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The ability to distinguish recorded announcements from other call
types is an essential part of the mechanized service-evaluation proc-
ess. To do this, all announcements will have a special-information-
tone prefix. A frequency detector—which is based on the correlation
functions of the received signal—would be used to decide which
announcement was triggered by a specific call attempt. This paper
evaluates the performance of the frequency detector in the presence
of additive noise and frequency shift induced by the announcement
machine. The theoretical results, based on a calibration frequency,
are very encouraging. To verify that use of this frequency is feasible
in practice, an algorithm is proposed and its performance evaluated
to show that it compares favorably to the theoretical one.

I. INTRODUCTION

As part of the process of evaluating the end-to-end performance in
the telephone network, a sample of call attempts is evaluated and the
attempts are classified into several categories, such as completed, busy,
recorded announcements, etc. To mechanize this classification process,
a machine must have the ability to distinguish between completed
calls and recorded announcements. Current planning for the mecha-
nized systems envisions the use of special-information-tone (sIT) pre-
fixes which are to be attached to recorded announcements and can
then be automatically recognized by the mechanized classifier (as well
as alert the customer to the fact that he is listening to a recorded
announcement). By choosing four distinct siTs, each representing a
certain category of recorded announcements, the classifier will have
the ability to distinguish between these categories as well as to recog-
nize a recorded announcement in general.

The s1T is defined as a sequence of three consecutive tones. To get
four distinct siTs five frequencies were chosen: fi < fo <fi <f2 < fs, and
each SIT consists of f;, fj, fs. The third tone has a fixed frequency and

1289



will be used for calibration as is described later. The actual values of
these frequencies are 904.5 Hz, 985.4 Hz, 1356.8 Hz, 1440.2 Hz, and
1758.5 Hz. (The choice of these frequencies is mainly the result of
constraints imposed by the ccITT definition of special information
tones and tone generation and detection considerations.) To recognize
which of the possible siTs was received, the machine has to detect in
the first tone whether it was f; or f; and in the second tone whether it
was fi or fo. This means that the classification process of the announce-
ment categories is reduced to the two frequency-detection processes
mentioned above. However, the planned direct recording of the siT
followed by the recorded announcement on the various announcement
machines in the telephone network may introduce significant degra-
dation into the reproduced siT. In addition to additive noise, which is
common to all signals in the network, frequency flutter and frequency
shift of considerable effect on the reproduced tones may occur. The
flutter effect, having an oscillatory nature, can be minimized by aver-
aging properly the received data. In this paper, we report on our
investigation of the combined effects of additive noise and frequency
shift on the detection process. The detection scheme considered here
involves use of correlation functions, and we have concluded that a
reliable detection of siT frequencies is possible provided that a certain
level of signal-to-noise ratio is ensured and the available data is
properly used. It should be pointed out that in order to carry out the
analysis we assume that the additive noise is white. We recognize,
however, that in reality a colored additive noise may have a dominating
effect on the error bounds.

The structure of the paper is as follows. Section II presents the basic
ideas of frequency detection via the correlation functions. In Section
111, a white additive noise is considered to be present and the perform-
ance of the detector in this case as a function of signal-to-noise ratio
is evaluated. The effects of frequency shift are introduced in Section
IV and the use of the calibration frequency to eliminate these effects
is considered. The performance of the frequency detector as a function
of the signal-to-noise ratio is evaluated and the results of using the
calibration frequency are compared to the results when it is not used;
a significant improvement is observed.

The performance evaluations in Sections III and IV are based on
using the likelihood-ratio test. This, because of the complexity of the
expressions involved, is not practically feasible; however, these evalu-
ations provide bounds on the performance of other schemes. In Section
V, an algorithm for a detection process is presented. This algorithm is
simple enough to be practical and its performance compares favorably
to the theoretical one.

1290 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1981



Il. CORRELATION DETECTOR

The use of correlation functions of a received signal for detection
purposes was devised as part of the overall classification process by J.
E. Walls of Bell Laboratories.! Some of the principles of the classifi-
cation process that are relevant to our analysis are briefly described
here.

