On topological graphs with at most four crossings per edge

Eyal Ackerman*

October 29, 2013

Abstract

We show that if a graph G with $n \geq 3$ vertices can be drawn in the plane such that each of its edges is involved in at most four crossings, then G has at most $6 n-12$ edges. This settles a conjecture of Pach, Radoičić, Tardos, and Tóth, and yields a better bound for the famous Crossing Lemma: The crossing number, $\operatorname{cr}(G)$, of a (not too sparse) graph G with n vertices and m edges is at least $c \frac{m^{3}}{n^{2}}$, where $c>1 / 29$. This bound is known to be tight, apart from the constant c for which the previous best bound was $1 / 31.1$.

As another corollary we obtain some progress on the Albertson conjecture: Albertson conjectured that if the chromatic number of a graph G is r, then $\operatorname{cr}(G) \geq \operatorname{cr}\left(K_{r}\right)$. This was verified by Albertson, Cranston, and Fox for $r \leq 12$, and for $r \leq 16$ by Barát and Tóth. Our results imply that Albertson conjecture holds for $r \leq 18$.

1 Introduction

A topological graph is a graph drawn in the plane with its vertices as points and its edges as Jordan arcs that connect corresponding points and do not contain any other vertex as an interior point. Any two edges of a topological graph have a finite number of intersection points. Every intersection point of two edges is either a vertex that is common to both edges, or a crossing point at which one edge passes from one side of the other edge to its other side. Throughout this paper we assume that no three edges cross each other at a single crossing point. A topological graph is simple if every pair of its edges intersect at most once.

For a topological graph D we denote by $\operatorname{cr}(D)$ the crossing number of D, that is, the number of crossing points in D. The crossing number of of an abstract graph $G, \operatorname{cr}(G)$, is the minimum value of $\operatorname{cr}(D)$ taken over all drawings D of G as a topological graph. The following result was proved by Ajtai, Chvátal, Newborn, Szemerédi [6] and, independently, Leighton [16].

Theorem 1 ($[6,16])$. There is an absolute constant $c>0$ such that for every graph G with n vertices and $m>4 n$ edges we have $c r(G) \geq c \frac{e^{3}}{n^{2}}$.

This celebrated result is known as the Crossing Lemma and has numerous applications in combinatorial and computational geometry, number theory, and other fields of mathematics.

The Crossing Lemma is tight, apart from the multiplicative constant c. This constant was originally very small, and later was shown to be at least $1 / 64 \approx 0.0156$, by the probabilistic proof of the Crossing Lemma due to Chazelle, Sharir, and Welzl [3]. Pach and Tóth [20] proved that $0.0296 \approx 1 / 33.75 \leq c \leq 0.09$ (the lower bound applies for $m \geq 7.5 n$). Their lower bound was later improved by Pach, Radoičić, Tardos, and Tóth [19] to $c \geq 1024 / 31827 \approx$ $1 / 31.1 \approx 0.0321$ (when $m \geq \frac{103}{16} n$). Both improved lower bounds for c were obtained using

[^0]the same approach, namely, finding many crossings in sparse graphs. To this end, it was shown that topological graphs with few crossings per edge have few edges.

Denote by $e_{k}(n)$ the maximum number of edges in a topological graph with $n>2$ vertices in which every edge is involved in at most k crossings. Let $e_{k}^{*}(n)$ denote the same quantity for simple topological graphs. It follows form Euler's Polyhedral Formula that $e_{0}(n) \leq 3 n-6$. Pach and Tóth showed that $e_{k}^{*}(n) \leq 4.108 \sqrt{k} n$ and also gave the following better bounds for $k \leq 4$.

Theorem $2([20]) \cdot e_{k}^{*}(n) \leq(k+3)(n-2)$ for $0 \leq k \leq 4$. Moreover, these bounds are tight when $0 \leq k \leq 2$ for infinitely many values of n.

Pach et al. [19] observed that the upper bound in Theorem 2 applies also for not necessarily simple topological graphs when $k \leq 3$, and proved a better bound for $k=3$.
Theorem 3 ([19]). $e_{3}(n) \leq 5.5 n-11$. This bound is tight up to an additive constant.
By Theorem 2, $e_{4}^{*}(n) \leq 7 n-14$. Pach et al. [19] claim that similar arguments to their proof of Theorem 3 can improve this bound to $\left(7-\frac{1}{9}\right) n-O(1)$. They also conjectured that the true bound is $6 n-O(1)$. Here we settle this conjecture on the affirmative, also for not necessarily simple topological graphs.
Theorem 4. Let G be a topological graph with $n \geq 3$ vertices. If every edge of G is involved in at most four crossings, then G has at most $6 n-12$ edges. This bound is tight up to an additive constant.

Using the bound in Theorem 4 and following the footsteps of [19, 20] we obtain the following linear lower bound for the crossing number.
Theorem 5. Let G be a graph with $n>2$ vertices and m edges. Then $\operatorname{cr}(G) \geq 5 m-\frac{139}{6}(n-$ $2)$.

This linear bound is then used to get a better constant factor for the bound in the Crossing Lemma, by plugging it into its probabilistic proof, as in [17, 19, 20].
Theorem 6. Let G be a graph with n vertices and m edges. Then $\operatorname{cr}(G) \geq \frac{1}{29} \frac{m^{3}}{n^{2}}-\frac{35}{29} n$. If $m \geq 6.95 n$ then $\operatorname{cr}(G) \geq \frac{1}{29} \frac{m^{3}}{n^{2}}$.

Albertson conjecture. The chromatic number of a graph $G, \chi(G)$, is the minimum number of colors needed for coloring the vertices of G such that none of its edges has monochromatic endpoints. In 2007 Albertson conjectured that if $\chi(G)=r$ then $\operatorname{cr}(G) \geq \operatorname{cr}\left(K_{r}\right)$. That is, the crossing number of an r-chromatic graph is at least the crossing number of the complete graph on r vertices.

If G contains a subdivision ${ }^{1}$ of K_{r} then clearly $\operatorname{cr}(G) \geq \operatorname{cr}\left(K_{r}\right)$. A stronger conjecture (than Albertson conjecture and also than Hadwiger conjecture) is therefore that if $\chi(G)=r$ then G contains a subdivision of K_{r}. However, this conjecture, which was attributed to Hajós, was refuted for $r \geq 7[9,11]$.

Albertson conjecture is known to hold for small values of r : For $r=5$ it is equivalent to the Four Color Theorem, whereas for $r=6, r \leq 12$, and $r \leq 16$, it was verified respectively by Oporowskia and Zhao [18], Albertson, Cranston, and Fox [7], and Barát and Tóth [8]. By using the new bound in Theorem 5 and following the approach in $[7,8]$, we can now verify Albertson conjecture for $r \leq 18$.

Theorem 7. Let G be an n-vertex r-chromatic graph. If $r \leq 18$ or $r=19$ and $n \neq 37,38$, then $\operatorname{cr}(G) \geq \operatorname{cr}\left(K_{r}\right)$.

[^1]Organization. The bulk of this paper is devoted to proving Theorem 4 in Section 2. In Section 3 we recall how the improved crossing numbers are obtained, and their consequences.

2 Proof of Theorem 4

We understand a multigraph as a graph that might contain parallel edges but no loops. We may assume, without loss of generality, that the topological (multi)graphs that we consider do not contain self-crossing edges, for such crossing points can be easily eliminated by rerouting the self-crossing edge at a small neighborhood of the crossing point.

Let e_{1} and e_{2} be two intersecting edges in a topological multigraph G and let $x_{1}, x_{2}, \ldots, x_{t}$ be their intersection points, ordered as they appear along e_{1} and e_{2}. If $t \geq 2$ then for every $i \in\{1,2, \ldots, t-1\}$ the open Jordan region whose boundary consists of the edge-segments of e_{1} and e_{2} between and x_{i} and x_{i+1} is called a lens. We call x_{i} and x_{i+1} the poles of the lens. A lens is empty if it does not contain a vertex of G. We will need the following fact later.

Proposition 2.1. Let l be an empty lens in a topological multigraph G that is bounded by two edge-segments s_{1} and s_{2}. If s_{1} is crossed by an edge e and l does not contain a smaller empty lens then s_{2} is also crossed by e.

Proof. Suppose that there is an edge e that crosses s_{1} but not s_{2}. Since l does not contain any vertex of G, e must intersect s_{1} at another point (either a crossing point or a vertex of $G)$. But then l contains a smaller empty lens.

The upper bound in Theorem 4 will follow from the next claim.
Theorem 8. Let G be a topological multigraph with $n \geq 3$ vertices and no empty lenses. If every edge in G is involved in at most four crossings, then G has at most $6 n-12$ edges. This bound is tight for infinitely many values of n.

To see that it is enough to prove Theorem 8, consider a topological graph G with $n \geq 3$ vertices in which every edge is involved in at most four crossings. We may assume that there is no other n-vertex topological graph with the latter property and more edges than G (otherwise, replace G by this graph). Furthermore, we may assume that there is no other n-vertex topological graph G^{\prime} with at most four crossings per edge and the same number of edges as G, such that $\operatorname{cr}\left(G^{\prime}\right)<\operatorname{cr}(G)$ (otherwise, replace G by G^{\prime}). We claim that G has no empty lenses, and therefore, by Theorem 8 , it has at most $6 n-12$ edges.

Indeed, suppose that G has empty lenses and let l be an empty lens that contains no other empty lens. Let e_{1} and e_{2} be the edges that form l and let s_{1} and s_{2} be the edge-segments of e_{1} and e_{2}, respectively, that bound l. Denote by x_{1} and x_{2} the endpoints of s_{1} and s_{2}. At least one of x_{1} and x_{2} is a crossing point, for otherwise e_{1} and e_{2} are parallel edges in G. Let G^{\prime} be the graph we obtain by 're-routing' e_{1} along s_{2} and e_{2} along s_{1} and drawing them such that they do not intersect at the crossing points among x_{1} and x_{2} (see Figure 1 for an example). Note that since l contains no other empty lens, it follows from Proposition 2.1 that every edge that crosses s_{1} must cross s_{2}, and vice verse. Therefore, every edge in G^{\prime} is involved in at most four crossings. However, G^{\prime} has the same number of edges as G, but has fewer crossings, and this contradicts our assumption on G.

We therefore turn now to proving Theorem 8. For a topological multigraph G we denote by $M(G)$ the plane map induced by G. That is, the vertices of $M(G)$ are the vertices and crossing points in G, and the edges of $M(G)$ are the crossing-free segments of the edges of G (where each such segment connects two vertices of $M(G)$). We say that a face f of $M(G)$ is good if $|f|=3$ or f is incident to at most one vertex of G. Otherwise, f is bad. We call G good if every face of $M(G)$ is good. The next lemma will allow us to assume that G is good.

Figure 1: Getting rid of an empty lens.

Figure 2: Illustrations for the proof of Lemma 2.2

Lemma 2.2. Let G be a topological multigraph with no empty lenses and at most k crossings per edge. Then there exists a good topological multigraph G^{\prime} with no empty lenses and at most k crossing per edge such that: (1) $V(G)=V\left(G^{\prime}\right)$; (2) $|E(G)| \leq\left|E\left(G^{\prime}\right)\right|$; and (3) $\operatorname{cr}(G) \geq$ $\operatorname{cr}\left(G^{\prime}\right)$.

Proof. Since G has no empty lenses, every face in $M(G)$ is of size at least three. Suppose that $M(G)$ contains a face $f,|f|>3$, that is incident to two vertices of G, denote them by A and B.

If A and B are not adjacent in f, then we can add an edge (a 'chord') between them within f. Observe that the new edge cannot form an empty lens. Indeed, suppose an empty lens is formed when $e=A B$ is added. Then, there must be another edge $e^{\prime}=A B$. As e, the edge e^{\prime} is also crossing-free by Proposition 2.1. However, if e^{\prime} is crossing-free and forms an empty lens with e, then e^{\prime} must be edge of f, and so A and B are adjacent in f.

We continue adding such 'chords' as long as possible, until the plane map contains no face with two vertices of G that are not adjacent in that face. Denote by G_{1} the resulting topological graph and suppose that $M\left(G_{1}\right)$ has a face f such that $|f|>3$ and f is incident to two vertices A, B of G_{1} (that are adjacent in f). Assume that B follows A in a clockwise order of the vertices of f, and denote by w and z the following vertices after B. Notice that both w and z must be crossing points in G, since $|f|>3$ and f contains no non-adjacent vertices of G. Let $e=C D$ be the edge of G_{1} that contains the edge $w z$ of f. Suppose that D is the endpoint of e such that w lies between D and z on e (refer to Figure 2(a)).

We wish to show that we can replace $C D$ by a new edge $A D$ or $B C$, such that the new graph has fewer crossings than G_{1}. To this end, we first show that $A \neq D$ or $B \neq C$, in order to avoid creating a loop in the underlying abstract multigraph. Suppose that $A=D$ and $B=C$, that is $C D=B A$ (we write $B A$ to distinguish this edge from the edge $A B$ of $f)$. Observe that $B A$ is not the same edge that contains the edge-segment $B w$, since then it will cross itself at w. Therefore, there is a point p on $B A$ near f, outside of it, and not on $B w$ or $A B$. Let q be a point near w on the edge-segment $w B$ of $B A$. Consider the closed curve c that consists of $A B, B w$, and the edge-segment $w A$ of $B A$. Since $A B$ and $B w$ are

Figure 3: "Fixing" the bad face f when $A \neq D$.
crossing-free and $w A$ cannot cross itself, c is a Jordan curve. Let R be the region bounded by c. Suppose that we traverse c clockwise (such that R is to our right). If we visit A, B, w in this order, then R must contain f (recall that this is the clockwise order of these vertices in f). Therefore, $p \notin R$ and $q \in R$. Otherwise, if f is not in R then $p \in R$ and $q \notin R$ (see Figure 2(b) for an example). It follows that the edge-segment $p q$ of $B A$ must cross the edge-segment $w A$ of $B A$, but then $B A$ crosses itself.

Suppose that $A \neq D$. Let G_{2} be the topological graph we obtain by replacing e with a new edge $e^{\prime}=A D$ as illustrated in Figure 3(a). That is, e^{\prime} closely follows $A B$ and $B w$ inside f, then it crosses $C D$ and the edge containing $B w$ at w, and closely follows $w D$. Observe that G_{2} has the same vertex set as G_{1} and the same number of edges. The new edge e^{\prime} is involved in at least one less crossing than e, and the number of crossings for every other edge can only decrease. Therefore, $\operatorname{cr}\left(G_{2}\right)<\operatorname{cr}\left(G_{1}\right)$ and we have not increased the maximum number of crossings per edge.

Next we show that G_{2} does not contain an empty lens. Indeed, suppose that we have created an empty lens and let l be an empty lens that does not contain a smaller empty lens. Since the new edge $A D$ follows the edge-segment $w D$ of the old edge $C D$, it follows that A must be a pole of l, for otherwise G_{1} also contains an empty lens. Denote by w^{\prime} the other pole of l and observe that $w^{\prime}=D$ or w^{\prime} is some crossing point on the (closed) edge-segment $w D$ of $A D$.

