
introduction 
to 

public key cryptography

A.J. Han Vinck
University of Duisburg-Essen

Last changes, May 12, 2012

Vinck@iem.uni-essen.de



2

content

• Public key formalisms
• Diffie Hellman key exchange
• Pohlig-Hellman a-symmetric encryption
• El-Gamal public key
• RSA

• Book: Norman L. Biggs, Discrete Mathematics, Oxford science publications.
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Important principle

• One way function

– Given X, easy to calculate Y = F(X)                       Y = X 2

– Given  Y it is „hard“ to find  X  = F-1(Y)                 X = 

but „easy“ with special info (trapdoor)

• Example: Y = aX; 
N = pq;  p and q large prime numbers
Y = X 2

Y
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The classical „one-key“ system

plaintext encypher decypher plaintext

Key K Key K

tapper

Secret K. System condition d( e ( M, K ), K) = M

Known to the public:  

- e(*,*), d(*,*), easy to calculate functions

- from C = e(M, K ) and M it is „impossible“ to find K

(plaintext-ciphertext attack)

SecretSecret
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public „only one secret“ key: privacy    

plaintext e(M, Ki ) d(C , Li) plaintext

Key Ki Key Li

tapper

Assumption:  from C = e(M, Ki ) and  Ki it is impossible to find M and Li

M M

C

public secret

CONSEQUENCE: 

with the public key Ki we can send a secret message 

only decryptable with the secret key Li
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public „only one secret“ key: privacy    

plaintext e(M, Ki ) d(C , Li) plaintext

Key Ki Key Li

tapperM M

C

public secret

NOTE: C = e(M,Ki)

Li
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Public: only one secret key: signature    

plaintext e(M, Ki ) d(C , Li) plaintext

Key Ki Key Li

tapper

Assumption:  from M = d( C , Li ) and  Li it is „impossible“ to find  Ki

M M

C

secret public

CONSEQUENCE: 

with the secret key Ki we can sign a message only

decryptable with the public key Li
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Public: only one secret key: privacy    

plaintext e(M, Ki ) d(C , Li) plaintext

Key Ki Key Li

tapperM M

C

publicsecret

NOTE: M = d(C,Li)

Ki
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Special lock: visualization (any other idea?)

closes lock    opens lock

Key pair

Public key closes lock    private key opens lock 

Public key opens lock     private key closes lock

Signature =

Secure =
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Martin Hellman Whitfield Diffie.
Patent 1977- US4200770: Cryptographic apparatus and method
Hellman, Martin E.; Stanford, CA, Diffie, Bailey W.; Berkeley, CA, Merkle, Ralph C.; Palo Alto, CA

A patent is automatically invalid if the patented invention was published more than a year before the 
patent's filing date. 
It appears, therefore, that the Diffie-Hellman-Merkle patent was invalid. 

Merkle, Ralph C

• it is used by several protocols, including Secure Sockets Layer (SSL), Secure 
Shell (SSH),and Internet Protocol Security (IPSec). 

• The numbers (prime and primitive element) should be big ( > 500 bit)

• 3 famous crypto scientists
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Diffie-Hellman (based on discrete logarithm problem)

ASSUMPTION: given X , easy to calculate Y  = aX ; 

given Y , hard to calculate X 

A B
common parameters: 
- large prime p 
- constant  1 < a < p-1

1< X(A) < p-1 Generate secrets 1< X(B)< p-1

Exchange the public numbers:  

Y(A) = aX(A) modulo p Y(B) = aX(B)  modulo p

calculate:  Y(B)X(A) modulo p 

= aX(B) X(A) modulo p = K !!!

calculate: Y(A)X(B) modulo p 

= aX(A) X(B) modulo p = K !!!
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Diffie-Hellman ( the mathematics behind)

Given: prime p  and 1 < a < p-1

Calculate numbers:  1, a, a2, a3, ..., ap-2 modulo p 

for a primitive, these p-1 numbers are different

Example: p = 7, a = 3:

[ 1, 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5 ]    modulo 7

Note: for a not primitive: ai = aj mod p => ai-j = 1 mod p,  0  i, j  p-2

Example: p = 7, a = 2:

[ 1, 2, 22 = 4, 23 = 1, 24 = 2, 25 = 4 ]    modulo 7
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Property of a primitive element (to be remembered) 

Given: prime p  and 1 < a < p-1

Assumption: for a primitive, 

the  p-1 numbers 1,a,a2,a3, ...,ap-2 modulo p are different

Proposition: ap-1 = 1 modulo p:  

- all (p-1) numbers ai mod p,  0  i  p-2; are different modulo p

- suppose ai=1 mod p, i< p-1, then ai+1 = a, which contradicts the assumption  

 for 1  b  p-1, bp-1 = (ai ) p-1 = (ap-1)i = 1  mod p Fermat-Euler

 ap-1 = (ap-1-i)ai = 1 mod p;    b:= ap-1-i = a-i mod p is the inverse of ai mod p
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an example

