may have been built using
different compiler switches leading to different naming
convention. For such cases, the wrapper generation tool
must provide hooks to adapt default naming conventions
to a particular case.

Unfortunately, the naming convention introduced
above cannot be assumed for all Fortran 90 symbols. For
example, the MIPSPro 7 compilers generate object code
where Fortran 90 module names contain the $ character.
Such names cannot be accessed from C directly and these
compilers do not provide compile switches to change
that behaviour. Therefore, more complex techniques are
required to access Fortran 90 module symbols from C.

We propose the following original solution to the
above problem: the references to Fortran 90 module
symbols can be determined at runtime by using special
wrappers. Basically, the initialisation function initfoo
(see the example below) of a Python extension module
foo calls an auxiliary Fortran subroutine finitbar in
fixed form with a special call-back C function init_bar
as an argument. The Fortran subroutine finitbar
that uses Fortran 90 module baz symbols, makes a
call-back to C using the call-back C function init_bar.
The call-back function has the Fortran 90 symbols
as arguments. In C, the pointers to these arguments
are saved in global C variables that are visible to all
C functions that need to access Fortran 90 symbols.
This arrangement is best illustrated with the following
example (the code should be read from the end for better
understanding of the program flow):

! Fortran 90 code
module baz

! the aim is to reference bar
! from C (and Python)

subroutine bar()
end subroutine bar

end module baz

! auxiliary fixed format Fortran code
subroutine finitbar(cinit)
use baz
extern cinit
! sending bar reference to C:
call cinit(bar)
end

/* Python C/API code */
extern void finitbar_; /* GCC convention,

refers to Fortran
finitbar */

char *bar_ptr; /* will hold reference
to bar */

void init_bar(char *bar) { /* initializes
bar_ptr */

*bar_ptr = bar;
} static PyObject* bar_capi /* wrapper function

to bar */
(PyObject *self, PyObject*args) {
(*((void *)bar_ptr))();

} void initfoo() { /* initializes
extension module */

finitbar_(init_bar); /* initialize bar_ptr */
...

}

The proposed technique is unique because it makes
mixing Fortran 90 and C as portable as mixing Fortran
77 and C codes. The technique can be applied also
for referencing Fortran common blocks and Fortran 90
module data from C.

There exist other compiler related issues that the
extension generation tool must take into account:

• Calling convention of COMPLEX or CHARACTER
string valued Fortran functions is Fortran compiler
dependent. The issue can be resolved by generating
the auxiliary wrapper Fortran subroutine that
executes the Fortran function call and saves the
result to extra argument of the wrapper subroutine.

• Accessing and manipulating Fortran 90 module
data ALLOCATABLE arrays requires additional
methods that will support creating, initialising,
modifying, deallocating, and reallocating such
arrays. These operations are better executed in
Fortran code than in C because often Fortran
compilers do not provide any information how to
access allocatable arrays as C structures (Pletzer
et al., 2008).

• Dealing with Fortran alternative returns that have
no matching paradigm in C.

• Handling Fortran ENTRY statements should
produce additional wrapper functions for each such
statement using the signature of the main
subroutine.

F2PY: a tool for connecting Fortran and Python programs 301

2.5 Compiling and linking extension modules

In general, the task of compiling and linking the
Python extension modules is best performed using
Python’s standard distutils package that implements
extension module building support to as many
platforms as Python itself supports. However, to build
extension modules that use Fortran software, we
recommended using the numpy.distutils package
(provided by NumPy), which extends the standard
distutils with support for Fortran compilers.

The main advantage of using numpy.distutils
compared to the manual approach of building extension
modules, is that numpy.distutils contains support
to a large number of Fortran compilers. In addition,
information about specific compilers (switches for
universal naming conventions, compilation flags for
optimised builds, required libraries for linking, etc.) are
being continually updated when new Fortran compiler
versions are released. At present, numpy.distutils
supports the following list of Fortran compilers: GNU
Fortran 77, GNU Fortran 95, Absoft Corp Fortran,
Compaq Fortran, G95 Fortran, Intel/Intel Visual
Fortran, Lahey/Fujitsu Fortran 95, NAGWare Fortran
95, Portland Group Fortran, Pacific-Sierra Research
Fortran 90, HP Fortran 90, IBM XL Fortran, Sun or
Forte Fortran 95, and MIPSpro Fortran compilers.

