```
UNIVERSITÄT
DEUSISSE U R G
```

introduction to public key cryptography
A.J. Han Vinck

University of Duisburg-Essen
Last changes, May 12, 2012
Vinck@iem.uni-essen.de

content

- Public key formalisms
- Diffie Hellman key exchange
- Pohlig-Hellman a-symmetric encryption
- El-Gamal public key
- RSA
- Book: Norman L. Biggs, Discrete Mathematics, Oxford science publications.

Important principle

- One way function
- Given X, easy to calculate $Y=F(X)$
- Given Y it is "hard" to find $\mathrm{X}=\mathrm{F}^{-1}(\mathrm{Y})$

$$
x=\sqrt{y}
$$

but .easy" with special info (trapdoor)

- Example: $y=a^{x}$;
$N=p q ; p$ and q large prime numbers
$y=X^{2}$

The classical „one-key" system

Secret K. System condition $d(e(M, K), K)=M$
Known to the public:

- e(*, *), d(*, *), easy to calculate functions
- from $C=e(M, K)$ and M it is "impossible" to find K (plaintext-ciphertext attack)

public "only one secret" key: privacy

Assumption: from $C=e\left(M, K_{i}\right)$ and K_{i} it is impossible to find M and L_{i}

CONSEQUENCE:

with the public key K_{i} we can send a secret message only decryptable with the secret key L_{i}

public "only one secret" key: privacy

NOTE:
$C=e\left(M, K_{i}\right)$

Public: only one secret key: signature

Assumption: from $M=d\left(C, L_{i}\right)$ and L_{i} it is ,impossible" to find K_{i}

CONSEQUENCE:

with the secret key K_{i} we can sign a message only decryptable with the public key L_{i}

Public: only one secret key: privacy

NOTE:

Special lock: visualization (any other idea?)

Public key closes lock private key opens lock
Public key opens lock private key closes lock

Signature =

- 3 famous crypto scientists

Martin Hellman Whitfield Diffie. Merkle, Ralph C

Patent 1977- US4200770: Cryptographic apparatus and method
Hellman, Martin E.; Stanford, CA, Diffie, Bailey W.; Berkeley, CA, Merkle, Ralph C.; Palo Alto, CA
A patent is automatically invalid if the patented invention was published more than a year before the patent's filing date.
It appears, therefore, that the Diffie-Hellman-Merkle patent was invalid.

- it is used by several protocols, including Secure Sockets Layer (SSL), Secure Shell (SSH), and Internet Protocol Security (IPSec).
- The numbers (prime and primitive element) should be big (> 500 bit)

Diffie-Hellman (based on discrete logarithm problem)

common parameters:

- large prime p
- constant 1 < $a<p-1$

$$
1<X(A)<p-1 \quad \text { Generate secrets } \quad 1<X(B)<p-1
$$

Exchange the public numbers:

ASSUMPTION: given X, easy to calculate $Y=a^{x}$: given Y, hard to calculate X

Diffie-Hellman (the mathematics behind)

Given: prime p and $1<a<p-1$
Calculate numbers: $\quad 1, a, a^{2}, a^{3}, \ldots, a^{p-2}$ modulo p
for a primitive, these $p-1$ numbers are different

$$
\text { Example: } p=7, a=3 \text { : }
$$

$$
\left[1,3,3^{2}=2,3^{3}=6,3^{4}=4,3^{5}=5\right] \text { modulo } 7
$$

Note: for a not primitive: $a^{i}=a^{j} \bmod p=>a^{i-j}=1 \bmod p, 0 \leq i, j \leq p-2$ Example: $p=7, a=2$:

$$
\left[1,2,2^{2}=4,2^{3}=1,2^{4}=2,2^{5}=4\right] \text { modulo } 7
$$

Property of a primitive element (to be remembered)

Given: prime p and $1<a<p-1$
Assumption: for a primitive,
the $p-1$ numbers $1, a, a^{2}, a^{3}, \ldots, a^{p-2}$ modulo p are different

Proposition: $a^{p-1}=1$ modulo p :