Given:  prime p = 7  and 1 < a = 3 < 6
Calculate numbers:  1,3, 32 = 2, 33 = 6, 34 = 4, 35 = 5 modulo 7

 36 = 1 modulo 7. 

 for 1 < 2 < 6, 26 = (32 ) 6 = (36 )2 = 1 mod 7

 36 = (34) 32 = 1 mod p    b = 34 = 3-2 mod p is the inverse of 32 mod p

For a = 2: 1, 2, 22 = 4, 23 = 1 modulo 7 

Hence, a = 2 is not  primitive 
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Example of Diffie Hellman with numbers

Common parameters:  prime p = 71  and constant    a  = 7

Step 1. Generate secrets in A and B:  X(A) = 5 ;  X(B) = 12

Step 2: exchange the public numbers: Y(A) = 75 = 51 modulo 71  B

Y(B) = 712 = 4 modulo 71  A

Step 3: calculate in A:     45 modulo 71 = 712* 5 modulo 71 = 30 !!!

calculate in B:  5112 modulo 71 = 75* 12 modulo 71 = 30 !!!

•http://www.youtube.com/watch?v=3QnD2c4Xovk
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Diffie-Hellman key exchange (illustration)

 
 
 
 
 
common paint 
 
        +            + 
 
+ secret color A         + secret color B 
 
         =                 = 
assume that       
mixture 
separation is 
expensive                   public transport 
 
 
 
         +                + 
+ secret color  A            + secret color B 
 
        =            = 
 
 

    common secret 
 
 

  
 
 

Patent 1977- US4200770: Cryptographic apparatus and method

A B
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the  Man in the middle can be a problem

A man in the middle B

A and B communicate via the „Man in the Middle“

key 1 key 2

Security Issues in the D-H Key Agreement Protocol,  J-F Raymond and A. Stiglic, December 19, 2000
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El Gamal public key

El Gamal: 

use Diffie Hellman for key agreement (slow)

classical encryption for message exchange (fast)
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El Gamal public key (2)

Step 1: Key exchange

A  has public number from B  Y(B)

A sends to B Y(A) 

A and B calculate  K = Y(B)X(A) modulo p

K = Y(A)X(B) modulo p

Step 2: A transmits C = K * M modulo p

Step 3: B calculates K-1 C   = K-1 K * M  = M modulo p

For p prime, gcd( K, p ) = 1, and thus  K-1 can be found .

Note: we need an algorithm to calculate k-1 with low complexity
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Example for the El Gamal public key (3)

p = 71, a = 7

Y(B) = 3; X(A) = 2 K = 9; K-1 = 8; 

public key for B                 secret for A 8 * 9 = 72 = 1 + 71

encryption of M = 30 is

step 1 9     for A and B, common key is 9

step 2 C = 9 x 30 mod 71 = 57: from A => B

step 3 K-1 = 8; 8 x 57 = 456 = 30 mod 71  (in B)
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Another hybrid scheme

Step 1: public key KB  from B to A

secret key LB at B 

Step 2: A generates session key K

A sends C = e( K, KB ) to B

B decrypts  d(C, LB ) = K

Step 3: K can be used as session K in AES (fast)

A     <= KB B

A => C B

K=d( C, LB )



22

Basic property for Pohlig-Hellman (to be remembered)  

For integer N and constant e < N, s.t. greatest common diviser (e, N)=1

there exists an integer d such that ed = 1 modulo N 

proof:  Consider the numbers :     e, 2e, 3e, ..., (N-1)e modulo N

these  (N - 1) numbers are all different and   0 modulo N

because - ke  a N, since k, e < N and  gcd( e, N ) = 1  

- Ie  Je since otherwise ( Ie - Je ) = ke = 0 modulo N

Conclusion: there exists  an integer d such that    de = 1 modulo N

this is a very basic algorithm to find d (generate all multiples 
of e until de = 1 modulo N).

We will see in the next chapter that it can be faster!
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Pohlig-Hellman a-symmetric encryption (1975)

For two constants (e,d)  s.t. ed = 1 + k (p-1)   ( Fermat Euler)

( ed = 1 modulo (p-1) or gcd(e, p-1) = 1 )

- Encryption: C = Me modulo p M < p (rime)

- Decryption: Cd =  Med =  M1+k(p-1) =  M (Mk(p-1) ) = M modulo p 

follows from Fermat –Euler!

Assumption: from C we cannot find e! 

