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a b s t r a c t

Theneocognitron is a neural networkmodel proposed by Fukushima (1980). Its architecturewas suggested
by neurophysiological findings on the visual systems of mammals. It is a hierarchical multi-layered
network. It acquires the ability to robustly recognize visual patterns through learning. Although the
neocognitron has a long history, modifications of the network to improve its performance are still going
on. For example, a recent neocognitron uses a new learning rule, named add-if-silent, which makes the
learning process much simpler and more stable. Nevertheless, a high recognition rate can be kept with
a smaller scale of the network. Referring to the history of the neocognitron, this paper discusses recent
advances in the neocognitron. We also show that various new functions can be realized by, for example,
introducing top-down connections to the neocognitron: mechanism of selective attention, recognition
and completion of partly occluded patterns, restoring occluded contours, and so on.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In the visual systems of mammals, visual scenes are analyzed
in parallel by separate channels. Loosely speaking, information
concerning object shape is mainly analyzed through the temporal
pathway in the cerebrum,while information concerning visualmo-
tion and location is mainly analyzed through the occipito-parietal
pathway. The neocognitron is an artificial neural network, whose
architecture was initially suggested from neurophysiological find-
ings on the temporal pathway: retina → LGN→ area V1 (primary
visual cortex)→ area V2→ area V4→ IT (inferotemporal cortex).

In area V1, cells respond selectively to local features of a visual
pattern, such as lines or edges in particular orientations (Hubel &
Wiesel, 1962, 1965). In areas V2 and V4, cells exist that respond
selectively to complex visual features (e.g., Ito andKomatsu (2004),
von der Hydt, Peterhans, and Baumgartner (1984) and Desimone
and Schein (1987)). In the inferotemporal cortex, cells exist that
respond selectively to more complex features, or even to human
faces (e.g., Fujita, Tanaka, Ito, and Cheng (1992), Bruce, Desimone,
and Gross (1981) and Yamane, Kaji, and Kawano (1988)). Thus, the
visual system seems to have a hierarchical architecture, in which
simple features are first extracted from a stimulus pattern, and
then integrated into more complicated ones. In this hierarchy, a
cell in a higher stage generally has a larger receptive field, and
is more insensitive to the location of the stimulus. This kind of
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physiological evidence suggested the network architecture of the
neocognitron.

In the 1960s, Hubel andWiesel classified cells in the visual cor-
tex into simple, complex and hypercomplex cells. They hypothe-
sized that visual information is processed hierarchically through
simple cells → complex cells → lower-order hypercomplex cells
→ higher-order hypercomplex cells (Hubel &Wiesel, 1962, 1965).
They suggested that, in this hierarchy, the relation between lower-
order hypercomplex cells to higher-order hypercomplex cells re-
sembles that between simple cells to complex cells. Although
classifying hypercomplex cells into lower-order and higher-order
is not popular among neurophysiologists recently, it is this hypoth-
esis that suggested the original architecture of the neocognitron
model when it was first proposed by Fukushima (1980).

In the neocognitron, there are two major types of cells, namely
S-cells and C-cells. S-cells, which are named after simple cells, cor-
respond to simple cells or lower-order hypercomplex cells. Sim-
ilarly, C-cells, which are named after complex cells, correspond
to complex cells or higher-order hypercomplex cells. As shown in
Fig. 1, the neocognitron consists of cascaded connection of a num-
ber of modules, each of which consists of a layer of S-cells followed
by a layer of C-cells.

Although the neocognitron has a long history, modifications of
the network to improve its performance are still going on. Refer-
ring to the history of the neocognitron, this paper discusses recent
advances in the neocognitron.

Sections 2 and 3 discuss the basic architecture of the neocog-
nitron and the principles for robust recognition of visual patterns.
Section 4 discusses themechanism of feature extraction by S-cells,
comparing several learning rules adopted in the neocognitron of
recent versions. Among them, a new learning rule named add-if-
silent makes the learning process much simpler and more stable.
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Fig. 1. Relation between the architecture of the neocognitron and the classical
hypothesis of Hubel and Wiesel.
Source: (modified from Fukushima (1980)).

Nevertheless, a high recognition rate can be kept with a smaller
scale of the network. Section 5 discusses the blurring operation by
C-cells. Section 6 discusses the process of pattern classification at
the highest stages of the network. We show that the method of
interpolating-vector can greatly increase the recognition rate.

Section 7 discusses several networks extended from the neo-
cognitron. We show that various new functions can be realized by,
for example, introducing top-down connections to the neocogni-
tron: mechanisms of selective attention, recognition and comple-
tion of partly occluded patterns, restoring occluded contours, and
so on.

Incidentally, varieties of modifications, extensions and applica-
tions of the neocognitron, as well as varieties of related networks,
have also been reported so far by several groups other than the au-
thor’s (e.g., LeCun, Bottou, Bengio, and Haffner (1998), Mutch and
Lowe (2008), Riesenhuber and Poggio (1999), Satoh, Kuroiwa, Aso,
and Miyake (1999) and Serre, Oliva, and Poggio (2007)). They are
all hierarchical multi-layered networks and have an architecture
of shared connections, which is sometimes called a convolutional
net. They also have a mechanism of pooling outputs of feature-
extracting cells. The pooling operation can also be interpreted as
a blurring operation. In the neocognitron, the pooling operation,
which is done by C-cells, is performed by a weighted sum of the
outputs of feature-extracting S-cells. In some networks, the pool-
ing is realized by simply reducing the density of cells in higher lay-
ers. In some other networks, it is replaced by a MAX operation.

2. Outline of the network

The neocognitron is a multi-layered network, which consists of
layers of S-cells and C-cells. These layers of S-cells and C-cells are
arranged alternately in a hierarchical manner.

S-cells work as feature-extracting cells. Their input connections
are variable and aremodified through learning. After learning, each
S-cell comes to respond selectively to a particular visual feature
presented in its receptive field. The features extracted by S-cells
are determined during learning. Generally speaking, local features,
such as edges or lines in particular orientations, are extracted in
lower stages. More global features, such as parts of learned pat-
terns, are extracted in higher stages.

C-cells are inserted in the network to allow for positional errors
in the features of the stimulus. The input connections of C-cells,
which come from S-cells of the preceding layer, are fixed and in-
variable. Each C-cell receives excitatory input connections from a
group of S-cells that extract the same feature, but from slightly dif-
ferent locations. The C-cell responds if at least one of these S-cells
Fig. 2. A typical architecture of the neocognitron. The neocognitron consists of a
number of stages of modules connected in a cascade in a hierarchical manner. Each
stage consists of a layer of S-cells followed by a layer of C-cells. Each layer is divided
into a number of sub-layers, called cell-planes, depending on the feature to which
cells respond preferentially.

Fig. 3. An illustration of shared connections between two cell-planes. All cells in a
cell-plane share the same set of input connections (Fukushima, 1980).

yields an output. Even if the stimulus feature shifts and another
S-cell comes to respond instead of the first one, the same C-cell
keeps responding. Thus, the C-cell’s response is less sensitive to
a shift in location of the input pattern. We can also express that
C-cells make a blurring operation, because the response of a layer
of S-cells is spatially blurred in the response of the succeeding layer
of C-cells.

There are several versions of the neocognitron, which have
slightly different architectures. Fig. 2 shows a typical architecture
of the network. The hierarchical network has a number of stages
of modules, each of which consists of a layer of S-cells followed
by a layer of C-cells. Here we use notation like USl, for example, to
indicate the layer of S-cells of the lth stage.