Let r(t) be a received signal observed for a period of length T. The
correlation functions are defined by

1 T/2
Cn = T‘J’ r(t)r(t + nA)dt n= 0, ]-} 2 ... ] (1)

T/2

where A < T (practically we want A to be small relative to T').

We note that C is in fact the signal’s average power in this time
interval.

Since we are interested in frequency detection, let us assume for a
moment that the received signal is a pure frequency, namely

r(t) = sin 2#ft
and derive expressions for the correlation functions in this case. Then,
T/2
C,= —1— sin 27ft-sin 2af (¢ + nA)dt,
T T/2

or carrying out the simple integration results in

cos 2mfnA § — sin 4nf T
2 4nfT |

The power term Cp and the next two terms C,, Cs, are used for the
detection process. Since

_1(_  sindnft
CO_§|:1 dxft i|

C, = G cos 2afA
Cy = Cy cos 2(27fA),
if we normalize C, and C: by the power C; we get the following

relationship
C ol
Zl=2/=| -1 3
[CG] |:CJ ! ®)

Expression (3) means that all pure frequencies correspond to a point
on a parabola in the (C:/Co, C2/Co) plane. Clearly this parabola exists
only for =1 = C;/Co < 1 and —1 = C3/Cy = 1 (see Fig. 1) and C1/Cy,

Cn= (2)
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Fig. 1—Correspondence between various frequencies and the parabola on the (C,/Co,
C2/Co) plane.

C:/Cy are periodic functions of the frequency, so more than one
frequency may correspond to the same point on the parabola. This
means that for the detection process one must be concerned with
the uniqueness of the points corresponding to the frequencies in-
volved. For instance, if the two frequencies involved are fi = % A and
f = % A, both correspond to the point (0, —1) in the (Ci/Co, C2/Ch)
plane. This means that computing Cs, Ci, C: in this case is not sufficient
to make the detection between these two frequencies possible even in
the deterministic case (absence of noise).

However, the choice of the parameter 1/A for a given set of frequen-
cies involved in the detection process can ensure the necessary unique-
ness. One way of doing it is to choose 1/A to be larger than twice the
largest frequency to be detected, and this will be sufficient, as can be
seen in Fig. 1.

In the presence of noise, as is shown later, the point will shift from
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the parabola towards the origin, while the origin itself corresponds to
white noise for which both C, and C: are equal to zero.

In practice, instead of integration, the received signal is sampled and
the sampled values are then used to get a good approximation of the
correlation functions. Let r(f) again denote the received signal, sam-
pled with frequency F, = 1/A, and N the number of samples done in
the observation interval T. Then eq. (1) will be replaced by

1 N—n-1

Cn:I_V E I'ili+n, (4)

=0

(3]

Again, for a pure frequency, after some manipulations it can be
shown that

where

N-n-1 f f
C,,=1—V 2:0 sin2wﬁism2wﬁ(i+n)
can be written as
1 flN=n 1 f SinN2'n'FL
Cn=§cosn27rﬁ N —ﬁcn:)s(N—l)%r.--E.—2—’2
sin T."Fs
L fcosN2wFisinn2wFi
+ = Ncos(N — 1)27 — : - (5)
2 F, . f
sin 27 —

With the assumption that N is large compared to n = 0, 1, 2, we may
write

\ f
sin N 27 —
1 s
C. =%cos zquisn 1 —FCOS(N— 1)2'JTFLH—"—;F— , (6)
sin 27TF

so that the relationship eq. (3) holds here as well. In the Appendix, the
values of the correlation functions computed by eqs. (1) and (6) are
given for the frequencies used for siT. The error values introduced by
going from egs. (5) to (6) are also given in the Appendix for the same
frequencies.

