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Abstract

We show that if a graph G with n ≥ 3 vertices can be drawn in the plane such that
each of its edges is involved in at most four crossings, then G has at most 6n− 12 edges.
This settles a conjecture of Pach, Radoičić, Tardos, and Tóth, and yields a better bound
for the famous Crossing Lemma: The crossing number, cr(G), of a (not too sparse) graph

G with n vertices and m edges is at least cm
3

n2 , where c > 1/29. This bound is known to
be tight, apart from the constant c for which the previous best bound was 1/31.1.

As another corollary we obtain some progress on the Albertson conjecture: Albertson
conjectured that if the chromatic number of a graph G is r, then cr(G) ≥ cr(Kr). This
was verified by Albertson, Cranston, and Fox for r ≤ 12, and for r ≤ 16 by Barát and
Tóth. Our results imply that Albertson conjecture holds for r ≤ 18.

1 Introduction

A topological graph is a graph drawn in the plane with its vertices as points and its edges
as Jordan arcs that connect corresponding points and do not contain any other vertex as
an interior point. Any two edges of a topological graph have a finite number of intersection
points. Every intersection point of two edges is either a vertex that is common to both edges,
or a crossing point at which one edge passes from one side of the other edge to its other side.
Throughout this paper we assume that no three edges cross each other at a single crossing
point. A topological graph is simple if every pair of its edges intersect at most once.

For a topological graph D we denote by cr(D) the crossing number of D, that is, the
number of crossing points in D. The crossing number of of an abstract graph G, cr(G), is
the minimum value of cr(D) taken over all drawings D of G as a topological graph. The
following result was proved by Ajtai, Chvátal, Newborn, Szemerédi [6] and, independently,
Leighton [16].

Theorem 1 ([6, 16]). There is an absolute constant c > 0 such that for every graph G with

n vertices and m > 4n edges we have cr(G) ≥ c e3
n2 .

This celebrated result is known as the Crossing Lemma and has numerous applications in
combinatorial and computational geometry, number theory, and other fields of mathematics.

The Crossing Lemma is tight, apart from the multiplicative constant c. This constant was
originally very small, and later was shown to be at least 1/64 ≈ 0.0156, by the probabilistic
proof of the Crossing Lemma due to Chazelle, Sharir, and Welzl [3]. Pach and Tóth [20]
proved that 0.0296 ≈ 1/33.75 ≤ c ≤ 0.09 (the lower bound applies for m ≥ 7.5n). Their lower
bound was later improved by Pach, Radoičić, Tardos, and Tóth [19] to c ≥ 1024/31827 ≈
1/31.1 ≈ 0.0321 (when m ≥ 103

16 n). Both improved lower bounds for c were obtained using
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the same approach, namely, finding many crossings in sparse graphs. To this end, it was
shown that topological graphs with few crossings per edge have few edges.

Denote by ek(n) the maximum number of edges in a topological graph with n > 2 vertices
in which every edge is involved in at most k crossings. Let e∗k(n) denote the same quantity for
simple topological graphs. It follows form Euler’s Polyhedral Formula that e0(n) ≤ 3n− 6.
Pach and Tóth showed that e∗k(n) ≤ 4.108

√
kn and also gave the following better bounds for

k ≤ 4.

Theorem 2 ([20]). e∗k(n) ≤ (k + 3)(n− 2) for 0 ≤ k ≤ 4. Moreover, these bounds are tight
when 0 ≤ k ≤ 2 for infinitely many values of n.

Pach et al. [19] observed that the upper bound in Theorem 2 applies also for not neces-
sarily simple topological graphs when k ≤ 3, and proved a better bound for k = 3.

Theorem 3 ([19]). e3(n) ≤ 5.5n− 11. This bound is tight up to an additive constant.

By Theorem 2, e∗4(n) ≤ 7n − 14. Pach et al. [19] claim that similar arguments to their
proof of Theorem 3 can improve this bound to (7− 1

9)n−O(1). They also conjectured that
the true bound is 6n − O(1). Here we settle this conjecture on the affirmative, also for not
necessarily simple topological graphs.

Theorem 4. Let G be a topological graph with n ≥ 3 vertices. If every edge of G is involved
in at most four crossings, then G has at most 6n − 12 edges. This bound is tight up to an
additive constant.

Using the bound in Theorem 4 and following the footsteps of [19, 20] we obtain the
following linear lower bound for the crossing number.

Theorem 5. Let G be a graph with n > 2 vertices and m edges. Then cr(G) ≥ 5m− 139
6 (n−

2).

This linear bound is then used to get a better constant factor for the bound in the
Crossing Lemma, by plugging it into its probabilistic proof, as in [17, 19, 20].

Theorem 6. Let G be a graph with n vertices and m edges. Then cr(G) ≥ 1
29
m3

n2 − 35
29n. If

m ≥ 6.95n then cr(G) ≥ 1
29
m3

n2 .

Albertson conjecture. The chromatic number of a graph G, χ(G), is the minimum num-
ber of colors needed for coloring the vertices of G such that none of its edges has monochro-
matic endpoints. In 2007 Albertson conjectured that if χ(G) = r then cr(G) ≥ cr(Kr).
That is, the crossing number of an r-chromatic graph is at least the crossing number of the
complete graph on r vertices.

If G contains a subdivision1 of Kr then clearly cr(G) ≥ cr(Kr). A stronger conjecture
(than Albertson conjecture and also than Hadwiger conjecture) is therefore that if χ(G) = r
then G contains a subdivision of Kr. However, this conjecture, which was attributed to
Hajós, was refuted for r ≥ 7 [9, 11].

Albertson conjecture is known to hold for small values of r: For r = 5 it is equivalent to
the Four Color Theorem, whereas for r = 6, r ≤ 12, and r ≤ 16, it was verified respectively
by Oporowskia and Zhao [18], Albertson, Cranston, and Fox [7], and Barát and Tóth [8]. By
using the new bound in Theorem 5 and following the approach in [7, 8], we can now verify
Albertson conjecture for r ≤ 18.

Theorem 7. Let G be an n-vertex r-chromatic graph. If r ≤ 18 or r = 19 and n 6= 37, 38,
then cr(G) ≥ cr(Kr).

1A subdivision of Kr consists of r vertices, each pair of which is connected by a path such that the paths
are vertex disjoint (apart from their endpoints).
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Organization. The bulk of this paper is devoted to proving Theorem 4 in Section 2. In
Section 3 we recall how the improved crossing numbers are obtained, and their consequences.

2 Proof of Theorem 4

We understand a multigraph as a graph that might contain parallel edges but no loops. We
may assume, without loss of generality, that the topological (multi)graphs that we consider
do not contain self-crossing edges, for such crossing points can be easily eliminated by re-
routing the self-crossing edge at a small neighborhood of the crossing point.

Let e1 and e2 be two intersecting edges in a topological multigraph G and let x1, x2, . . . , xt
be their intersection points, ordered as they appear along e1 and e2. If t ≥ 2 then for every
i ∈ {1, 2, . . . , t− 1} the open Jordan region whose boundary consists of the edge-segments of
e1 and e2 between and xi and xi+1 is called a lens. We call xi and xi+1 the poles of the lens.
A lens is empty if it does not contain a vertex of G. We will need the following fact later.

Proposition 2.1. Let l be an empty lens in a topological multigraph G that is bounded by
two edge-segments s1 and s2. If s1 is crossed by an edge e and l does not contain a smaller
empty lens then s2 is also crossed by e.

Proof. Suppose that there is an edge e that crosses s1 but not s2. Since l does not contain
any vertex of G, e must intersect s1 at another point (either a crossing point or a vertex of
G). But then l contains a smaller empty lens.

The upper bound in Theorem 4 will follow from the next claim.

Theorem 8. Let G be a topological multigraph with n ≥ 3 vertices and no empty lenses. If
every edge in G is involved in at most four crossings, then G has at most 6n − 12 edges.
This bound is tight for infinitely many values of n.

To see that it is enough to prove Theorem 8, consider a topological graph G with n ≥ 3
vertices in which every edge is involved in at most four crossings. We may assume that
there is no other n-vertex topological graph with the latter property and more edges than
G (otherwise, replace G by this graph). Furthermore, we may assume that there is no other
n-vertex topological graph G′ with at most four crossings per edge and the same number of
edges as G, such that cr(G′) < cr(G) (otherwise, replace G by G′). We claim that G has no
empty lenses, and therefore, by Theorem 8, it has at most 6n− 12 edges.

Indeed, suppose that G has empty lenses and let l be an empty lens that contains no other
empty lens. Let e1 and e2 be the edges that form l and let s1 and s2 be the edge-segments
of e1 and e2, respectively, that bound l. Denote by x1 and x2 the endpoints of s1 and s2.
At least one of x1 and x2 is a crossing point, for otherwise e1 and e2 are parallel edges in G.
Let G′ be the graph we obtain by ‘re-routing’ e1 along s2 and e2 along s1 and drawing them
such that they do not intersect at the crossing points among x1 and x2 (see Figure 1 for an
example). Note that since l contains no other empty lens, it follows from Proposition 2.1
that every edge that crosses s1 must cross s2, and vice verse. Therefore, every edge in G′ is
involved in at most four crossings. However, G′ has the same number of edges as G, but has
fewer crossings, and this contradicts our assumption on G.