There are retinotopically ordered connections between cells of
adjoining layers. Each cell receives input connections that lead
from cells situated in a limited area on the preceding layer. Since
cells in higher stages come to have larger receptive fields, the
density of cells in each layer is designed to decrease with the order
of the stage.

Each layer of the network is divided into a number of sub-layers,
called cell-planes, depending on the feature to which cells respond
preferentially. In Fig. 2, each rectangle drawn with thick lines rep-
resents a cell-plane. Incidentally, a cell-plane is a group of cells that
are arranged retinotopically and share the same set of input con-
nections (Fukushima, 1980). Namely, all cells in a cell-plane share
the same set of input connections, as illustrated in Fig. 3. In other
words, the connections to a cell-plane have a translational sym-
metry. As a result, all cells in a cell-plane have identical recep-
tive fields but at different locations. The modification of variable
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Fig. 4. An example of the response of a neocognitron that has been trained to recognize handwritten digits. Layers US1 , US2 and US3 are abbreviated from the display, but
their responses can easily be estimated from the responses of UC1 , UC2 and UC3 , where blurred versions of their responses appear. The half disk drawn in each cell-plane of
UC1 shows the orientation of the edge to be extracted by the cell-plane. The numerals drawn in layer US4 indicate the labels (class names) assigned to individual cell-planes.
The rightmost layer, UC4 , shows that the input pattern is recognized correctly as ‘3’.
connections during learning progresses also under the constraint
of shared connections.

The lowest stage of the hierarchical network is the input layer
U0 consisting of a two-dimensional array of cells,which correspond
to photoreceptors of the retina. Stimulus patterns are presented to
the input layer, U0.

In the network shown in Fig. 2, the output of U0 is sent to US1.
Each S-cell of US1 resembles a simple cell in the primary visual cor-
tex, and responds selectively to an edge at a particular orientation.
As a result, contours in the input image are decomposed into edges
of every orientation in US1.

At each stage of the network, the output of layer USl is fed into
layer UCl. The response of layer UCl is then fed to USl+1, the layer of
S-cells of the next stage, where more global features are extracted.

S-cells at the highest stage (USL; L = 4 in the network of Fig. 2)
are trained by supervised learning using labeled training data. As
the network learns varieties of deformed training patterns, more
than one cell-plane per class is usually generated in USL. Each cell-
plane is assigned a label indicating the class of the training pattern
that the cell-plane has learned. During recognition, the label of the
input stimulus is inferred from the response of USL. The response
of C-cells at the highest stage (UCL) shows the inferred label.

Fig. 4 shows an example of the response of a neocognitron,
which has learned to recognize handwritten digits. The responses
of all layers in the network, excluding US1, US2 and US3, are
displayed in series from left to right. Incidentally, the responses
of US1, US2 and US3 can easily be estimated from those of UC1, UC2
and UC3, which are blurred versions of the responses of US1, US2
and US3, respectively. The numerals drawn in layer US4 indicate
the labels (class names) assigned to individual cell-planes. The
rightmost layer, UC4, shows the final result of recognition. In this
example, the input pattern is recognized correctly as ‘3’.

3. Principles of robust recognition

3.1. Tolerating shift by C-cells

In the whole network, with its alternate layers of S-cells and
C-cells, the process of extracting features by S-cells and tolerating
Fig. 5. The process of pattern recognition in the neocognitron. The lower half of the
figure is an enlarged illustration of a part of the network.
Source: (modified from Fukushima (1980)).

shift by C-cells is repeated. During this process, local features
extracted in lower stages are gradually integrated into more global
features, as illustrated in Fig. 5.
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Fig. 6. Connections converging to an S-cell that has learned a global feature
consisting of three local features of a training pattern ‘A’.

Since small amounts of positional errors of local features are
absorbed by the blurring operation by C-cells, each S-cell in a
higher stage comes to respond robustly to a specific feature even if
the feature is slightly deformed or shifted.

Let an S-cell in an intermediate stage of the network have
already been trained to extract a global feature consisting of three
local features of a training pattern ‘A’ as illustrated in Fig. 6. By the
function of its presynaptic C-cells, the S-cell tolerates positional
error of each local feature if the deviation falls within the dotted
circle. Hence, the S-cell responds to any of the deformed patterns
shown in Fig. 7(b) in a similar way as to Fig. 7(a).

The toleration of positional errors, however, should not be too
large at this stage. If large errors are tolerated at any one step, the
networkmay come to respond erroneously, such as by recognizing
a stimulus like Fig. 7(c) as an ‘A’ pattern. Thus, tolerating positional
error a little at a time at each stage, rather than all in one step,
plays an important role in endowing the network with the ability
to recognize even distorted patterns.

The process of tolerating positional errors is repeated at every
stage of the hierarchical network. The cells in a higher stage thus
acquire a larger ability to accept deformation.

3.2. Blur by C-cells

The role of C-cells can also be understood from a different point
of view. As illustrated in Fig. 8, the operation made by connections
from S- to C-cells can also be interpreted as a blurring operation,
as well as an operation of tolerating shift.

Each S-cell measures the similarity between the stimulus
feature and the feature that the S-cell has learned during learning.
As will be discussed later in Section 4.1, the similarity, which is
defined by the inner product of two feature vectors, is determined
by the degree of overlap between the two vectors. The twopatterns
in the left and the center of Fig. 9(a) are perceived quite similar
to each other when observed visually by human beings. S-cells,
however, judge them completely different, because their similarity
defined by the inner product is zero. This is quite different fromour
natural feelings. If the patterns are blurred like Fig. 9(b), they come
to overlap largely, and S-cells also judge that they are similar to
each other. This coincides with our natural feelings.

If input patterns are blurred directly, however, fine details of the
patterns are lost. Hence in the neocognitron, the blurring operation
by C-cells is performed after extracting local features by S-cells.
Namely, responses of individual cell-planes of S-cells are blurred
in the succeeding cell-planes of C-cells.

We can summarize the function of C-cells that, by averaging
their input signals, C-cells exhibit some level of translation
invariance. As a result of averaging across location, C-cells encode
a blurred version of their input. The blurring operation is essential
for endowing the neocognitron with an ability to recognize
patterns robustly, with little effect from deformation, change in
size, or shift in the location of input patterns.

The averaging operation, which produces blur, is important, not
only for endowing neural networkswith an ability to recognize de-
formed patterns robustly, but also for smoothing additive random
noise contained in the responses of S-cells. It thus increases robust-
ness against background random noise in the input image.

The blurring operation by C-cells also helps reducing aliasing
noise caused by coarse sampling, by which the density of cells in a
cell-plane is reduced between layers of S- and C-cells.

4. S-cells

4.1. Feature extraction by S-cells

S-cells work as feature-extracting cells. Their input connections
are determined through learning. After learning, each S-cell comes
to respond selectively to a particular visual feature presented in its
receptive field.

To show the essence of the process of feature extraction, we
watch the circuit converging to a single S-cell and analyze its
behavior. Fig. 10 shows the circuit. The S-cell of layer USl (l ≥ 2)
receives excitatory signals directly from a group of C-cells, which
are cells of the preceding layer UCl−1. Let xn be the response of the
nth presynaptic C-cell, and let an be the strength of the connection
Fig. 7. Optimal size of the tolerance areas.
Source: (modified from Fukushima (1988)).
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Fig. 8. Connections from S- to C-cells: one-dimensional cross section (upper half) and three-dimensional view (lower half). Two different interpretations of the same
function of C-cells: tolerating shift (left) and spatial blur (right).
Source: (modified from Fukushima (1989)).
(a) There is no similarity (no overlap) between two patterns when they are not
blurred.

(b) There is a large similarity (overlap) between two patterns after blurring
operation.