Suppose now that a frequency, one of possible two, is transmitted.
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If on the receiving end we make sure that the sampling frequency is
large enough compared to the two possible frequencies, we ensure the
uniqueness of the correspondence between these frequencies and the
parabola defined by eq. (3). With this assurance, we can sample the
received signal, compute C;, C;, C: according to eq. (4), and then use
the values C,/C; and C2/Co to decide which frequency was initially
sent.

lil. ADDITIVE NOISE

In the previous section, frequency detection using correlation func-
tions was described. As long as the received signal contains nothing
but the pure frequency originally sent, the problem is clearly deter-
ministic. However, in practice there are various degradations that
affect the received signal. In this section, we are interested in evalu-
ating the performance of the correlation detector in the presence of
additive white noise.

Thus, let the received signal be

r(t) = Asin 2qfit + n(t) k=12,

where A corresponds to the signal-to-noise ratio and n(¢) is a normal-
ized white Gaussian noise. The sampled values are

ri=Asinf i+ n; (7)

where

ri= r[éil,n.'=n [Fisi|,ﬂg=21r%,

k=12 i=012...,N—1,

and n; are independent identically distributed (11D) variables with zero
mean and variance one.
Substitution of eq. (7) into eq. (4) results in

P O [
Ci=—=| ¥ A%inifsin(i+ n)6
N i=0

N=n-1 N-n-1
+ Y A[ninsinif + nsin( + n)f] + ¥ nmi+n]. 8)
i=0 i=0

Since eq. (8) contains random variables, Cy, C;, C2, and hence, the
ratios C1/Cp and Cz/C) are also random variables with certain density
functions. Once these density functions are known the detection proc-
ess becomes a standard problem described in detail in various text-
books on detection theory (see for example Ref. 2). We use the
likelihood ratio test. To compute the threshold, we assume that the
frequencies to be detected have equal a priori probabilities. The costs
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are assumed to be zero and one for correct detection and error,
respectively. With the knowledge of the density functions and the
threshold, we can evaluate the performance of the detection process
by computing the error probability.

The first step then, is to develop the expressions for the density
functions of C;/Cs and C2/Co. However, in view of the complexity of
eq. (8), rather than attempt to develop an exact expression, we will
make use of a version of the Central Limit Theorem (Theorem 4.2.5 in
Ref. 3) and develop approximate expressions for these density func-
tions.

Let us now denote

A? N-n-1
St=— Y sin if; sin(i + n)bs. (9a)
N S
N-n—-1
Yhi== ¥ [ninsin ife + nsin(i + n)6]. (9b)
N i=0
N-n—1
le2 = ﬁ ;‘go NiMi+n. (QC)
Then,
Cr=Si+Yh+ Yn (10)

With some manipulation, we can get more convenient expressions
for Sk and Y% :

A? N - 1 i
Sk == cos nf, [__n — — cos(N — 1)6, 22 N&jl

2 N N sin 6y
A? i
+ — N cos(N — 1), SIP ng&.
2 sin 6,
X A Nt
Yn=2 N ©0s nby Y nsin ib,

n-1 N-1
+ N ,;}_:0 nsin(i + n )6, + NZ" nsin(i — n)ﬂk].

Now, since N >> n we can write

A? 1 sin N@
Sk="_ 0| 1—= - 5
2 cos nb, [1 Ncos(N 1)8: sin b, ]
and
A N-1
Yhi=2=cosnfy ¥ nsin if,
N i=0
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or as

A? 1 sin N6,
kT 1—-— —
S5 2 [ N cos(N — 1)6; S0 }
A N-1 . )
Y& =2 N igo nsin 6.
We get
S% = Skcos nb,
Y% = Ykcos né,.
Denoting
Ct
If = 'C—g
Ck
xﬂ’ = Fﬁ

and using eqs. (10) and (12) we get
x_ [St + Yé]cos 6 + Y
TSR Y+ Y
[S§ + Yhi]cos 20, + Y5
St + Y6 + Yo,

x5 =

(11a)

(11b)

(12a)
(12b)

(13a)

(13b)

We observe now that x} and x4 are functions of the random variables
Y4, Yk, Yt Y%, each one of which is a linear combination of 11D
random variables. The commonly used version of the Central Limit
Theorem can be applied to conclude that the above four variables
have Gaussian limiting distributions. This in turn enables us to use

Theorem 4.2.5 in Ref. 3 to find the distributions of x} and x%.