We therefore turn now to proving Theorem 8. For a topological multigraph G we denote
by M(G) the plane map induced by G. That is, the vertices of M(G) are the vertices and
crossing points in G, and the edges of M(G) are the crossing-free segments of the edges of
G (where each such segment connects two vertices of M(G)). We say that a face f of M(G)
is good if |f | = 3 or f is incident to at most one vertex of G. Otherwise, f is bad. We call G
good if every face of M(G) is good. The next lemma will allow us to assume that G is good.
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Figure 1: Getting rid of an empty lens.
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Figure 2: Illustrations for the proof of Lemma 2.2

Lemma 2.2. Let G be a topological multigraph with no empty lenses and at most k crossings
per edge. Then there exists a good topological multigraph G′ with no empty lenses and at most
k crossing per edge such that: (1) V (G) = V (G′); (2) |E(G)| ≤ |E(G′)|; and (3) cr(G) ≥
cr(G′).

Proof. Since G has no empty lenses, every face in M(G) is of size at least three. Suppose
that M(G) contains a face f , |f | > 3, that is incident to two vertices of G, denote them by
A and B.

If A and B are not adjacent in f , then we can add an edge (a ‘chord’) between them
within f . Observe that the new edge cannot form an empty lens. Indeed, suppose an empty
lens is formed when e = AB is added. Then, there must be another edge e′ = AB. As e,
the edge e′ is also crossing-free by Proposition 2.1. However, if e′ is crossing-free and forms
an empty lens with e, then e′ must be edge of f , and so A and B are adjacent in f .

We continue adding such ‘chords’ as long as possible, until the plane map contains no
face with two vertices of G that are not adjacent in that face. Denote by G1 the resulting
topological graph and suppose that M(G1) has a face f such that |f | > 3 and f is incident
to two vertices A,B of G1 (that are adjacent in f). Assume that B follows A in a clockwise
order of the vertices of f , and denote by w and z the following vertices after B. Notice that
both w and z must be crossing points in G, since |f | > 3 and f contains no non-adjacent
vertices of G. Let e = CD be the edge of G1 that contains the edge wz of f . Suppose that
D is the endpoint of e such that w lies between D and z on e (refer to Figure 2(a)).

We wish to show that we can replace CD by a new edge AD or BC, such that the new
graph has fewer crossings than G1. To this end, we first show that A 6= D or B 6= C, in
order to avoid creating a loop in the underlying abstract multigraph. Suppose that A = D
and B = C, that is CD = BA (we write BA to distinguish this edge from the edge AB of
f). Observe that BA is not the same edge that contains the edge-segment Bw, since then it
will cross itself at w. Therefore, there is a point p on BA near f , outside of it, and not on
Bw or AB. Let q be a point near w on the edge-segment wB of BA. Consider the closed
curve c that consists of AB, Bw, and the edge-segment wA of BA. Since AB and Bw are
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Figure 3: “Fixing” the bad face f when A 6= D.

crossing-free and wA cannot cross itself, c is a Jordan curve. Let R be the region bounded
by c. Suppose that we traverse c clockwise (such that R is to our right). If we visit A,B,w
in this order, then R must contain f (recall that this is the clockwise order of these vertices
in f). Therefore, p /∈ R and q ∈ R. Otherwise, if f is not in R then p ∈ R and q /∈ R
(see Figure 2(b) for an example). It follows that the edge-segment pq of BA must cross the
edge-segment wA of BA, but then BA crosses itself.

Suppose that A 6= D. Let G2 be the topological graph we obtain by replacing e with a
new edge e′ = AD as illustrated in Figure 3(a). That is, e′ closely follows AB and Bw inside
f , then it crosses CD and the edge containing Bw at w, and closely follows wD. Observe
that G2 has the same vertex set as G1 and the same number of edges. The new edge e′

is involved in at least one less crossing than e, and the number of crossings for every other
edge can only decrease. Therefore, cr(G2) < cr(G1) and we have not increased the maximum
number of crossings per edge.

Next we show that G2 does not contain an empty lens. Indeed, suppose that we have
created an empty lens and let l be an empty lens that does not contain a smaller empty lens.
Since the new edge AD follows the edge-segment wD of the old edge CD, it follows that A
must be a pole of l, for otherwise G1 also contains an empty lens. Denote by w′ the other
pole of l and observe that w′ = D or w′ is some crossing point on the (closed) edge-segment
wD of AD.

Orient the new edge-segment Aw′ such that l is to its right, and denote the other (old)
edge-segment the bounds l by w′A. Suppose that Aw′ is oriented from w′ to A. Since the
edge AB is the edge that follows AD in a counterclockwise order of the edges around A, it
follows that B must be the other pole of l (that is w′ = B = D), for otherwise l contains B.
However, AB is crossing-free and AD is not, so by Proposition 2.1 there is a smaller empty
lens in l, which contradicts our choice of l.

Therefore, Aw′ is oriented from A to w′. Observe that by the construction of the new
edge AD, when traversing AD from A to D, at the point w we may turn right and follow the
edge-segment wC of CD. Since l lies to the right of Aw′ it follows that this edge-segment
must be inside l. The lens l does not contain C, therefore the edge-segment wC intersects the
edge-segment ww′ of Aw′ or the edge-segment w′A. (Note that it is possible that A = C but
it is impossible that C = w′ = D since G1 contains no loops. It is also impossible that wC
intersects the new crossing-free edge-segment Aw.) However, since AD follows CD from w
to D, it follows that G1 already contains an empty lens (see Figure 3(b) for an illustration).

Consider now the case that A = D, and therefore, B 6= C. Denote by ez the edge that
crosses CD at z. Let G2 be the topological graph we obtain by replacing e with a new edge
e′ = BC as illustrated in Figure 4(a). That is, e′ closely follows Bw and wz inside f , then
it crosses CD and ez at z, and closely follows the edge-segment zC. Observe that G2 has
the same vertex set as G1 and the same number of edges. The new edge e′ is involved in
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Figure 4: “Fixing” the bad face f when B 6= C.

at least one less crossing than e, and the number of crossings for every other edge can only
decrease. Therefore, cr(G2) < cr(G1) and we have not increased the maximum number of
crossings per edge.

Next we show that G2 does not contain an empty lens. Indeed, suppose that we have
created an empty lens and let l be an empty lens that does not contain a smaller empty lens.
Since the new edge BC follows the edge-segment zC of the old edge CD, it follows that B
must be a pole of l, for otherwise G1 also contains an empty lens. Denote by z′ the other
pole of l and observe that z′ = C or z′ is some crossing point on the (closed) edge-segment
zC of BC.

Orient the new edge-segment Bz′ such that l is to its left, and denote the other (old)
edge-segment the bounds l by z′B. Suppose that Bz′ is oriented from z′ to B. Since the
edge AB is the edge that follows BC in a clockwise order of the edges around B, it follows
that A must be the other pole of l (that is z′ = A = C), for otherwise l contains A. However,
AB is crossing-free and BC is not, so by Proposition 2.1 there is a smaller empty lens in l,
which is impossible.

Therefore, Bz′ is oriented from B to z′. Observe that by the construction of the new
edge BC, when traversing BC from B to C, at the point z we may turn left and follow the
edge-segment zD of CD. Since l lies to the left of Bz′ it follows that this edge-segment must
be inside l. The lens l does not contain D, therefore the edge-segment zD intersects the
edge-segment zz′ of Bz′ or the edge-segment z′B. (Note that it is possible that B = D but
it is impossible that C = z′ = D since G1 contains no loops. It is also impossible that zD
intersects the new crossing-free edge-segment Bz.) However, since BC follows CD from z to
C, it follows that G1 already contains an empty lens (see Figure 4(b) for an illustration).

It follows that we can add new ‘chords’ and replace edges as above, until a good topo-
logical multigraph is obtained.

Let G be an n-vertex topological multigraph such that G has no empty lenses and every
edge in G is involved in at most four crossings. As before, we choose G such that it has the
maximum number of edges among the n-vertex multigraphs with those properties. Further-
more, we may assume that there is no other n-vertex topological multigraph G′ such that
G′ has no empty lenses, G′ has the same number of edges as G, and fewer crossings than G.
Finally, by Lemma 2.2 we may assume that G is good.

If n = 3 then G has at most 6 edges. Indeed, otherwise there is a vertex v of degree at
least five. Let x and y be the two other vertices, such that there are at least three edges
between v and x. These three edges form at least two disjoint lenses, however, y can be in
at most one of them, and therefore G has an empty lens. Thus, G has at most 6n− 12 = 6
edges and the theorem holds when n = 3. Assume therefore that n > 3. We may also assume
that the minimum degree in G is at least 7, for otherwise we can remove a vertex of degree
at most 6, and conclude the theorem by induction.

We use the Discharging Method to prove Theorem 8. This technique, that was introduced
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and used successfully for proving structural properties of planar graphs (most notably, in the
proof of the Four Color Theorem [4]), has recently proven to be a useful tool also for solving
several problems in geometric graph theory [1, 2, 5, 15, 21]. The idea is to assign a charge to
every face of the planar map M(G) such that the total charge is 4n− 8. Then, redistribute
the charges in several steps such that eventually the charge of every face is nonnegative and
the charge of every vertex v ∈ V (G) is deg(v)/3. Hence, 2|E(G)|/3 =

∑
v∈V (G) deg(v)/3 ≤

4n − 8 and we get the claimed bound on |E(G)|. Next we describe the proof in details.
Unfortunately, as it often happens when using the discharging method, the proof requires
considering many cases and sub-cases.