There may exist cases where building extension
modules manually is still needed, for example, when one
needs to have better control over how the extension
modules and Fortran sources are compiled and linked
together. For improving the portability of such setups,
we recommend using the Fortran linker for creating
extension module shared libraries because this will ensure
that all necessary Fortran libraries are included in the
linking step. Using the system linker requires determining
this information manually which can be tedious because
the information may change even between different
versions of the same Fortran compiler.

2.6 Providing new signature information
to wrapper users

In general, the process of generating Python wrapper
functions to Fortran procedures requires the signatures
of the original Fortran procedures to be transformed
to functions with different signatures when viewed from
the Python side (see Section 2.3). These transformations
may be introduced automatically by the wrapper
generation tool or explicitly by the user in order
to make the wrapper functions more natural to use
for Python programmers. The wrapper generation tool
must generate documentation (doc strings) that precisely
describe how the Fortran input and output arguments
are treated from the Python side. Typically, a user
must first check the documentation string before entering
code for calling wrapper functions because the Python
signature may differ from the Fortran signature, see
Section 3.1 for an example.

3 The F2PY tool for connecting Fortran and
Python programs

This section describes how the problem of connecting
Fortran and Python programs in a robust and portable
way is solved using the polished tool F2PY (F2PY), that
is currently available as a part of the NumPy package.
In the following we assume that the following software is
installed: NumPy 1.1 (or newer), the Python development
package distutils (some systems do not provide
it by default when installing Python), a compatible
C compiler, and a Fortran compiler supported by
numpy.distutils.

3.1 A simple example

To get acquainted with F2PY, let us consider the
following simple Fortran 77 function for computing the
dot product of two vectors:

c file: dot.f
FUNCTION dot(n, x, y)
INTEGER n, i
DOUBLE PRECISION dot, x(n), y(n)
dot = 0d0
DO 10 i = 1, n

dot = dot + x(i) * y(i)
10 CONTINUE

END

In order to call the Fortran function dot from Python,
let us create an interface to it by using f2py (F2PY’s
front-end program). For that we issue the following
command:

sh> f2py -m foo dot.f -c

where the option -m foo sets the name of the extension
module and the option -c instructs f2py to build the
extension module library that can be imported to Python
(without the -c option f2py would only generate
sources to the extension module).2

The following sample session demonstrates how to
call the Fortran function dot from Python:

sh> python
>>> import foo
>>> result = foo.dot([1,2], [3, 4])
>>> print result
11.0

Note the difference between the signatures of the Fortran
function dot(n, x, y) and the corresponding wrapper
function dot(x, y):

>>> print foo.dot.__doc__
dot - Function signature:

dot = dot(x,y,[n])
Required arguments:

x : input rank-1 array(’d’) with bounds (n)
y : input rank-1 array(’d’) with bounds (n)

Optional arguments:
n := len(x) input int

Return objects:
dot : float

302 P. Peterson

Clearly, the latter is more convenient for the Python
user: the user does not need to provide a value for n
because the wrapper function can determine the value
automatically from the length of the input vectors x
and y. This feature often reduces very long Fortran
argument lists to much shorter Python wrapper function
argument lists.

3.2 Strategies of using F2PY

F2PY is designed to wrap Fortran codes of various
complexity written with different styles of programming.
We have worked out the following three basic strategies
of wrapping Fortran procedures to Python:

• The quick way – let F2PY to do all the work,
that is:

• scan signature information from Fortran
sources

• create interface signatures for Fortran
procedures, modules, and data collections

• generate wrapper module sources containing
necessary wrapper functions

• compile C and Fortran source files

• and finally, build the Python wrapper module
that can be immediately used for calling
Fortran procedures from Python.

• The smart way – let the user specify the interface
signature (its initial version can be generated by
using F2PY for scanning Fortran sources) and then
let F2PY handle the rest as listed above.

• The quick and smart way – let the user specify
extra signature information in Fortran source codes
and then let F2PY to do all the work as specified
under point 1.

The default strategy in F2PY is the quick way. Examples
of using the quick way strategy were given above;
wrapping the LAPACK library in Section 1 and the
dot function in Section 3.1. The advantage of using the
default strategy is that wrappers can be created with
a single command and it provides immediate access to
the Fortran code from Python. The disadvantage is that
the user must be aware of the possible need to deal
with the differences of the Fortran and C data storage
orders as well as how to prepare arrays in Python so
that they are efficiently passed to Fortran and filled with
computed results. Such issues typically merge because of
the lack of argument intent information in Fortran 77
procedures; though this is not a problem with Fortran
90 or newer procedures. As a result, F2PY must use
the most conservative assumption: all arguments are
input-only arguments. For example, in our LAPACK
example, the array b has to have the float64 type (that
corresponds to Fortran DOUBLE PRECISION type) and

Fortran storage order. Otherwise, the interface would
create a copy of the input argument b and use the copy
as the corresponding argument to the Fortran function.
Note that although the computed results are saved to this
copy array, the copy is not returned to Python because
of the default input-only assumption.