The first step is to compute the means and variances of Y§,
Yk, Y%, and Y%. Using the fact that the n,’s are 1D Gaussian random
variables with zero mean and variance one and using egs. (9¢) and

(11b) we can readily verify that if

Y&

Yk

ko 02
Y=y |

Y5

then
0
1
kY

E{Y"} = 0
0
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and

© e ©
=]

cov(Y*) = E[[Y" - E{YH[Y* - E{Y"}]’] = 0 .(14)

(=]

o
Sz~ ©
2z~ ©

As in Ref. 3 denote vector b:

b=E[Y*]=

oo +-Oo

From eq. (14), the entries of Y*, being Gaussian independent random
variables, are jointly Gaussian, as is VN(Y* — b) with zero mean and
covariance matrix

"4 _
—St0 0
OO 0
2
0 ﬁO 0
1
T=N 0 0 EO
1
0 0 0=
L N]
Now, let
xt
MYH = l: k] (15)
X2
and
1 oxl
W mar|”
so by eq. (13)
cos 0, cos 20,
= 1 —Skcos 0 —S§cos 26,
UNS§+1F | SE+1 0
0 Sk+1

All this establishes the preconditions for Theorem 4.2.5 in Ref. 3,
which then states that the vector [x*(Y*) — x*(b)] has a Gaussian
limiting distribution with zero mean and covariance matrix
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R=¢'To. (16)

Since N in our case is quite large, we may write

1
B -
ka(x ) = P:| fk(xl ﬁ) o | Rk I 1/2

exp[— % [x — x*(b)/R¥'[x - x‘“(b)]]- an

where
R - 1 (S§)’[2 cos®@y + 1] + 2S¥[2 cos®r + 1] + 1,
PTNGSE+ 1) 2Sécos Gxcos 20,(St + 2),
2S§cos x cos 260,(S§ + 2),
(S8)’[2 cos?26, + 1] + 254[2 cos?26;, + 1] + 1
and

E(x") = x*(b) = S§ cos O
Sk+ 1| cos26: |

From egs. (11a) and (17), we can readily observe the way the signal-
to-noise ratio, A, affects the density function. If A gets very large, S§
becomes very large; then the mean value of x* approaches the parabola
and the entries of R; become very small—namely, we approach the
deterministic case described in the previous section. On the other
hand, if A approaches zero, S§ goes to zero as well and the mean value
approaches the origin. This is understandable since as A gets smaller,
the effect of the noise gets larger, dominating the signal; and, being a
white noise, the cross correlation functions C; and C, approach zero.

In Figs. 2 and 3, we see the effect of A as described above for two
pairs of frequencies that were selected for the siT. The sampling
frequency is 4000 Hz. It should be noted that the mean values for each
frequency are on a straight line as is obvious from eq. (17). In the
figures, for every A, one equal-probability contour is drawn around the
mean and the fact that these contours get smaller as A gets larger is
expected since the entries of R} are getting smaller as was pointed out
earlier.

Once we have eq. (17) the detection is straightforward. With a priori
probabilities and costs as described earlier, the measured data is used
to compute the point in the (Ci/Co, C:/C;) plane and test which
conditional density has higher value at this point. Then decide on the
corresponding frequency as the one that was sent. More details of this
procedure are described in Ref. 2. However, using the expressions we
have for the density functions the process can be somewhat simplified.
From eq. (17) and Ref. 2,
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Fig. 2—Dependence of the density functions P(x| f) on signal-to-noise ratio for 904.5
and 985.4 Hz (dashed lines are the equal likelihood points).