Fig. 9. Similarity between patterns, which is measured with the degree of overlap, is largely increased by the blurring operation.
Source: (modified from Fukushima (1989)).
Fig. 10. Input connections converging to an S-cell. This figure shows the case of
subtractive inhibition. To help intuitive understanding, the vector notation of the
value of an shows the case of cn = 1.

from the C-cell. We use vector notation x = (x1, x2, . . . , xn, . . .) to
represent these input signals. We sometimes call x the test vector.

The S-cell also receives an inhibitory signal through a V -cell,
which accompanies the S-cell. The V -cell receives fixed excitatory
connections from the same group of C-cells as does the S-cell, and
always responds with the average intensity of the output of the
C-cells. Let cn be the strength of the input connection from the nth
C-cell to the V -cell. As shown in (3) below, the average is taken,
not by an arithmetic mean, but by a root-mean-square (L2-norm).

We defineweighted inner product of two arbitrary vectors y and
z by

(y, z) =


n

cn yn zn, (1)

where the strength of the input connections to theV -cell, cn, is used
as the weight for the inner product. We also define the norm of
an arbitrary vector y, using the weighted inner product, by ∥y∥ =√

(y, y). Incidentally, if cn = 1, (1) represents a conventional inner
product.

Input connections to the S-cell are determined by learning,
where the response of the presynaptic C-cells works as a training
stimulus. Let X = (X1, X2, . . . , Xn, . . .) be the training stimulus
(training vector) that the S-cell has learned. Then the connection
an is given by an = cnXn/∥X∥.

The training stimulus could be either the response of the
presynaptic C-cells at the moment when the S-cell is generated,
or a linear combination of responses of the C-cells at several
moments, depending on the training methods. Here we first
analyze the response of the S-cell where X has already been given,
and will discuss training methods later.
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Fig. 11. Tolerance area of an S-cell in the multi-dimensional feature space.

4.1.1. S-cell with subtractive inhibition
Although several types of inhibitory mechanisms are used for

S-cells depending on the versions of the neocognitron, herewe dis-
cuss the case where the inhibitory signals from the V -cells work
in a subtractive manner (Fukushima, 2011). (See Section 4.1.2 for
other types of inhibition.)

The output u of the S-cell is given by

u =
1

1 − θ
· ϕ


n

an xn − θ v



=
1

1 − θ
· ϕ

 
X

∥X∥
, x


− θ ∥x∥



=
∥x∥
1 − θ

· ϕ


(X, x)

∥X∥ · ∥x∥
− θ


, (2)

where v is the response of the V -cell:

v =


n

cn xn2 = ∥x∥ . (3)

In (2), ϕ[ ] is a function defined by ϕ[x] = max(x, 0). Namely, ϕ[ ]

is a nonlinear function like a half-wave rectifier. The strength of the
inhibitory connection is θ , which determines the threshold of the
S-cell (0 ≤ θ < 1).

We now define similarity s between the training vector X and
the stimulus vector x in themulti-dimensional feature space by the
following normalized inner product:

s =
(X, x)

∥X∥ · ∥x∥
. (4)

Then (2) reduces to

u = ∥x∥ ·
ϕ[s − θ ]

1 − θ
. (5)

The S-cell thus yields a non-zero response, only when similarity s
is larger than threshold θ .

This situation is illustrated in Fig. 11 for the case of a three-
dimensional feature space. The range of similarity values for which
s > θ is called the tolerance area of the S-cell. We sometimes call X
the reference vector of the S-cell. Using a neurophysiological term,
we can also express that X is the preferred feature of the S-cell.

Thus the selectivity of the response of the S-cell to a feature that
is slightly different from its preferred feature can be controlled by
the threshold θ . A higher value of θ produces a smaller tolerance
area. If the threshold is low, the radius of the tolerance area
becomes large, and the S-cell responds even to features somewhat
deformed from its reference vector.
Fig. 12. The add-if-silent rule. A new cell is generated when all postsynaptic cells
are silent. In the figure, the response strength of each cell is represented by the
depth of the color.
Source: (modified from Fukushima (2011)).

4.1.2. Other types of inhibition
Different from S-cells discussed above, in the original neocog-

nitron (Fukushima, 1980, 2003), the inhibitory signal from the
V -cell works in a shunting manner. If the strength of the inhibi-
tion is small enough, the shunting inhibition comes to work in a
subtractive manner. On the contrary, if the strength of the inhibi-
tion is large enough, the shunting inhibition comes towork actually
in a divisionalmanner. Inmost neocognitrons of previous versions,
which used shunting inhibition, parameters were set in such away
that inhibition to S-cells works in the range of divisional inhibition.

When the inhibition from V -cells works in a divisional manner,
response of an S-cell is given, not by (5), but by

u =
ϕ[s − θ ]

1 − θ
. (6)

It should be noted here that we can have the same tolerance
area shown in Fig. 11, regardless of the type of inhibition. This
characteristic of S-cells is obtained by the use of root-mean-square
operation when calculating the average intensity by the V -cells.

If there is no background noise in the stimulus pattern, the
characteristics of (6) is desirable for feature-extracting S-cells,
when used, say, for recognizing handwritten characters. The
response of an S-cell is determined only by similarity s between the
input stimulus x and the reference vectorX . It is not affected by the
strength of the input stimulus x. Hence S-cells can extract features
robustly without being affected by a gradual non-uniformity in
thickness, darkness or contrast in an input pattern. If an stimulus
pattern is contaminated by noise, however, interference from the
background noise becomes serious.

Under a noisy background, the neocognitron consisting of S-
cells with subtractive inhibition can be much more insensitive to
interference by noise (Fukushima, 2011). Hence neocognitrons of
recent versions use S-cells with subtractive inhibition.

4.2. Add-if-silent rule

Connections to S-cells of intermediate stages of the hierarchical
network (US2 and US3 in the network of Fig. 2) are determined by
unsupervised learning. Although various methods of training have
been used so far for the neocognitron, we first discuss the add-if-
silent rule, which is used in the newest neocognitron (Fukushima,
submitted for publication). We then discuss some other learning
rules in 4.4 below.

For the sake of simplicity, we discuss a case where training (or
learning) of the network is performed from lower stages to higher
stages: after the training of a lower stage has been completely
finished, the training of the succeeding stage begins.

During learning, training patterns from a training set are pre-
sented one by one to the input layer U0, and the response of layer
UCl−1 works as a training stimulus for layer USl.

If all post-synaptic S-cells ofUSl are silent for a training stimulus,
as shown in Fig. 12, a new S-cell is generated and added to layer
USl. Hence we call this learning rule add-if-silent. The strength of
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(a) High threshold. (b) Low threshold.

Fig. 13. Response of S-cells in the multi-dimensional feature space during recognition. The dotted circle around a stimulus vector shows the size of the tolerance areas of
S-cells. (a) When the threshold of S-cells is as high as in the learning phase, only one S-cell can responds to a stimulus vector. A slight shift of the stimulus vector produces
a completely different response of the layer. (b) When the threshold is low, many S-cells respond to a stimulus vector. Even if the stimulus vector shifts a little, most of the
S-cells keep responding, and the response of the entire layer does not change so much.
the input connections of the generated S-cell is determined to be
proportional to the response of the pre-synaptic C-cells at this
moment.

Different fromother learning rules shown in Fig. 14 below, how-
ever, once the S-cell is generated and added to the network, the
input connections to the S-cell do not change any more.

When applying the add-if-silent rule to the neocognitron, a
slight modification is required, because each layer of the neocog-
nitron consists of a number of cell-planes. In a cell-plane, all cells
are arranged retinotopically, and share the same set of input con-
nections. This condition of shared connections has to be kept even
during learning.