Charging. Let V ′, E′, and F ′ denote the vertex, edge, and face sets of M(G), respectively.
For a face f ∈ F ′ let v(f) denote the number of vertices of G on the boundary of f . It is
easy to see that

∑
f∈F ′ v(f) =

∑
u∈V (G) deg(u) and that

∑
f∈F ′ |f | = 2|E′| = ∑u∈V ′ deg(u).

Note also that every vertex in V ′ \ V (G) is a crossing point of G and therefore its degree in
M(G) is four. Hence,∑

f∈F ′
v(f) =

∑
u∈V (G)

deg(u) =
∑
u∈V ′

deg(u)−
∑

u∈V ′\V (G)

deg(u) = 2|E′| − 4
(
|V ′| − n

)
.

Assigning every face f ∈ F ′ a charge of |f |+ v(f)− 4, we get that total charge over all the
faces is ∑

f∈F ′
(|f |+ v(f)− 4) = 2|E′|+ 2|E′| − 4

(
|V ′| − n

)
− 4|F ′| = 4n− 8,

where the last equality follows from Euler’s Polyhedral Formula by which |V ′|+|F ′|−|E′| = 2.

Discharging. We will redistribute the charges in several steps. We denote by chi(x) the
charge of an element x (either a face in F ′ or a vertex in V (G)) after the ith step, where
ch0(·) represents the initial charge function. We will use the terms triangles, quadrilaterals,
pentagons and hexagons to refer to faces of size 3, 4, 5 and 6, respectively. An integer before
the name of a face, denotes the number of original vertices (vertices of G) on its boundary.
For example, a 2-triangle is a face of size 3 that has 2 original vertices on its boundary. It
follows from our choice of G (using Lemma 2.2) that if v(f) > 1 for a face f , then f is a
triangle. Since G has no empty lenses, there are no faces of size 2 in F ′. Therefore, initially,
the only faces with a negative charge are 0-triangles.
Step 1: Charging 0-triangles. Let t be a 0-triangle, let e1 be one of its edges, and let
f1 be the other face incident to e1 (see Figure 5(a)). It must be that |f1| > 3, for otherwise
there would be an empty lens. If f1 is not a 0-quadrilateral, then we move 1/3 units of charge
from f1 to t, and say that f1 contributed 1/3 units of charge to t through e1. Otherwise, if
f1 is a 0-quadrilateral, let e2 be the opposite edge to e1 in f1, and let f2 be the other face
incident to e2. We claim that f2 cannot be a 0-quadrilateral. Indeed, suppose that f2 is a
0-quadrilateral, let e3 be the opposite edge to e2 in f2 and let f3 be the other face that is
incident to e3. Let a and b be the two edges of G that cross at the vertex that is opposite
to e1 in t. Then a and b are already involved in four crossings, therefore f3 must have at
least two original vertices on its boundary (endpoints of a and b), since f3 is not a triangle
(this would imply an empty lens). However, we chose G such that such a face is impossible.
Therefore if f1 is a 0-quadrilateral, then f2 contributes 1/3 units of charge to t through e2.
In a similar way t obtains 2/3 units of charge from the two other ‘directions’. !

After the first discharging step the charge of every 0-triangle is zero. Note that in at
most one of the three ‘directions’ in which a 0-triangle t ‘seeks’ charge it can encounter a
0-quadrilateral. Indeed, two neighboring 0-quadrilaterals to t would imply that the third
neighboring face has two original vertices and size greater than three and hence is not good.
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Figure 5: The first two discharging steps.

Observation 2.3. A face can contribute at most once through each of its edges in Step 1.
Moreover, if a face contributes through one of its edges in Step 1 then the vertices of this
edge are crossing points in G.

Recall that according to our plan, the charge of every original vertex should be one third
of its degree. The next discharging step takes care of this.
Step 2: Charging vertices of G. In this step every vertex of G takes 1/3 units of charge
from each face it is incident to (see Figure 5(b)). !

It follows from Observation 2.3 and the discharging steps that ch2(f) ≥ 2|f |/3+2v(f)/3−
4, for every face f . Therefore ch2(f) ≥ 0 if |f | ≥ 6.

Observation 2.4. Let f be a face in M(G). Then• if |f | ≥ 6 then ch2(f) ≥ 0, and equality may hold only if f is a 0-hexagon;

• if f is a 1-pentagon then ch2(f) ≥ 2/3;

• if f is a 0-quadrilateral or a 0-triangle then ch2(f) = 0;

• if f is a 1-quadrilateral then ch2(f) ≥ 0;

• if f is a 2-triangle then ch2(f) = 1/3; and

• if f is a 1-triangle then ch2(f) = −1/3.

Note that we have not mentioned 0-pentagons. Showing that 0-pentagons end up with a
nonnegative charge will be the most challenging task, and therefore we postpone the analysis
of their charge until after all the discharging steps are described.

After the second discharging step the charge of every vertex v ∈ V (G) is deg(v)/3 and
the only faces with a negative charge are 1-triangles (we will see later in Proposition 2.13
that the charge of 0-pentagons after Step 1 is nonnegative). In the next three steps we
redistribute the charges such that the charge of every 1-triangle becomes zero.

Let f be a 1-triangle and let v ∈ V (G) be the vertex of G that is incident to f . Let g1
and g2 be the two faces that share an edge of M(G) with f and are also incident to v. We
call g1 and g2 the neighbors of f (see Figure 6 for an example). Note that g1 6= g2 since the
degree of every vertex in G is at least 7. Next, we define the wedge and the wedge-neighbor
of f . Let h1 be the edge of f that is opposite to v and let f1 be the other face that is incident
to h1. If f1 is not a 0-quadrilateral then it is the wedge-neighbor of f . Otherwise, let h2
be the opposite edge to h1 in f1 and let f2 be the other face that is incident to h2. Again,
if f2 is not a 0-quadrilateral then it is the wedge-neighbor of f . If f2 is a 0-quadrilateral
then let h3 be the opposite edge to h2 in f2 and let f3 be the other face that is incident
to h3. In this case, it is not hard to see (similarly to our observation in Step 1) that f3
cannot be a 0-quadrilateral, and so it will be the wedge-neighbor of f . Suppose that fj is

the wedge-neighbor of f . Then the wedge of f consists of f and
⋃j−1
i=1 fj .
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Figure 6: g1 and g2 are the neighbors of the 1-triangle f . f2 is its wedge-neighbor and the
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Figure 7: ch2(g1), ch2(g2) ≤ 0 and g1 is not a 1-triangle.

Proposition 2.5. Let f be a 1-triangle and let g1 and g2 be its two neighbors. Then if
ch2(g1) ≤ 0 and ch2(g2) ≤ 0 then g1 and g2 are 1-triangles.

Proof. The neighbors of a 1-triangle must have at least one vertex of G on their boundary.
Therefore, by Observation 2.4, if ch2(gi) ≤ 0 then gi is either a 1-triangle or a 1-quadrilateral,
for i = 1, 2. Suppose without loss of generality that g1 is a 1-quadrilateral and that ch2(gi) ≤
0 for i = 1, 2. Let v be the vertex of G that is incident to f and let e be the edge of G that
contains the edge of f that is opposite to v in f . Then e must be crossed at least five times,
see Figure 7.

If the two neighbors of a 1-triangle have a nonpositive charge, and hence are 1-triangles
by Proposition 2.5, then the 1-triangle obtains the missing charge from its wedge.
Step 3: Charging 1-triangles with poor neighbors. If f is a 1-triangle whose two
neighbors are 1-triangles, then the wedge-neighbor of f contributes 1/3 units of charge to f
through the edge of M(G) that it shares with the wedge of f . !

Note that in Step 3, as in Step 1, charge is contributed only through edges whose both
endpoints are crossing points. Moreover, a face cannot contribute through the same edge in
Steps 1 and 3. Therefore, there if ch3(f) < 0 for a face f , then f is either a 1-triangle or a
0-pentagon.

Proposition 2.6. Let f be a face that contributes charge in Step 3 to a 1-triangle t through
one of its edges e, such that e is an edge of t. Then f does not contributes charge in Step 1
or 3 through neither of its two edges that are incident to e.

Proof. Let AB be the edge of G that contains e and let e′ be an edge of f that is incident to
e. Then AB contains four crossing points: the endpoints of e and two crossing points, one
on each side of e on AB, since the neighbors of t must be 1-triangles. It is then impossible
that f contributes charge through e′ to a 1-triangle t′ in Step 3, since one neighbor of such
a triangle has to be a 2-triangle (see Figure 8(a)). It is also impossible that f contributes
charge through e′ to a 0-triangle t′ in Step 1, since then AB has more than four crossings
(see Figure 8(b)), or there is an empty lens.
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Figure 8: f contributes charge to t through e in Step 3 and e is an edge of t.