- all (p-1) numbers ai mod p, $0 \leq i \leq p-2$; are different modulo p
- suppose $a^{i}=1 \bmod p, i<p-1$, then $a^{i+1}=a$, which contradicts the assumption
\rightarrow for $1 \leq b \leq p-1, b^{p-1}=\left(a^{i}\right)^{p-1}=\left(a^{p-1}\right)^{i}=1 \bmod p \quad$ Fermat-Euler
$\rightarrow a^{p-1}=\left(a^{p-1-i}\right) a^{i}=1 \bmod p ; \quad b:=a^{p-1-i}=a^{-i} \bmod p$ is the inverse of $a^{i} \bmod p$

an example

Given: prime $p=7$ and $1<a=3<6$
Calculate numbers: $1,3,3^{2}=2,3^{3}=6,3^{4}=4,3^{5}=5$ modulo 7
$\rightarrow 3^{6}=1$ modulo 7 .
\rightarrow for $1<2<6,2^{6}=\left(3^{2}\right)^{6}=\left(3^{6}\right)^{2}=1 \bmod 7$
$\rightarrow 3^{6}=\left(3^{4}\right) 3^{2}=1 \bmod p \quad b=3^{4}=3^{-2} \bmod p$ is the inverse of $3^{2} \bmod p$

For $a=2$: $\quad 1,2,2^{2}=4,2^{3}=1$ modulo 7
Hence, $a=2$ is not primitive

Example of Diffie Hellman with numbers

Common parameters: prime $p=71$ and constant $a=7$

Step 1. Generate secrets in A and $B: \quad X(A)=5 ; \quad X(B)=12$

Step 2: exchange the public numbers: $Y(A)=7^{5}=51$ modulo $71 \rightarrow B$

$$
\mathrm{Y}(\mathrm{~B})=7^{12}=4 \text { modulo } 71 \rightarrow \mathrm{~A}
$$

Step 3: calculate in A: 4^{5} modulo $71=7^{12^{*}} 5$ modulo $71=30!!$ calculate in B: 51^{12} modulo $71=7^{5^{*} 12}$ modulo $71=30!!$

Diffie-Hellman key exchange (illustration)

Patent 1977- US4200770: Cryptographic apparatus and method

the Man in the middle can be a problem

A and B communicate via the "Man in the Middle"

El Gamal public key

El Gamal:

use Diffie Hellman for key agreement (slow)

classical encryption for message exchange (fast)

El Gamal public key (2)

Step 1: Key exchange

A has public number from B
A sends to B
$y(A)$
A and B calculate

$$
\begin{aligned}
& K=Y(B)^{x(A)} \text { modulo } p \\
& K=Y(A)^{x(B)} \text { modulo } p
\end{aligned}
$$

Step 2: A transmits $C=K * M$ modulo p

Step 3: B calculates $K^{-1} C=K^{-1} K^{*} M=M$ modulo p
For p prime, $\operatorname{gcd}(K, p)=1$, and thus K^{-1} can be found.
Note: we need an algorithm to calculate k^{-1} with low complexity

Example for the El Gamal public key (3)

$$
\begin{array}{lll}
p=71, a=7 & & \\
Y(B)=3 ; & X(A)=2 & K=9 ; K^{-1}=8 ; \\
\text { putbicker for \& B } & \text { seceref for A } & 8 * 9=72=1+71
\end{array}
$$

encryption of $M=30$ is

step 19 for A and B, common key is 9
step $2 C=9 \times 30 \bmod 71=57:$ from $A=>B$
step $3 K^{-1}=8 ; 8 \times 57=456=30 \bmod 71($ in $B)$

Another hybrid scheme

Step 1: public key K_{B} from B to A

$$
A<K_{B} \quad B
$$ secret key L_{B} at B

Step 2: A generates session key K
A sends $C=e\left(K, K_{B}\right)$ to $B \quad A \Rightarrow C$
B decrypts $d\left(C, L_{B}\right)=K$ $K=d\left(C, L_{B}\right)$

Step 3: K can be used as session K in AES (fast)

Basic property for Pohlig-Hellman (to be remembered)

For integer N and constant $e<N$, s.t. greatest common diviser $(e, N)=1$ there exists an integer d such that ed $=1$ modulo N
proof: Consider the numbers: e, 2e, 3e, ..., (N-1)e modulo N these ($\mathrm{N}-1$) numbers are all different and $\neq 0$ modulo N because $-k e \neq a N$, since $k, e<N$ and $g c d(e, N)=1$ $-\mathrm{Ie} \neq \mathrm{Je}$ since otherwise $(\mathrm{Ie}-\mathrm{Je})=\mathrm{ke}=0$ modulo N

Conclusion: there exists an integer d such that $\mathrm{de}=1$ modulo N this is a very basic algorithm to find d (generate all multiples of e until de = 1 modulo N).
We will see in the next chapter that it can be faster!