Suppose a training pattern is presented to the input layer during
learning. If all S-cells, whose receptive fields are located in a certain
small area, are silent in spite of non-zero training stimulus, a new
S-cell is generated and is added to the network. The newly added
S-cell learns this training stimulus.

In the neocognitron, generation of a new S-cell means a
generation of a new cell-plane. To keep the condition of shared
connections, all S-cells in the generated cell-plane are organized
so as to have the same input connections as the added S-cell.
Since the added S-cell thus works like a seed in crystal growth, we
sometimes call it a seed-cell.

After the generation of the new cell-plane, if there still remains
any area inwhich all post-synaptic S-cells are silent in spite of non-
zero training stimulus, the same process of generating a cell-plane
is repeated until the whole area is covered by non-silent S-cells.

After that, we proceed to the presentation of the next training
pattern.

4.3. Dual threshold for S-cells

The ability to recognize patterns robustly is influenced by the
selectivity of feature-extracting S-cells, which is controlled by the
threshold of the S-cells.

For S-cells of intermediate stages of the neocognitron, we use
dual threshold. Namely, we use a lower threshold for S-cells during
recognition than during learning (Fukushima & Tanigawa, 1996).

As shown in (5) above, an S-cell is active, if and only if s > θ .We
now represent the distance between two vectors using the angle
between them in the multi-dimensional feature space (see also
Fig. 11). Then we can express that the S-cell is active, only when
the distance α = cos−1 s between the reference vector and the
training vector is smaller than cos−1 θ .

Under the add-if-silent rule (as well as under other competitive
learning rules discussed below), new S-cells are generated if, and
only if, all S-cells are silent. We can express that this learning rule
aims to produce a situation where each training vector elicits a
response from only one S-cell. This means that S-cells come to
behave like grandmother cells in the layer. If sufficient numbers
of training vectors have been presented during learning, S-cells
come to distribute uniformly in the feature space: the distance
α between adjoining S-cells (or their reference vectors) is always
kept within the range of cos−1 θ ≤ α < 2 cos−1 θ in the feature
space.

For recognizing deformed patterns robustly, however, a behav-
ior like grandmother cells is not desirable for S-cells of intermedi-
ate layers. If the threshold is as high as in the learning phase, each
stimulus featuremight elicit a response fromonly one S-cell.When
the stimulus feature is slightly deformed, the S-cell stops respond-
ing, and another S-cell comes to respond instead of the first one.
This decreases the ability of the network to recognize deformed
patterns robustly.

Fig. 13 illustrates this situation in the feature space. The dotted
circle around a stimulus vector shows the size of the tolerance
areas of S-cells. In other words, S-cells that are located within the
dotted circle can respond to the stimulus vector.

Suppose the threshold of S-cells is as high as in the learning
phase, as illustrated in Fig. 13(a). The size of the tolerance area
is small, and only one (or at most a small number of) S-cell can
responds to a stimulus vector. It should be noted here that, in the
learning phase, we have managed to produce this situation, where
each training vector elicits a response from only one S-cell.

If, as a result of deformation of the input image, the stimulus
vector shifts slightly, the S-cell stops responding and another S-cell
comes to respond instead. A slight shift of the stimulus vector thus
produces completely different responses, which have no similarity
to each other. Hence the feature-extracting cells in the succeeding
stage cannot judge that they are similar responses.
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(a) Hebbian.

(c) Winner-kill-loser.

(b) Winner-take-all.

(d) Add-if-silent.

Fig. 14. Several learning rules in comparison with add-if-silent rule. The figure shows how the cells that have already been generated have their input connectionsmodified
under different learning rules. In this figure, the response of each cell is represented by the depth of the color.
Source: (modified from Fukushima (2011)).
If the threshold is lowered, however, S-cells respond even to
features somewhat deformed from their reference vectors. This
makes a situation like a population coding of features rather than
grandmother-cell theory: many S-cells respond to a single feature
if the response of an entire layer is observed. In other words, each
stimulus elicits non-zero responses from a number of S-cells, and
these S-cells jointly represent the stimulus. Even if the feature is
slightly deformed, many of the S-cells still keep responding, as
shown in Fig. 13(b). Only a small number of S-cells change their
responses. This situation of lowered threshold in the recognition
phase usually endows the networkwith an ability of generalization
and produces a better recognition rate of the neocognitron.

Hence we use the dual threshold of S-cells for the learning
and the recognition phases (Fukushima & Tanigawa, 1996). In the
recognition phase after having finished learning, the threshold of
S-cells is set to a lower value θR than the threshold θ L for the
learning.

Comparing Figs. 9 and 13, we can express that a low threshold
of S-cells produces a blur in the multi-dimensional feature space,
while C-cells produce a blur in the retinotopic space.

4.4. Comparison with other learning rules

Several methods, other than add-if-silent, have ever been pro-
posed and are used in the neocognitron to train intermediate layers
of S-cells. Most of them use unsupervised competitive learning.

The process of generating new S-cells for these competitive
learning rules is the same as that for the add-if-silent rule. What
is different from the add-if-silent rule is the process of modifying
input connections to S-cells after their generation.

Fig. 14 illustrates and compares several rules for unsupervised
learning. The figure shows how the cells that have already been
generated have their input connections modified under various
learning rules. Different from the add-if-silent rule shown in
Fig. 14(d), under all other learning rules shown in Fig. 14(a)–(c),
input connections to S-cells continue to be modified after their
generation throughout the learning phase.

It should be noted here, some other learning rules, such as the
one that accepts incremental learning (Fukushima, 2004), have
also been proposed but are not shown in Fig. 14.

4.4.1. Winner-take-all rule
Fig. 14(a) shows the Hebbian rule, which is one of the most

commonly used learning rules for artificial neural networks (Hebb,
1949). During learning, each synaptic connection is strengthened
by an amount proportional to the product of the responses of the
pre- and post-synaptic cells.
In the winner-take-all rule, shown in Fig. 14(b), post-synaptic
cells compete with each other, and the cell from which the
largest response is elicited becomes the winner. Different from
the Hebbian rule, only the winner can have its input connections
renewed. The amount of strengthening of a connection to the
winner is proportional to the response of the pre-synaptic cell
from which the connection is leading. To keep the condition of
shared connections in a cell-plane, the winner takes the place of
a seed-cell. As a result, all other cells in the cell-plane follow the
winner and come to have the same set of input connections as the
winner. Incidentally, most of the conventional neocognitrons use
this learning rule (Fukushima, 1980, 2003).

4.4.2. Winner-kill-loser rule
The winner-kill-loser rule, shown in Fig. 14(c), resembles the

winner-take-all rule in the sense that only the winner learns the
training stimulus. In the winner-kill-loser rule, however, not only
does the winner learn the training stimulus, but also the losers are
simultaneously removed from the network (Fukushima, 2010b;
Fukushima, Hayashi, & Léveillé, 2011). Losers are defined as cells
whose responses to the training stimulus are smaller than that of
the winner, but whose activations are nevertheless greater than
zero.

The idea behind this learning rule is as follows. If a training stim-
ulus elicits non-zero responses from two or more S-cells, it means
that the preferred features (reference vectors) of these cells resem-
ble each other, and that they work redundantly in the network. To
reduce this redundancy, only the winner has its input connections
renewed to fit more to the training vector, while the other active
cells, namely the losers, are removed from the network.

Since silent S-cells (namely, the S-cells whose responses to the
training stimulus are zero) do not join the competition, they are
not removed. These cells are expected to work toward extracting
other features.