For 1-triangles with a negative charge after Step 3, the missing charge will come from
either both neighbors or one neighbor and their wedge-neighbor. The next proposition shows
that if the charge of one neighbor of such a 1-triangle is zero (implying that this neighbor is
a 1-quadrilateral or a 1-triangle), then the other neighbor is able to contribute charge to the
1-triangle.

Proposition 2.7. Let f be a 1-triangle and let g1 and g2 be its neighbors. If g1 is a 1-triangle
or a 1-quadrilateral such that ch3(g1) = 0 then g2 is a 2-triangle.

Proof. The claim clearly holds when g1 is a 1-triangle, since the other neighbor of g1 must
also be a 1-triangle if ch3(g1) = 0. Therefore assume that g1 is a 1-quadrilateral. We consider
three cases based on ch2(g1). If ch2(g1) = 0, then it is easy to see that g2 is a 2-triangle, for
otherwise there would be an edge of G that is crossed more than four times, or a bad face of
M(G) (see Figure 9(a)).

Suppose that ch2(g1) = 1/3. Let e and e′ be the edges of G that contain the edges of
g1 that are not incident to v. Let t be the 1-triangle to which g1 has contributed charge in
Step 3 through an edge that is contained in e. If f is bounded by e, then e has four crossing
points and the same arguments as in the previous case apply. Therefore, assume that f is
bounded by e′ and refer to Figure 9(b). Note first that it impossible that t and g1 share
an edge. Indeed, because the neighbors of t must be 1-triangles, this would imply that e is
crossed more than four times (see Figure 9(b)). Therefore e′ has four crossings and it follows,
as above, that g2 is a 2-triangle (see Figure 9(c)).

Suppose now that ch2(g1) = 2/3. Let t1 and t2 be the two 1-triangles to which g1 has
contributed charge in Step 3. By Proposition 2.6 neither t1 nor t2 share an edge of M(G)
with g1. Let e be the edge of G that bounds f and g1 (refer to Figure 9(d)). Then e has
four crossings and therefore, as before, it follows that g2 is a 2-triangle.

Recall that after Step 3 the charge of every 1-triangle whose two neighbors have a non-
positive charge (and hence are 1-triangles themselves) becomes zero.
Step 4: Charging 1-triangles with positive neighbors. Let f be a 1-triangle such
that ch3(f) < 0 and let g be a neighbor of f such that ch3(g) > 0. Denote by g′ the other
neighbor of f . Then g contributes 1/6 units of charge to f through the edge of M(G) that
they share if: (1) g is not a 1-quadrilateral; (2) g is a 1-quadrilateral and ch3(g) ≥ 2/3; or
(3) g is a 1-quadrilateral, ch3(g) = 1/3, and g′ is a 1-triangle or g′ is a 1-quadrilateral whose
charge after Step 3 is 1/3. !

Proposition 2.8. There is no face f such that ch3(f) ≥ 0 and ch4(f) < 0.

Proof. Clearly we only have to consider faces containing original vertices of G. If f is a
1-triangle, then ch3(f) ≤ 0 and so it cannot contribute charge in Step 4. If f is a 2-triangle,
then ch3(f) = 1/3 and it contributes to at most two 1-triangles in Step 4 and so ch4(f) ≥ 0.
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(d) ch2(g1) = 2/3.

Figure 9: Illustrations for the proof of Proposition 2.7. If g1 is a 1-quadrilateral such that
ch3(g1) = 0, then the other neighbor of f is a 2-triangle.

If f is a 3-triangle then ch3(f) = 1 and it does not contribute any charge in Step 4. If f
is a 1-quadrilateral then it contributes to at most two 1-triangles only if ch3(f) ≥ 1/3 and
therefore ch4(f) ≥ 0. If f is a face of size greater than four then it is easy to see that its
charge remains positive.

Proposition 2.9. If f is a 1-triangle then ch4(f) ≥ −1/6.

Proof. Let g1 and g2 be the neighbors of f . If ch4(f) < −1/6 it means that f did not receive
charge from neither g1 nor g2 in Step 4. The only faces containing an original vertex that
have a non-positive charge after Step 3 are 1-triangles and 1-quadrilaterals. Suppose that
g1 is a 1-quadrilateral whose charge after Step 3 is zero. Then g2 must be a 2-triangle by
Proposition 2.7 and therefore contributes charge to f in Step 4. If g1 is a 1-triangle then it
cannot be that g2 is also a 1-triangle because then after Step 3 we have ch3(f) = 0. It is also
impossible that g2 is a 1-quadrilateral with a zero charge, by Proposition 2.7. Therefore, g2
must contribute 1/6 units of charge to f in Step 4 in this case.

Proposition 2.10. If f is a 1-quadrilateral such that ch3(f) = 1/3 then f contributes charge
to at most one 1-triangle in Step 4.

Proof. Suppose that f is a 1-quadrilateral such that ch3(f) = 1/3 and f contributes charge
to two 1-triangles t1 and t2 in Step 4. Let g1 and g2 be the other neighbors of t1 and t2,
respectively. Note that according to Step 4, each of g1 and g2 must be either a 1-triangle or
a 1-quadrilateral whose charge is 1/3 after Step 3. Observe also that it is impossible that
ch2(f) = 1/3, since this would imply an edge in G that is crossed more than four times, see
Figure 10(a).

Therefore, assume that ch2(f) = 2/3 and denote by t′ the 1-triangle to which f has
contributed charge in Step 3. However, t′ must share an edge of M(G) with f , and this
implies that both of its neighbors are not 1-triangles (see Figure 10(b)).
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Figure 10: f is a 1-quadrilateral such ch3(f) = 1/3 that contributes charge to t1 and t2 in
Step 4.

Step 5: Finish charging 1-triangles. Let f be a 1-triangle, let g′ be the wedge-neighbor
of f and let e′ be the edge of M(G) that is common to g′ and the wedge of f . If ch4(f) < 0
then g′ contributes 1/6 units of charge to f through e′. !

Observation 2.11. Let f be a face and let e be an edge of f . Then f contributes charge
through e at most once during the discharging steps 1–5.

Proposition 2.12. Let f be a face in M(G). If ch5(f) < 0 then f is a 0-pentagon.

Proof. It follows from Proposition 2.9 and Step 5 that the charge of every 1-triangle is zero
after the fifth discharging step. Suppose that f is a 1-quadrilateral. Then ch3(f) is either 0,
1/3, or 2/3. In the first case f does not contribute charge in Steps 4 and 5, and therefore
ch5(f) = 0. If ch3(f) = 2/3 then clearly ch5(f) ≥ 1/6. If ch3(f) = 1/3 then it follows
from Proposition 2.10 that ch4(f) ≥ 1/6 and so ch5(f) ≥ 0. It is not hard to see, keeping
Observation 2.11 in mind, that the charge of any other face but a 0-pentagon cannot be
negative.

Step 6: Charging 0-pentagons. Let f be a face such that ch5(f) > 0 and let B(f) be the
set of 0-pentagons f ′ such that ch5(f

′) < 0 and f ′ and f intersect at exactly one vertex of
M(G). If B(f) 6= ∅ then in the sixth discharging step f sends ch5(f)/|B(f)| units of charge
to every 0-pentagon in B(f) through their intersection point. !

It follows from Proposition 2.12 and Step 6 that it remains to show that after the last
discharging step the charge of every 0-pentagon is nonnegative. Note that a 0-pentagon can
contribute either 1/3 or 1/6 units of charge (to a triangle) at most once through each of its
edges. We first show, in Proposition 2.13, that the charge of a 0-pentagon after Step 1 is
nonnegative and therefore is either 1, 2/3, 1/3 or 0. We then consider these cases separately
in Lemmas 2.15, 2.16, 2.17 and 2.19, respectively.

First, we introduce some useful notations. Let f be a 0-pentagon. Let e0, . . . , e4 be
the edges on the boundary of f , listed in their clockwise cyclic order. The vertices of f are
denoted by v0, . . . , v4, such that vi is incident to vi and vi+1 (addition is done modulo 5). For
every edge ei = vivi+1 of f we denote by AiBi the edge of G that contains ei, such that vi is
between Ai and vi+1 on AiBi. Denote by ti the 1-triangle to which f sends charge through ei,
if such a triangle exists. Note that if ti is a 1-triangle then one of its vertices is Ai−1 = Bi+1.
Its other vertices will be denoted by xi and yi such that xi is contained in Ai−1Bi−1 and
yi is contained in Ai+1Bi+1. If ti is a 0-triangle, then wi denotes its vertex which is the
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Figure 11: The notations used for vertices, edges, and faces near a 0-pentagon f . Bold
edge-segments mark edges of M(G).

B3
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t4
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v1

Figure 12: A 0-pentagon cannot contribute to three 0-triangles through non-consecutive
edges.

crossing point of Ai−1Bi−1 and Ai+1Bi+1, and, as before, xi and yi denote its other vertices.
Obviously, different notations might refer sometimes to the same point. Finally, we denote
by fi the face that is incident to vi and is incident neither to ei nor to ei+1. That is, the
intersection of f and fi is exactly vi, and thus f ∈ B(fi) if ch5(f) < 0. See Figure 11 for an
example of these notations. Note also that in all the figures bold edge-segments mark edges
of M(G).

Proposition 2.13. Let f be a 0-pentagon. Then ch1(f) ≥ 0. Moreover, if ch1(f) = 0 then
f has contributed charge to three 0-triangles through three consecutive edges on its boundary.