Orient the new edge-segment $A w^{\prime}$ such that l is to its right, and denote the other (old) edge-segment the bounds l by $w^{\prime} A$. Suppose that $A w^{\prime}$ is oriented from w^{\prime} to A. Since the edge $A B$ is the edge that follows $A D$ in a counterclockwise order of the edges around A, it follows that B must be the other pole of l (that is $w^{\prime}=B=D$), for otherwise l contains B. However, $A B$ is crossing-free and $A D$ is not, so by Proposition 2.1 there is a smaller empty lens in l, which contradicts our choice of l.

Therefore, $A w^{\prime}$ is oriented from A to w^{\prime}. Observe that by the construction of the new edge $A D$, when traversing $A D$ from A to D, at the point w we may turn right and follow the edge-segment $w C$ of $C D$. Since l lies to the right of $A w^{\prime}$ it follows that this edge-segment must be inside l. The lens l does not contain C, therefore the edge-segment $w C$ intersects the edge-segment $w w^{\prime}$ of $A w^{\prime}$ or the edge-segment $w^{\prime} A$. (Note that it is possible that $A=C$ but it is impossible that $C=w^{\prime}=D$ since G_{1} contains no loops. It is also impossible that $w C$ intersects the new crossing-free edge-segment $A w$.) However, since $A D$ follows $C D$ from w to D, it follows that G_{1} already contains an empty lens (see Figure 3(b) for an illustration).

Consider now the case that $A=D$, and therefore, $B \neq C$. Denote by e_{z} the edge that crosses $C D$ at z. Let G_{2} be the topological graph we obtain by replacing e with a new edge $e^{\prime}=B C$ as illustrated in Figure 4(a). That is, e^{\prime} closely follows $B w$ and $w z$ inside f, then it crosses $C D$ and e_{z} at z, and closely follows the edge-segment $z C$. Observe that G_{2} has the same vertex set as G_{1} and the same number of edges. The new edge e^{\prime} is involved in

Figure 4: "Fixing" the bad face f when $B \neq C$.
at least one less crossing than e, and the number of crossings for every other edge can only decrease. Therefore, $\operatorname{cr}\left(G_{2}\right)<\operatorname{cr}\left(G_{1}\right)$ and we have not increased the maximum number of crossings per edge.

Next we show that G_{2} does not contain an empty lens. Indeed, suppose that we have created an empty lens and let l be an empty lens that does not contain a smaller empty lens. Since the new edge $B C$ follows the edge-segment $z C$ of the old edge $C D$, it follows that B must be a pole of l, for otherwise G_{1} also contains an empty lens. Denote by z^{\prime} the other pole of l and observe that $z^{\prime}=C$ or z^{\prime} is some crossing point on the (closed) edge-segment $z C$ of $B C$.

Orient the new edge-segment $B z^{\prime}$ such that l is to its left, and denote the other (old) edge-segment the bounds l by $z^{\prime} B$. Suppose that $B z^{\prime}$ is oriented from z^{\prime} to B. Since the edge $A B$ is the edge that follows $B C$ in a clockwise order of the edges around B, it follows that A must be the other pole of l (that is $z^{\prime}=A=C$), for otherwise l contains A. However, $A B$ is crossing-free and $B C$ is not, so by Proposition 2.1 there is a smaller empty lens in l, which is impossible.

Therefore, $B z^{\prime}$ is oriented from B to z^{\prime}. Observe that by the construction of the new edge $B C$, when traversing $B C$ from B to C, at the point z we may turn left and follow the edge-segment $z D$ of $C D$. Since l lies to the left of $B z^{\prime}$ it follows that this edge-segment must be inside l. The lens l does not contain D, therefore the edge-segment $z D$ intersects the edge-segment $z z^{\prime}$ of $B z^{\prime}$ or the edge-segment $z^{\prime} B$. (Note that it is possible that $B=D$ but it is impossible that $C=z^{\prime}=D$ since G_{1} contains no loops. It is also impossible that $z D$ intersects the new crossing-free edge-segment $B z$.) However, since $B C$ follows $C D$ from z to C, it follows that G_{1} already contains an empty lens (see Figure 4(b) for an illustration).

It follows that we can add new 'chords' and replace edges as above, until a good topological multigraph is obtained.

Let G be an n-vertex topological multigraph such that G has no empty lenses and every edge in G is involved in at most four crossings. As before, we choose G such that it has the maximum number of edges among the n-vertex multigraphs with those properties. Furthermore, we may assume that there is no other n-vertex topological multigraph G^{\prime} such that G^{\prime} has no empty lenses, G^{\prime} has the same number of edges as G, and fewer crossings than G. Finally, by Lemma 2.2 we may assume that G is good.

If $n=3$ then G has at most 6 edges. Indeed, otherwise there is a vertex v of degree at least five. Let x and y be the two other vertices, such that there are at least three edges between v and x. These three edges form at least two disjoint lenses, however, y can be in at most one of them, and therefore G has an empty lens. Thus, G has at most $6 n-12=6$ edges and the theorem holds when $n=3$. Assume therefore that $n>3$. We may also assume that the minimum degree in G is at least 7 , for otherwise we can remove a vertex of degree at most 6 , and conclude the theorem by induction.

We use the Discharging Method to prove Theorem 8. This technique, that was introduced
and used successfully for proving structural properties of planar graphs (most notably, in the proof of the Four Color Theorem [4]), has recently proven to be a useful tool also for solving several problems in geometric graph theory $[1,2,5,15,21]$. The idea is to assign a charge to every face of the planar map $M(G)$ such that the total charge is $4 n-8$. Then, redistribute the charges in several steps such that eventually the charge of every face is nonnegative and the charge of every vertex $v \in V(G)$ is $\operatorname{deg}(v) / 3$. Hence, $2|E(G)| / 3=\sum_{v \in V(G)} \operatorname{deg}(v) / 3 \leq$ $4 n-8$ and we get the claimed bound on $|E(G)|$. Next we describe the proof in details. Unfortunately, as it often happens when using the discharging method, the proof requires considering many cases and sub-cases.

Charging. Let V^{\prime}, E^{\prime}, and F^{\prime} denote the vertex, edge, and face sets of $M(G)$, respectively. For a face $f \in F^{\prime}$ let $v(f)$ denote the number of vertices of G on the boundary of f. It is easy to see that $\sum_{f \in F^{\prime}} v(f)=\sum_{u \in V(G)} \operatorname{deg}(u)$ and that $\sum_{f \in F^{\prime}}|f|=2\left|E^{\prime}\right|=\sum_{u \in V^{\prime}} \operatorname{deg}(u)$. Note also that every vertex in $V^{\prime} \backslash V(G)$ is a crossing point of G and therefore its degree in $M(G)$ is four. Hence,

$$
\sum_{f \in F^{\prime}} v(f)=\sum_{u \in V(G)} \operatorname{deg}(u)=\sum_{u \in V^{\prime}} \operatorname{deg}(u)-\sum_{u \in V^{\prime} \backslash V(G)} \operatorname{deg}(u)=2\left|E^{\prime}\right|-4\left(\left|V^{\prime}\right|-n\right)
$$

Assigning every face $f \in F^{\prime}$ a charge of $|f|+v(f)-4$, we get that total charge over all the faces is

$$
\sum_{f \in F^{\prime}}(|f|+v(f)-4)=2\left|E^{\prime}\right|+2\left|E^{\prime}\right|-4\left(\left|V^{\prime}\right|-n\right)-4\left|F^{\prime}\right|=4 n-8
$$

where the last equality follows from Euler's Polyhedral Formula by which $\left|V^{\prime}\right|+\left|F^{\prime}\right|-\left|E^{\prime}\right|=2$.

Discharging. We will redistribute the charges in several steps. We denote by $c h_{i}(x)$ the charge of an element x (either a face in F^{\prime} or a vertex in $V(G)$) after the i th step, where $c h_{0}(\cdot)$ represents the initial charge function. We will use the terms triangles, quadrilaterals, pentagons and hexagons to refer to faces of size $3,4,5$ and 6 , respectively. An integer before the name of a face, denotes the number of original vertices (vertices of G) on its boundary. For example, a 2-triangle is a face of size 3 that has 2 original vertices on its boundary. It follows from our choice of G (using Lemma 2.2) that if $v(f)>1$ for a face f, then f is a triangle. Since G has no empty lenses, there are no faces of size 2 in F^{\prime}. Therefore, initially, the only faces with a negative charge are 0 -triangles.
Step 1: Charging 0-triangles. Let t be a 0 -triangle, let e_{1} be one of its edges, and let f_{1} be the other face incident to e_{1} (see Figure $5(\mathrm{a})$). It must be that $\left|f_{1}\right|>3$, for otherwise there would be an empty lens. If f_{1} is not a 0 -quadrilateral, then we move $1 / 3$ units of charge from f_{1} to t, and say that f_{1} contributed $1 / 3$ units of charge to t through e_{1}. Otherwise, if f_{1} is a 0 -quadrilateral, let e_{2} be the opposite edge to e_{1} in f_{1}, and let f_{2} be the other face incident to e_{2}. We claim that f_{2} cannot be a 0 -quadrilateral. Indeed, suppose that f_{2} is a 0 -quadrilateral, let e_{3} be the opposite edge to e_{2} in f_{2} and let f_{3} be the other face that is incident to e_{3}. Let a and b be the two edges of G that cross at the vertex that is opposite to e_{1} in t. Then a and b are already involved in four crossings, therefore f_{3} must have at least two original vertices on its boundary (endpoints of a and b), since f_{3} is not a triangle (this would imply an empty lens). However, we chose G such that such a face is impossible. Therefore if f_{1} is a 0 -quadrilateral, then f_{2} contributes $1 / 3$ units of charge to t through e_{2}. In a similar way t obtains $2 / 3$ units of charge from the two other 'directions'. $\longrightarrow \rightarrow$

After the first discharging step the charge of every 0-triangle is zero. Note that in at most one of the three 'directions' in which a 0 -triangle t 'seeks' charge it can encounter a 0 -quadrilateral. Indeed, two neighboring 0 -quadrilaterals to t would imply that the third neighboring face has two original vertices and size greater than three and hence is not good.

Figure 5: The first two discharging steps.

Observation 2.3. A face can contribute at most once through each of its edges in Step 1. Moreover, if a face contributes through one of its edges in Step 1 then the vertices of this edge are crossing points in G.

Recall that according to our plan, the charge of every original vertex should be one third of its degree. The next discharging step takes care of this.
Step 2: Charging vertices of G. In this step every vertex of G takes $1 / 3$ units of charge from each face it is incident to (see Figure 5(b)).

It follows from Observation 2.3 and the discharging steps that $c h_{2}(f) \geq 2|f| / 3+2 v(f) / 3-$ 4 , for every face f. Therefore $c h_{2}(f) \geq 0$ if $|f| \geq 6$.
Observation 2.4. Let f be a face in $M(G)$ Then

- if $|f| \geq 6$ then ch $n_{2}(f) \geq 0$, and equality may hold only if f is a 0 -hexagon;
- if f is a 1 -pentagon then $c_{2}(f) \geq 2 / 3$;
- if f is a 0 -quadrilateral or a 0 -triangle then $c h_{2}(f)=0$;
- if f is a 1-quadrilateral then $\operatorname{ch}_{2}(f) \geq 0$;
- if f is a 2-triangle then $c_{2}(f)=1 / 3$; and
- if f is a 1 -triangle then $c_{2}(f)=-1 / 3$.

Note that we have not mentioned 0-pentagons. Showing that 0-pentagons end up with a nonnegative charge will be the most challenging task, and therefore we postpone the analysis of their charge until after all the discharging steps are described.

After the second discharging step the charge of every vertex $v \in V(G)$ is $\operatorname{deg}(v) / 3$ and the only faces with a negative charge are 1-triangles (we will see later in Proposition 2.13 that the charge of 0 -pentagons after Step 1 is nonnegative). In the next three steps we redistribute the charges such that the charge of every 1-triangle becomes zero.

Let f be a 1 -triangle and let $v \in V(G)$ be the vertex of G that is incident to f. Let g_{1} and g_{2} be the two faces that share an edge of $M(G)$ with f and are also incident to v. We call g_{1} and g_{2} the neighbors of f (see Figure 6 for an example). Note that $g_{1} \neq g_{2}$ since the degree of every vertex in G is at least 7 . Next, we define the wedge and the wedge-neighbor of f. Let h_{1} be the edge of f that is opposite to v and let f_{1} be the other face that is incident to h_{1}. If f_{1} is not a 0 -quadrilateral then it is the wedge-neighbor of f. Otherwise, let h_{2} be the opposite edge to h_{1} in f_{1} and let f_{2} be the other face that is incident to h_{2}. Again, if f_{2} is not a 0 -quadrilateral then it is the wedge-neighbor of f. If f_{2} is a 0 -quadrilateral then let h_{3} be the opposite edge to h_{2} in f_{2} and let f_{3} be the other face that is incident to h_{3}. In this case, it is not hard to see (similarly to our observation in Step 1) that f_{3} cannot be a 0 -quadrilateral, and so it will be the wedge-neighbor of f. Suppose that f_{j} is the wedge-neighbor of f. Then the wedge of f consists of f and $\bigcup_{i=1}^{j-1} f_{j}$.

Figure 6: g_{1} and g_{2} are the neighbors of the 1-triangle $f . f_{2}$ is its wedge-neighbor and the wedge of f is $f \cup f_{1}$.

Figure 7: $c h_{2}\left(g_{1}\right), c h_{2}\left(g_{2}\right) \leq 0$ and g_{1} is not a 1-triangle.

Proposition 2.5. Let f be a 1-triangle and let g_{1} and g_{2} be its two neighbors. Then if $c h_{2}\left(g_{1}\right) \leq 0$ and $\operatorname{ch}_{2}\left(g_{2}\right) \leq 0$ then g_{1} and g_{2} are 1-triangles.

Proof. The neighbors of a 1-triangle must have at least one vertex of G on their boundary. Therefore, by Observation 2.4, if $c h_{2}\left(g_{i}\right) \leq 0$ then g_{i} is either a 1-triangle or a 1-quadrilateral, for $i=1,2$. Suppose without loss of generality that g_{1} is a 1-quadrilateral and that $c h_{2}\left(g_{i}\right) \leq$ 0 for $i=1,2$. Let v be the vertex of G that is incident to f and let e be the edge of G that contains the edge of f that is opposite to v in f. Then e must be crossed at least five times, see Figure 7.

If the two neighbors of a 1-triangle have a nonpositive charge, and hence are 1-triangles by Proposition 2.5, then the 1-triangle obtains the missing charge from its wedge.
Step 3: Charging 1-triangles with poor neighbors. If f is a 1-triangle whose two neighbors are 1-triangles, then the wedge-neighbor of f contributes $1 / 3$ units of charge to f through the edge of $M(G)$ that it shares with the wedge of f.

Note that in Step 3, as in Step 1, charge is contributed only through edges whose both endpoints are crossing points. Moreover, a face cannot contribute through the same edge in Steps 1 and 3. Therefore, there if $c h_{3}(f)<0$ for a face f, then f is either a 1-triangle or a 0 -pentagon.

Proposition 2.6. Let f be a face that contributes charge in Step 3 to a 1-triangle through one of its edges e, such that e is an edge of t. Then f does not contributes charge in Step 1 or 3 through neither of its two edges that are incident to e.