It should be noted here that the constraint for keeping shared
connections has to be satisfied also under the winner-kill-loser
rule. Thismeans that the constraint is also applied to losers. If there
are non-silent cells at the location of the winner, they are losers.
The cell-planes, towhich losers belong, are removed from the layer.

In the learning phase, a number of training stimuli are pre-
sented sequentially to the network. During this process, gener-
ation of new cells (cell-planes) and removal of redundant cells
(cell-planes) occurs repeatedly in the network. Similarly to the case
under the add-if-silent rule, new cells are generated to cover areas
of the multi-dimensional feature space that were not previously
covered by existing cells. In the areas where similar cells exist in
duplicate, redundant cells are removed. By repeating this process
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(a) No inhibitory surround. (b) With inhibitory surround.

Fig. 15. Inhibitory surround in the connections to C-cells.
for a long enough time, the preferred features (reference vectors)
of S-cells gradually become distributed uniformly over the multi-
dimensional feature space.

The winner-kill-loser rule can train neocognitrons more effi-
ciently than the winner-take-all rule, and an ability to robustly
recognize patterns can be obtained with a smaller scale of the
network.

4.5. Merits of add-if-silent rule

Under the add-if-silent rule, shown in Fig. 14(d), input con-
nections to a cell are created only at the moment when the cell
is generated. Once the cell has been generated and added to the
network, their input connections are not modified any more after-
ward, whatever training stimuli are given to the network.

One of the largest merits of the add-if-silent rule is the simplic-
ity of its algorithm. As a result, computational cost during learning
can bemademuch smaller than other learning rules: once an S-cell
is generated and added to the network, we need not train it any-
more. When designing a neocognitron, we can remove several pa-
rameters that control the training after generation of S-cells. This
makes designing neocognitrons much easier.

Another advantage of the add-if-silent rule is that the pro-
cess of learning progresses more stably. With the winner-kill-loser
rule (Fukushima, 2010b; Fukushima et al., 2011), which produces a
higher recognition rate than the winner-take-all rule, the number
of cell-planes continues to increase and decrease throughout the
learning period and does not completely stabilize.With the add-if-
silent rule, the number of cell-planes just increases monotonically,
and the increase stops when the multidimensional feature space
has been covered with reference vectors.

By the use of the add-if-silent rule, the learning algorithm
can thus be simplified, and the computational cost can be re-
duced. Nonetheless, we can have a slightly higher recognition rate
with a slightly smaller scale of the network (Fukushima, submit-
ted for publication).

We now discuss why a good recognition rate can be obtained
with a simpler algorithm of the add-if-silent rule.

The process of generating new cells is the same, both under the
add-if-silent rule and under the conventional competitive learning
rules (winner-take-all and winner-kill-loser). What is different
from them is the learning process performed after the generation
of individual cells. Under the add-if-silent rule, once an S-cell is
generated and added to the network, the input connections to the
S-cell need not change any more.

On the contrary, under the conventional competitive learning
rules, an S-cell continues to learn training stimuli that are pre-
sented after the generation of the S-cell. This means that S-cells
keep learning so as make their reference vectors fit to the training
vectors more accurately.

The final classification of input patterns, however, is not made
by an intermediate layer, but by the highest stage of the network.
The role of the intermediate layer is to represent an input pattern
accurately, not by the response of a single cell, but by the popu-
lation coding, where the stimulus pattern given to the input layer
a b

Fig. 16. Inhibitory surround in the connection to a C-cell produces a response like
an end-stopped cell. Stimulus (a) elicits a larger response than (b).
Source: (modified from Fukushima (2003)).

is represented by the response of a number of cells. In the case of
population coding, best-fitting of individual cells to training stim-
uli is not necessarily important. It is enough if the input stimulus
can be accurately represented by the response of the population of
the whole cells in the layer.

5. C-cells

5.1. Averaging by C-cells

As discussed in Section 3, a C-cell has fixed excitatory connec-
tions from a group of S-cells of the corresponding cell-planes of
S-cells. Through these connections, each C-cell averages the re-
sponses of S-cells whose receptive field locations are slightly de-
viated. In other words, S-cells’ response is spatially blurred in the
succeeding cell-planes of C-cells. Incidentally, some people call
this averaging operation spatial pooling. The averaging operation
is important, not only for endowing neural networks with an abil-
ity to recognize deformed patterns robustly, but also for smoothing
additive random noise contained in the responses of S-cells.

In the neocognitron of old versions, the averaging is performed
by arithmetic mean. In the neocognitron of recent versions, it is
performed by root-mean-square (Fukushima, 2011). Averaging by
root-mean-square can reduce the fluctuation in the response of
C-cells caused by spatial shift of a stimulus feature. As a result, it
produces a slightly better recognition rate. (However, the differ-
ence between the two averaging methods is not so large).

5.2. Inhibitory surround in the connections to C-cells

As mentioned above, the response of an S-cell layer USl is
spatially blurred in the succeeding C-cell layer UCl. In the original
neocognitron, the input connections to a C-cell consists of only
excitatory components of a circular spatial distribution as shown
in Fig. 15(a).

Introduction of an inhibitory surround around the excitatory
connections as shown in Fig. 15(b) increases the recognition rate
of the neocognitron. The concentric inhibitory surround endows
the C-cells with the characteristics like end-stopped cells, and
C-cells behave like hypercomplex cells in the visual cortex (Fig. 16).
In other words, an end of a line elicits a larger response from a
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(a) No inhibitory surround. (b) With inhibitory surround.

Fig. 17. The inhibitory surround in the connections to C-cells increases separation of the blurred responses produced by two independent features.
Source: (modified from Fukushima (2003)).
C-cell than amiddle point of the line. Bend points and end points of
lines are important features for pattern recognition. C-cells, whose
input connections have inhibitory surrounds, thus participate in
extraction of bend points and end points of lines while they are
making a blurring operation. Incidentally, this kind of response
is observed neurophysiologically in neurons of the primary visual
cortex (e.g., Walker, Ohzawa, and Freeman (2000)). The inhibitory
surround is effective especially for C-cells of lower stages (for UC1
and UC2, but not for UC3).

The inhibitory surrounds in the connections also have another
benefit. The blurring operation by C-cells,which usually is effective
for improving robustness against deformation of input patterns,
sometimes makes it difficult to detect whether a lump of blurred
response is generated by a single feature or by two independent
features of the same kind (Fig. 17(a)). For example, a single line
and a pair of parallel lines of a very narrow separation generate a
similar responsewhen they are blurred. The inhibitory surround in
the connections to C-cells creates a non-responding zone between
the two lumps of blurred responses (Fig. 17(b)). This silent zone
makes the S-cells of the next stage easily detect the number of
original features even after blurring.

6. The highest stage

S-cells at the highest stage (USL; L = 4 in the network of Fig. 2)
are trained by supervised learning using labeled training data.
When each cell-plane is generated and learns a training pattern
at first, the class name of the training pattern is assigned to the
cell-plane. As the network learns varieties of deformed training
patterns, more than one cell-plane per class is usually generated
in USL. In the recognition phase, the response of USL is analyzed to
classify input patterns. C-cells at the highest stage (UCL) shows the
inferred label.

Several methods have been used for analyzing the response
of USL to classify input patterns. Depending on the classification
methods used in the recognition phase, different training meth-
ods are used in the learning phase. In most neocognitrons of old
versions, the supervised winner-take-all is used for learning, and
the winner-take-all is used for recognition (Fukushima, 2003). In
the neocognitron of the newest version, however, the method
of supervised interpolating-vector is used for learning, and the
interpolating-vector is used for recognition (Fukushima, submit-
ted for publication).