Proof. Suppose that f has contributed charge through three non-consecutive edges. Assume
without loss of generality that these edges are e1, e2, e4. Then the edges A0B0 and A3B3

have four crossings, and this implies that either f1 is a bad face, or A3 = B0 and G has an
empty lens (see Figure 12).

Proposition 2.14. Suppose that f is a 0-pentagon that contributes charge in Step 3 through
ei and ei+1, for some 0 ≤ i ≤ 4, such that the wedges of ti and ti+1 each contain exactly one
0-quadrilateral. Then fi contributes at least 1/3 units of charge to f in Step 6.

Proof. Assume without loss of generality that i = 1 and refer to Figure 13. Let A2y1p be
the neighbor of t1 that shares an edge with f1 and Let A3x2q be the neighbor of t2 that
shares an edge with f1. Observe that |f1| ≥ 5 and that f1 contributes at most 1/6 units
of charge through y1p and x2q. Note also that f1 contributes at most 1/6 units of charge
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Figure 13: An illustration for the proof of Proposition 2.14: If f contributes charge to t1 and
t2 in Step 3 and their wedges each contain exactly one 0-quadrilateral, then f1 contributes
at least 1/3 units of charge to f in Step 6.

through v1x2. Indeed, if it contributes charge through v1x2 in Step 1, then A2B2 would
have more than four crossings, and if f1 contributes charge through v1x2 in Step 3, then the
wedge of t2 would have two 0-quadrilaterals. Similarly, f1 contributes at most 1/6 charge
through v1y1. None of the vertices q, x2, y1, p can be the intersection of f1 with a 0-pentagon.
Note that if |f1| = 5 then B(f1) = {f} and f1 does not contribute charge through pq and so
ch5(f1) ≥ 1/3. Therefore f1 sends 1/3 units of charge to f in Step 6 in this case.

If |f1| ≥ 6 then the clockwise chain from p to q contains |f1|−4 edges and at most |f1|−5
vertices through which f1 might contribute charge in Step 6. Therefore every face in B(f1)

receives from f1 in Step 6 at least |f1|−4−4/6−(|f1|−4)/3|f1|−4 ≥ 1/3 units of charge.

Lemma 2.15. Let f be a 0-pentagon such ch1(f) = 1. Then ch6(f) ≥ 0.

Proof. Suppose that ch1(f) = 1 and ch5(f) < 0. Then f contributes charge either to exactly
two or to at least three 1-triangles in Step 3. We consider each of these cases separately.
Case 1: ch3(f) = 1/3 and ch5(f) = −1/6. That is, f contributes 1/3 units of charge to two
1-triangles in Step 3 and contributes 1/6 units of charge to three 1-triangles in Step 5. We
may assume without loss of generality that in Step 3 either f contributes charge to t1 and
t2, or it contributes charge to t1 and t3.
Sub-case 1.1: f contributes charge to t1 and t2 in Step 3 and to t3, t4, t0 in Step 5. Recall
that by Proposition 2.6 e1 cannot be an edge of t1 and e2 cannot be an edge of t2.

Note that neither of the wedges of t1 and t2 contain two 0-quadrilaterals. Indeed, suppose
that the wedge of t2 contains two 0-quadrilaterals and refer to Figure 14. Then, since A1A3

has four crossings it follows that A1v0 is an edge in M(G), and so t0 = A1v4v0. Similarly,
t4 = A0v3v4. Because f4 is a good face, it must be a 2-triangle, that is, f4 = A1v4A0. In
Step 5 f sends charge to t4, therefore the other neighbor of t4, f3, cannot be a 2-triangle, and
so e3 is not an edge of t3. It follows that the wedge of t1 contains exactly one 0-quadrilateral,
and therefore the size of f0 is at least four. f0 may not contribute charge to t0 in Step 4
only if |f0| = 4 and ch3(f0) ≤ 1/3. However, it is not hard to see that if |f0| = 4 then
ch3(f0) = 2/3. Therefore f0 contributes charge to t0 in Step 4 (as does f4), and thus f does
not contribute charge to t0 in Step 5, a contradiction.

Therefore, each of the wedges of t1 and t2 contain exactly one 0-quadrilateral. Thus, by
Proposition 2.14 the face f1 contributes at least 1/3 units of charge to f in Step 6, and so
ch6(f) ≥ 0.
Sub-case 1.2: f contributes charge to t1 and t3 in Step 3 and to t2, t4, t0 in Step 5. Consider
first the case that e1 is an edge of t1 and refer to Figure 15(a). Then the wedges of t2
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Figure 14: Sub-case 1.1 in the proof of Lemma 2.15. If the wedge of t2 contains two 0-
quadrilaterals then t0 receives charge from both of its neighbors in Step 4, and no charge
from f .
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Step 3 through each of e1 and e3.
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and t0 contain one 1-quadrilateral each. It is impossible that t3 = A4v2v3 since its two
neighbors should be 1-triangles and in this case if f2 is a 1-triangle then there is an empty
lens. Therefore the wedge of t3 contains exactly one 0-quadrilateral (two 0-quadrilaterals
imply more than four crossings on A1A4).

Let A4x3q be the 1-triangle that is a neighbor of t3 and shares an edge with f2. Consider
the face f2 and observe that |f2| > 4 for if |f2| = 4 then G has an empty lens. Suppose that
|f2| = 5 and let p be its fifth vertex (its other vertices are q, x3, v2, y2). Refer to Figure 15(a)
and note that it is not hard to see that ch5(f2) ≥ 1/6 since the only edge through which f2
might contribute 1/3 units of charge (in Step 3) is py2, but in this case f2 does not contribute
charge through pq. Observe also that f2 cannot intersect another 0-pentagon precisely at q,
x3 or y2. It might intersect a 0-pentagon at p, but then it does not contribute any charge
through pq and py2, and then ch5(f2) ≥ 1/2. Therefore in Step 6 f2 contributes to f at least
1/6 units of charge and f ends up with a nonnegative charge.

If |f2| ≥ 6 then on the clockwise chain from y2 to q there are |f2| − 3 edges and at most
|f2| − 4 vertices through which f2 contributes charge in Step 6. Since f2 contributes at most

1/6 units of charge through v2y2, x3q, and x3v2, it contributes at least |f2|−4−3/6−(|f2|−3)/3|f2|−3 ≥
1/6 units of charge to every face in B(f2) in Step 6.

The case that e3 is an edge of t3 is symmetric, therefore suppose now that e1 is not an
edge of t1 and e3 is not an edge of t3 and refer to Figure 15(b). Observe that the wedges
of t1 and t3 must contain exactly one 0-quadrilateral each, for otherwise A2A4 has more
than four crossings. We claim that at least one of f1 and f2 is of size at least five. Indeed,
suppose that both of them are of size four. Then it is impossible that both f1 and f2 are
0-quadrilateral, since this implies an empty lens. Assume without loss of generality that
f1 is not a 0-quadrilateral. If f1 is a 1-quadrilateral, then A3v1 is an edge of M(G), but
then so is A3v2. This means that the two neighbors of t2 = A3v1v2 are 1-quadrilaterals, see
Figure 15(b). Observe that these 1-quadrilaterals cannot contribute charge in Steps 1 and 3.
Therefore, f1 and f2 contribute charge to t2 in Step 4 and thus, f does not contribute charge
to t2 in Step 5.

Hence, we may assume without loss of generality that |f2| ≥ 5 (see Figure 15(c) for an
example). It is not hard to see that, as in the case where we assumed that e1 is an edge of
t1, f2 sends at least 1/6 units of charge to f in Step 6.

Case 2: ch3(f) ≤ 0 and ch5(f) < 0. In this case f contributes 1/3 units of charge to at least
three 1-triangles Step 3. By symmetry there are two sub-cases to consider.
Sub-case 2.1: f contributes charge through each of e1, e2, e3 in Step 3. Observe that none
of the 1-triangles t1, t2, t3 can share an edge (of M(G)) with f according to Proposition 2.6.
Moreover, the wedges of t1 and t3 must contain exactly one 0-quadrilateral, for otherwise
A2A4 has more than four crossings.

If there is only one 1-quadrilateral in the wedge of t2, then by Proposition 2.14 each of
f1 and f2 contributes at least 1/3 units of charge to f in Step 6 and so ch6(f) ≥ 0.

Therefore, assume that there are two 0-quadrilaterals in the wedge of t2 and refer to
Figure 16(a). It follows that A1v0 is an edge of f0 and B3v3 is an edge of f3. Consider f0
and observe that |f0| ≥ 4. Note also that f0 does not contribute any charge through x1v0, as
this would imply that the edge of G that contains x1y1 has more than four crossings. Denote
by z the other vertex (but v0) that is adjacent to x1 in f0, and observe that f0 contributes
at most 1/6 units of charge through each of zx1 and A1v0.

If f0 is a 1-quadrilateral (as in Figure 16(a)), then it does not contribute charge through
A1z, and therefore ch5(f0) ≥ 1/3. In this case B(f0) = {f} and so f0 sends 1/3 units of
charge to f is Step 6.