Proof. Let $A B$ be the edge of G that contains e and let e^{\prime} be an edge of f that is incident to e. Then $A B$ contains four crossing points: the endpoints of e and two crossing points, one on each side of e on $A B$, since the neighbors of t must be 1-triangles. It is then impossible that f contributes charge through e^{\prime} to a 1-triangle t^{\prime} in Step 3 , since one neighbor of such a triangle has to be a 2 -triangle (see Figure $8(\mathrm{a})$). It is also impossible that f contributes charge through e^{\prime} to a 0-triangle t^{\prime} in Step 1, since then $A B$ has more than four crossings (see Figure 8(b)), or there is an empty lens.

Figure 8: f contributes charge to t through e in Step 3 and e is an edge of t.

For 1-triangles with a negative charge after Step 3, the missing charge will come from either both neighbors or one neighbor and their wedge-neighbor. The next proposition shows that if the charge of one neighbor of such a 1-triangle is zero (implying that this neighbor is a 1-quadrilateral or a 1-triangle), then the other neighbor is able to contribute charge to the 1-triangle.

Proposition 2.7. Let f be a 1-triangle and let g_{1} and g_{2} be its neighbors. If g_{1} is a 1 -triangle or a 1-quadrilateral such that ch $h_{3}\left(g_{1}\right)=0$ then g_{2} is a 2 -triangle.

Proof. The claim clearly holds when g_{1} is a 1-triangle, since the other neighbor of g_{1} must also be a 1 -triangle if $c_{3}\left(g_{1}\right)=0$. Therefore assume that g_{1} is a 1 -quadrilateral. We consider three cases based on $c h_{2}\left(g_{1}\right)$. If $c h_{2}\left(g_{1}\right)=0$, then it is easy to see that g_{2} is a 2-triangle, for otherwise there would be an edge of G that is crossed more than four times, or a bad face of $M(G)$ (see Figure 9(a)).

Suppose that $c h_{2}\left(g_{1}\right)=1 / 3$. Let e and e^{\prime} be the edges of G that contain the edges of g_{1} that are not incident to v. Let t be the 1-triangle to which g_{1} has contributed charge in Step 3 through an edge that is contained in e. If f is bounded by e, then e has four crossing points and the same arguments as in the previous case apply. Therefore, assume that f is bounded by e^{\prime} and refer to Figure 9(b). Note first that it impossible that t and g_{1} share an edge. Indeed, because the neighbors of t must be 1 -triangles, this would imply that e is crossed more than four times (see Figure 9(b)). Therefore e^{\prime} has four crossings and it follows, as above, that g_{2} is a 2 -triangle (see Figure $9(\mathrm{c})$).

Suppose now that $c h_{2}\left(g_{1}\right)=2 / 3$. Let t_{1} and t_{2} be the two 1 -triangles to which g_{1} has contributed charge in Step 3. By Proposition 2.6 neither t_{1} nor t_{2} share an edge of $M(G)$ with g_{1}. Let e be the edge of G that bounds f and g_{1} (refer to Figure 9(d)). Then e has four crossings and therefore, as before, it follows that g_{2} is a 2 -triangle.

Recall that after Step 3 the charge of every 1-triangle whose two neighbors have a nonpositive charge (and hence are 1-triangles themselves) becomes zero.
Step 4: Charging 1-triangles with positive neighbors. Let f be a 1-triangle such that $c h_{3}(f)<0$ and let g be a neighbor of f such that $c h_{3}(g)>0$. Denote by g^{\prime} the other neighbor of f. Then g contributes $1 / 6$ units of charge to f through the edge of $M(G)$ that they share if: (1) g is not a 1-quadrilateral; (2) g is a 1-quadrilateral and $c h_{3}(g) \geq 2 / 3$; or (3) g is a 1-quadrilateral, $\operatorname{ch}_{3}(g)=1 / 3$, and g^{\prime} is a 1 -triangle or g^{\prime} is a 1 -quadrilateral whose charge after Step 3 is $1 / 3$.

Proposition 2.8. There is no face f such that $c h_{3}(f) \geq 0$ and $\operatorname{ch}_{4}(f)<0$.
Proof. Clearly we only have to consider faces containing original vertices of G. If f is a 1-triangle, then $c h_{3}(f) \leq 0$ and so it cannot contribute charge in Step 4. If f is a 2 -triangle, then $c h_{3}(f)=1 / 3$ and it contributes to at most two 1-triangles in Step 4 and so $c h_{4}(f) \geq 0$.

Figure 9: Illustrations for the proof of Proposition 2.7. If g_{1} is a 1-quadrilateral such that $c h_{3}\left(g_{1}\right)=0$, then the other neighbor of f is a 2 -triangle.

If f is a 3 -triangle then $c h_{3}(f)=1$ and it does not contribute any charge in Step 4 . If f is a 1-quadrilateral then it contributes to at most two 1 -triangles only if $c h_{3}(f) \geq 1 / 3$ and therefore $c h_{4}(f) \geq 0$. If f is a face of size greater than four then it is easy to see that its charge remains positive.

Proposition 2.9. If f is a 1-triangle then $\operatorname{ch}_{4}(f) \geq-1 / 6$.
Proof. Let g_{1} and g_{2} be the neighbors of f. If $c h_{4}(f)<-1 / 6$ it means that f did not receive charge from neither g_{1} nor g_{2} in Step 4. The only faces containing an original vertex that have a non-positive charge after Step 3 are 1-triangles and 1-quadrilaterals. Suppose that g_{1} is a 1-quadrilateral whose charge after Step 3 is zero. Then g_{2} must be a 2 -triangle by Proposition 2.7 and therefore contributes charge to f in Step 4. If g_{1} is a 1-triangle then it cannot be that g_{2} is also a 1-triangle because then after Step 3 we have $c h_{3}(f)=0$. It is also impossible that g_{2} is a 1-quadrilateral with a zero charge, by Proposition 2.7. Therefore, g_{2} must contribute $1 / 6$ units of charge to f in Step 4 in this case.

Proposition 2.10. If f is a 1-quadrilateral such that $\operatorname{ch}_{3}(f)=1 / 3$ then f contributes charge to at most one 1-triangle in Step 4.

Proof. Suppose that f is a 1-quadrilateral such that $c h_{3}(f)=1 / 3$ and f contributes charge to two 1-triangles t_{1} and t_{2} in Step 4. Let g_{1} and g_{2} be the other neighbors of t_{1} and t_{2}, respectively. Note that according to Step 4 , each of g_{1} and g_{2} must be either a 1-triangle or a 1-quadrilateral whose charge is $1 / 3$ after Step 3 . Observe also that it is impossible that $c h_{2}(f)=1 / 3$, since this would imply an edge in G that is crossed more than four times, see Figure 10(a).

Therefore, assume that $c h_{2}(f)=2 / 3$ and denote by t^{\prime} the 1-triangle to which f has contributed charge in Step 3. However, t^{\prime} must share an edge of $M(G)$ with f, and this implies that both of its neighbors are not 1-triangles (see Figure 10(b)).

(a) If $\operatorname{ch}_{2}(f)=1 / 3$ then there is an edge with more than four crossings.

(b) If $\operatorname{ch}_{2}(f)=2 / 3$ then f does not contributes charge to t^{\prime} in Step 3 since it is impossible that both neighbors of t^{\prime} are 1-triangles.

Figure 10: f is a 1-quadrilateral such $c h_{3}(f)=1 / 3$ that contributes charge to t_{1} and t_{2} in Step 4.

Step 5: Finish charging 1-triangles. Let f be a 1-triangle, let g^{\prime} be the wedge-neighbor of f and let e^{\prime} be the edge of $M(G)$ that is common to g^{\prime} and the wedge of f. If $c h_{4}(f)<0$ then g^{\prime} contributes $1 / 6$ units of charge to f through e^{\prime}.

Observation 2.11. Let f be a face and let e be an edge of f. Then f contributes charge through e at most once during the discharging steps 1-5.

Proposition 2.12. Let f be a face in $M(G)$. If $c h_{5}(f)<0$ then f is a 0-pentagon.
Proof. It follows from Proposition 2.9 and Step 5 that the charge of every 1-triangle is zero after the fifth discharging step. Suppose that f is a 1 -quadrilateral. Then $c h_{3}(f)$ is either 0 , $1 / 3$, or $2 / 3$. In the first case f does not contribute charge in Steps 4 and 5 , and therefore $c h_{5}(f)=0$. If $c h_{3}(f)=2 / 3$ then clearly $c h_{5}(f) \geq 1 / 6$. If $c h_{3}(f)=1 / 3$ then it follows from Proposition 2.10 that $c h_{4}(f) \geq 1 / 6$ and so $c h_{5}(f) \geq 0$. It is not hard to see, keeping Observation 2.11 in mind, that the charge of any other face but a 0-pentagon cannot be negative.

Step 6: Charging 0-pentagons. Let f be a face such that $c h_{5}(f)>0$ and let $B(f)$ be the set of 0-pentagons f^{\prime} such that $c h_{5}\left(f^{\prime}\right)<0$ and f^{\prime} and f intersect at exactly one vertex of $M(G)$. If $B(f) \neq \emptyset$ then in the sixth discharging step f sends $c h_{5}(f) /|B(f)|$ units of charge to every 0-pentagon in $B(f)$ through their intersection point.

It follows from Proposition 2.12 and Step 6 that it remains to show that after the last discharging step the charge of every 0-pentagon is nonnegative. Note that a 0-pentagon can contribute either $1 / 3$ or $1 / 6$ units of charge (to a triangle) at most once through each of its edges. We first show, in Proposition 2.13, that the charge of a 0-pentagon after Step 1 is nonnegative and therefore is either $1,2 / 3,1 / 3$ or 0 . We then consider these cases separately in Lemmas 2.15, 2.16, 2.17 and 2.19, respectively.

First, we introduce some useful notations. Let f be a 0 -pentagon. Let e_{0}, \ldots, e_{4} be the edges on the boundary of f, listed in their clockwise cyclic order. The vertices of f are denoted by v_{0}, \ldots, v_{4}, such that v_{i} is incident to v_{i} and v_{i+1} (addition is done modulo 5). For every edge $e_{i}=v_{i} v_{i+1}$ of f we denote by $A_{i} B_{i}$ the edge of G that contains e_{i}, such that v_{i} is between A_{i} and v_{i+1} on $A_{i} B_{i}$. Denote by t_{i} the 1-triangle to which f sends charge through e_{i}, if such a triangle exists. Note that if t_{i} is a 1-triangle then one of its vertices is $A_{i-1}=B_{i+1}$. Its other vertices will be denoted by x_{i} and y_{i} such that x_{i} is contained in $A_{i-1} B_{i-1}$ and y_{i} is contained in $A_{i+1} B_{i+1}$. If t_{i} is a 0 -triangle, then w_{i} denotes its vertex which is the

Figure 11: The notations used for vertices, edges, and faces near a 0-pentagon f. Bold edge-segments mark edges of $M(G)$.

Figure 12: A 0-pentagon cannot contribute to three 0-triangles through non-consecutive edges.
crossing point of $A_{i-1} B_{i-1}$ and $A_{i+1} B_{i+1}$, and, as before, x_{i} and y_{i} denote its other vertices. Obviously, different notations might refer sometimes to the same point. Finally, we denote by f_{i} the face that is incident to v_{i} and is incident neither to e_{i} nor to e_{i+1}. That is, the intersection of f and f_{i} is exactly v_{i}, and thus $f \in B\left(f_{i}\right)$ if $c h_{5}(f)<0$. See Figure 11 for an example of these notations. Note also that in all the figures bold edge-segments mark edges of $M(G)$.

Proposition 2.13. Let f be a 0-pentagon. Then $c_{1}(f) \geq 0$. Moreover, if $\operatorname{ch}_{1}(f)=0$ then f has contributed charge to three 0-triangles through three consecutive edges on its boundary.

Proof. Suppose that f has contributed charge through three non-consecutive edges. Assume without loss of generality that these edges are e_{1}, e_{2}, e_{4}. Then the edges $A_{0} B_{0}$ and $A_{3} B_{3}$ have four crossings, and this implies that either f_{1} is a bad face, or $A_{3}=B_{0}$ and G has an empty lens (see Figure 12).

Proposition 2.14. Suppose that f is a 0-pentagon that contributes charge in Step 3 through e_{i} and e_{i+1}, for some $0 \leq i \leq 4$, such that the wedges of t_{i} and t_{i+1} each contain exactly one 0 -quadrilateral. Then f_{i} contributes at least $1 / 3$ units of charge to f in Step 6 .

Proof. Assume without loss of generality that $i=1$ and refer to Figure 13. Let $A_{2} y_{1} p$ be the neighbor of t_{1} that shares an edge with f_{1} and Let $A_{3} x_{2} q$ be the neighbor of t_{2} that shares an edge with f_{1}. Observe that $\left|f_{1}\right| \geq 5$ and that f_{1} contributes at most $1 / 6$ units of charge through $y_{1} p$ and $x_{2} q$. Note also that f_{1} contributes at most $1 / 6$ units of charge

Figure 13: An illustration for the proof of Proposition 2.14: If f contributes charge to t_{1} and t_{2} in Step 3 and their wedges each contain exactly one 0 -quadrilateral, then f_{1} contributes at least $1 / 3$ units of charge to f in Step 6 .
through $v_{1} x_{2}$. Indeed, if it contributes charge through $v_{1} x_{2}$ in Step 1, then $A_{2} B_{2}$ would have more than four crossings, and if f_{1} contributes charge through $v_{1} x_{2}$ in Step 3, then the wedge of t_{2} would have two 0 -quadrilaterals. Similarly, f_{1} contributes at most $1 / 6$ charge through $v_{1} y_{1}$. None of the vertices q, x_{2}, y_{1}, p can be the intersection of f_{1} with a 0 -pentagon. Note that if $\left|f_{1}\right|=5$ then $B\left(f_{1}\right)=\{f\}$ and f_{1} does not contribute charge through $p q$ and so $\operatorname{ch}_{5}\left(f_{1}\right) \geq 1 / 3$. Therefore f_{1} sends $1 / 3$ units of charge to f in Step 6 in this case.

If $\left|f_{1}\right| \geq 6$ then the clockwise chain from p to q contains $\left|f_{1}\right|-4$ edges and at most $\left|f_{1}\right|-5$ vertices through which f_{1} might contribute charge in Step 6 . Therefore every face in $B\left(f_{1}\right)$ receives from f_{1} in Step 6 at least $\frac{\left|f_{1}\right|-4-4 / 6-\left(\left|f_{1}\right|-4\right) / 3}{\left|f_{1}\right|-4} \geq 1 / 3$ units of charge.

Lemma 2.15. Let f be a 0 -pentagon such $c_{1}(f)=1$. Then $c h_{6}(f) \geq 0$.
Proof. Suppose that $c h_{1}(f)=1$ and $c h_{5}(f)<0$. Then f contributes charge either to exactly two or to at least three 1-triangles in Step 3. We consider each of these cases separately.
Case 1: $c h_{3}(f)=1 / 3$ and $c h_{5}(f)=-1 / 6$. That is, f contributes $1 / 3$ units of charge to two 1-triangles in Step 3 and contributes $1 / 6$ units of charge to three 1 -triangles in Step 5 . We may assume without loss of generality that in Step 3 either f contributes charge to t_{1} and t_{2}, or it contributes charge to t_{1} and t_{3}.
Sub-case 1.1: f contributes charge to t_{1} and t_{2} in Step 3 and to t_{3}, t_{4}, t_{0} in Step 5. Recall that by Proposition $2.6 e_{1}$ cannot be an edge of t_{1} and e_{2} cannot be an edge of t_{2}.