Although the method of interpolating-vector produces a better
recognition rate with a smaller scale of the network, we first dis-
cuss themethod of supervisedwinner-take-all, whose algorithm is
simpler.
In both learning and recognition phases, the response of C-cells
of UCL−1 becomes input signals to S-cells of layer USL. Similarly
to the case of intermediate stages, we use vector notation x to
represent these input signals. During learning, xworks as a training
vector. Each training vector has a label indicating the class towhich
the vector belongs. During recognition, x becomes a test vector,
which is to be recognized.

6.1. Supervised winner-take-all

The neocognitron of old versions uses the supervised winner-
take-all for training S-cells of the highest stage (Fukushima, 2003).
The learning rule resembles the competitive learning used to
train S-cells of intermediate stages, but the class names of the
training patterns are also used for the learning. When a cell-plane
is generated and learns a training pattern at first, a label indicating
the class name of the training pattern is assigned to the cell-plane.

Every time a training pattern is presented during learning, com-
petition occurs among all S-cells in the layer. If the winner of the
competition has the same label as the training pattern, the winner
becomes the seed-cell and learns the training pattern. However,
if the winner has a wrong label (or if all S-cells are silent), a new
cell-plane is generated.

During recognition, the label of the maximally activated S-cell
in USL determines the final result of recognition. The C-cells of UCL
show the inferred label of the input stimulus.

Different from intermediate layers, inmost neocognitrons of re-
cent versions, the threshold value of S-cells of the highest stage is
zero for both recognition and learning phases. Hence the process
of finding the largest-output S-cell is equivalent to the process of
finding the nearest reference vector in the multi-dimensional fea-
ture space. Each reference vector has its own territory determined
by the Voronoi partition of the feature space (Fig. 18). The recogni-
tion process in the highest stage resembles the vector quantization
(Gray, 1984; Kohonen, 1990) in this sense.

During learning, training vectors that are misclassified usually
come from near class borders in the feature space. If a particular
training vector is misclassified in the learning, the reference vec-
tor of the winner, which caused a wrong recognition for this train-
ing vector, is not renewed this time. A new cell-plane is generated
instead, and the misclassified training vector is adopted as the ref-
erence vector of the new cell-plane. Generation of a new refer-
ence vector causes a shift of decision borders in the feature space,
and some of the training vectors, which have been recognized cor-
rectly before, are now misclassified and additional reference vec-
tors have to be generated again to readjust the borders. Thus, the
decision borders are gradually adjusted to fit the real borders be-
tween classes. During this learning process, reference vectors come
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Fig. 18. A schematic illustration of the distribution of training and reference vectors
in themulti-dimensional feature space,when supervisedwinner-take-all is used for
training USL .
Source: (modified from Fukushima (2007)).

Fig. 19. Recognition by themethod of interpolating-vector. The label of the nearest
line segment, instead of the nearest reference vector, shows the result of pattern
recognition.

to distribute more densely near the class borders, but their den-
sity remains low in the locations distant from class borders. Thus a
small set of reference vectors (S-cells) can represent the larger set
of training vectors.

6.2. Interpolating-vector

Themethod of interpolating-vector is another rule for analyzing
the response of S-cells of the highest stage (USL) to classify
input patterns (Fukushima, 2007). It usually produces a higher
recognition rate than the supervised winner-take-all.

6.2.1. Classification by interpolating-vector
Before explaining the method of creating reference vectors, we

first discuss the recognition phase,where labeled reference vectors
have already been produced.

The basic idea of the method of interpolating-vector is as fol-
lows. We assume a situation where virtual vectors, which are
named interpolating vectors, are densely placed along the line seg-
ments connecting every pair of reference vectors of the same label.
From these interpolating vectors, we choose the one that has the
largest similarity to the test vector x. The label (or the class name)
of the chosen vector is taken as the result of pattern recognition.

Actually, we do not need to generate infinite numbers of inter-
polating vectors. We just assume line segments connecting every
pair of reference vectors of the same label. The line segments are
assigned the same labels as the reference vectors on both sides.
We then measure distances (based on similarity) to these line seg-
ments from the test vector, and choose the nearest line segment
(Fig. 19). The label of the line segment, instead of the nearest ref-
erence vector, shows the result of pattern recognition.

Mathematically, this process can be expressed as follows. Let Xi
and Xj be two reference vectors of the same label. An interpolating
vector ξ for this pair of reference vectors is given by a linear
combination of them:

ξ = pi
Xi

∥Xi∥
+ pj

Xj

∥Xj∥
, (pi + pj = 1). (7)

Similarity s between the interpolating vector ξ and the test vector
x takes a maximum value

smax =

 s2i − 2sisjsij + s2j
1 − s2ij

(8)

at

pi =
si − sjsij

(si + sj)(1 − sij)
, pj =

sj − sisij
(si + sj)(1 − sij)

(9)

where

si =
(Xi, x)

∥Xi∥ · ∥x∥
, sj =

(Xj, x)
∥Xj∥ · ∥x∥

,

sij =
(Xi,Xj)

∥Xi∥ · ∥Xj∥
.

(10)

Since threshold θ of S-cells is always zero in layer USL, we can
see from (5) that si and sj are proportional to the responses of
S-cells whose reference vectors are Xi and Xj, respectively. To be
more specific, the response of the ith and jth S-cells are given by

ui = ∥x∥ ·
(Xi, x)

∥Xi∥ · ∥x∥
= ∥x∥ · si,

uj = ∥x∥ ·
(Xj, x)

∥Xj∥ · ∥x∥
= ∥x∥ · sj. (11)

Hence, if we have calculated sij in advance, we can easily get
∥x∥ · smax from the responses of S-cells, ui and uj. Since the value of
∥x∥ is the same for all S-cells that have receptive fields at the same
location, we can easily find the pair of S-cells (reference vectors)
that produces the maximum similarity smax.

We can interpret that smax represents similarity between test
vector x and the line segment that connects a pair of reference
vectors Xi and Xj (Fig. 20(a)). Among all line segments that connect
every pair of reference vectors of the same label, we choose the
one that has the largest similarity to the test vector. The label (or
the class name) of the chosen line segment is taken as the result of
pattern recognition. (If there exists only one reference vector of a
class, similarity between the reference vector and the test vector is
taken as smax).

In the neocognitron, each cell-plane of layer USL, like other lay-
ers, contains S-cells that have receptive fields at different locations.
For every group of S-cells that have receptive fields at the same lo-
cation, we calculate ∥x∥ · smax. We then choose the line segment
that yields the largest value of ∥x∥ · smax among all locations of the
receptive fields. The label of the chosen line segment is taken as
the final result of pattern recognition by the neocognitron.

6.2.2. Creating reference vectors
Every time a training vector x is presented during learning, we

first try to classify it using the method of interpolating-vector.
If the result of the classification is wrong, or if all S-cells are

silent, the training vector x is adopted as a new reference vector
and is assigned a label of the class name. When applying this
process to layer USL of the neocognitron, the training vector x is
chosen from the retinotopic location, at which the intensity of the
training vector (weighted sum of the elements of vector x) is the
largest.

If the result of the classification is correct, we choose the line
segment that shows the largest similarity to the training vector
x. The two reference vectors, Xi and Xj, on both sides of the line
segment learn the training vector x (Fig. 20(b)). The amounts of
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Fig. 20. The method of interpolating-vector.
increase of Xi and Xj are pix and pjx, respectively, where pi and pj
are given by (9).

We call this training method supervised interpolating-vector.
Computer simulation shows that the supervised interpolating-
vector, if combined with the interpolating-vector for recognition,
produces a high recognition rate with a smaller scale of the
network than the supervised winner-take-all method (Fukushima,
submitted for publication).