This method in general more complex than symmetric systems, but very close to 
the following public key  system
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The famous RSA public key system 

RSA: Ron Rivest; Adi Shamir; Leonard Adleman

Use: mathematical problem of factorization

N =  pq prime p and q

- to multiply p and q is easy

- to find p and q given N is difficult

- N large (1024 bits), p, q  512 bits

See also:  http://www.rsasecurity.com

http://www.youtube.com/watch?v=56fa8Jz-FQQ
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RSA (how it works)

Given: secret two large primes p and q

e < pq and gcd( e, (p-1)(q-1)) = 1

Calculate: secret d, s.t.    ed = 1 modulo (p-1)(q-1)

Public key:  the pair ( N = pq, e ) Secret key : d

ENCRYPT: C = Me modulo N

DECRYPT: Cd = Med = M1+k(p-1)(q-1) = M modulo pq
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RSA in numbers (how it works)

Given: secret two large primes 47 and 59

e = 157   and gcd( 157, 2668) = 1

Calculate: secret d = 17, s.t. 157*17 = 1 modulo 2668

Public key: the pair ( N = 2773, 157 ) Secret key : 17

ENCRYPT M = 920 as C = 920157 modulo 2773  

DECRYPT Cd = Med = M1+k(p-1)(q-1) = M modulo N

Homework: perform the remaining calculations
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RSA (show that Med =M modulo pq)

Given: p, q prime, N = pq; Message M < pq

e, d such that ed = 1 + k(p-1)(q-1)

Then: Med = M1+k(p-1)(q-1) = M (Mp-1)k(q-1) = M modulo p  ( Fermat-Euler)

Med = M1+k(p-1)(q-1) = M (Mq-1)k(p-1) = M modulo q

 p divides ( Med –M) 

 q divides ( Med –M)

Since: p and q are different primes, 

 pq divides ( Med –M)           BASIS for RSA!

or Med =M modulo pq
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Len Adleman

Ron Rivest Adi Shamir

•Founders of RSA
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History of RSA (from http://en.wikipedia.org/wiki/RSA )

The algorithm was described in 1977 by Ron Rivest, Adi Shamir and Len 
Adleman at MIT; the letters RSA are the initials of their surnames.

Clifford Cocks, a British mathematician working for GCHQ, described an 
equivalent system in an internal document in 1973. His discovery, however, 
was not revealed until 1997 due to its top-secret classification.

The algorithm was patented by MIT in 1983 in the United States of 
America as U.S. Patent 4405829 .

It expired 21 September 2000. Since the algorithm had been published 
prior to patent application, regulations in much of the rest of the world 
precluded patents elsewhere. Had Cocks' work been publicly known, a 
patent in the US would not have been possible either.
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RSA (security)
An attack could be based on factoring N into two primes p and q  
RSA keys are typically 1024–2048 bits long.

2004:   the largest number factored was 174 decimal digits (576 binary bits) 
2005:  RSA-640 F. Bahr, M. Boehm, J. Franke, T. Kleinjung

The factors [verified by RSA Laboratories] are:

16347336458092538484431338838650908598417836700330
92312181110852389333100104508151212118167511579
and
1900871281664822113126851573935413975471896789968 
515493666638539088027103802104498957191261465571

The effort took approximately 30 2.2GHz-Opteron-CPU years according to the 
submitters, over five months of calendar time. (This is about half the effort for RSA-
200, the 663-bit number that the team factored in 2004.)

The RSA Factoring Challenge is no longer active
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RSA (security)
Attacks can be :

- Mathematical: make use of bad number choices
- try to factor N

- Technical:
- timing (exponentiation time differs for different keys); 
- power consumption; 
- hardware errors during computations 

- Protocol based
- use flaws in protocols
- use different N for all users in a network

- (e and d together can give the factors of N)
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Some facts about prime numbers

– An integer > 1 that can only be divided by itself and 1

– the number of primes up to x is approximately x / ln(x). 

– The ancient Sieve of Eratosthenes is a simple way to compute all prime 
numbers up to a given limit, by making a list of all integers and 
repeatedly striking out multiples of already found primes.

– Largest prime: 9,808,358 digits, 2006 Cooper, Boone (USA)

– A probable prime is an integer which, by virtue of having passed a
certain test, is considered to be probably prime. 

– 2002 Breakthrough by: AKS (Agrawal, Kayal and Saxena) primality test 
of the number N with complexity (logN)6 which is polynomial in the 
number of digits in N.

– http://primes.utm.edu/

•http://www.youtube.com/watch?v=9m2cdWorIq8
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Applications (1)

Certification centre

public key KC (secret key LC )

CA certificate CA 

CA = e([ name = A, key KA ],LC)
KC

CA

d(CA , KC) = [ name = A, key KA ]

Conclusion: B can encrypt with KA, only A can decipher with LA

we guarantee that the public key belongs to A!

A

B
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Applications (2): challenge response

Given: A has private key LA and public key KA

IDA send IDA

secret key LA

generate R   KA

encrypt  e(R, KA ) send C = e(R, KA ) d(C, LA ) = R

calculate f(R) answer with f(R) calculate f(R)

CONCLUSION: Only user A with secret key LA can answer with f(R)

Note: never use R twice!