Note that neither of the wedges of t_{1} and t_{2} contain two 0 -quadrilaterals. Indeed, suppose that the wedge of t_{2} contains two 0 -quadrilaterals and refer to Figure 14. Then, since $A_{1} A_{3}$ has four crossings it follows that $A_{1} v_{0}$ is an edge in $M(G)$, and so $t_{0}=A_{1} v_{4} v_{0}$. Similarly, $t_{4}=A_{0} v_{3} v_{4}$. Because f_{4} is a good face, it must be a 2-triangle, that is, $f_{4}=A_{1} v_{4} A_{0}$. In Step $5 f$ sends charge to t_{4}, therefore the other neighbor of t_{4}, f_{3}, cannot be a 2 -triangle, and so e_{3} is not an edge of t_{3}. It follows that the wedge of t_{1} contains exactly one 0 -quadrilateral, and therefore the size of f_{0} is at least four. f_{0} may not contribute charge to t_{0} in Step 4 only if $\left|f_{0}\right|=4$ and $\operatorname{ch}_{3}\left(f_{0}\right) \leq 1 / 3$. However, it is not hard to see that if $\left|f_{0}\right|=4$ then $c h_{3}\left(f_{0}\right)=2 / 3$. Therefore f_{0} contributes charge to t_{0} in Step 4 (as does f_{4}), and thus f does not contribute charge to t_{0} in Step 5 , a contradiction.

Therefore, each of the wedges of t_{1} and t_{2} contain exactly one 0 -quadrilateral. Thus, by Proposition 2.14 the face f_{1} contributes at least $1 / 3$ units of charge to f in Step 6, and so $c h_{6}(f) \geq 0$.
Sub-case 1.2: f contributes charge to t_{1} and t_{3} in Step 3 and to t_{2}, t_{4}, t_{0} in Step 5. Consider first the case that e_{1} is an edge of t_{1} and refer to Figure 15(a). Then the wedges of t_{2}

Figure 14: Sub-case 1.1 in the proof of Lemma 2.15. If the wedge of t_{2} contains two $0-$ quadrilaterals then t_{0} receives charge from both of its neighbors in Step 4 , and no charge from f.

Figure 15: Sub-case 1.2 in the proof of Lemma 2.15: f contributes $1 / 3$ units of charge in Step 3 through each of e_{1} and e_{3}.
and t_{0} contain one 1-quadrilateral each. It is impossible that $t_{3}=A_{4} v_{2} v_{3}$ since its two neighbors should be 1-triangles and in this case if f_{2} is a 1 -triangle then there is an empty lens. Therefore the wedge of t_{3} contains exactly one 0 -quadrilateral (two 0 -quadrilaterals imply more than four crossings on $A_{1} A_{4}$).

Let $A_{4} x_{3} q$ be the 1-triangle that is a neighbor of t_{3} and shares an edge with f_{2}. Consider the face f_{2} and observe that $\left|f_{2}\right|>4$ for if $\left|f_{2}\right|=4$ then G has an empty lens. Suppose that $\left|f_{2}\right|=5$ and let p be its fifth vertex (its other vertices are q, x_{3}, v_{2}, y_{2}). Refer to Figure 15(a) and note that it is not hard to see that $\operatorname{ch}_{5}\left(f_{2}\right) \geq 1 / 6$ since the only edge through which f_{2} might contribute $1 / 3$ units of charge (in Step 3) is $p y_{2}$, but in this case f_{2} does not contribute charge through $p q$. Observe also that f_{2} cannot intersect another 0-pentagon precisely at q, x_{3} or y_{2}. It might intersect a 0 -pentagon at p, but then it does not contribute any charge through $p q$ and $p y_{2}$, and then $c h_{5}\left(f_{2}\right) \geq 1 / 2$. Therefore in Step $6 f_{2}$ contributes to f at least $1 / 6$ units of charge and f ends up with a nonnegative charge.

If $\left|f_{2}\right| \geq 6$ then on the clockwise chain from y_{2} to q there are $\left|f_{2}\right|-3$ edges and at most $\left|f_{2}\right|-4$ vertices through which f_{2} contributes charge in Step 6. Since f_{2} contributes at most $1 / 6$ units of charge through $v_{2} y_{2}, x_{3} q$, and $x_{3} v_{2}$, it contributes at least $\frac{\left|f_{2}\right|-4-3 / 6-\left(\left|f_{2}\right|-3\right) / 3}{\left|f_{2}\right|-3} \geq$ $1 / 6$ units of charge to every face in $B\left(f_{2}\right)$ in Step 6.

The case that e_{3} is an edge of t_{3} is symmetric, therefore suppose now that e_{1} is not an edge of t_{1} and e_{3} is not an edge of t_{3} and refer to Figure $15(\mathrm{~b})$. Observe that the wedges of t_{1} and t_{3} must contain exactly one 0 -quadrilateral each, for otherwise $A_{2} A_{4}$ has more than four crossings. We claim that at least one of f_{1} and f_{2} is of size at least five. Indeed, suppose that both of them are of size four. Then it is impossible that both f_{1} and f_{2} are 0 -quadrilateral, since this implies an empty lens. Assume without loss of generality that f_{1} is not a 0 -quadrilateral. If f_{1} is a 1 -quadrilateral, then $A_{3} v_{1}$ is an edge of $M(G)$, but then so is $A_{3} v_{2}$. This means that the two neighbors of $t_{2}=A_{3} v_{1} v_{2}$ are 1-quadrilaterals, see Figure $15(\mathrm{~b})$. Observe that these 1-quadrilaterals cannot contribute charge in Steps 1 and 3. Therefore, f_{1} and f_{2} contribute charge to t_{2} in Step 4 and thus, f does not contribute charge to t_{2} in Step 5.

Hence, we may assume without loss of generality that $\left|f_{2}\right| \geq 5$ (see Figure $15(\mathrm{c})$ for an example). It is not hard to see that, as in the case where we assumed that e_{1} is an edge of t_{1}, f_{2} sends at least $1 / 6$ units of charge to f in Step 6.

Case 2: $c h_{3}(f) \leq 0$ and $c h_{5}(f)<0$. In this case f contributes $1 / 3$ units of charge to at least three 1-triangles Step 3. By symmetry there are two sub-cases to consider.
Sub-case 2.1: f contributes charge through each of e_{1}, e_{2}, e_{3} in Step 3. Observe that none of the 1-triangles t_{1}, t_{2}, t_{3} can share an edge (of $M(G)$) with f according to Proposition 2.6. Moreover, the wedges of t_{1} and t_{3} must contain exactly one 0 -quadrilateral, for otherwise $A_{2} A_{4}$ has more than four crossings.

If there is only one 1-quadrilateral in the wedge of t_{2}, then by Proposition 2.14 each of f_{1} and f_{2} contributes at least $1 / 3$ units of charge to f in Step 6 and so $c h_{6}(f) \geq 0$.

Therefore, assume that there are two 0 -quadrilaterals in the wedge of t_{2} and refer to Figure $16(\mathrm{a})$. It follows that $A_{1} v_{0}$ is an edge of f_{0} and $B_{3} v_{3}$ is an edge of f_{3}. Consider f_{0} and observe that $\left|f_{0}\right| \geq 4$. Note also that f_{0} does not contribute any charge through $x_{1} v_{0}$, as this would imply that the edge of G that contains $x_{1} y_{1}$ has more than four crossings. Denote by z the other vertex (but v_{0}) that is adjacent to x_{1} in f_{0}, and observe that f_{0} contributes at most $1 / 6$ units of charge through each of $z x_{1}$ and $A_{1} v_{0}$.

If f_{0} is a 1-quadrilateral (as in Figure 16(a)), then it does not contribute charge through $A_{1} z$, and therefore $\operatorname{ch}_{5}\left(f_{0}\right) \geq 1 / 3$. In this case $B\left(f_{0}\right)=\{f\}$ and so f_{0} sends $1 / 3$ units of charge to f is Step 6.

If $\left|f_{0}\right| \geq 5$ then consider the clockwise chain from A_{1} to z, and observe that it contains

Figure 16: Illustrations for Case 2 in the proof of Lemma 2.15.
$\left|f_{0}\right|-3$ edges and at most $\left|f_{0}\right|-4$ vertices through which f_{0} sends charge in Step 6. Therefore, every face in $B\left(f_{0}\right)$ (including f) receives from f_{0} in Step 6 at least $\frac{\left|f_{0}\right|-4+1-2 / 6-1 / 3-\left(\left|f_{0}\right|-3\right) / 3}{\left|f_{0}\right|-3} \geq$ $1 / 3$ units of charge.

By symmetry f_{3} also contributes at least $1 / 3$ units of charge to f in Step 6 and therefore f ends up with a nonnegative charge.
Sub-case 2.2: In Step $3 f$ contributes charge through each of e_{1}, e_{2}, e_{4}, and does not contribute charge through e_{3} and e_{0} (otherwise we are back in Sub-case 2.1). Thus, $\operatorname{ch}_{5}(f) \geq-1 / 3$. Observe that none of the 1-triangles t_{1}, t_{2} can share an edge (of $M(G)$) with f according to Proposition 2.6. If the wedges of t_{1} and t_{2} each contain one 0 -quadrilateral, then by Proposition 2.14 the face f_{1} sends at least $1 / 3$ units of charge to f in Step 6 and thus $\operatorname{ch}_{6}(f) \geq 0$.

Thus, assume without loss of generality that the wedge of t_{2} contains two 0 -quadrilaterals and refer to Figure 16(b). Since $A_{3} A_{0}$ contains at most four crossings, e_{4} must be an edge of t_{4}. It follows that $A_{1} \neq B_{4}$, for otherwise, $A_{1} A_{3}$ would have more than four crossings. Therefore f does not contribute charge through e_{0} and thus it must contribute charge through e_{3}. Hence, $A_{4}=B_{2}$ and the wedge of t_{1} must contain exactly one 0 -quadrilateral. It is not hard to see, as in Sub-case 2.1, that f_{0} contributes at least $1 / 3$ units of charge to f in Step 6.

Lemma 2.16. Let f be a 0 -pentagon such $c h_{1}(f)=2 / 3$. Then $\operatorname{ch}_{6}(f) \geq 0$.
Proof. Assume without loss of generality that f contributes $1 / 3$ units of charge in Step 1 to t_{1} through e_{1}. There are two cases to consider, based on whether f contributes $1 / 3$ units of charge to one or more 1-triangles in Step 3.
Case 1: $c h_{3}(f)=1 / 3$ and $c h_{5}(f)=-1 / 6$. That is, f contributes $1 / 3$ units of charge to exactly one 1 -triangle t^{\prime} in Step 3, and $1 / 6$ units of charge to three 1 -triangles in Step 5. Without loss of generality we may assume that either $t^{\prime}=t_{2}$ or $t^{\prime}=t_{3}$.
Sub-case 1.1: f sends $1 / 3$ units of charge to t_{2} in Step 3. We observe first that the wedge of t_{2} cannot contain two 0 -quadrilaterals. Indeed, suppose it does and refer to Figure 17(a). Since $A_{1} A_{3}$ and $A_{3} A_{0}$ have four crossings it follows that e_{0} is an edge of t_{0} and e_{4} is an edge of t_{4}. Since f_{0} is a good face, there must be two crossing points between A_{2} and v_{1} on $A_{2} A_{4}$. Therefore, e_{3} is an edge of t_{3}. However, this implies that the two neighbors of t_{4} are

(a) If the wedge of t_{2} contains two 0 -quadrilaterals, then the two neighbors of t_{4} are 2 -triangles.

(c) If $A_{2} w_{1}$ is not an edge in $M(G)$, then $t_{3}=A_{4} v_{2} v_{3}$ and e_{4} is not an edge of t_{4}. Thus the size of f_{1} is at least five and it contains one original vertex.

(b) If e_{1} is not an edge of t_{1}, then t_{3} receives $1 / 6$ units of charge from each of its neighbors in Step 4.

(d) $A_{2} w_{1}$ is an edge in $M(G)$ and $B_{0} w_{1}$ is not.

Figure 17: Sub-case 1.1 in the proof of Lemma 2.16: f sends $1 / 3$ units of charge to t_{1} in Step 1 and $1 / 3$ units of charge to t_{2} in Step 3.

2-triangles, and therefore it will not receive any charge from f in Step 5 . If the wedge of t_{2} contains no 0-quadrilaterals, then either $A_{2} A_{4}$ has five crossings or there is an empty lens. Therefore, the wedge of t_{2} must contain exactly one 0 -quadrilateral.

Next, we observe that e_{1} must be an edge of t_{1}. Indeed, suppose it is not and refer to $17(\mathrm{~b})$. Since $A_{2} A_{4}$ and $A_{0} B_{0}$ have four crossings, e_{3} is an edge of t_{3} and e_{4} is an edge of t_{4}. Therefore one neighbor of t_{3} is a 2-triangle $\left(f_{3}=A_{4} A_{0} v_{3}\right)$. Consider f_{2}, the other neighbor of t_{3}. Then either f_{2} is a 1 -quadrilateral whose charge after Step 3 is $2 / 3$ (see Figure $17(\mathrm{~b})$) or a face of size at least five. In any case, t_{3} receives $1 / 6$ units of charge from each of its neighbors in Step 4 and therefore does not receive any charge from f in Step 5 .

Consider now the edge-segment $A_{2} w_{1}$. Suppose that it contains a crossing point between A_{2} and w_{1} and refer to Figure $17(\mathrm{c})$. It follows that e_{3} is an edge of t_{3}. The face f_{2} is a neighbor of t_{3}. Its size is at least five or it is a 1-quadrilateral whose charge after Step 3 is $2 / 3$. Therefore, the other neighbor of t_{3} cannot be a 2 -triangle (otherwise f does not contribute charge to t_{3}), and therefore e_{4} is not an edge of t_{4}. It follows that $B_{0} w_{1}$ is an edge of f_{1}. Note that the size of f_{1} is at least five and it contains one original vertex. It is not hard to see that f_{1} contributes in Step 6 at least $1 / 6$ units of charge to every 0 -pentagon in $B\left(f_{1}\right)$ (including f), and therefore f ends up with a nonnegative charge.

It remains to consider the case that $A_{2} w_{1}$ is an edge in $M(G)$. If $B_{0} w_{1}$ is an edge in $M(G)$ then f_{1} is a face of size at least five that contains one original vertex. Hence, as before, it is not hard to see that it contributes in Step 6 at least $1 / 6$ units of charge to f. Suppose that the edge-segment $B_{0} w_{1}$ is crossed and refer to Figure 17(d). It follows that e_{4} is an edge of t_{4}. Since f_{0} is a good face, e_{0} is not an edge of t_{0}. Consider the face f_{0} and observe that $\left|f_{0}\right| \geq 4$ and it contributes $1 / 3$ units of charge through $v_{0} w_{1}$, and at most $1 / 6$ units of charge through $v_{0} y_{0}$. Suppose that f_{0} is a 1-quadrilateral. Then it does not contribute charge through $A_{2} w_{1}$ in Step 4 , since $c h_{3}\left(f_{0}\right)=1 / 3$ and if the face that shares $A_{2} w_{1}$ with f_{0} is a 1-triangle, then the other neighbor of this 1-triangle is a 2 -triangle. Note also that the face that shares $A_{2} y_{0}$ with f_{0} is a 2 -triangle, and therefore f_{0} does not contribute charge through this edge as well. Thus, $c h_{5}\left(f_{0}\right) \geq 1 / 6$ and $B\left(f_{0}\right)=\{f\}$ and so f receives as least $1 / 6$ units of charge from f_{0} in Step 6.