7. Networks extended from the neocognitron

Various extensions and modifications of the neocognitron have
been proposed to endow it with further abilities or tomake it more
biologically plausible.

7.1. Selective attention model

7.1.1. Outline of the selective attention model
Although the neocognitron has considerable ability to recognize

deformed patterns, it does not always recognize patterns correctly
when two or more patterns are presented simultaneously. The se-
lective attentionmodelhas beenproposed to eliminate these defects
(Fukushima, 1987). In the selective attention model, top-down
(i.e., backward) connections were added to the neocognitron-type
network, which had only bottom-up (i.e., forward) connections.

When a composite stimulus, consisting of two patterns ormore,
is presented, the model focuses its attention selectively to one of
the patterns, segments it from the rest, and recognizes it. After the
identification of the first segment, themodel switches its attention
to recognize another pattern. Themodel also has the function of as-
sociative recall. Even if noise or defects affect the stimulus pattern,
the model can recognize it and recall the complete pattern from
which the noise has been eliminated and defects corrected. These
functions can be successfully performed even for deformed ver-
sions of training patterns, which have not been presented during
learning.

This model has some similarity to the ART model (Carpenter &
Grossberg, 1987), but the most important difference between the
two is the fact that the selective attention model has the ability
to accept patterns deformed in shape and shifted in location. With
the selective attention model, not only recognition of patterns, but
also the filling-in process for defective parts of imperfect input
patterns works on the deformed and shifted patterns themselves.
The selective attention model can repair a deformed pattern
without changing its basic shape and its location. The deformed
patterns themselves can thus be repaired at their original locations,
preserving their deformation.

7.1.2. Architecture of the selective attention model
We now discuss the architecture of the model in more detail.

As illustrated in Fig. 21, cells in the top-down path are arranged
making pairs with the cells in the bottom-up path. In the figure,W
indicates a layer of cells in the top-down path, while U indicates
a layer of cells in the bottom-up path. The top-down connections
also make a mirror image with the bottom-up connections. The
Fig. 21. Interaction of bottom-up and top-down signals in the selective attention
model.

difference between the top-down and bottom-up connections is
only in the direction of signal flow.

The bottom-up signals manage the function of pattern recogni-
tion, while the top-down signals manage the function of selective
attention and associative recall. The output of the highest stage of
the bottom-up path is sent back to lower stages through the top-
down path and reaches the recall layer at the lowest stage. The
bottom-up and top-down signals interact with each other at ev-
ery stage of the hierarchical network, and the top-down signals are
controlled so as to trace the same route as the bottom-up signals.

In the bottom-up path, which has the same architecture as
the neocognitron, a C-cell receives excitatory connections from a
group of S-cells. In a usual operating condition, however, it is only
a small number of S-cells that actually send non-zero bottom-up
signals. If top-down signals from a WCl-cell (C-cell in the lth stage
of the top-down path) simply flow through strong connections,
we have only blurred signals in layer WSl. To make the top-down
signals flow retracing the same route as the bottom-up signals,
USl-cells send gate signals to correspondingWSl-cells.

At the same time, the top-down signals, that is, the signals for
selective attention, have a facilitating effect on the bottom-up sig-
nals by controlling the gain ofUC -cells.When two ormore patterns
are simultaneously presented to the input layer, a number of cells
(recognition cells) might be activated at first in the highest stage of
the bottom-up path. However, these recognition cells, except one,
stop responding graduallywhile signals are circulating through the
feedback loop because of competition by lateral inhibition. Then
only the bottom-up signals relevant to a single pattern are kept
flowing by the facilitation from the top-down signals. This means
that attention is selectively focused on only one of the patterns in
the stimulus.

The lowest stage W0 of the top-down path works as the recall
layer, where the output of associative recall and the result of
segmentation appear. Guided by the bottom-up signal flow, the
top-down signals reach exactly the same locations at which the
input pattern is presented. The response of the recall layer W0 is
fed back positively to the input layer U0.
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(a) Each pattern in the stimulus is sequentially recognized (UC3) and segmented (W0).

(b) From an ambiguous stimulus, several patterns are recognized sequentially. Each pattern is
segmented and missing parts are gradually restored inW0 .

(c) From a noisy stimulus, pattern ‘2’ is recognized (UC3) and gradually restored in W0 .

Fig. 22. Some examples of the response of the selective attention model shown in a time sequence. Training patterns that were used to train the network are shown in the
right of figure (a).
When some part of the input pattern is missing and a feature
which is supposed to exist there fails to be extracted in the bottom-
up path, the top-down signal flow is interrupted there and cannot
go down any more, because gate signals from the bottom-up path
do not come. In such a case, the threshold of USl-cells around there
is automatically lowered, and theUSl-cells try to extract even vague
traces of the undetected feature. Incidentally, the fact that a feature
has failed to be extracted is detected by the condition that a WCl-
cell in the top-down path is active but that the corresponding
USl-cells in the bottom-up path are not. Once a feature is thus
extracted in the bottom-up path, the top-down signal now can be
transmitted further to lower stages through the route unlocked
by the newly activated bottom-up cell. Hence a complete pattern
in which defective parts are interpolated emerges in the recall
layer. From this pattern, noise andblemishes have been eliminated,
because top-down signals are not fed back there.

Fig. 22 shows some examples of the response of the selective
attention model in a time sequence. Layer UC3 (C-cell layer of the
highest stage of the bottom-up path) shows the result of pattern
recognition. The segmented and/or restored pattern appears one
by one inW0. Incidentally, training patterns that were used to train
the network are shown in the right of Fig. 22(a).

Fig. 22(a) shows the response to a stimulus consisting of two
juxtaposed patterns, ‘2’ and ‘3’. In the recognition layer UC3, the
cell corresponding to pattern ‘2’ happens to be activated at first
(t = 0). This signal is fed back to the recall layer W0 through a
top-down path, but the middle part of the segmented pattern ‘2’
is missing because of interference from the closely adjacent ‘3’.
However, the interference soon decreases and the missing part
recovers, because the signals for pattern ‘3’, which is not being
attended to, are gradually attenuatedwithout receiving facilitation
by gain-control signals (t = 4). At t = 5, the top-down signal-flow
is interrupted for a moment to switch attention. Since the gain-
control signals from the top-down cells stop, the bottom-up routes
for pattern ‘2’, which have so far been facilitated, now lose their
conductivity because of fatigue. The recognition cell for pattern
‘3’ is now activated. Since top-down signals are fed back from
this newly activated recognition cell, pattern ‘3’ is segmented and
emerges in W0.

Fig. 22(b) shows how several patterns in an ambiguous stimulus
are recognized and segmented sequentially. Pattern ‘4’ is isolated
first, pattern ‘2’ next, and finally pattern ‘1’ is extracted. The
recalled pattern ‘4’ initially has one partmissing (t = 0), compared
with the training pattern shown in the right of Fig. 22(a). However,
the missing part is soon restored (t = 4). Each pattern is thus
segmented and missing parts are gradually restored inW0.