h
D= 1(x| f1) %quz(xl f2),
2

which means that if the inequality holds in one direction, we decide on
fi, and if in the other, f;. This is equivalent to
1n|Rz| — 1n|Ri| + [x — x*(B)JRz'[x — x*(b)]

h
- [z~ ' @)IRVx ~ 2'(B)]20, (18)

which with an equality sign is a line in the (C,/Co, C2/Co) plane. The
dotted lines in Figs. 2 and 3 correspond to the above-mentioned line.
On one side of these lines one density function has higher values, on
the other side the other density function. The detection then consists
of deciding on which side of this line the measured point falls.
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Fig. 3—Dependence of the density functions p(x| ) on signal-to-noise ratio for 1356.8
and 1440.2 Hz (dashed lines are the equal likelihood points).

To evaluate the performance of this detector, we compute the error
probability. Let Bx, 2 = 1, 2 be the part of the plane in which
P11, (x| f) has the larger value. Then the probability of error will be

Pr(6)=-;-[j px|f,(x|ﬁ)dx+f pz|f,(x|fz)dx]. (19)
B. B

2 1

Figure 4 shows the error probability as a function of A for, again,
the two pairs of frequencies of interest in the siTs 904.5 Hz, 985.4 Hz,
and 1356.8 Hz, 1440.2 Hz, and sampling frequency of 4000 Hz. Since,
in general, signals transferred by the telephone network result in
signal-to-noise ratios higher than 8 dB, the results here are encouraging
for both frequency pairs. It is interesting to note that the higher
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frequency pair results in a better performance. Observing Figs. 2 and
3, one can see the reason for this difference in performance; the density
functions for every signal-to-noise ratio are better separated in the
higher pair. It turns out, that for every choice of a sampling frequency
and difference in value, some pairs of frequencies—and not necessarily
the lower valued frequencies—are more detectable than others.

IV. ADDITIVE NOISE AND FREQUENCY SHIFT

The use of announcement machines as tone generators will introduce
two primary types of degradation, frequency flutter and frequency
shift. In this section, we attempt to analyze the effects of the frequency
shift with additive noise on the performance of the correlation detector.
It is assumed that the flutter effect is eliminated by averaging a
number of observations of each received tone.

The complexity of the expressions involved in the analysis here
makes closed-form results very difficult if possible at all. For this
reason, digital computer calculations were used as the main tool in the
analysis.

Introducing the frequency shift, we get the expression for the re-
ceived signal

. (1+naf
r(t) = Asin 2r————= ¢t + n(?),
F;
0.5
0.4
0.3
v 904.5 Hz
X — ~985.4 Hz
02| 1356.8Hz .~
1440.2 Hz
0.1}
0 | i 1 |

-6 -4 2 0 2 4 6 8 10 12
A IN DECIBELS

Fig. 4—Probability of error when no frequency shift is considered.
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where ng is assumed to be a random variable with extended beta
distribution. This particular distribution is general enough to include
many possibilities and agrees with the physical properties of ng
(namely —1 = ns = 1). So n4's assumed density function is

_[BA +na)'1 - na*t for |na|=1
Pn,(na) = { 0 elsewhere °’
where
B _ l a+f+1 I‘(a + B)
2 T'(a)T(B)

and a,8 = 1 are the two distribution parameters (in our computations
we chose a = 8 = 10 which fits reasonably the little data available for
nd).

The presence of this additional degradation causes the expressions
developed in the previous section to be conditional on n,. This means
that now, rather than having an expression for p, |4 ('| '), we have an
expression for px(n,7,('| ) or using eq. (17) we may write

1
Pxngf (x| na, fr) = 2| Ra

exp[— % [x — E{x*}R#'[x — E{x"}]]. (20)

where the expressions for R, E{x*}, S§ are as before [see (11a) and
1+
(17)] and 6, = 217-(%”’5.
Since for the likelihood ratio test p:s,( | '}is needed, we can proceed
to compute it using the relation
1