If |f0| ≥ 5 then consider the clockwise chain from A1 to z, and observe that it contains
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Figure 16: Illustrations for Case 2 in the proof of Lemma 2.15.

|f0|−3 edges and at most |f0|−4 vertices through which f0 sends charge in Step 6. Therefore,

every face inB(f0) (including f) receives from f0 in Step 6 at least |f0|−4+1−2/6−1/3−(|f0|−3)/3
|f0|−3 ≥

1/3 units of charge.
By symmetry f3 also contributes at least 1/3 units of charge to f in Step 6 and therefore

f ends up with a nonnegative charge.
Sub-case 2.2: In Step 3 f contributes charge through each of e1, e2, e4, and does not contribute
charge through e3 and e0 (otherwise we are back in Sub-case 2.1). Thus, ch5(f) ≥ −1/3.
Observe that none of the 1-triangles t1, t2 can share an edge (of M(G)) with f according
to Proposition 2.6. If the wedges of t1 and t2 each contain one 0-quadrilateral, then by
Proposition 2.14 the face f1 sends at least 1/3 units of charge to f in Step 6 and thus
ch6(f) ≥ 0.

Thus, assume without loss of generality that the wedge of t2 contains two 0-quadrilaterals
and refer to Figure 16(b). Since A3A0 contains at most four crossings, e4 must be an edge
of t4. It follows that A1 6= B4, for otherwise, A1A3 would have more than four cross-
ings.Therefore f does not contribute charge through e0 and thus it must contribute charge
through e3. Hence, A4 = B2 and the wedge of t1 must contain exactly one 0-quadrilateral.
It is not hard to see, as in Sub-case 2.1, that f0 contributes at least 1/3 units of charge to f
in Step 6.

Lemma 2.16. Let f be a 0-pentagon such ch1(f) = 2/3. Then ch6(f) ≥ 0.

Proof. Assume without loss of generality that f contributes 1/3 units of charge in Step 1 to
t1 through e1. There are two cases to consider, based on whether f contributes 1/3 units of
charge to one or more 1-triangles in Step 3.
Case 1: ch3(f) = 1/3 and ch5(f) = −1/6. That is, f contributes 1/3 units of charge to
exactly one 1-triangle t′ in Step 3, and 1/6 units of charge to three 1-triangles in Step 5.
Without loss of generality we may assume that either t′ = t2 or t′ = t3.
Sub-case 1.1: f sends 1/3 units of charge to t2 in Step 3. We observe first that the wedge
of t2 cannot contain two 0-quadrilaterals. Indeed, suppose it does and refer to Figure 17(a).
Since A1A3 and A3A0 have four crossings it follows that e0 is an edge of t0 and e4 is an
edge of t4. Since f0 is a good face, there must be two crossing points between A2 and v1 on
A2A4. Therefore, e3 is an edge of t3. However, this implies that the two neighbors of t4 are
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Figure 17: Sub-case 1.1 in the proof of Lemma 2.16: f sends 1/3 units of charge to t1 in
Step 1 and 1/3 units of charge to t2 in Step 3.
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2-triangles, and therefore it will not receive any charge from f in Step 5. If the wedge of t2
contains no 0-quadrilaterals, then either A2A4 has five crossings or there is an empty lens.
Therefore, the wedge of t2 must contain exactly one 0-quadrilateral.

Next, we observe that e1 must be an edge of t1. Indeed, suppose it is not and refer
to 17(b). Since A2A4 and A0B0 have four crossings, e3 is an edge of t3 and e4 is an edge
of t4. Therefore one neighbor of t3 is a 2-triangle (f3 = A4A0v3). Consider f2, the other
neighbor of t3. Then either f2 is a 1-quadrilateral whose charge after Step 3 is 2/3 (see
Figure 17(b)) or a face of size at least five. In any case, t3 receives 1/6 units of charge from
each of its neighbors in Step 4 and therefore does not receive any charge from f in Step 5.

Consider now the edge-segment A2w1. Suppose that it contains a crossing point between
A2 and w1 and refer to Figure 17(c). It follows that e3 is an edge of t3. The face f2 is a
neighbor of t3. Its size is at least five or it is a 1-quadrilateral whose charge after Step 3
is 2/3. Therefore, the other neighbor of t3 cannot be a 2-triangle (otherwise f does not
contribute charge to t3), and therefore e4 is not an edge of t4. It follows that B0w1 is an
edge of f1. Note that the size of f1 is at least five and it contains one original vertex. It is
not hard to see that f1 contributes in Step 6 at least 1/6 units of charge to every 0-pentagon
in B(f1) (including f), and therefore f ends up with a nonnegative charge.

It remains to consider the case that A2w1 is an edge in M(G). If B0w1 is an edge in
M(G) then f1 is a face of size at least five that contains one original vertex. Hence, as before,
it is not hard to see that it contributes in Step 6 at least 1/6 units of charge to f . Suppose
that the edge-segment B0w1 is crossed and refer to Figure 17(d). It follows that e4 is an
edge of t4. Since f0 is a good face, e0 is not an edge of t0. Consider the face f0 and observe
that |f0| ≥ 4 and it contributes 1/3 units of charge through v0w1, and at most 1/6 units
of charge through v0y0. Suppose that f0 is a 1-quadrilateral. Then it does not contribute
charge through A2w1 in Step 4, since ch3(f0) = 1/3 and if the face that shares A2w1 with
f0 is a 1-triangle, then the other neighbor of this 1-triangle is a 2-triangle. Note also that
the face that shares A2y0 with f0 is a 2-triangle, and therefore f0 does not contribute charge
through this edge as well. Thus, ch5(f0) ≥ 1/6 and B(f0) = {f} and so f receives as least
1/6 units of charge from f0 in Step 6.

If |f0| ≥ 5 then f0 might contribute 1/6 units of charge through A2w1. Consider the
clockwise chain from y0 to A2, and observe that it contains |f0|−3 edges and at most |f0|−4
vertices through which f0 sends charge in Step 6. Therefore, every face in B(f0) (including

f) receives from f0 in Step 6 at least |f0|−4+1−2/6−2/3−(|f0|−3)/3
|f0|−3 ≥ 1/6 units of charge.

Sub-case 1.2: f sends 1/3 units of charge to t3 in Step 3. We observe first that e1 must be
an edge of t1. Indeed, suppose it does not and refer to Figure 18(a). Since each of A2B2 and
A0B0 contain four crossings, e3 is an edge of t3 and e4 is an edge of t4. But then one neighbor
of t3 is a 2-triangle and therefore f could not have contributed charge to t3 in Step 3.

If e3 is an edge of t3, then it is easy to see that f ends up with a nonnegative charge.
Indeed, refer to Figure 18(b) and observe that in this case one neighbor of t2 is a 2-triangle
which means that its other neighbor is either a 1-quadrilateral or a 1-triangle. This implies
that the size of f1 is at least five and it contains one original vertex. Thus, it is not hard to
see that f1 contributes at least 1/6 units of charge to f in Step 6.

Therefore, assume that e3 is not an edge of t3 and refer to Figure 18(c). Observe that
e0 is not an edge of t0, since this would imply that f0 is a bad face. Suppose that e4 is an
edge of t4 and consider the face f3. Let A4y3q be the 1-triangle that shares an edge with t3
and f3. Note that |f3| ≥ 4 and that v(f3) = 1. Observe also that f3 contributes at most 1/6
units of charge through A0v3, v3y3, and y3q. If f3 is a 1-quadrilateral then ch5(f3) ≥ 1/6
since f3 does not charge through A0q (because the face sharing A0q with f3 is a 2-triangle).
Since B(f3) = {f}, f ends up with a nonnegative charge in this case.

If |f3| ≥ 5 then consider the clockwise chain from q to A0, and observe that it contains
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Figure 18: Sub-case 1.2 in the proof of Lemma 2.16: f sends 1/3 units of charge to t1 in
Step 1 and 1/3 units of charge to t3 in Step 3.
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Figure 19: Sub-case 2.1 in the proof of Lemma 2.16.

|f3|−3 edges and at most |f3|−4 vertices through which f3 sends charge in Step 6. Therefore,

every face inB(f3) (including f) receives from f3 in Step 6 at least |f3|−4+1−3/6−1/3−(|f3|−3)/3
|f3|−3 ≥

1/6 units of charge.
It remains to consider the case that e4 is not an edge of t4. Refer to Figure 18(d) and

observe that e2 cannot be an edge of t2, because then f1 would be a bad face. Similarly, e0 is
not an edge of t0. Note that |f1| ≥ 4 and v(f1) = 1. Observe that f1 contributes 1/3 units of
charge to B0 and to t1 and at most 1/6 units of charge through v1x2. Furthermore, f1 does
not contribute any charge through B0w1. If f1 is a 1-quadrilateral (as in Figure 18(d)), then
it also does not contribute any charge through B0x2, and therefore ch5(f1) ≥ 1/6. We also
have B(f1) = {f} in this case, and so f1 sends at least 1/6 units of charge to f in Step 6.

If |f1| ≥ 5 then consider the clockwise chain from B0 to x2, and observe that it contains
|f1|−3 edges and at most |f1|−4 vertices through which f1 sends charge in Step 6. Therefore,

every face inB(f1) (including f) receives from f1 in Step 6 at least |f1|−4+1−2/6−2/3−(|f1|−3)/3
|f1|−3 ≥

1/6 units of charge.