Fig. 22(c) shows the response to a greatly deformed pattern
with several parts missing and contaminated by noise. Because
of the large difference between the stimulus and the training
pattern, no response is elicited from the recognition layer UC3 at
first (t = 0). Accordingly, no top-down signal reaches the recall
layer W0. The no-response detector detects this situation, and
a threshold-control signal is sent to all feature-extracting cells
(US-cells) in the network, which makes them respond more easily
even to incomplete features. Thus, at time t = 2, the recognition
cell for ‘2’ is activated in UC3, and top-down signals are fed back
from it. In the pattern now sent back to the recall layer W0, noise
has been completely eliminated, and some missing parts have
begun to be restored. This partly restored signal, namely the output
of the recall layer W0, is again fed back positively to the input
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Fig. 23. (a) Patterns partly occluded by invisible masking objects are difficult to recognize. (b) It becomes much easier to recognize when the occluding objects are visible
(Fukushima, 2001).
layer U0. The interpolation continues gradually while the signal
circulates through the feedback loop, and finally the missing parts
of the stimulus are completely filled in. It should be noted here
that the horizontal bar at the bottom of pattern ‘2’ is shorter in the
restored pattern than in the training pattern. This means that the
length of the bar of the stimulus pattern is kept intact even after
restoration. The missing parts are restored quite naturally, where
the style of writing of the stimulus pattern is kept as faithful as
possible, and only indispensable missing parts are restored.

7.1.3. Application of the selective attention model
The principles of this selective attentionmodel can be extended

to be used for several applications, such as recognition and
segmentation of connected characters in cursive handwriting of
English words (Fukushima & Imagawa, 1993).

We can also design an artificial neural network that recognizes
and segments a face and its components (e.g., eyes and mouth)
from a complex background (Fukushima & Hashimoto, 1997).
It consists of two channels of a selective attention model with
different resolutions. The high-resolution channel can analyze
input patterns in detail, but usually lacks the ability to get global
information because of small receptive fields of the cells in it. On
the other hand, the low-resolution channel, whose cells have large
receptive fields, can capture global information but only roughly.
The network analyzes an object by the interaction of both channels.
Even after having learned only a small number of facial front views,
the network can recognize and segment faces, eyes and mouths
correctly from images containing a variety of faces against complex
backgrounds.

7.2. Recognizing and restoring occluded patterns

Human beings are often able to read or recognize a letter or
word contaminated by ink stains that partly occlude the letter.
If the stains are completely erased and the occluded areas of the
letter are changed to white, however, we usually have difficulty in
reading the letter, which nowhas somemissing parts. For example,
the patterns in Fig. 23(a), in which the occluding objects are not
visible, are almost illegible, but the patterns in Fig. 23(b), in which
the occluding objects are visible, are much easier to read.

Visual patterns have various local features, such as edges and
corners. The visual system of animals extracts these features in its
lower stages and tries to recognize a pattern using information
of extracted local features. When a pattern is partly occluded, a
number of new features, which do not exist in the original pattern,
are generated (Fig. 24).

If the occluding objects are visible, the visual system can eas-
ily distinguish relevant from irrelevant features, and can ignore ir-
relevant features. Since the visual system has a large tolerance to
partial absence of relevant features, it can recognize the partly oc-
cluded patterns correctly, even though some relevant features are
missing. The same is true for the neocognitron model.
i

Fig. 24. Process of recognizing an occluded pattern.
Source: (modified from Fukushima (2005b)).

Fig. 25. If a layer UM , which is called the masker layer, is added to a neocognitron,
the neocognitron can recognize partly occluded patterns correctly.
Source: (modified from Fukushima (2001)).

On the other hand, if the occluding objects are not visible, the
visual system has difficulty in distinguishing which features are
relevant to the original pattern, and which are not. These irrele-
vant features largely disturb the correct recognition by the visual
system.

To eliminate irrelevant features, which are usually generated
near the contours of the occluding objects, a new layer UM , named
a masker layer, is added to a neocognitron as shown in Fig. 25
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Fig. 26. Identical patterns are perceived differently by the placement of different
gray objects (Fukushima, 2005b).

(Fukushima, 2001). The masker layer detects and responds only
to occluding objects. The shape of the occluding objects appears
in UM , in the same shape and at the same location as in the input
layer U0. There are retinotopically ordered and slightly diverging
inhibitory connections from layer UM to all cell-planes of layer
US1. The inhibitory signals from UM thus suppress the responses
to features irrelevant to the occluded pattern. Hence only local
features relevant to the occluded pattern are transmitted to higher
stages of the network, and the occluded input pattern can be
recognized correctly.

Fig. 26 shows another example of stimuli, in which the percep-
tion is largely affected by the placement of occluding objects. The
black parts of the patterns are actually identical in shape between
the left and right figures.We feel as though different black patterns
are occluded by gray objects. Namely, we perceive as though pat-
tern ‘R’ is occluded in the left figure, while pattern ‘B’ is occluded
in the right. The neocognitron with a masker layer can recognize
these patterns correctly as ‘R’ and ‘B’, like human beings.

By further adding top-down (i.e., backward) connections to the
network, for example, the network comes to have an ability, not
only to recognize occluded patterns correctly, but also can restore
the occluded parts of the patterns (Fukushima, 2005b).

It is reported that, in area V2 of monkeys, there are cells that
show highly selective responses to a particular angle of bend of
line stimuli (Ito & Komatsu, 2004; Pasupathy & Connor, 1999).
If cells of this kind, which we call bend-extracting cells, are built
into US2 of the bottom-up path, the network can acquire an
ability to restore occluded contours more smoothly (Fukushima,
2010a). The network shows a function like amodal completion.
Using the responses of bend-extracting cells, the network predicts
the curvature and location of the occluded contours. Missing
contours are gradually extrapolated and interpolated from the
visible contours. Fig. 27 shows some examples of the responses
of the network. From the images presented to the input layer U0,
occluded contours are gradually completed in layerW0.

7.3. Other applications

The architecture of cascaded connection of S- and C-cell layers
is useful, not only for recognizing visual patterns, but also for
various types of image processing.
Fig. 27. Progress of amodal completion. From the images presented to input layer U0 , occluded contours are gradually completed in layerW0 . Time t shows the number of
circulation of signals through the feedback loop, which is composed by the bottom-up and top-down paths.
Source: (modified from Fukushima (2010a)).
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Fig. 28. Symmetry axis extraction by a network of multi-resolution channels of cascaded connection of S- and C-cell layers. Symmetry axes (shown in the bottom) are
extracted correctly even from complicated figures (shown in the top), where a small amount of asymmetry can be tolerated.
Source: (modified from Fukushima (2005a)).
For example, by introducing non-uniform blur (namely, multi-
resolution channels) into cascaded connections of S- and C-cell
layers, we can construct a network that extracts symmetry axes of
visual patterns (Fukushima, 2005a). Fig. 28 shows some examples
of the response of the network. We can see that symmetry axes
are extracted correctly, where a small amount of asymmetry can
be tolerated. Even if a pattern has a number of symmetry axes, all
of them are extracted.

8. Discussion

Referring to the history of the neocognitron, this paper has dis-
cussed recent advances in the neocognitron. Various extensions
and modifications of the neocognitron have also been proposed to
endow it with further abilities. Powerful abilities of the neocog-
nitron and related networks are acquired from the architecture of
cascaded connection of S-and C-cell layers in a hierarchical net-
work. This architecture is useful, not only for recognizing visual
patterns robustly, but also for various types of image processing.

S-cells work as feature-extracting cells. C-cells are inserted in
the network to allow for positional errors in the features of the
stimulus. The response of a C-cell is less sensitive to a shift in
retinotopic location of the input pattern. We can express that
C-cells make a blurring operation, because the response of a layer
of S-cells is spatially blurred in the response of the succeeding layer
of C-cells.

The blurring operation is essential for endowing the network
with an ability to recognize or process visual patterns robustly.
In the neocognitron-type networks, blur is produced, not only by
C-cells, but also by S-cells, which have a low threshold for
extracting features. A low threshold of S-cells produces a blur in
the multi-dimensional feature space, while C-cells produce a blur
in the retinotopic space.

Although the neocognitron has a long history, modifications of
the network to improve its performance are still going on.
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