P=11,(x|fa) = j Dxing 1, (x| N, f)Pn (na)dna.
-1
With this and eq. (19), the performance of the detector can be evalu-
ated for this case where both additive noise and frequency shift are
present. In Fig. 5 the probabilities of error in detection as a function of
the signal-to-noise ratio are presented. Comparing these results to Fig.
4 makes it clear that the performance of the detector deteriorates very
significantly when frequency shift is present. Even for a very high
signal-to-noise ratio the frequency shift induces considerable error.
The effect of the frequency shift alone, which provides lower bounds
on the error probabilities in Fig. 5, can be calculated as follows. When
A gets very large the received signal becomes a pure tone with a shifted
frequency. This, however, implies that in this case it will be sufficient
to consider only x; = Cy/C, for the detection. Since x; and ny are
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Fig. 5—Probability of error when frequency shift is considered but no calibration
frequency is used.

related through
e
F;

the knowledge of p, (') makes the calculation of p., s, ('|") for each
frequency f, straightforward. In Fig. 6 the density functions for the
two pairs of frequencies are drawn and the thresholds for the detection
in this case are the intersections of the density functions (also pointed
out in the figure).

The technique to overcome the frequency shift is based on using the
third tone for calibration in the detection of the first two tones. This
means that a fixed tone is sent, processed in the receiving end, and the
knowledge of its exact value and the corresponding measurements can
be used to improve the detection of the first two tones.

To be more precise, let f; be the frequency of the third tone and
x° =[C3/C3}, C3/C3] computed from the corresponding measured data.
Then through eq. (20) we know that

1
3 —
p-"sl"dvﬁs(x Ind' fa) 2W|R3I 1/2

x, = cos 27(1 + na)

exp [— % [x* — E(x"}JR3"[x" - E{x’}]},
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FOR THE HIGHER INTERVAL FREQUENCIES
(b)

Fig. 6—Density functions required for detection when frequency shift is considered
but the additive noise is ignored (A — ).

where the expressions for E{x*} and R; are as in eqgs. (11a) and (17)
with f; substituted for fi. Using this we can improve on our knowledge
of the statistics of ny by computing pn, z3s(. | .,.) through the relation-
ship

D= |n,,f3(x 3 | nd, f3)pnd{nd)

p,a | nd‘fa[xa | nd, ﬁl]pnd(nd)dnd

pﬂdlxa.f:g[ndlxai f3] = J.l

-1
This improved data on ns can then be used to calculate p:j:3zy
(- I -;-’-)

ptlxj’fa-fk[x|x3’ fk] = j p"l".f.fk(xlnd! fk)p"dl-"s-ﬁ[nd|x3: f3]dnr1r

-1

1
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which in turn will be used for the detection process, namely
h
Pxi2pilx] X% fi, fi] f%me,fa.fz[x | %2, s, £]. (21)
2

In Figs. 7 and 8, we present—for this improved detection process
with 1758.5 Hz as the calibration frequency—the error probabilities as
a function of the signal-to-noise ratio. Note that the sampling fre-
quency 4000 Hz is larger than 2 X 1758.5. Comparing this to the results
without the calibration frequency, we observe considerable improve-
ment, whereas the results computed with no frequency shift present
provide a lower bound on error probabilities (or an upper bound on
the improved detector’s performance).

The case when A — « (i.e., when the additive noise becomes
negligible) is again of special interest but very simple. Since now with
the knowledge of both x} and f; the shift can be exactly computed,

x3 = cos 27(1 + na) %

or

F, _
ne=—cos i —1,

- 2mfa

WITH SHIFT AND NO
CALIBRATION FREQUENCY

Pr(€)

~

— —

_WITH SHIFT AND
~ TCALIBRATION FREQUENCY

] —4 -2 0 2 4 6 8 10 12 14 16 18 20
A IN DECIBELS

Fig. 7—Error probabilities with frequency shift and calibration frequency—lower
interval frequencies.
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-

Pr(€)

\-

_ _WITHSHIFT AND
CALIBRATION FREQUENCY

0 1 | 1 Il
-6 -4 -2 0 2 4 6 8 10 12 14 16 18

A IN DECIBELS

Fig. 8—Error probabilities with frequency shift and calibration frequency—higher
interval frequencies.

and the detection of the first two tones becomes deterministic. The
only source of problems in this case is the question of uniqueness of
cos 'x?. This can be overcome by considering both cos™'x{ and 27 —
cos”'x} and with probability one, one of them will recover one of the
two possible frequencies.