If $\left|f_{0}\right| \geq 5$ then f_{0} might contribute $1 / 6$ units of charge through $A_{2} w_{1}$. Consider the clockwise chain from y_{0} to A_{2}, and observe that it contains $\left|f_{0}\right|-3$ edges and at most $\left|f_{0}\right|-4$ vertices through which f_{0} sends charge in Step 6. Therefore, every face in $B\left(f_{0}\right)$ (including f) receives from f_{0} in Step 6 at least $\frac{\left|f_{0}\right|-4+1-2 / 6-2 / 3-\left(\left|f_{0}\right|-3\right) / 3}{\left|f_{0}\right|-3} \geq 1 / 6$ units of charge.
Sub-case 1.2: f sends $1 / 3$ units of charge to t_{3} in Step 3. We observe first that e_{1} must be an edge of t_{1}. Indeed, suppose it does not and refer to Figure 18(a). Since each of $A_{2} B_{2}$ and $A_{0} B_{0}$ contain four crossings, e_{3} is an edge of t_{3} and e_{4} is an edge of t_{4}. But then one neighbor of t_{3} is a 2 -triangle and therefore f could not have contributed charge to t_{3} in Step 3 .

If e_{3} is an edge of t_{3}, then it is easy to see that f ends up with a nonnegative charge. Indeed, refer to Figure $18(\mathrm{~b})$ and observe that in this case one neighbor of t_{2} is a 2 -triangle which means that its other neighbor is either a 1-quadrilateral or a 1-triangle. This implies that the size of f_{1} is at least five and it contains one original vertex. Thus, it is not hard to see that f_{1} contributes at least $1 / 6$ units of charge to f in Step 6 .

Therefore, assume that e_{3} is not an edge of t_{3} and refer to Figure 18(c). Observe that e_{0} is not an edge of t_{0}, since this would imply that f_{0} is a bad face. Suppose that e_{4} is an edge of t_{4} and consider the face f_{3}. Let $A_{4} y_{3} q$ be the 1-triangle that shares an edge with t_{3} and f_{3}. Note that $\left|f_{3}\right| \geq 4$ and that $v\left(f_{3}\right)=1$. Observe also that f_{3} contributes at most $1 / 6$ units of charge through $A_{0} v_{3}, v_{3} y_{3}$, and $y_{3} q$. If f_{3} is a 1 -quadrilateral then $\operatorname{ch}_{5}\left(f_{3}\right) \geq 1 / 6$ since f_{3} does not charge through $A_{0} q$ (because the face sharing $A_{0} q$ with f_{3} is a 2 -triangle). Since $B\left(f_{3}\right)=\{f\}, f$ ends up with a nonnegative charge in this case.

If $\left|f_{3}\right| \geq 5$ then consider the clockwise chain from q to A_{0}, and observe that it contains

(a) If e_{1} is not an edge of t_{1} then one neighbor of t_{3} is a 2 -triangle.

(c) e_{3} is not an edge of t_{3} and e_{4} is an edge of $t_{4} . f_{1}$ sends charge to f in Step 6.

(b) e_{3} is an edge of t_{3}. f_{1} sends charge to f in Step 6 .

(d) e_{3} is not an edge of t_{3} and e_{4} is not an edge of t_{4}, f_{3} sends charge to f in Step 6 .

Figure 18: Sub-case 1.2 in the proof of Lemma 2.16: f sends $1 / 3$ units of charge to t_{1} in Step 1 and $1 / 3$ units of charge to t_{3} in Step 3.

(a) If the wedge of t_{2} contains two 1quadrilaterals, then f does not contribute charge through e_{3} and e_{0}.

(b) If e_{4} is not an edge of t_{4}, then f^{\prime} sends charge to f in Step 6.

Figure 19: Sub-case 2.1 in the proof of Lemma 2.16.
$\left|f_{3}\right|-3$ edges and at most $\left|f_{3}\right|-4$ vertices through which f_{3} sends charge in Step 6. Therefore, every face in $B\left(f_{3}\right)$ (including f) receives from f_{3} in Step 6 at least $\frac{\left|f_{3}\right|-4+1-3 / 6-1 / 3-\left(\left|f_{3}\right|-3\right) / 3}{\left|f_{3}\right|-3} \geq$ $1 / 6$ units of charge.

It remains to consider the case that e_{4} is not an edge of t_{4}. Refer to Figure 18(d) and observe that e_{2} cannot be an edge of t_{2}, because then f_{1} would be a bad face. Similarly, e_{0} is not an edge of t_{0}. Note that $\left|f_{1}\right| \geq 4$ and $v\left(f_{1}\right)=1$. Observe that f_{1} contributes $1 / 3$ units of charge to B_{0} and to t_{1} and at most $1 / 6$ units of charge through $v_{1} x_{2}$. Furthermore, f_{1} does not contribute any charge through $B_{0} w_{1}$. If f_{1} is a 1-quadrilateral (as in Figure 18(d)), then it also does not contribute any charge through $B_{0} x_{2}$, and therefore $\operatorname{ch}_{5}\left(f_{1}\right) \geq 1 / 6$. We also have $B\left(f_{1}\right)=\{f\}$ in this case, and so f_{1} sends at least $1 / 6$ units of charge to f in Step 6 .

If $\left|f_{1}\right| \geq 5$ then consider the clockwise chain from B_{0} to x_{2}, and observe that it contains $\left|f_{1}\right|-3$ edges and at most $\left|f_{1}\right|-4$ vertices through which f_{1} sends charge in Step 6 . Therefore, every face in $B\left(f_{1}\right)$ (including f) receives from f_{1} in Step 6 at least $\frac{\left|f_{1}\right|-4+1-2 / 6-2 / 3-\left(\left|f_{1}\right|-3\right) / 3}{\left|f_{1}\right|-3} \geq$ $1 / 6$ units of charge.

Case 2: $c h_{3}(f) \leq 0$ and $c h_{5}(f)<0$. That is, f contributes $1 / 3$ units of charge to two 1 triangles in Step 3, and also sends charge to at least one more 1-triangle in Step 3 or Step 5. Recall that we assume without loss of generality that f sends $1 / 3$ units of charge to t_{1} in Step 1. Note that we may assume that $c h_{5}(f) \geq-1 / 3$, for otherwise f contributes charge to at least three 1-triangles in Step 3, and we have actually considered this scenario in Case 2 of Lemma 2.15.

If f sends charge to two 1 -triangles in Step 3 through consecutive edges on its boundary, then by Proposition 2.14 it ends up with a nonnegative charge. Therefore, by symmetry, there are two remaining cases to consider.
Sub-case 2.1: f sends $1 / 3$ units of charge to t_{2} and t_{4} in Step 3. Observe first that the wedge of t_{2} must contain exactly one 1-quadrilateral. Indeed, if it contains no 1-quadrilateral (that is, e_{2} is an edge of t_{2}) then the edge of G that contains e_{2} has more than four crossings. Suppose that the wedge of t_{2} contains two 1-quadrilaterals and refer to Figure 19(a). Then e_{4} must be an edge of t_{4}. Since f_{0} is a good face there is a crossing point between A_{2} and v_{1} on $A_{2} B_{2}$. Therefore $B_{2} v_{2}$ is an edge in $M(G)$ and it is impossible that $A_{4}=B_{2}$ and f sends charge through e_{3}. Similarly, since $A_{1} v_{0}$ is an edge in $M(G)$, it is impossible that $A_{1}=B_{4}$ and f sends charge through e_{0}. Therefore, $\operatorname{ch}_{5}(f) \geq 0$, a contradiction.

Consider now the case that e_{4} is not an edge of t_{4}, and refer to Figure 19(b). Notice

Figure 20: Sub-case 2.1 in the proof of Lemma 2.16. e_{4} is an edge of t_{4}.
that $\left|f_{1}\right| \geq 5, v(f)=1$, and it is therefore not hard to see that f_{1} sends at least $1 / 3$ units of charge to f in Step 6 and so f ends up with a nonnegative charge.

It remains to consider the case that e_{4} is an edge of t_{4}. If $c h_{5}(f)<0$ then f must have contributed charge through e_{3} or e_{0} in Step 5. Suppose that f sends $1 / 6$ units of charge through e_{3} in Step 5, and refer to Figure 20(a). Note that $\left|f_{2}\right| \geq 5$ and let $x_{3}, v_{2}, y_{2}, p, q$ be (some of) its vertices listed in a clockwise order. Observe that f_{2} contributes no charge through $v_{2} y_{2}$ and at most $1 / 6$ units of charge through $x_{3} v_{2}$ and $y_{2} p$. If $\left|f_{2}\right|=5$, then it might contribute at most $1 / 6$ units of charge through $q x_{3}$ and $p q$. However, if f_{2} contributes through one of these edges, then it does not contribute charge through q in Step 6. Therefore, f_{2} sends at least $1 / 3$ units of charge to f in Step 6.

If $\left|f_{2}\right| \geq 6$ then consider the clockwise chain from p to x_{3}, and observe that it contains $\left|f_{2}\right|-3$ edges and at most $\left|f_{2}\right|-4$ vertices through which f_{2} sends charge in Step 6. However, if f_{2} contributes charge through $p q$ then it does not contribute charge through q in Step 6. Therefore, every face in $B\left(f_{2}\right)$ (including f) receives from f_{2} in Step 6 at least $\min \left\{\frac{\left|f_{2}\right|-4-2 / 6-\left(\left|f_{2}\right|-3\right) / 3}{\left|f_{2}\right|-4}, \frac{\left|f_{2}\right|-4-2 / 6-\left(\left|f_{2}\right|-4\right) / 3}{\left|f_{2}\right|-3}\right\} \geq 1 / 3$ units of charge.

Finally, suppose that f does not contribute (at least $1 / 6$ units of) charge through e_{3} and sends $1 / 6$ units of charge through e_{0} in Step 5 . If there are two crossing points between A_{2} and v_{1} on $A_{2} B_{2}$, then $v\left(f_{2}\right)=1$ and $\left|f_{2}\right| \geq 4$, and it is not hard to see that f_{2} contributes at least $1 / 3$ units of charge to f in Step 6 (see Figure 20(b) for an example).

Otherwise, w_{1} is the only crossing point between A_{2} and v_{1} on $A_{2} B_{2}$. Consider the face f_{1} and note that its size is at least five. Let p be the other vertex of f_{1} that is adjacent to w_{1} but v_{1}, and let q be the other vertex of f_{1} that is adjacent to x_{2} but v_{1}. Refer to Figure 20(c) and observe that f_{1} sends $1 / 3$ units of charge through $w_{1} v_{1}$ and at most $1 / 6$ units of charge through $q x_{2}, x_{2} v_{1}$, and $w_{1} p$. If $\left|f_{1}\right|=5$ then f_{2} cannot send charge through both $p q$ and $w_{1} p$ (because then the 1 -triangle that gets the charge through $p q$ has two 2 triangles for neighbors). Therefore $\operatorname{ch}_{5}\left(f_{1}\right) \geq 1 / 6$. If $\operatorname{ch}_{5}\left(f_{1}\right)=1 / 6$ then $B\left(f_{1}\right)=\{f\}$. If $B\left(f_{1}\right)$ contains another face then this face must intersect f_{1} exactly at p, but in this case f_{1} does not contribute charge through $p q$ and $w_{1} p$ and so $c h_{5}\left(f_{1}\right) \geq 1 / 3$. Therefore, if $\left|f_{1}\right|=5$ then f_{1} sends at least $1 / 6$ units of charge to f in Step 6.

If $\left|f_{1}\right| \geq 5$ then consider the clockwise chain from w_{1} to q, and observe that it contains $\left|f_{1}\right|-3$ edges and at most $\left|f_{1}\right|-4$ vertices through which f_{1} sends charge in Step 6. Recall that f_{1} contributes at most $1 / 6$ units of charge through $w_{1} p$. Therefore, every face in $B\left(f_{1}\right)$

Figure 21: Sub-case 2.2 in the proof of Lemma 2.16.
(including f) receives from f_{1} in Step 6 at least $\frac{\left|f_{1}\right|-4-3 / 6-1 / 3-\left(\left|f_{1}\right|-4\right) / 3}{\left|f_{1}\right|-3} \geq 1 / 6$ units of charge. Note that one neighbor of t_{0} is a 2 -triangle, and therefore $c_{5}(f) \geq-1 / 6$. Thus, f ends up with a nonnegative charge.
Sub-case 2.2: f sends $1 / 3$ units of charge to t_{2} and t_{0} in Step 3. Observe first that it is impossible for e_{2} to be an edge of t_{2}, because then $A_{2} B_{2}$ has more than four crossings. Similarly, e_{0} cannot be an edge of t_{0}. It follows that the wedges of t_{2} and t_{0} each contain exactly one 1 -quadrilateral.

Suppose first that e_{1} is not an edge of t_{1} and refer to Figure 21(a). Consider the face f_{2} and observe that its size is at least four and it contains one original vertex, B_{2}. Let $A_{3} y_{2} p$ be the 1-triangle that is a neighbor of t_{2} and shares an edge with f_{2}. Notice that f_{2} contributes no charge through $v_{2} y_{2}$, at most $1 / 6$ units of charge through $B_{2} v_{2}$ and $y_{2} p$, and no charge through $B_{2} p$ if it is an edge of f_{2}. It is therefore not hard to see that f_{2} sends at least $1 / 3$ units of charge to f in Step 6 .

Suppose now that e_{1} is an edge of t_{1}, and refer to Figure 21(b). Consider the face f_{0} and observe that its size is at least five. If A_{2} is a vertex of f_{0} then it is easy to see that this face contributes at least $1 / 3$ units of charge to f in Step 6. Otherwise, there must be a crossing point between A_{2} and w_{1} on $A_{2} B_{b}$ and thus $B_{2} v_{2}$ is an edge of f_{2} (see Figure 21(b)). In this case, as before, f_{2} contributes at least $1 / 3$ units of charge to f in Step 6 .

Lemma 2.17. Let f be a 0 -pentagon such $c h_{1}(f)=1 / 3$. Then $\operatorname{ch}_{6}(f) \geq 0$.
Proof. Suppose that $c h_{1}(f)=1 / 3$ and $c h_{5}(f)<0$. Assume without loss of generality that f contributes $1 / 3$ units of charge in Step 1 to t_{1} through e_{1}. By symmetry, there are two cases to consider, according to whether the other edge through which f sends charge in Step 1 is e_{2} or e_{3}.

Case 1: f contributes charge through e_{2} in Step 1. Observe first that if f sends charge through e_{4}, then e_{4} must be an edge of t_{4}. Indeed, suppose that f sends charge through e_{4}, and e_{4} is not an edge of t_{4}. Then $A_{3} B_{3}$ and $A_{0} B_{0}$ contain four crossings each and it follows that f_{1} is a bad face, see Figure 22.
Proposition 2.18. If f sends charge through e_{4}, then f receives at least $1 / 3$ units of charge in Step 6.