The smart way strategy gives maximum flexibility
to enhance the F2PY wrapper generation process
and is appropriate for creating high-quality wrappers
to (legacy) Fortran libraries. Typically, one uses the
following iterative scheme for producing easily usable
and efficient wrapper modules:

1 Create an initial wrapper module interface:

sh> f2py -m <modulename> <Fortran files>\
-h <modulename>.pyf

This command will scan Fortran source files for
procedure signatures and save the obtained
signature information to a signature (.pyf) file.

2 Review the signature file manually: insert arguments
intent information via the intent attribute,
provide default values to optional arguments, etc.

3 Build the wrapper module:

sh> f2py -c <modulename>.pyf <Fortran files>

4 Check the documentation strings of the generated
wrapper functions and test their functionality. In
case anything needs to be enhanced, go back to
Step 2.

The quick and smart way strategy is a combination of
the two strategies described above. Here the additional
signature information can be inserted directly to Fortran
source codes using F2PY directive comments starting
with !f2py that F2PY will process. As a result, one
can create high-quality wrapper modules using just one
F2PY command. This approach is suitable when one can
add comments to Fortran source codes and has the
advantage of keeping all signature information in one
place.

3.3 Differences between Fortran and Python
signatures

When F2PY generates a wrapper to a Fortran procedure
then by default the resulting wrapper function follow
Python conventions to make their usage easier for
Python users. This behaviour of F2PY may change the
interface of a Fortran procedure when viewed from the
Python side, and users of F2PY must be aware of this
(see Section 3.1). Although this is unfortunate from an
interface stability point of view, when one takes into
account the habits of typical Python users who are not
familiar with Fortran idioms, being Pythonic outweighs
possible disadvantages.

F2PY: a tool for connecting Fortran and Python programs 303

By default, F2PY automatically changes the
signatures of Fortran procedures in the following two
cases:

• When a Fortran procedure argument has an
intent(out) attribute then the wrapper function
returns the value of the given argument. The
argument is also removed from the wrapper
function argument list (in the case of not specifying
an intent(in) attribute). For example,
the following Fortran 77 subroutine,

subroutine foo(x, y)
!f2py intent(out) x, y
!f2py intent(in) y
...

will have the following signature for the
corresponding Python wrapper function:

def foo(y):
...
return x, y

Here we have used F2PY directives to illustrate
how to insert argument intent information in
Fortran 77 source code files.

• When an input array argument to a Fortran
procedure has its dimension specified as an
argument, then the dimension argument is made
optional (and moved to the end of argument list)
and its default value is set by the wrapper function
using the shape information stored in the
corresponding Python array argument. See
Section 3.1 for an example.

3.4 Overview of F2PY features

In general, F2PY can be used to wrap any Fortran 77
and certain Fortran 90 or newer libraries to Python
(see F2PY limitations below). The generated wrapper
modules implement various consistency checks for
wrapper functions to avoid program crashes and to give
useful error messages when checks fail. Using F2PY
auto-generated wrapper functions is made easy especially
for Python users who have no prior knowledge of
Fortran.

With some help from the developer of a wrapper
module interface, the robustness and quality of F2PY
generated wrapper functions can be easily improved by
providing more information (than normally available
from Fortran source codes) about the intentions of
Fortran procedure arguments.

F2PY generated wrapper modules are highly portable
and compiler independent. Currently F2PY has support
for more than ten major Fortran compilers. F2PY
implements the approaches explained in Section 2.4 to
circumvent issues with compiler dependencies.

Although F2PY was originally designed to simplify
wrapping large Fortran libraries to Python, the tool
can be also used for wrapping certain C libraries to

Python. The following rule of thumb can be used to
decide if F2PY is suitable for wrapping a given C
function to Python: if the C function is using Fortran 77
compatible argument types (e.g., not types derived
from C struct) then F2PY is suitable for the task.
Note that wrapping a C library cannot be made as
automatic as wrapping a Fortran library because the
relation between an array argument and its (integer)
dimension arguments is not specified by the C code and
the array size information must be provided manually.
Many may feel that wrapping C functions with F2PY is
significantly simpler than using other tools like SWIG.
See http://www.scipy.org/Cookbook/f2py_and_NumPy
for an example.