Case 2: ch3(f) ≤ 0 and ch5(f) < 0. That is, f contributes 1/3 units of charge to two 1-
triangles in Step 3, and also sends charge to at least one more 1-triangle in Step 3 or Step 5.
Recall that we assume without loss of generality that f sends 1/3 units of charge to t1 in
Step 1. Note that we may assume that ch5(f) ≥ −1/3, for otherwise f contributes charge to
at least three 1-triangles in Step 3, and we have actually considered this scenario in Case 2
of Lemma 2.15.

If f sends charge to two 1-triangles in Step 3 through consecutive edges on its boundary,
then by Proposition 2.14 it ends up with a nonnegative charge. Therefore, by symmetry,
there are two remaining cases to consider.
Sub-case 2.1: f sends 1/3 units of charge to t2 and t4 in Step 3. Observe first that the wedge
of t2 must contain exactly one 1-quadrilateral. Indeed, if it contains no 1-quadrilateral (that
is, e2 is an edge of t2) then the edge of G that contains e2 has more than four crossings.
Suppose that the wedge of t2 contains two 1-quadrilaterals and refer to Figure 19(a). Then
e4 must be an edge of t4. Since f0 is a good face there is a crossing point between A2 and v1
on A2B2. Therefore B2v2 is an edge in M(G) and it is impossible that A4 = B2 and f sends
charge through e3. Similarly, since A1v0 is an edge in M(G), it is impossible that A1 = B4

and f sends charge through e0. Therefore, ch5(f) ≥ 0, a contradiction.
Consider now the case that e4 is not an edge of t4, and refer to Figure 19(b). Notice
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Figure 20: Sub-case 2.1 in the proof of Lemma 2.16. e4 is an edge of t4.

that |f1| ≥ 5, v(f) = 1, and it is therefore not hard to see that f1 sends at least 1/3 units of
charge to f in Step 6 and so f ends up with a nonnegative charge.

It remains to consider the case that e4 is an edge of t4. If ch5(f) < 0 then f must have
contributed charge through e3 or e0 in Step 5. Suppose that f sends 1/6 units of charge
through e3 in Step 5, and refer to Figure 20(a). Note that |f2| ≥ 5 and let x3, v2, y2, p, q
be (some of) its vertices listed in a clockwise order. Observe that f2 contributes no charge
through v2y2 and at most 1/6 units of charge through x3v2 and y2p. If |f2| = 5, then it
might contribute at most 1/6 units of charge through qx3 and pq. However, if f2 contributes
through one of these edges, then it does not contribute charge through q in Step 6. Therefore,
f2 sends at least 1/3 units of charge to f in Step 6.

If |f2| ≥ 6 then consider the clockwise chain from p to x3, and observe that it contains
|f2| − 3 edges and at most |f2| − 4 vertices through which f2 sends charge in Step 6. How-
ever, if f2 contributes charge through pq then it does not contribute charge through q in
Step 6. Therefore, every face in B(f2) (including f) receives from f2 in Step 6 at least

min
{
|f2|−4−2/6−(|f2|−3)/3

|f2|−4 , |f2|−4−2/6−(|f2|−4)/3|f2|−3

}
≥ 1/3 units of charge.

Finally, suppose that f does not contribute (at least 1/6 units of) charge through e3 and
sends 1/6 units of charge through e0 in Step 5. If there are two crossing points between A2

and v1 on A2B2, then v(f2) = 1 and |f2| ≥ 4, and it is not hard to see that f2 contributes at
least 1/3 units of charge to f in Step 6 (see Figure 20(b) for an example).

Otherwise, w1 is the only crossing point between A2 and v1 on A2B2. Consider the face
f1 and note that its size is at least five. Let p be the other vertex of f1 that is adjacent
to w1 but v1, and let q be the other vertex of f1 that is adjacent to x2 but v1. Refer to
Figure 20(c) and observe that f1 sends 1/3 units of charge through w1v1 and at most 1/6
units of charge through qx2, x2v1, and w1p. If |f1| = 5 then f2 cannot send charge through
both pq and w1p (because then the 1-triangle that gets the charge through pq has two 2-
triangles for neighbors). Therefore ch5(f1) ≥ 1/6. If ch5(f1) = 1/6 then B(f1) = {f}. If
B(f1) contains another face then this face must intersect f1 exactly at p, but in this case f1
does not contribute charge through pq and w1p and so ch5(f1) ≥ 1/3. Therefore, if |f1| = 5
then f1 sends at least 1/6 units of charge to f in Step 6.

If |f1| ≥ 5 then consider the clockwise chain from w1 to q, and observe that it contains
|f1| − 3 edges and at most |f1| − 4 vertices through which f1 sends charge in Step 6. Recall
that f1 contributes at most 1/6 units of charge through w1p. Therefore, every face in B(f1)
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Figure 21: Sub-case 2.2 in the proof of Lemma 2.16.

(including f) receives from f1 in Step 6 at least |f1|−4−3/6−1/3−(|f1|−4)/3|f1|−3 ≥ 1/6 units of charge.

Note that one neighbor of t0 is a 2-triangle, and therefore ch5(f) ≥ −1/6. Thus, f ends up
with a nonnegative charge.
Sub-case 2.2: f sends 1/3 units of charge to t2 and t0 in Step 3. Observe first that it is
impossible for e2 to be an edge of t2, because then A2B2 has more than four crossings.
Similarly, e0 cannot be an edge of t0. It follows that the wedges of t2 and t0 each contain
exactly one 1-quadrilateral.

Suppose first that e1 is not an edge of t1 and refer to Figure 21(a). Consider the face f2
and observe that its size is at least four and it contains one original vertex, B2. Let A3y2p be
the 1-triangle that is a neighbor of t2 and shares an edge with f2. Notice that f2 contributes
no charge through v2y2, at most 1/6 units of charge through B2v2 and y2p, and no charge
through B2p if it is an edge of f2. It is therefore not hard to see that f2 sends at least 1/3
units of charge to f in Step 6.

Suppose now that e1 is an edge of t1, and refer to Figure 21(b). Consider the face f0 and
observe that its size is at least five. If A2 is a vertex of f0 then it is easy to see that this face
contributes at least 1/3 units of charge to f in Step 6. Otherwise, there must be a crossing
point between A2 and w1 on A2Bb and thus B2v2 is an edge of f2 (see Figure 21(b)). In this
case, as before, f2 contributes at least 1/3 units of charge to f in Step 6.

Lemma 2.17. Let f be a 0-pentagon such ch1(f) = 1/3. Then ch6(f) ≥ 0.

Proof. Suppose that ch1(f) = 1/3 and ch5(f) < 0. Assume without loss of generality that f
contributes 1/3 units of charge in Step 1 to t1 through e1. By symmetry, there are two cases
to consider, according to whether the other edge through which f sends charge in Step 1 is
e2 or e3.

Case 1: f contributes charge through e2 in Step 1. Observe first that if f sends charge
through e4, then e4 must be an edge of t4. Indeed, suppose that f sends charge through e4,
and e4 is not an edge of t4. Then A3B3 and A0B0 contain four crossings each and it follows
that f1 is a bad face, see Figure 22.

Proposition 2.18. If f sends charge through e4, then f receives at least 1/3 units of charge
in Step 6.
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Figure 23: Illustrations for the proof of Proposition 2.18: f contributes charge through e1
and e2 in Step 1.

Proof. Suppose first that e1 is not an edge of t1 and refer to Figure 23(a). Since A2B2 has
four crossings and f2 is a good face, it follows that there is another crossing point (but w2) on
A1B1 between v1 and B1. Therefore A1v0 is an edge of f0. Since A1 and A2 cannot be in the
same face of size greater than three, it follows that |f0| ≥ 4. Let p be the other vertex of f0
(except v0) that is adjacent to x1. Observe that p /∈ B(f0) for otherwise B0 and one endpoint
of the edge of G that contains x1y1 are incident to a bad face. Note also that f0 does not
contribute charge through x1p and x1v0 (the latter would imply a bad face containing A3

and B0). Therefore, if |f0| = 4 then ch5(f0) ≥ 1/3. Thus, if f0 is a 1-quadrilateral then it
sends at least 1/3 units of charge to f in Step 6.

If |f0| ≥ 5 then consider the clockwise chain from A1 to p, and observe that it contains
|f0|−3 edges and at most |f0|−4 vertices through which f0 sends charge in Step 6. Therefore,

every face inB(f0) (including f) receives from f0 in Step 6 at least |f0|−4+1−1/6−1/3−(|f0|−3)/3
|f0|−3 ≥

1/3 units of charge.
The case that e2 is not an edge of t2 is symmetric, so suppose now that e1 is an edge of

t1 and e2 is an edge of t2. Since f1 is a good face there is a crossing point on B0w1 or on
A3w2. Suppose without loss of generality that there is a crossing point z on B0w1. Therefore,
zw1, w1v1, v1w2 are edges of f1 and |f1| ≥ 5. Note that f0 /∈ B(f1) for otherwise f2 is a bad
face (see Figure 23(b)). Similarly, f2 /∈ B(f1) for otherwise f0 is a bad face.