Figure 22: Case 1 in the proof of Lemma 2.17: f contributes charge through e_{1} and e_{2} in Step 1. If e_{4} is not an edge of t_{4}, then f_{1} is a bad face.

(a) If e_{1} is not an edge of t_{1} then f_{0} sends at least $1 / 3$ units of charge to f in Step 6 .

(b) If f_{0} is a 0 -pentagon then f_{2} is a bad face.

(c) f_{1} is a 0 -hexagon.

Figure 23: Illustrations for the proof of Proposition 2.18: f contributes charge through e_{1} and e_{2} in Step 1.

Proof. Suppose first that e_{1} is not an edge of t_{1} and refer to Figure 23(a). Since $A_{2} B_{2}$ has four crossings and f_{2} is a good face, it follows that there is another crossing point (but w_{2}) on $A_{1} B_{1}$ between v_{1} and B_{1}. Therefore $A_{1} v_{0}$ is an edge of f_{0}. Since A_{1} and A_{2} cannot be in the same face of size greater than three, it follows that $\left|f_{0}\right| \geq 4$. Let p be the other vertex of f_{0} (except v_{0}) that is adjacent to x_{1}. Observe that $p \notin B\left(f_{0}\right)$ for otherwise B_{0} and one endpoint of the edge of G that contains $x_{1} y_{1}$ are incident to a bad face. Note also that f_{0} does not contribute charge through $x_{1} p$ and $x_{1} v_{0}$ (the latter would imply a bad face containing A_{3} and B_{0}). Therefore, if $\left|f_{0}\right|=4$ then $c h_{5}\left(f_{0}\right) \geq 1 / 3$. Thus, if f_{0} is a 1-quadrilateral then it sends at least $1 / 3$ units of charge to f in Step 6.

If $\left|f_{0}\right| \geq 5$ then consider the clockwise chain from A_{1} to p, and observe that it contains $\left|f_{0}\right|-3$ edges and at most $\left|f_{0}\right|-4$ vertices through which f_{0} sends charge in Step 6 . Therefore, every face in $B\left(f_{0}\right)$ (including f) receives from f_{0} in Step 6 at least $\frac{\left|f_{0}\right|-4+1-1 / 6-1 / 3-\left(\left|f_{0}\right|-3\right) / 3}{\left|f_{0}\right|-3} \geq$ $1 / 3$ units of charge.

The case that e_{2} is not an edge of t_{2} is symmetric, so suppose now that e_{1} is an edge of t_{1} and e_{2} is an edge of t_{2}. Since f_{1} is a good face there is a crossing point on $B_{0} w_{1}$ or on $A_{3} w_{2}$. Suppose without loss of generality that there is a crossing point z on $B_{0} w_{1}$. Therefore, $z w_{1}, w_{1} v_{1}, v_{1} w_{2}$ are edges of f_{1} and $\left|f_{1}\right| \geq 5$. Note that $f_{0} \notin B\left(f_{1}\right)$ for otherwise f_{2} is a bad face (see Figure 23(b)). Similarly, $f_{2} \notin B\left(f_{1}\right)$ for otherwise f_{0} is a bad face.

If $\left|f_{1}\right|=5$ then A_{3} must be a vertex of f_{1}, for otherwise B_{0} and A_{3} are two vertices of a bad face. By the previous observations $B\left(f_{1}\right)=\{f\}$ in this case, and so f receives at least

Figure 24: Case 1 in the proof of Lemma 2.17: f contributes charge through e_{1} and e_{2} in Step 1. If f sends $1 / 3$ units of charge through e_{3} in Step 3 , then f_{2} sends charge to f in Step 6.
$1 / 3$ units of charge from f_{1} in Step 6. If A_{3} is a vertex of f_{1} and $\left|f_{1}\right|>5$ it is not hard to see that it still holds that f_{1} sends at least $1 / 3$ units of charge to f in Step 6 .

Suppose that A_{3} is not a vertex of f_{1}, and therefore $\left|f_{1}\right| \geq 6$. Let $w_{2}, v_{1}, w_{1}, z, z_{1}, \ldots, z_{t}$ be the vertices of f_{1} listed in their clockwise order $(t \geq 2) . f_{1}$ cannot contribute charge through $z z_{1}$ in Step 1 , since then $A_{0} B_{0}$ would have more than four crossings. If f_{1} contributes charge through $z z_{1}$ in Step 3, then it follows from Proposition 2.6 that it cannot contribute charge through $w_{1} z$ in Step 1 or Step 3. Therefore f_{1} contributes a total of at most $1 / 2$ units of charge through $w_{1} z$ and $z z_{1}$. Similarly, it contributes a total of at most $1 / 2$ units of charge through $z_{t-1} z_{t}$ and $z_{t} w_{2}$. Note also that if f_{1} contributes charge through z_{1} in Step 6 , then it does not contribute charge through $z z_{1}$ for this would imply more than four crossings on $A_{0} B_{0}$. Moreover, if $\left|f_{1}\right|=6$ (i.e., $t=2$), then by symmetry f_{1} does not contribute charge through $z_{1} z_{2}$ as well.

Therefore, if $\left|f_{1}\right|=6$ then f_{1} contributes at least $\min \left\{\frac{6-4-2 / 3-2 \cdot \frac{1}{2}}{1}, \frac{6-4-4 / 3}{2}\right\}=1 / 3$ to f in Step 6 , and if $\left|f_{1}\right| \geq 7$ then f_{1} contributes at least $\min \left\{\frac{\left|f_{1}\right|-4-2 \cdot \frac{1}{2}-\frac{\left|f_{1}\right|-4}{3}}{\left|f_{1}\right|-5}, \frac{\left|f_{1}\right|-4-\frac{\left|f_{1}\right|-1}{3}}{\left|f_{1}\right|-4}\right\} \geq$ $1 / 3$ to f in Step 6.

Suppose now that f sends charge through e_{4} to t_{4}. It follows from Proposition 2.18 that if f sends $1 / 6$ units of charge through e_{4} and $1 / 6$ units of charge through at least one of e_{3} and e_{0}, then $c h_{6}(f) \geq 0$. By Proposition 2.6, if f sends $1 / 3$ units of charge through e_{4} in Step 3, then it cannot send charge through e_{3} or e_{0} in Step 3, and hence f ends up with a nonnegative charge in this case as well.

Therefore it remains to consider the case that f sends $1 / 3$ units of charge through at least one of the two edges e_{3} and e_{0}, and at least $1 / 6$ units of charge through the other edge among the two. Assume without loss of that f sends $1 / 3$ units of charge through e_{3} in Step 3, and at least $1 / 6$ units of charge through e_{0}. Refer to Figure 24 and observe that e_{3} is not an edge of t_{3} by Proposition 2.6. It follows that there must be a crossing point on $A_{1} v_{0}$, for otherwise f_{0} is a bad face. Therefore, x_{3}, w_{2}, B_{1} are vertices of f_{2} and its size is at least five. It is not hard to see that f_{2} contributes at least $1 / 3$ units of charge to f in Step 6 , and so f ends up with a nonnegative charge.

Case 2: f contributes charge through e_{3} in Step 1. Note that since $A_{2} B_{2}$ has four crossings it follows that e_{1} and e_{3} are edges of t_{1} and t_{3}, respectively. By symmetry, we may assume that if $c h_{5}(f)<0$ then f contributes charge through e_{2} and e_{0}, or f contributes charge through e_{4} and e_{0}.

Figure 25: Illustrations for Case 2 in the proof of Lemma 2.17: f contributes charge through e_{1} and e_{3} in Step 1.

Sub-case 2.1: Suppose that f contributes charge through e_{2} and e_{0}, and refer to Figure 25(a). Observe that e_{0} is not an edge of t_{0}, for otherwise f_{0} would be a bad face. Since $A_{4} B_{4}$ has four crossings, it follows that A_{4} is a vertex of f_{2}. Therefore, e_{2} is not an edge of t_{2}, for otherwise f_{2} would be a bad face.

Consider the face f_{2} and observe that $\left|f_{2}\right| \geq 4$ and that f_{2} contributes no charge through $A_{4} w_{3}, 1 / 3$ units of charge through $w_{3} v_{2}$, and no charge through $v_{2} y_{2}$ (the latter would imply that B_{1} and B_{0} are incident to a bad face). Note that if $\left|f_{2}\right|=4$, then f_{2} does not contribute any charge through $A_{4} y_{2}$ since the face that shares $A_{4} y_{2}$ with f_{2} is a 2 -triangle. Therefore, if $\left|f_{2}\right|=4$ then f_{2} contributes at least $1 / 3$ units of charge to f in Step 6 . If $\left|f_{2}\right| \geq 5$ then the clockwise chain from y_{2} to A_{4} contains $\left|f_{2}\right|-3$ edges and at most $\left|f_{2}\right|-4$ vertices through which f_{2} sends charge in Step 6 . Therefore, every face in $B\left(f_{2}\right)$ (including f) receives from f_{2} in Step 6 at least $\frac{\left|f_{2}\right|-4+1-2 / 3-\left(\left|f_{2}\right|-3\right) / 3}{\left|f_{2}\right|-3} \geq 1 / 3$ units of charge. Thus, if f does not contribute charge through e_{4}, then it ends with a nonnegative charge.

Suppose that f contributes charge through e_{4}. Then by symmetry, f_{1} also contributes at least $1 / 3$ units of charge to f in Step 6 , and so $c h_{6}(f) \geq 0$.
Sub-case 2.2: Suppose that f contributes charge through e_{4} and e_{0}, and refer to Figure 25(b). Note that e_{4} is not an edge of t_{4}, for otherwise f_{3} is a bad face. For the same reason, e_{0} is not an edge of t_{0}. Considering the face f_{2} it is not hard to see that as in Sub-case 2.1 it contributes at least $1 / 3$ units of charge to f in Step 6 . By symmetry, so does f_{1} and therefore f ends up with a nonnegative charge.

Lemma 2.19. Let f be a 0 -pentagon such $c h_{1}(f)=0$. Then $c h_{6}(f)=0$.
Proof. It follows from Proposition 2.13 that f contributes charge through three consecutive edges in Step 1. If $c h_{6}(f)<0$ then f must also contribute charge through at least one more edge in Step 3 or Step 5. Assume without loss of generality that f contributes charge through e_{1}, e_{2}, e_{3} in Step 1 and through e_{0} in Step 3 or 5, and refer to Figure 26. Observe that $A_{2} B_{2}$ has four crossings. Since f_{0} is good face, e_{0} is not an edge of t_{0}. However, this implies that B_{1} and A_{4} are vertices of f_{2} and hence f_{2} is a bad face.

It follows from Proposition 2.12 and Lemmas 2.15, 2.16, 2.17 and 2.19 that the final charge of every face in $M(G)$ is nonnegative. Recall that the charge of every original vertex of G is

Figure 26: If f contributes charge through e_{1}, e_{2}, e_{3} in Step 1 and also contributes charge to t_{0}, then f_{2} is a bad face.

Figure 27: A lower bound construction.
$1 / 3$, and that the total charge is $4 n-8$. It follows that $2|E(G)| / 3=\sum_{v \in V(G)} \operatorname{deg}(v) / 3 \leq$ $4 n-8$ and thus $|E(G)| \leq 6 n-12$.

To see that this bound in Theorem 8 is tight for infinitely many values of n we use the same construction of Pach et al. [19, Proposition 2.8]. That is, given $n=6 l$ we tile a vertical cylindrical surface with $l-1$ horizontal layers each consisting of three hexagonal faces that are wrapped around the cylinder. The top and bottom of the cylinder are also tiled with hexagonal faces. See Figure 27(a) for an illustration of this construction. Note that every vertex is adjacent to exactly three hexagons, except for three vertices of the top face $\left(v_{1}, v_{3}, v_{5}\right.$ in Figure $\left.27(\mathrm{a})\right)$ and three vertices of the bottom face that are adjacent to two hexagons. Next, we draw for each hexagon all the possible diagonals. Thus, the degree of every vertex is 12 , except for six vertices whose degree is 8 . Hence, the number of edges is $(12(n-6)+8 \cdot 6) / 2=6 n-12$.

Observe that this construction contains parallel edges (but no empty lenses). For example, there are parallel edges between v_{2} and v_{4}, v_{2} and v_{6}, and v_{4} and v_{6} in Figure 27(a). By removing three edges from each of the top and bottom hexagons (as in Figure 27(b)), we
obtain a topological graph with $6 n-18$ edges. This shows that the bound of Theorem 4 is tight up to an additive constant.

3 Applications of Theorem 4

3.1 A better Crossing Lemma

Let G be a graph with $n>2$ vertices and m edges. The following linear bounds on the crossing number $\operatorname{cr}(G)$ appear in [19] and [20].

$$
\begin{align*}
\operatorname{cr}(G) & \geq m-3(n-2) \tag{1}\\
\operatorname{cr}(G) & \geq \frac{7}{3} m-\frac{25}{3}(n-2) \tag{2}\\
\operatorname{cr}(G) & \geq 4 m-\frac{103}{6}(n-2) \tag{3}\\
\operatorname{cr}(G) & \geq 5 m-25(n-2) \tag{4}
\end{align*}
$$

Using Theorem 4 we can obtain a similar bound, as stated in Theorem 5:

$$
\begin{equation*}
\operatorname{cr}(G) \geq 5 m-\frac{139}{6}(n-2) \tag{5}
\end{equation*}
$$

Proof of Theorem 5: If $n=3$ or $n=4$ the statement trivially holds since $\operatorname{cr}(G) \geq 0$. If $n \geq 5$ and $m \leq 6(n-2)$ then the statement holds by (3). Suppose now that $m>6(n-2)$ and consider a drawing of G. Remove an edge of G with the most crossings, and continue doing so as long as the number of remaining edges is greater than $6(n-2)$. It follows from Theorem 4 that each of the $m-6(n-2)$ removed edges was crossed by at least 5 other edges at the moment of its revomal. By (3), the number of crossings in the remaining graph is at least $4(6(n-2))-\frac{103}{6}(n-2)$. Therefore, $\operatorname{cr}(G) \geq 5(m-6(n-2))+4(6(n-2))-\frac{103}{6}(n-2)=$ $5 m-\frac{139}{6}(n-2)$.

Using the new linear bound it is now possible to obtain a better Crossing Lemma, by plugging it into its probabilistic proof, as in [17, 19, 20].