How F2PY interfaces various Fortran features to
Python, are exemplified in the following sections.
A detailed list of F2PY features can be found on the
F2PY homepage and in the documentation.

3.4.1 Array arguments

As mentioned before, Fortran uses a different array
storage order than C. This means that before passing
Python multi-dimensional arrays (NumPy array objects)
to Fortran procedures, the arrays must be transposed.
In addition to that, when the Python array element
type differs from that expected by a Fortran procedure
(for example, when passing Python integer array to a
Fortran real array argument) the array content must
be copied to a new array with the expected element
type. F2PY automatically performs the transposing and
copying operations in one transformation and only then
when really needed. Specifically, it is possible to create
Python arrays with proper type and Fortran storage
order that can be safely passed to Fortran without
copying and transposing. F2PY can detect such array
arguments and skip the corresponding transformations.
This feature is very important because copying results
in noticeable overheads, especially when dealing with
large arrays and when calling Fortran procedures in a
long Python loop. User can enable conditional reporting
features when array copies are made (see f2py flag
-DF2PY_REPORT_ON_ARRAY_COPY).

3.4.2 External procedures

Fortran procedures may declare EXTERNAL symbols
which are procedures defined elsewhere. These external
procedures can be specified as arguments to a Fortran
procedure or as an object code to be linked with
the Fortran program. F2PY supports both ways of
specifying external procedures which makes it possible to
call Python functions from Fortran procedures.

For example, when an external procedure is given as
an argument to a Fortran procedure:

subroutine foo(bar)
external bar
call bar(...)
...

304 P. Peterson

then F2PY automatically creates an interface that allows
Python functions to be passed to Fortran::

>>> def bar(...):
...

>>> foo(bar)

where the Python function bar will be called with given
arguments from the Fortran subroutine bar via an
F2PY generated wrapper function bar. The problem of
determining the signature of Fortran subroutine fun is
solved by scanning Fortran CALL statements.

When the external procedure is not specified in a
Fortran procedure argument list, for example:

subroutine foo()
external bar call
bar(...)

then the F2PY user must specify the intent
(callback) attribute for the bar symbol that will
instruct F2PY to create the necessary interface and add
an additional argument to the wrapper function.

3.4.3 Common blocks

F2PY automatically generates interfaces to COMMON
blocks defined in Fortran procedures and DATA BLOCK
items. For example, the interface to a common block in
a Fortran subroutine,

subroutine foo()
integer i
real x
common /data/ i, x(2, 3)
...

is exposed to Python via a special object whose
attributes contain Python arrays with data referring to
the corresponding Fortran common block content:

>>> data.i = 5 # sets the value of common \
block item i to 5

>>> data.x # return the item x as \
writable array

Viewing or changing the content of data attributes in
Python is directly related to viewing and changing the
content of Fortran common block data.

3.4.4 Fortran 90 module procedures

F2PY automatically generates interfaces to Fortran 90
module procedures (Fortran 90 module subroutines and
functions) and Fortran 90 module data. The interface
is exposed via a special object that is created for
each Fortran 90 module. In addition, F2PY generates
interfaces to Fortran 90 allocatable arrays that are
able to allocate, initialise, reallocate and deallocate the
Fortran allocatable arrays from Python. For example,
with the following Fortran 90 module:

module m
real, allocatable, dimension(:) :: x
contains
subroutine foo
...

...

accessing the allocatable array x and the subroutine foo
in Python looks trivial:

>>> m.foo() # call F90 module m function foo
>>> m.x = [1, 2, 3] # allocate F90 x and \

initialize with \
given values

>>> m.x # returns the content of \
x as array

>>> m.x = None # deallocate F90 x array

Here the F2PY generated interface handles the
complicated job of accessing Fortran 90 symbols from
C using the method explained in Section 2.4. This
example is a good illustration of the power of F2PY:
the tool provides a very convenient and simple Python
access to Fortran 90 while behind the scenes it uses
very complicated but unavoidable technique to ensure
portability.

3.5 Limitations

The most important limitation of F2PY is that it can
wrap only a certain subset of Fortran 90 programs.
For example, F2PY does not support wrapping Fortran
procedures that use arguments defined by the Fortran 90
TYPE or POINTER constructs.