Pohlig-Hellman a-symmetric encryption (1975)

For two constants (e,d) s.t. ed = $1+k$ (p-1) (Fermat Euler)
(ed = 1 modulo $(p-1)$ or $\operatorname{gcd}(e, p-1)=1)$

- Encryption: $C=M^{e}$ modulo $p \quad M<p$ (rime)
- Decryption: $C^{d}=M^{\text {ed }}=M^{1+k(p-1)}=M\left(M^{k(p-1)}\right)=M$ modulo p follows from Fermat -Euler!

Assumption: from C we cannot find e!

This method in general more complex than symmetric systems, but very close to the following public key system

The famous RSA public key system

RSA: Ron Rivest; Adi Shamir; Leonard Adleman

Use: mathematical problem of factorization

$$
N=p q \quad \text { prime } p \text { and } q
$$

- to multiply p and q is easy
- to find p and q given N is difficult
- N large (1024 bits), p, q ≈ 512 bits

See also: http://www.rsasecurity.com http://

RSA (how it works)

Given: secret two large primes p and q $e<p q$ and $\operatorname{gcd}(e,(p-1)(q-1))=1$
Calculate: secret d, s.t. ed = 1 modulo $(p-1)(q-1)$

Public key: the pair ($\mathrm{N}=\mathrm{pq}, \mathrm{e}$) Secret key : d

ENCRYPT: $\quad C=M^{e}$ modulo N
DECRYPT: $\quad C^{d}=M^{e d}=M^{1+k(p-1)(q-1)}=M$ modulo $p q$

RSA in numbers (how it works)

Given: secret two large primes 47 and 59

$$
e=157 \text { and } \operatorname{gcd}(157,2668)=1
$$

Calculate: secret d=17, s.t. 157*17 = 1 modulo 2668

Public key: the pair ($N=2773,157$) Secret key : 17

ENCRYPT $\quad M=920$ as $C=920157$ modulo 2773
DECRYPT $\quad C^{d}=M^{\text {ed }}=M^{1+k(p-1)(q-1)}=M$ modulo N

Homework: perform the remaining calculations

RSA (show that $M^{\text {ed }}=M$ modulo pq)

Given: p, q prime, $N=p q$; \quad Message $M<p q$
e, d such that $e d=1+k(p-1)(q-1)$

Then: $\quad M^{\text {ed }}=M^{1+k(p-1)(q-1)}=M\left(M^{p-1}\right)^{k(q-1)}=M$ modulo p (Fermat-Euler)
$M^{\text {ed }}=M^{1+k(p-1)(q-1)}=M\left(M^{q-1}\right)^{k(p-1)}=M$ modulo q
$\rightarrow p$ divides $\left(M^{\text {ed }}-M\right.$)
$\rightarrow q$ divides ($M^{\text {ed }}-M$)
Since: p and q are different primes,
$\rightarrow p q$ divides $\left(M^{\text {ed }}-M\right) \quad$ BASIS for RSA! or $M^{\text {ed }}=M$ modulo $p q$

Ron Rivest

Adi Shamir

Len Adleman
-Founders of RSA

RSA

SECURITY

History of RSA (from http://en.wikipedia.org/wiki/RSA)

The algorithm was described in 1977 by Ron Rivest, Adi Shamir and Len Adleman at MIT; the letters RSA are the initials of their surnames.

Clifford Cocks, a British mathematician working for GCHQ, described an equivalent system in an internal document in 1973. His discovery, however, was not revealed until 1997 due to its top-secret classification.

The algorithm was patented by MIT in 1983 in the United States of America as U.S. Patent 4405829.

It expired 21 September 2000. Since the algorithm had been published prior to patent application, regulations in much of the rest of the world precluded patents elsewhere. Had Cocks' work been publicly known, a patent in the US would not have been possible either.

RSA (security)

An attack could be based on factoring N into two primes p and q RSA keys are typically 1024-2048 bits long.