Proof of Theorem 6: Let G be a graph with n vertices and $m \geq 6.95 n$ edges and consider a drawing of G with $\operatorname{cr}(G)$ crossings. Construct a random subgraph of G by selecting every vertex independently with probability $p=6.95 n / e \leq 1$. Let G^{\prime} be the subgraph of G that is induced by the selected vertices. Denote by n^{\prime} and m^{\prime} the number of vertices and edges in G^{\prime}, respectively. Clearly, $\mathbb{E}\left[n^{\prime}\right]=p n$ and $\mathbb{E}\left[m^{\prime}\right]=p^{2} e$. Denote by x^{\prime} the number of crossing in the drawing of G^{\prime} inherited from the drawing of G. Then $\mathbb{E}\left[\operatorname{cr}\left(G^{\prime}\right)\right] \geq \mathbb{E}\left[x^{\prime}\right]=p^{4} \operatorname{cr}(G)$. It follows from Theorem 5 that $\operatorname{cr}\left(G^{\prime}\right) \geq 5 m^{\prime}-\frac{139}{6} n^{\prime}$ (note that this it true for any $n^{\prime} \geq 0$), and this holds also for the expected values: $\mathbb{E}\left[\operatorname{cr}\left(G^{\prime}\right)\right] \geq 5 \mathbb{E}\left[m^{\prime}\right]-\frac{139}{6} \mathbb{E}\left[n^{\prime}\right]$. Plugging in the expected values we get that $\operatorname{cr}(G) \geq\left(\frac{5}{6.95^{2}}-\frac{139}{6 \cdot 6 \cdot 95^{3}}\right) \frac{m^{3}}{n^{2}}=\frac{2000}{57963} \frac{m^{3}}{n^{2}} \geq \frac{1}{29} \frac{m^{3}}{n^{2}}$.

Consider now the case that $m<6.95 n$. Comparing the bounds (1)-(5) one can easily see that (1) is best when $3(n-2) \leq m<4(n-2),(2)$ is best when $4(n-2) \leq m<5.3(n-2)$, (3) is best when $5.3(n-2) \leq m<6(n-2)$, and (5) is best when $6(n-2) \leq m$. If we consider the possible values of $m<6.95$ according to these intervals and use the best bound for each interval, then we get that $\operatorname{cr}(G) \geq \frac{1}{29} \frac{m^{3}}{n^{2}}-\frac{35}{29} n$.

The new bound for the Crossing Lemma immediately implies better bounds in all of its applications. We recall three such improvements from [19] and [20]. Since the computations are almost verbatim to the proofs in [19], we omit them.

Corollary 3.1. Let G be an n-vertex multigraph with m edges and edge multiplicity t. Then $\operatorname{cr}(G) \geq \frac{1}{29} \frac{m^{3}}{m n^{2}}-\frac{35}{29} n t^{2}$.

Corollary 3.2. Let G be an n-vertex simple topological graph. If every edge of G is crossed by at most k other edges, for some $k \geq 2$, then G has at most $3.81 \sqrt{k} n$ edges.

Corollary 3.3. The number of incidences between m lines and n points in the Euclidean plane is at most $2.44 m^{2 / 3} n^{2 / 3}+m+n$.

The previous best constant in the last upper bound was 2.5. It is known [20] that this constant should be greater than 0.42 .

3.2 Albertson conjecture

Recall that according to Albertson conjecture if $\chi(G)=r$ then $\operatorname{cr}(G) \geq \operatorname{cr}\left(K_{r}\right)$. A graph G is r-critical if $\chi(G)=r$ and the chromatic number of every proper subgraph of G is less than r. Obviously, if H is a subgraph of G then $\operatorname{cr}(H) \leq \operatorname{cr}(G)$. therefore, it is enough to prove Albertson conjecture for r-critical graphs. Recall also that it suffice to consider graphs with no subdivision of K_{r}. The next result shows that we may consider only graphs with at least $r+5$ vertices.

Lemma 3.4 ([8, Corollary 11]). An r-critical graph with at most $r+4$ vertices contains a subdivision of K_{r} (and thus satisfies Albertson conjecture).

The approach of [7] and [8] for proving Albetson conjecture is to plug lower bounds on the minimum number of edges in r-critical graphs into lower bounds on the crossing number and compare the results to an upper bound on $\operatorname{cr}\left(K_{r}\right)$. By using the same method with the new bounds on the crossing number, we can verify Albertson conjecture for further values of r.

Let $f_{r}(n)$ be the minimum number of edges in an n-vertex r-critical graph. Since K_{r} is the only r-critical graph with r vertices we have $f_{r}(r)=r(r-1) / 2$. Another trivial bound is $f_{r}(n) \geq n(r-1) / 2$, because the degree of every vertex in an r-critical graph must be at least $r-1$. The study of $f_{r}(n)$ goes back to Dirac [10]. He proved that there is no r-critical graph on $r+1$ vertices and that if $r \geq 4$ and $n \geq r+2$ then

$$
\begin{equation*}
f_{r}(n) \geq n(r-1) / 2+(r-3) / 2 \tag{6}
\end{equation*}
$$

This was improved by Kostochka and Stiebitz [14] to

$$
\begin{equation*}
f_{r}(n) \geq n(r-1) / 2+(r-3) \tag{7}
\end{equation*}
$$

when $n \neq 2 r-1$. Considering the case $n=2 r-1$, Barát and Tóth [8] concluded
Lemma 3.5 ([8, Corollary 7$]$). Let G be an n-vertex r-critical graph with m edges, such that $r \geq 4$. If G does not contain a subdivision of K_{r} then $m \geq n(r-1) / 2+(r-3)$.

Gallai [12] found exact values of $f_{r}(n)$ for $6 \leq r+2 \leq n \leq 2 r-1$:

$$
\begin{equation*}
f_{r}(n)=\frac{1}{2}(n(r-1)+(n-r)(2 r-n)-2) \tag{8}
\end{equation*}
$$

He also characterized the graphs obtaining this bound. His results yield:
Lemma 3.6 ([8, Corollary 5]). Let G be an n-vertex r-critical graph with m edges, such that $6 \leq r+2 \leq n \leq 2 r-1$. If G does not contain a subdivision of K_{r} then $m \geq \frac{1}{2}(n(r-1)+$ $(n-r)(2 r-n)-1)$.

Instead of using the linear bound of Theorem 5 directly, we will use a more refined bound obtained from it using the probabilistic argument (as is done in [8]).
Lemma 3.7. Let $\operatorname{cr}(n, m, p)=\frac{5 m}{p^{2}}-\frac{139 n}{6 p^{3}}+\frac{139}{3 p^{4}}-\frac{6 n^{2}(1-p)^{n-2}}{p^{4}}$. For every graph G with $n \geq 9$ vertices and m edges and every $0<p \leq 1$ we have $\operatorname{cr}(G) \geq \operatorname{cr}(n, m, p)$.

Proof. We will use the linear bound of Theorem 5, however it does not hold for $n \leq 2$. Therefore, for every graph G we define

$$
\operatorname{cr}^{\prime}(G)= \begin{cases}\operatorname{cr}(G) & \text { if } n \geq 3 \\ 5 & \text { if } n=2 \\ 24 & \text { if } n=1 \\ 47 & \text { if } n=0\end{cases}
$$

Thus, for every graph G we have

$$
\begin{equation*}
\operatorname{cr}^{\prime}(G) \geq 5 m-\frac{139}{6}(n-2) \tag{9}
\end{equation*}
$$

Let G be a graph with n vertices and m edges and let $0<p \leq 1$. Consider a drawing of G with $\operatorname{cr}(G)$ crossings. Construct a random subgraph of G by selecting every vertex independently with probability p. Let G^{\prime} be the subgraph of G that is induced by the selected vertices. Denote by n^{\prime} and m^{\prime} the number of vertices and edges in G^{\prime}, respectively. Consider the drawing of G^{\prime} as inherited from the drawing of G, and let x^{\prime} be the number of crossings in this drawing. Clearly, $\mathbb{E}\left[n^{\prime}\right]=p n, \mathbb{E}\left[m^{\prime}\right]=p^{2} m$, and $\mathbb{E}\left[x^{\prime}\right]=p^{4} \operatorname{cr}(G)$. From (9) and the linearity of expectation we get:

$$
\begin{aligned}
\mathbb{E}\left[x^{\prime}\right] & \geq \mathbb{E}\left[\operatorname{cr}\left(G^{\prime}\right)\right]-5 \cdot \operatorname{Pr}\left(n^{\prime}=2\right)-24 \cdot \operatorname{Pr}\left(n^{\prime}=1\right)-47 \cdot \operatorname{Pr}\left(n^{\prime}=0\right) \\
& \geq 5 p^{2} m-\frac{139}{6} p n+\frac{139}{3}-5\binom{n}{2} p^{2}(1-p)^{n-2}-24 n p(1-p)^{n-1}-47(1-p)^{n} \\
& \geq 5 p^{2} m-\frac{139}{6} p n+\frac{139}{3}-6 n^{2} p^{2}(1-p)^{n-2}
\end{aligned}
$$

Dividing by p^{4}, the lemma follows.
Before proving Theorem 7, let us recall the best known upper bound on the crossing number of K_{r} [13]:

$$
\begin{equation*}
\operatorname{cr}\left(K_{r}\right) \leq Z(r)=\frac{1}{4}\left\lfloor\frac{r}{2}\right\rfloor\left\lfloor\frac{r-1}{2}\right\rfloor\left\lfloor\frac{r-2}{2}\right\rfloor\left\lfloor\frac{r-3}{2}\right\rfloor \tag{10}
\end{equation*}
$$

Proof of Theorem 7: We follow the proof of Theorem 2 in [8]. Given r let G be an r-critical graph with n vertices and m edges. We assume that G does not contain a subdivision of K_{r} for otherwise we are done. By Lemma 3.4 we may assume that $n \geq r+5$. Lemma 3.5 is used to get a lower bound on m, namely $m \geq(r-1) n / 2+(r-3)$. This bound is plugged into Lemma 3.7 and for an appropriate value of p we get a lower bound on $\operatorname{cr}(G)$ that is greater than $Z(r)$ for $n \geq n^{\prime}$. Then it remains to verify the conjecture for each n in the range $r+5, \ldots, n^{\prime}$. This is done using a lower bound on m we get from either Lemma 3.5 or Lemma 3.6 and picking p such that $\operatorname{cr}(n, m, p) \geq Z(r)$. We will always have $n \geq 22$ and $p \geq 0.5$, therefore we may assume that

$$
\begin{equation*}
\operatorname{cr}(n, m, p) \geq \frac{5 m}{p^{2}}-\frac{139 n}{6 p^{3}}+\frac{139}{3 p^{4}}-0.05 \tag{11}
\end{equation*}
$$

$r=18, \operatorname{cr}\left(K_{18}\right) \leq 1008$				$r=19, \operatorname{cr}\left(K_{19}\right) \leq 1296$			
n	m	p	$\lceil\operatorname{cr}(n, m, p)]$	n	m	p	$\lceil\operatorname{cr}(n, m, p)$
23	228	0.555	1073				
24	240	0.556	1132	24	251	0.523	1321
25	251	0.560	1176	25	264	0.524	1397
26	261	0.567	1204	26	276	0.527	1455
27	270	0.576	1217	27	287	0.533	1495
28	278	0.586	1218	28	297	0.540	1518
29	285	0.599	1206	29	306	0.548	1527
30	291	0.613	1183	30	314	0.558	1520
31	296	0.628	1151	31	321	0.570	1501
32	300	0.646	1111	32	327	0.583	1471
33	303	0.665	1064	33	332	0.597	1430
34	305	0.686	1010	34	336	0.613	1380
				35	339	0.631	1322
				36	341	0.650	1259
				37	349	0.656	1269
				38	358	0.659	1292

Table 1: Lower bounds on the number of edges and crossing numbers for specific values of n for $r=18$ (left) and $r=19$ (right).

1. Suppose that $r=17$ and let G be an n-vertex 17 -critical graph with m edges. By (10) we have $\operatorname{cr}\left(K_{r}\right) \leq 784$. It follows from Lemmas 3.4 and 3.5 that we may assume that $n \geq 22$ and $m \geq 8 n+14$. From (11) we have $\operatorname{cr}(G) \geq \operatorname{cr}(n, 8 n+14,0.727) \geq 15.38 n+298.25$. Therefore, if $n \geq \frac{784-298.25}{15.38} \geq 31.58$ the conjecture holds. Since Barát and Tóth [8] have already verified Albertson conjecture for $r=17$ and $n \leq 31$, we are done.
2. Suppose that $r=18$ and let G be an n-vertex 18 -critical graph with m edges. By (10) we have $\operatorname{cr}\left(K_{r}\right) \leq 1008$. It follows from Lemmas 3.4 and 3.5 that we may assume that $n \geq 23$ and $m \geq 8.5 n+15$. From (11) we have $\operatorname{cr}(G) \geq \operatorname{cr}(n, 8.5 n+15,0.69) \geq 18.74 n+361.88$. Therefore, if $n \geq \frac{1008-361.88}{18.74} \geq 34.47$ the conjecture holds. It remains to verify the conjecture for $n=23, \ldots, 34$. Table 1 (left) shows the lower bound on m for each n, the value of p we choose, and the corresponding lower bound on the crossing number that we get. Note that since we are interested in values of n such that $r+2 \leq n \leq 2 r-1$, we may use Lemma 3.6 instead of the Lemma 3.5.
3. Suppose that $r=19$ and let G be an n-vertex 19 -critical graph with m edges. By (10) we have $\operatorname{cr}\left(K_{r}\right) \leq 1296$. It follows from Lemmas 3.4 and 3.5 that we may assume that $n \geq 23$ and $m \geq 9 n+16$. From (11) we have $\operatorname{cr}(G) \geq \operatorname{cr}(n, 9 n+16,0.66) \geq 22.72 n+427.78$. Therefore, if $n \geq \frac{1296-427.78}{22.72} \geq 38.21$ then the conjecture holds. It remains to verify the conjecture for $n=24, \ldots, 38$. Table 1 (right) shows the lower bound on m for each n, the value of p we choose, and the corresponding lower bound on the crossing number that we get. ${ }^{2}$

Therefore, the conjecture holds for $r=19$ and every $n \notin\{36,37,38\}$. As is done in [8], we can handle the case $n=36$ by using a result of Gallai [12], who proved that an r-critical graph with $2 r-2$ vertices is the join ${ }^{3}$ of two smaller critical graphs. Therefore, if $n=36$ then G is the join of an r_{1}-critical graph $G_{1}=\left(V_{1}, E_{1}\right)$ and an r_{2}-critical graph $G_{2}=\left(V_{2}, E_{2}\right)$,

[^2]such that $r_{1}+r_{2}=19$. Let $n_{i}=\left|V_{i}\right|$ and $m_{i}=\left|E_{i}\right|$, for $i=1,2$. Then $n_{1}+n_{2}=36$ and $m=m_{1}+m_{2}+n_{1} n_{2}$.

We assume without loss of generality that $r_{1} \leq r_{2}$, and therefore have to consider the cases $r_{1}=1, \ldots, 9$. Suppose that $r_{1}=1$, which implies that $G_{1}=K_{1}$. If G_{2} contains a subdivision of K_{18} then G contains a subdivision of K_{19} and we are done. Otherwise, by Lemma 3.5 we get $m_{2} \geq 313$. Therefore, $m=n_{1} n_{2}+m_{2} \geq 348$ when $r_{1}=1$.

Since G_{1} is r_{1}-critical and G_{2} is r_{2}-critical we have $m \geq f_{r_{1}}\left(n_{1}\right)+f_{r_{2}}\left(n_{2}\right)+n_{1} n_{2}$. Note that $n_{1}=36-n_{2} \leq 36-r_{2}=r_{1}+17$ and if $r_{1}=2$ then $G_{1}=K_{2}$. A computer calculation using the trivial bound for $f_{r}(n)$ along with (7), reveals that $m \geq 348$ for every $r_{1}=2, \ldots, 9$ and every $n_{1}=r_{1}, \ldots, r_{1}+17$ (ignoring cases where $n_{1}=r_{1}+1$ or $n_{2}=r_{2}+1$ since there are no such critical graphs). Therefore, we conclude that G has at least 348 edges. Picking $p=0.635$ we get that $\operatorname{cr}(G) \geq \operatorname{cr}(36,348,0.635)=1343 \geq \operatorname{cr}\left(K_{19}\right)$.