V. A SUGGESTED PRACTICAL CALIBRATION ALGORITHM

In the previous section, we described how the use of a calibration
frequency can theoretically improve the detection of tones that are
affected by frequency shift and additive noise. However, practical
computation of the density functions required in eq. (21), or the
separating line (where the two density functions are equal) is impos-
sible. Hence, an algorithm is required that is both compatible to the
theoretical exact density function separation and simple enough to be
practically implemented. Such an algorithm is presented and its per-
formance evaluated.

Let us first review the available data to be used for the detection.
The received sequence of three tones is sampled and for each tone the
correlation functions are calculated repeatedly and averaged to elimi-
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nate frequency flutter effect. Then the cross-correlation functions are
normalized to give the three vectors

1 2
Ci Ci i
Ch C3 Ci
xl= | | at=| =
CE CZ 2
= = =2
Ch Ci 5

corresponding to the three tones. Whereas the frequencies resulting in
x! and x?, respectively, are not known (in each case they can be either
one of two possible frequencies), the third one is known to result from
1758.8 Hz. The idea is to use this knowledge to get an estimate of the
frequency shift to help in the decision process of the first two tones.
The suggested algorithm (see Fig. 9) is as follows:

(i) Draw a line from the origin through x% it will intersect the

parabola at

CZI(;.I

11—

C1."cu

__FOR
o~ TONE #1

1 ~
7(1356.8‘* 1440.2)—— \

v'588
gv08

UPDATED__ -~
MIDFREQUENCY 2

al,a))
-~
i - _UPDATED
MIDFREQUENCY 1

1 -
-2-[9045 +985.4) —

Fig. 9—Geometric interpretation of suggested algorithm.
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D= = i3,

3

~3 xz

X2 —3

X1

where
3 372 2
P x3 + V[x3]* + 8[xi]
1= .
2x}

(i) Use i3 to compute the values

3

ai = cos §; }i 12

ab = cos 26;
where
_9045+9854 ..,
T T2 % 17585 !
= 0.5374 cos™ %3
and
5, 13568+ 14402 ..,
2T T o X 17585 !

= 0.7953 cos™'%3.

(22)

(23)

(24a)

(24Db)

(iti) Draw the lines from the origin to the points (ai, a5): If x* is
counterclockwise away from the corresponding line, the ith tone is of
the lower frequency, and if it is clockwise away, it is of the higher

frequency.

The motivation behind this algorithm is quite simple. We have
observed earlier that the additive noise effect is to shift the mean value
of the pair (C:/C,, C2/Co) towards the origin, whereas the frequency
shift causes this pair to move along the parabola. The first step in the
algorithm can be viewed then as isolation of the effect of the frequency
shift. The point £ on the parabola is regarded as the result of the
original frequency 1758.5 Hz, together with some shift that can now be

estimated using the relationship

- 1758.5 n
3 = cos 27 2000 1+ Ra)
or
. 4000 i3
Rg=————co08 X1 — 1.
27 1758.5
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This estimate is then used to update the midfrequencies for each tone,
1%(904.5 + 985.4)(1 + ng) for the first and %2(1356.8 + 1440.2)(1 + na)
for the second. The lines that connect the origin with the points

m(904.5 + 985.4)

1+n
cos 4000 ( Ra)
2m(904.5 + 985.4) n
08 1000 (1+ Aa)
and
7(1356.8 + 1440.2) . n
2 {1 + nd)
27(1356.8 + 1440.2) (1+7
cos 2000 na)

provide the threshold lines for the detection of the frequencies of the
respective tones. In Fig. 9 the algorithm is described geometrically.