2004: the largest number factored was 174 decimal digits (576 binary bits) 2005: RSA-640 F. Bahr, M. Boehm, J. Franke, T. Kleinjung

The factors [verified by RSA Laboratories] are:
16347336458092538484431338838650908598417836700330
92312181110852389333100104508151212118167511579
and
1900871281664822113126851573935413975471896789968
515493666638539088027103802104498957191261465571
The effort took approximately 302.2 GHz -Opteron-CPU years according to the submitters, over five months of calendar time. (This is about half the effort for RSA200, the 663-bit number that the team factored in 2004.)

The RSA Factoring Challenge is no longer active

RSA (security)

Attacks can be :

- Mathematical: make use of bad number choices
- try to factor N

- Technical:

- timing (exponentiation time differs for different keys);
- power consumption;
- hardware errors during computations
- Protocol based
- use flaws in protocols
- use different N for all users in a network
- (e and d together can give the factors of N)

Some facts about prime numbers

- An integer > 1 that can only be divided by itself and 1
- the number of primes up to x is approximately $x / \ln (x)$.
- The ancient Sieve of Eratosthenes is a simple way to compute all prime numbers up to a given limit, by making a list of all integers and repeatedly striking out multiples of already found primes.
- Largest prime: 9,808,358 digits, 2006 Cooper, Boone (USA)
- A probable prime is an integer which, by virtue of having passed a certain test, is considered to be probably prime.
- 2002 Breakthrough by: AKS (Agrawal, Kayal and Saxena) primality test of the number N with complexity $(\log N)^{6}$ which is polynomial in the number of digits in N .
- http://primes.utm.edu/
-http://

Applications (1)

Certification centre

 public key K_{C} (secret key L_{C})

Conclusion: B can encrypt with K_{A}, only A can decipher with L_{A} we guarantee that the public key belongs to A!

Applications (2): challenge response

Given: A has private key L_{A} and public key K_{A}

Bank

$I D_{A}$	send $I D_{A}$	
generate R K_{A} encrypt $e\left(R, K_{A}\right)$ calculate $f(R)$	send $C=e\left(R, K_{A}\right)$ answer with $f(R)$	secret key L_{A} $d\left(C, L_{A}\right)=R$ calculate $f(R)$

CONCLUSION: Only user A with secret key L_{A} can answer with $f(R)$ Note: never use R twice!

System without key exchange

http://www.youtube.com/watch?v=U62585chxx4

Lock with K_{A}

Remove K_{A}

Q: consider the security

the system without key exchange (math)

> user A prime P
> secret m, n
> u, v
> $\left(m^{\star} n\right)=1$ modulo $p-1 \quad\left(u^{\star} v\right)=1$ modulo $p-1$
> user B prime p message M
send: $C=M^{m}$ modulo $p \Rightarrow C$
$C^{\prime} \quad \Leftarrow$ send: $C^{\prime}=C^{4}$ modulo p
send: $C^{\prime \prime}=\left(C^{\prime}\right)^{n}$ modulo $p \Rightarrow$ calculate:
$=\left(M^{m n}\right)^{u}$ modulo $p \quad\left(C^{\prime \prime}\right)^{v}=\left(M^{u}\right)^{v}=M$ modulo p
$=$ Mu modulo p

Diffie-Hellman (based on discrete logarithm problem)

Common parameters in A and B : large prime p and constant $1<a<p-1$

1. Generate secrets $X(A)$ and $X(B)$: $1<X(A)<p-1 ; 1<X(B)<p-1$

2: Exchange the public numbers:

$$
\begin{aligned}
& Y(A)=a^{X(A)} \text { modulo } p \rightarrow B \\
& Y(B)=a^{X(B)} \text { modulo } p \rightarrow A
\end{aligned}
$$

3: calculate in $A: \quad Y(B)^{X(A)}$ modulo $p=a^{X(B) X(A)}$ modulo $p=K!!!$ calculate in B :

```
Y(A)}\mp@subsup{}{}{X(B)}\mathrm{ modulo }p=\mp@subsup{a}{}{X(A)X(B)}\mathrm{ modulo p = K I!!
```

ASSUMPTION: given X, easy to calculate $Y=a^{x}$ given Y, hard to calculate X

Some remarks added

Given: prime p and $1<a<p-1$, a primitive,
$\Rightarrow \quad a^{p-1}=1$ modulo p
\Rightarrow the $p-1$ numbers $1, a, a^{2}, a^{3}, \ldots, a^{-2}$ modulo p are all different

We call ($\mathrm{p}-1$), the order of the element a modulo p .