Recall that Barát and Tóth [8] showed that if Albertson conjecture is false, then the minimal counter-example is an r-critical graph with at least $r+5$ vertices (Lemma 3.4). They also gave an upper bound of $3.57 r$ on the number of vertices in such a minimal counterexample (improving a $4 r$ bound due to Albertson et al. [7]). Using Theorem 5 we can improve upon this bound as well.

Lemma 3.8. If G is an r-critical graph with $n \geq 3.03 r$ vertices, then $\operatorname{cr}(G) \geq \operatorname{cr}\left(K_{r}\right)$.
Proof. The proof is similar to the proof of Lemma 3 in [8]. We repeat it here for completeness, and because there is a small typo in the calculation in [8].

Let G be an r-critical graph with n vertices drawn in the plane with $\operatorname{cr}(G)$ crossings. We may assume that $r \geq 19$, since for $r \leq 18$ the conjecture holds. If $n \geq 3.57 r$ then it follows from [8] that $\operatorname{cr}(G) \geq \operatorname{cr}\left(K_{r}\right)$. Therefore, we assume that $n=\alpha r$ for some $3.03 \leq \alpha<3.57$. Note that $n \geq 3 r \geq 57$. Let $5 \leq k \leq n$ be an integer and let $G_{1}, G_{2}, \ldots, G_{t}, t=\binom{n}{k}$, be all the (inherited drawings of) subgraphs induced by exactly k vertices in G. Denote by m_{i} the number of edges in G_{i}, and note that by Theorem 5 we have $\operatorname{cr}\left(G_{i}\right) \geq 5 m_{i}-\frac{139}{6}(k-2)$. Observe also that every crossing in G appears in $\binom{n-4}{k-4}$ subgraphs and every edge in G appears in $\binom{n-2}{k-2}$ subgraphs. Finally, recall that $m \geq n(r-1) / 2$ since G is r-critical. Thus we have,

$$
\begin{aligned}
\operatorname{cr}(G) & \geq \frac{1}{\binom{n-4}{k-4}} \sum_{i=1}^{t} \operatorname{cr}\left(G_{i}\right) \geq \frac{1}{\binom{n-4}{k-4}} \sum_{i=1}^{t}\left(5 m_{i}-\frac{139(k-2)}{6}\right) \\
& =5 m \frac{\binom{n-2}{k-2}}{\binom{n-4}{k-4}}-\frac{139(k-2)\binom{n}{k}}{6\binom{n-4}{k-4}} \\
& \geq \frac{5(r-1) n}{2} \frac{(n-2)(n-3)}{(k-2)(k-3)}-\frac{139 n(n-1)(n-2)(n-3)}{6 k(k-1)(k-3)} \\
& =\frac{n(n-2)(n-3)}{2(k-3)}\left(\frac{5(r-1)}{k-2}-\frac{139(n-1)}{3 k(k-1)}\right) \\
& =\frac{\alpha^{3} r\left(r-\frac{2}{\alpha}\right)\left(r-\frac{3}{\alpha}\right)}{2(k-3)}\left(\frac{5(r-1)}{k-2}-\frac{139(\alpha r-1)}{3 k(k-1)}\right) \\
& \geq \frac{\alpha^{3} r(r-2)((r-3)+2)}{2(k-3)}\left(\frac{5(r-1)}{k-2}-\frac{139(r-1)\left(\alpha+\frac{\alpha-1}{r-1}\right)}{3 k(k-1)}\right) \\
& =\frac{\alpha^{3} r(r-1)(r-2)(r-3)}{2(k-3)}\left(\frac{5}{k-2}-\frac{139 \alpha}{3 k(k-1)}\right)+h(\alpha, r, k),
\end{aligned}
$$

where

$$
\begin{aligned}
h(\alpha, r, k) & =\frac{\alpha^{3} r(r-1)(r-2)}{2(k-3)}\left(\frac{10}{k-2}-\frac{139}{3 k(k-1)}\left(2 \alpha+2 \frac{\alpha-1}{r-1}+\frac{r-3}{r-1}(\alpha-1)\right)\right) \\
& \geq \frac{\alpha^{3} r(r-1)(r-2)}{2(k-3)}\left(\frac{10}{k-2}-\frac{139}{3 k(k-1)}\left(2 \alpha+\frac{\alpha-1}{9}+(\alpha-1)\right)\right) .
\end{aligned}
$$

Suppose now that $3.17 \leq \alpha \leq 3.57$. Then for $k=47<n$ we have $h(\alpha, r, 47) \geq 0$ and therefore

$$
\begin{aligned}
\operatorname{cr}(G) & \geq \frac{\alpha^{3}}{2 \cdot 44}\left(\frac{5}{45}-\frac{139 \alpha}{3 \cdot 47 \cdot 46}\right) r(r-1)(r-2)(r-3) \\
& \geq \frac{1}{64} r(r-1)(r-2)(r-3) \geq \operatorname{cr}\left(K_{r}\right)
\end{aligned}
$$

Suppose now that $3.05 \leq \alpha \leq 3.17$. Then for $k=41<n$ we have $h(\alpha, r, 41) \geq 0$ and therefore

$$
\begin{aligned}
\operatorname{cr}(G) & \geq \frac{\alpha^{3}}{2 \cdot 38}\left(\frac{5}{39}-\frac{139 \alpha}{3 \cdot 41 \cdot 40}\right) r(r-1)(r-2)(r-3) \\
& \geq \frac{1}{64} r(r-1)(r-2)(r-3) \geq \operatorname{cr}\left(K_{r}\right)
\end{aligned}
$$

Finally, suppose that $3.03 \leq \alpha \leq 3.05$. Then for $k=40<n$ we have $h(\alpha, r, 40) \geq 0$ and therefore

$$
\begin{aligned}
\operatorname{cr}(G) & \geq \frac{\alpha^{3}}{2 \cdot 37}\left(\frac{5}{38}-\frac{139 \alpha}{3 \cdot 40 \cdot 39}\right) r(r-1)(r-2)(r-3) \\
& \geq \frac{1}{64} r(r-1)(r-2)(r-3) \geq \operatorname{cr}\left(K_{r}\right)
\end{aligned}
$$

References

[1] E. Ackerman, On the maximum number of edges in topological graphs with no four pairwise crossing edges, Disc. Compu. Geometry, 41 (2009), 365-375.
[2] E. Ackerman and G. Tardos, On the maximum number of edges in quasi-planar graphs, J. Combinatorial Theory, Ser. A., 114:3 (2007), 563-571.
[3] M. Aigner and G. Ziegler, Proofs from the Book, Springer-Verlag, Heidelberg, 2004.
[4] K. Appel and W. Haken, Every planar map is four colorable. Part I. Discharging, Illinois J. Math., 21 (1977), 429-490.
[5] K. Arikushi, R. Fulek, B. Keszegh, F. Moric, and C.D. Tóth, Graphs that admit right angle crossing drawings, Comput. Geom. Theory Appl., 45:7 (2012), 326-333.
[6] M. Ajtai, V. Chvátal, M. Newborn, and E. Szemerédi, Crossing-free subgraphs, Theory and Practice of Combinatorics, North-Holland Math. Stud. 60, North-Holland, Amsterdam, 1982, 9-12.
[7] M.O. Albertson, D.W. Cranston, and J. Fox, Crossings, colorings and cliques, Elec. J. Combinatorics 16 (2010), \#R45.
[8] J. Barát and G. Tóth, Towards the Albertson conjecture, Elec. J. Combinatorics 17:1 (2010), \#R73.
[9] P.A. Catlin, Hajós' graph-coloring conjecture: variations and counterexamples, J. Combin. Theory Ser. B, 26 (1979), 268-274.
[10] G.A. Dirac, A theorem of R.L. Brooks and a conjecture of H. Hadwiger, Proc. London Math. Soc. 7 (1957), 161-195.
[11] P. Erdős and S. Fajtlowicz, On the conjecture of Hajós, Combinatorica, 1 (1981), 141-143.
[12] T. Gallai, Kritische Graphen II, Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963), 373-395.
[13] R.K. Guy, A combinatorial problem, Nabla (Bulletin of the Malayan Mathematical Society), 7 (1960), 68-72.
[14] A.V. Kostochka and M. Stiebitz, Excess in colour-critical graphs, in: Graph Theory and Combinatorial Biology, Balatonlelle (Hungary), 1996, Bolyai Society, Mathematical Studies 7, Budapest, 1999, 87-99.
[15] S. Kurz and R. Pinchasi, Regular matchstick graphs, American Mathematical Monthly, 118:3 (2011), 264-267.
[16] F.T. Leighton, Complexity Issues in VLSI: Optimal Layouts for the Shuffle-Exchange Graph and Other Networks, MIT Press, Cambridge, MA, 1983.
[17] B. Montaron, An improvement of the crossing number bound, J. Graph Theory, 50:1 (2005), 43-54.
[18] B. Oporowskia and D. Zhao, Coloring graphs with crossings, Disc. Math., 309:6 (2009), 2948-2951.
[19] J. Pach, R. Radoičić, G. Tardos, G. Tóth, Improving the crossing lemma by finding more crossings in sparse graphs, Disc. Compu. Geometry, 36:4 (2006), 527-552.
[20] J. Pach and G. Tóth, Graphs drawn with few crossings per edge, Combinatorica, 17:3 (1997), 427-439.
[21] R. Radoičić and G. Tóth, The discharging method in combinatorial geometry and the Pach-Sharir conjecture, Proc. Summer Research Conference on Discrete and Computational Geometry, (J. E. Goodman, J. Pach, J. Pollack, eds.), Contemporary Mathematics, AMS, 453 (2008), 319-342.

A sage code of the calculations in the proof of Theorem 7

```
sage: Dirac(n,r)=((r-1)*n+r-3)/2
sage: KS (n,r)=((r-1)*n+2*r-6)/2
sage: Gallai (n,r)=((r-1)*n+(n-r)* (2*r-n)-2)/2
sage: BT_Gal (n,r)=Gallai (n,r) +0.5
sage: cr_prime (n,m,p) =5*m/p^2-139*n/(6*p^3)+139/(3*p^4)-0.05
sage: Z(r)=floor(r/2)*floor((r-1)/2)*floor((r-2)/2)*floor((r-3)/2)/4
sage: def procl(r):
... sols = solve([cr_prime(n,KS(n,r),p).diff(p)==0, cr_prime(n,KS(n,r),p)==Z(r)],n,p,
    solution_dict=True)
... for s in sols:
... if (s[n].imag()==0 and s[p].imag()==0): # output only real solutions
... print "p=",s[p].n(),",n=",s[n].n()
sage: proc1(17)
p=0.727523979840676 ,n=31.5627659574468
sage: cr_prime(n,KS (n, 17),0.727)
15.3896636507376*n + 298.258502516192
sage: proc1(18)
p=0.690689920492434,n=34.4659498207885
sage: cr_prime(n,KS (n,18),0.69)
18.7463154231188*n + 361.887598221377
sage: def proc2(n,r):
... if n <= 2*r-2:
... m}=\operatorname{ceil(BT_Gal(n,r))
... else:
... m}=\operatorname{ceil}(KS(n,r)
... sols = solve(diff(cr_prime(n,m,p),p)==0, p, solution_dict=True)
... best_p= round(sols[1][p],3)
... best_cr = ceil(cr_prime(n,m,best_p))
... str = '\t\t'+repr (n) +' & '+repr (m) +' & '+repr(best_p.n())+' & '+repr(best_cr) + '
    \\\\'
... print str
sage: for n in range (23,35):
... proc2(n,18)
```

```
23 & 228 & 0.555000000000000 & 1073 \\
24&240& 0.556000000000000 & 1132 \\
25&251& 0.560000000000000 & 1176 \\
26 & 261 & 0.567000000000000 & 1204 \\
27 & 270 & 0.576000000000000 & 1217 \\
28 & 278 & 0.586000000000000 & 1218 \\
29&285& 0.5990000000000000& 1206\\
30 & 291 & 0.613000000000000 & 1183 \\
31&296 & 0.628000000000000 & 1151 \\
32 & 300 & 0.646000000000000 & 1111 \\
33& 303 & 0.665000000000000 & 1064 \\
34& 305 & 0.686000000000000 & 1010 \\
sage: proc1(19)
p=0.659831121833534 ,n=38.2051696284330
sage: cr_prime(n,KS (n,19),0.66)
22.7249538544304*n + 427.789066289688
sage: for n in range (24,39):
... proc2(n,19)
24&251&0.523000000000000 & 1321 \\
25 & 264 & 0.524000000000000 & 1397 \\
26&276& 0.527000000000000& & 1455 \\
7 & 287 & 0.533000000000000 & 1495 \\
28&297& 0.540000000000000 & 1518 \\
29 & 306 & 0.548000000000000 & 1527 \\
30 & 314 & 0.558000000000000 & 1520 \\
31& 321 & 0.570000000000000 & 1501 \\
& & 327 & 0.583000000000000 & 1471 \\
& 332& 0.597000000000000 & 1430 \\
& & 336 & 0.613000000000000 & 1380 \\
35&339&0.631000000000000& & 1322 \\
36 & 341 & 0.650000000000000 & 1259 \\
37 & 349 & 0.656000000000000 & 1269 \\
38 & 358 & 0.659000000000000 & 1292 \\
sage: def f(n,r): # lower bound for the number of edge in n-vertex r-critical graph
M best=0
... best=n*(n-1)/2
... elif n>r+1:
... best=ceil(n*(r-1)/2) # trivial
... if ( }r>=4\mathrm{ and }n>=r+2)
... best=max(best,ceil(Dirac(n,r)))
... if n!=2*r-1:
... best=max(best,ceil(KS (n,r)))
... if }\textrm{n}<=2*r-1
... best=max(best,ceil(Gallai(n,r)))
... return best
sage: # considering the case r=19, n=36
sage: min_m=348
sage: for r1 in range(2,10):
... r2 = 19-r1
... if r1==2:
... max_n1=2
... else:
... max_n1=36-r2
... for n1 in range(r1,max_n1+1):
... n2 = 36-n1
\cdots. if (n1!=r1+1 and n2!=r2+1):
... curr = f(n1,r1)+f(n2,r2)+n1*n2
... min_m= min(min_m,curr)
...
sage: print min_m
348
```


[^0]: *Department of Mathematics, Physics, and Computer Science, University of Haifa at Oranim, Tivon 36006, Israel. ackerman@sci.haifa.ac.il.

[^1]: ${ }^{1}$ A subdivision of K_{r} consists of r vertices, each pair of which is connected by a path such that the paths are vertex disjoint (apart from their endpoints).

[^2]: ${ }^{2}$ The code of our calculations appears in Appendix A.
 ${ }^{3}$ A join of two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ consists of the two graphs and the edges $\left\{\left(v_{1}, v_{2}\right) \mid\right.$ $\left.v_{1} \in V_{1}, v_{2} \in V_{2}\right\}$.