ABank
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System without key exchange

Lock with KA Lock with KB

Remove KA Remove KB

Q: consider the security

http://www.youtube.com/watch?v=U62S8SchxX4
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the system without key exchange (math)

user A prime p user B prime p

secret m, n u, v

(m*n) = 1 modulo p-1 (u*v) = 1 modulo p-1

message M

send: C = Mm modulo p        C

C‘  send: C‘ =  Cu modulo p

send: C‘‘ = (C‘)n modulo p      calculate:

= (Mmn)u modulo p (C‘‘) v = (Mu) v =  M modulo p

= Mu modulo p 
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Diffie-Hellman (based on discrete logarithm problem)

Common parameters in A and B: large prime p and constant  1 < a < p-1

1. Generate secrets  X(A) and X(B):  1< X(A) < p-1;  1< X(B)< p-1

2: Exchange the public numbers: Y(A) = aX(A) modulo p  B

Y(B) = aX(B)  modulo p  A

3: calculate in A: Y(B)X(A) modulo p = aX(B) X(A) modulo p = K !!!

calculate in B: Y(A)X(B) modulo p = aX(A) X(B) modulo p = K !!!

ASSUMPTION: given X , easy to calculate Y  = aX 

given Y , hard to calculate X 
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Some remarks added

Given: prime p  and 1 < a < p-1,  a primitive, 

=> ap-1 = 1 modulo p

=> the p-1 numbers 1,a,a2,a3, ...,ap-2 modulo p are all different

We call (p-1), the order of the element a modulo p. 

- For b,  1 ≤ b ≤ p-1, b = as modulo p and thus bp-1 = 1 modulo p. 



• Property: for a primitive, aq(p-1) =1 modulo p, q  1
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Some remarks added

Given: prime p  and 1 < a < p-1

- For b = ak modulo p,  1 ≤ b ≤ p-1, the order  of b is a divisor of (p-1): 

Example: Let p = 13  and a = 2.

212 = 1 modulo 13

46 = 1 modulo 13,  4 = 22 mod13

34 = 1 modulo 13, 3 = 24 mod13



40

Some remarks added

Given: prime p  and 1 < a < p-1

- For b = ak modulo p,  1 ≤ b ≤ p-1, the order  of b is a divisor of (p-1):

k)1,gcd(p
1p is b of t order the that see we

p modulo 1aaa)(a )a(b

x
c

xc
k)1,gcd(p

1p then

 yc;k     xc;1)(p     c;k)1),gcd((p

k)1,gcd(p
1p )a  (b of order the that proof first we

1)y-(pxcyxkk)1,gcd(p
1p

ktk

k





















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Some remarks added

- To make it easy to generate elements with a large order, one can use

„safe primes“, where p = 2q+1, p and q prime (Sophie Germain prime) .

The order of the integers modulo p is then 2, q or (p-1).  

t  divide must 
k)1,gcd(p

1)-(p 

k)1,gcd(p
1)-(pq

k)1,gcd(p
kt and  1)-q(ptk  thus,

p. modulo 1aa  )a(b  primitive, a for

k)1,gcd(p
1)-(p of  multiple a is order the that proof we next

1)-q(ptktk
















42

Example of an attacker‘s scenario

• Example : Let p = 13 = 2 x 6 + 1  and a = 2

• Now, Let XA = 2 => public number 22 = 4  

The different powers of 4 modulo 13 are: (4, 3, 12, 9, 10, 1)  period 6

• Now, Let XB = 3 => public number 23 = 8  

The different powers of 8 modulo 13 are  (8, 12, 5,  1)   period 4

• The common key is KAB = 26 modulo 13 = 12   (period of the key is 2!)

• The shared secret key KAB lies in the intersection of the two groups
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P = 13

• Example : Let p = 13 = 2 x 6 + 1  and a = 2

• powers of      2, 6, 7, 11 have period 12

• powers of  3, 9       have period 3  

• powers of  5, 8       have period 4

• powers of  4, 10 have period 6

• powers of 12 have period 2            
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Example for the „safe prime“

• Example : Let p = 11 = 2 x 5 + 1  and a = 2

• powers of 2     2,4,8,5, 10,9,7,3,6,1   period 10
6 6,3,7,9,10,5,8,4,2,1
8 8,9,6,4,10,3,2,5,7,1
7     7,5,2,3,10,4,6,9,8,1

• powers of 4     4,5,9,3,1               period 5
3     3,9,5,4,1
5     5,3,4,9,1
9 9,4,3,5,1

10 10,1 period 2

Note: only 1 element can have period 2 (show) !
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Further references

•For further background on the mathematics

- R.P. Grimaldi: Discrete and Combinatorial Mathematics