- For $\mathrm{b}, 1 \leq \mathrm{b} \leq \mathrm{p}-1, \mathrm{~b}=\mathrm{a}^{5}$ modulo p and thus $\mathrm{b}^{\mathrm{p}-1}=1$ modulo p .

Some remarks added

Given: prime p and $1<a<p-1$

- For $b=a^{k}$ modulo $p, 1 \leq b \leq p-1$, the order of b is a divisor of $(p-1)$:

Example: Let $\mathrm{p}=13$ and $\mathrm{a}=2$.

$$
\begin{aligned}
& 2^{12}=1 \text { modulo } 13 \\
& 4^{6}=1 \operatorname{modulo} 13,4=2^{2} \bmod 13 \\
& 3^{4}=1 \operatorname{modulo} 13,3=2^{4} \bmod 13
\end{aligned}
$$

- Property: for a primitive, $a^{q(p-1)}=1$ modulo $p, q \geq 1$

Some remarks added

Given: prime p and $1<a<p-1$

- For $b=a^{k}$ modulo $p, 1 \leq b \leq p-1$, the order of b is a divisor of $(p-1)$:

$$
\begin{aligned}
& \text { we first proof that the order of }\left(b=a^{k}\right) \leq \frac{p-1}{g c d(p-1, k)} \\
& \operatorname{gcd}((p-1), k)=c ; \quad(p-1)=x c ; \quad k=y c ; \\
& \text { then } \frac{p-1}{g c d(p-1, k)}=\frac{x c}{c}=x \\
& \left(b=a^{k}\right)^{\dagger}=\left(a^{k}\right)^{\frac{p-1}{g c d(p-1, k)}}=a^{x k}=a^{x c y}=a^{(p-1) y}=1 \operatorname{modulo} \\
& \text { we see that the order } t \text { of } b \text { is } \leq \frac{p-1}{g c d(p-1, k)}
\end{aligned}
$$

Some remarks added

$$
\begin{aligned}
& \text { next we proof that the order is a multiple of } \frac{(p-1)}{g c d(p-1, k)} \\
& \text { for a primitive, }\left(b=a^{k}\right)^{\dagger}=a^{\dagger k}=a^{q(p-1)}=1 \text { modulo } p \text {. } \\
& \text { thus, } t k=q(p-1) \text { and } \dagger \frac{k}{g c d(p-1, k)}=q \frac{(p-1)}{g c d(p-1, k)} \\
& =>\frac{(p-1)}{g c d(p-1, k)} \text { must divide } \dagger
\end{aligned}
$$

- To make it easy to generate elements with a large order, one can use "safe primes", where $p=2 q+1, p$ and q prime (Sophie Germain prime). The order of the integers modulo p is then $2, q$ or $(p-1)$.

Example of an attacker's scenario

- Example : Let $p=13=2 \times 6+1$ and $a=2$
- Now, Let $X_{A}=2=>$ public number $2^{2}=4$

The different powers of 4 modulo 13 are: $(4,3,12,9,10,1)$ period 6

- Now, Let $X_{B}=3=>$ public number $2^{3}=8$

The different powers of 8 modulo 13 are $(8,12,5,1)$ period 4

- The common key is $K_{A B}=2^{6}$ modulo $13=12$ (period of the key is $2!$)
- The shared secret key $K_{A B}$ lies in the intersection of the two groups
- Example : Let $p=13=2 \times 6+1$ and $a=2$
- powers of 2,6,7,11 have period 12
- powers of $3,9 \quad$ have period 3
- powers of 5,8
have period 4
- powers of 4,10
have period 6
- powers of

12
have period 2

Example for the „safe prime"

- Example : Let $p=11=2 \times 5+1$ and $a=2$

$$
\begin{array}{lll}
\text { • powers of } & 2 & 2,4,8,5,10,9,7,3,6,1 \\
& 6 & 6,3,7,9,10,5,8,4,2,1 \\
& 8 & 8,9,6,4,10,3,2,5,7,1 \\
& 7 & 7,5,2,3,10,4,6,9,8,1
\end{array}
$$

- powers of

4	$4,5,9,3,1$
3	$3,9,5,4,1$
5	$5,3,4,9,1$
9	$9,4,3,5,1$

10 10,1
period 10

period 5
period 2

Further references

-For further background on the mathematics

- R.P. Grimaldi: Discrete and Combinatorial Mathematics

DISCRETE and
COMBINATORIAL