In Figs. 10 and 11 the performance of a detector using this algorithm
is compared to the performance when exact separation is assumed. It
is quite clear that the use of the algorithm results in a performance
that is very close to the theoretical one.

0.5
0.4
SUGGESTED
EXACT ALGORITHM
SEPARATION
\
03 — ~
~ —
v
o
02
01}
0 | 1 |
-6 -4 -2 0 2 4 6 8 0 12

A IN DECIBELS

Fig. 10—Comparison of error probabilities for suggested detection algorithm to the
exact separation—lower interval frequencies.
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0.5

03—

Pr{€)

02

SUGGESTED
0.1 — ALGORITHM
EXACT

SEPARATION
\

A IN DECIBELS

Fig. 11—Comparison of error probabilities for suggested detection algorithm to the
exact separation—higher interval frequencies.

There are two difficulties in the described algorithm that will affect
its performance. The first is because positive shifts above approxi-
mately 14 percent will result in frequencies higher than the critical
one—F,/2 (see Appendix)—for the third tone, and the points on the
parabola are no longer uniquely related to their corresponding fre-
quencies. This difficulty is inherent to the correlation function ap-
proach and can be eliminated only if a significantly higher sampling
frequency is chosen (approximately 7000 Hz). However, if we assume
that the shift is always less than the critical one, even for the proposed
sampling frequency, the effect does not seem to be significant since in
the model we have chosen for the frequency shift the probability of
having shifts higher than 14 percent is quite low. The second difficulty,
which is inherent in the proposed algorithm, arises when the resultant
%1 is less than —1. In this case, we propose simply to take it equal to
—1 and again argue that the probability of this happening is very low
even for small signal-to-noise ratios. Altogether, both difficulties, if
treated as is suggested above, do not seem to affect the performance
of the detection algorithm.

VI. CONCLUSION

In this paper, we addressed some of the problems in detecting
recorded announcements encoded via the special information tones
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(s1T). In particular, we discussed problems that arise when additive
noise is present. We have assumed that the frequency flutter effects
are eliminated by averaging several observations, and investigated in
detail only the additive noise and frequency shift effects.

Our results support the conclusion that by properly using the infor-
mation on the frequency shift, its effects can be made almost negligible
and under these conditions high-performance siT detection can be
achieved.

The performance evaluations presented here make explicit use of a
certain assumed model for the noise and frequency shift; however, the
detection algorithm, which is proposed in Section V, is independent of
any such assumptions. The performance of this algorithm is compa-
rable to that theoretically achievable, and thus this algorithm is
proposed for implementation in the sIT classification process.
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APPENDIX

Approximations Used in Computing the Correlation Functions by Sampled
Data.

)
(Hz) (rad) CCo CCy CC, Co C C; E, E;

9045 142 05 0.0747 —0.4778 04971 0.0743 —0.4749 0.0001  0.00004
9854 1.56 0.499 0.0114 —0.4985 0.4982 0.0114 —0.4976 0.0008 0.00003
1356.8 2.13 0.4993 —0.2654 —0.2171 0499 -0.2653 —0.217 0.0008 —0.0008
14402 2.26 0.4993 —0.3184 —0.0932 0.4997 -0.3186 —0.0933 0.0003 —0.0004
1768.5 2.76 0.5004 —0.4649 —0.3632 0.496 —0.4608 036 —0.0019 0.0034

Continuously computed correlation functions [see eq. (2)]:
__ sin 4nft
4nft

ce, = % cos(nf) [1

Approximated correlation functions [see eq. (6)]:

1 1 _ sin (N@)
Cr= 3 cos(nd) {1 N cos[(N — 1)8] —ind }

Differences between discretely computed correlation functions [see eq. (5)]
and their approximated values.

sin(nd)
sin 6

E,= —2%, cos[(N — 1)§] cos(N6).

[Note: F, = 4000 Hz; N = 167; T = ' seconds and § = 27 (f/F,)].
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