At the time of writing, F2PY considers Fortran
arrays of character strings as arrays of characters.
This causes some inconvenience when providing NumPy
string arrays to F2PY generated wrapper functions. (This
restriction is present because the previous array backend
package Numeric did not support arrays of strings.)

The other limitations of F2PY are often due to
limitations of C. For example, Fortran alternative
returns do not have the corresponding concept in C
and hence F2PY cannot support alternative returns in a
consistent manner.

4 Conclusions and future work

This paper has provided an overview of issues that
arise from connecting low- and high-level languages,
with particular focus on Fortran and Python. The
most difficult problems come from the fact that mixed
language programming between Fortran and C was
not standardised until Fortran 2003 was published, and
one needs to use nontrivial programming techniques in
order to connect the Fortran (starting from Fortran 77)
and Python programs in a reasonably portable way.
In addition, one must be able to deal with the differences
of the data storage orders that Fortran and C use for
multi-dimensional arrays.

Examples were given highlighting the use of the
software tool, F2PY, that solves many of the difficult
mixed language programming problems. Strategies were
suggested for dealing with idiomatic language differences
between Fortran and Python in an efficient and
convenient way.

F2PY: a tool for connecting Fortran and Python programs 305

In summary, F2PY can be used to (semi-)auto-
matically wrap Fortran 77 and Fortran 90 or newer
programs to Python, with the above mentioned
restrictions. In practice, F2PY fulfils all optimal software
solution criteria stated in Section 1 while special cases
exist where expert support is needed. F2PY has become
an important tool to speed up Python by migrating
computationally intensive tasks to Fortran. F2PY has
also given a new life to many legacy Fortran libraries
and programs.

There is work in progress to extend F2PY to wrap
a wider range of the Fortran 90, 95, and 2003 standard
features, and most importantly add the Fortran 90
TYPE support. This may provide a significant impact
on Computational Science, as scientists are able to
reuse more contemporary high-performance Fortran
subprograms in high-level Python programs.

Acknowledgements

Financial support from the Estonian Science Foundation
is acknowledged (ETF grant 5767).

This work is supported by a Center of Excellence
grant from the Norwegian Research Council to
Center for Biomedical Computing at Simula Research
Laboratory (http://www.simula.no/).

Support to develop F2PY from the Centre of
Nonlinear Studies (http://cens.ioc.ee/) and Enthought
Inc. (http://www.enthought.com/) is greatly appreciated.

I am grateful to all F2PY users for providing
feedback and bug reports on F2PY. Special thanks are
due to Travis E. Oliphant who was the first F2PY user
and contributor.

References

Beazley, D.M. (2003) ‘SWIG: an extensible compiler for
creating scriptable scientific software’, Future Generation
Computer Systems (FGCS), Elsevier, Vol. 19, No. 5,
pp.599–609, DOI: 10.1016/S0167-739X(02)00171-1.

Oliphant, T.E. (2007) ‘Python for scientific computing’,
Computing in Science and Engineering, Vol. 9, No. 3,
May–June, pp.10–20.

Ousterhout, J.K. (1998) ‘Scripting: higher level programming
for the 21st century’, Computer IEEE, Vol. 31, No. 3,
March, pp.23–30.

Peterson, P., Martins, J.R.R.A. and Alonso, J.J. (2001)
‘Fortran to Python interface generator with an application
to aerospace engineering’, Proceedings of the 9th
International Python Conference, CDROM, Long Beach,
California, 19 pages.

Prechelt, L. (2000) ‘An empirical comparison of seven
programming languages’, Computer IEEE, Vol. 33,
No. 10, pp.23–29.

Pletzer, A., McCune, D., Muszala, S., Vadlamani, S. and
Kruger, S. (2008) ‘Exposing Fortran derived types to
C and other languages’, Computing in Science and
Engineering, Vol. 10, No. 4, July–August, pp.86–92.

Wilson, G.V. (2006) ‘Where’s the real bottleneck in scientific
computing’, American Scientist, Sigma Xi, Vol. 94, No. 1,
pp.5, 6, DOI: 10.1511/2006.1.5.

Notes

1A Pythonic interface means that it should be easy and natural
to use for Python users, i.e., it should support coding styles
and code idioms that have been well established by the
Python community.

2To learn more about f2py command line options, run f2py
without arguments.

Website

F2PY: Fortran to Python interface generator, http://www.
f2py.org/