If |f1| = 5 then A3 must be a vertex of f1, for otherwise B0 and A3 are two vertices of a
bad face. By the previous observations B(f1) = {f} in this case, and so f receives at least
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Figure 24: Case 1 in the proof of Lemma 2.17: f contributes charge through e1 and e2 in
Step 1. If f sends 1/3 units of charge through e3 in Step 3, then f2 sends charge to f in
Step 6.

1/3 units of charge from f1 in Step 6. If A3 is a vertex of f1 and |f1| > 5 it is not hard to
see that it still holds that f1 sends at least 1/3 units of charge to f in Step 6.

Suppose that A3 is not a vertex of f1, and therefore |f1| ≥ 6. Let w2, v1, w1, z, z1, . . . , zt be
the vertices of f1 listed in their clockwise order (t ≥ 2). f1 cannot contribute charge through
zz1 in Step 1, since then A0B0 would have more than four crossings. If f1 contributes charge
through zz1 in Step 3, then it follows from Proposition 2.6 that it cannot contribute charge
through w1z in Step 1 or Step 3. Therefore f1 contributes a total of at most 1/2 units of
charge through w1z and zz1. Similarly, it contributes a total of at most 1/2 units of charge
through zt−1zt and ztw2. Note also that if f1 contributes charge through z1 in Step 6, then
it does not contribute charge through zz1 for this would imply more than four crossings on
A0B0. Moreover, if |f1| = 6 (i.e., t = 2), then by symmetry f1 does not contribute charge
through z1z2 as well.

Therefore, if |f1| = 6 then f1 contributes at least min
{

6−4−2/3−2· 1
2

1 , 6−4−4/32

}
= 1/3 to f

in Step 6, and if |f1| ≥ 7 then f1 contributes at least min

{
|f1|−4−2· 12−

|f1|−4
3

|f1|−5 ,
|f1|−4− |f1|−1

3
|f1|−4

}
≥

1/3 to f in Step 6.

Suppose now that f sends charge through e4 to t4. It follows from Proposition 2.18 that
if f sends 1/6 units of charge through e4 and 1/6 units of charge through at least one of e3
and e0, then ch6(f) ≥ 0. By Proposition 2.6, if f sends 1/3 units of charge through e4 in
Step 3, then it cannot send charge through e3 or e0 in Step 3, and hence f ends up with a
nonnegative charge in this case as well.

Therefore it remains to consider the case that f sends 1/3 units of charge through at
least one of the two edges e3 and e0, and at least 1/6 units of charge through the other
edge among the two. Assume without loss of that f sends 1/3 units of charge through e3
in Step 3, and at least 1/6 units of charge through e0. Refer to Figure 24 and observe that
e3 is not an edge of t3 by Proposition 2.6. It follows that there must be a crossing point on
A1v0, for otherwise f0 is a bad face. Therefore, x3, w2, B1 are vertices of f2 and its size is at
least five. It is not hard to see that f2 contributes at least 1/3 units of charge to f in Step 6,
and so f ends up with a nonnegative charge.

Case 2: f contributes charge through e3 in Step 1. Note that since A2B2 has four crossings it
follows that e1 and e3 are edges of t1 and t3, respectively. By symmetry, we may assume that
if ch5(f) < 0 then f contributes charge through e2 and e0, or f contributes charge through
e4 and e0.
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Steps 3 and 5. f2 contributes at
least 1/3 units of charge to f in
Step 6.

Figure 25: Illustrations for Case 2 in the proof of Lemma 2.17: f contributes charge through
e1 and e3 in Step 1.

Sub-case 2.1: Suppose that f contributes charge through e2 and e0, and refer to Figure 25(a).
Observe that e0 is not an edge of t0, for otherwise f0 would be a bad face. Since A4B4 has
four crossings, it follows that A4 is a vertex of f2. Therefore, e2 is not an edge of t2, for
otherwise f2 would be a bad face.

Consider the face f2 and observe that |f2| ≥ 4 and that f2 contributes no charge through
A4w3, 1/3 units of charge through w3v2, and no charge through v2y2 (the latter would imply
that B1 and B0 are incident to a bad face). Note that if |f2| = 4, then f2 does not contribute
any charge through A4y2 since the face that shares A4y2 with f2 is a 2-triangle. Therefore,
if |f2| = 4 then f2 contributes at least 1/3 units of charge to f in Step 6. If |f2| ≥ 5 then the
clockwise chain from y2 to A4 contains |f2| − 3 edges and at most |f2| − 4 vertices through
which f2 sends charge in Step 6. Therefore, every face in B(f2) (including f) receives from f2
in Step 6 at least |f2|−4+1−2/3−(|f2|−3)/3

|f2|−3 ≥ 1/3 units of charge. Thus, if f does not contribute
charge through e4, then it ends with a nonnegative charge.

Suppose that f contributes charge through e4. Then by symmetry, f1 also contributes
at least 1/3 units of charge to f in Step 6, and so ch6(f) ≥ 0.
Sub-case 2.2: Suppose that f contributes charge through e4 and e0, and refer to Figure 25(b).
Note that e4 is not an edge of t4, for otherwise f3 is a bad face. For the same reason, e0
is not an edge of t0. Considering the face f2 it is not hard to see that as in Sub-case 2.1 it
contributes at least 1/3 units of charge to f in Step 6. By symmetry, so does f1 and therefore
f ends up with a nonnegative charge.

Lemma 2.19. Let f be a 0-pentagon such ch1(f) = 0. Then ch6(f) = 0.

Proof. It follows from Proposition 2.13 that f contributes charge through three consecutive
edges in Step 1. If ch6(f) < 0 then f must also contribute charge through at least one
more edge in Step 3 or Step 5. Assume without loss of generality that f contributes charge
through e1, e2, e3 in Step 1 and through e0 in Step 3 or 5, and refer to Figure 26. Observe
that A2B2 has four crossings. Since f0 is good face, e0 is not an edge of t0. However, this
implies that B1 and A4 are vertices of f2 and hence f2 is a bad face.

It follows from Proposition 2.12 and Lemmas 2.15, 2.16, 2.17 and 2.19 that the final charge
of every face in M(G) is nonnegative. Recall that the charge of every original vertex of G is
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Figure 26: If f contributes charge through e1, e2, e3 in Step 1 and also contributes charge to
t0, then f2 is a bad face.
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(a) Tiling a vertical
cylinder surface with
horizontal layers each
consisting of three
hexagons. The top
and bottom are also
tiled with hexagons.
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(b) Drawing edges in the top
face to get an almost tight
lower bound for Theorem 4.

Figure 27: A lower bound construction.

1/3, and that the total charge is 4n − 8. It follows that 2|E(G)|/3 =
∑

v∈V (G) deg(v)/3 ≤
4n− 8 and thus |E(G)| ≤ 6n− 12.

To see that this bound in Theorem 8 is tight for infinitely many values of n we use
the same construction of Pach et al. [19, Proposition 2.8]. That is, given n = 6l we tile a
vertical cylindrical surface with l − 1 horizontal layers each consisting of three hexagonal
faces that are wrapped around the cylinder. The top and bottom of the cylinder are also
tiled with hexagonal faces. See Figure 27(a) for an illustration of this construction. Note
that every vertex is adjacent to exactly three hexagons, except for three vertices of the top
face (v1, v3, v5 in Figure 27(a)) and three vertices of the bottom face that are adjacent to
two hexagons. Next, we draw for each hexagon all the possible diagonals. Thus, the degree
of every vertex is 12, except for six vertices whose degree is 8. Hence, the number of edges
is (12(n− 6) + 8 · 6)/2 = 6n− 12.

Observe that this construction contains parallel edges (but no empty lenses). For exam-
ple, there are parallel edges between v2 and v4, v2 and v6, and v4 and v6 in Figure 27(a).
By removing three edges from each of the top and bottom hexagons (as in Figure 27(b)), we
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obtain a topological graph with 6n− 18 edges. This shows that the bound of Theorem 4 is
tight up to an additive constant.

3 Applications of Theorem 4

3.1 A better Crossing Lemma

Let G be a graph with n > 2 vertices and m edges. The following linear bounds on the
crossing number cr(G) appear in [19] and [20].

cr(G) ≥ m− 3(n− 2) (1)

cr(G) ≥ 7

3
m− 25

3
(n− 2) (2)

cr(G) ≥ 4m− 103

6
(n− 2) (3)

cr(G) ≥ 5m− 25(n− 2) (4)

Using Theorem 4 we can obtain a similar bound, as stated in Theorem 5:

cr(G) ≥ 5m− 139

6
(n− 2) (5)

Proof of Theorem 5: If n = 3 or n = 4 the statement trivially holds since cr(G) ≥ 0. If
n ≥ 5 and m ≤ 6(n − 2) then the statement holds by (3). Suppose now that m > 6(n − 2)
and consider a drawing of G. Remove an edge of G with the most crossings, and continue
doing so as long as the number of remaining edges is greater than 6(n− 2). It follows from
Theorem 4 that each of the m−6(n−2) removed edges was crossed by at least 5 other edges
at the moment of its revomal. By (3), the number of crossings in the remaining graph is at
least 4(6(n−2))− 103

6 (n−2). Therefore, cr(G) ≥ 5(m−6(n−2))+4(6(n−2))− 103
6 (n−2) =

5m− 139
6 (n− 2). 2

Using the new linear bound it is now possible to obtain a better Crossing Lemma, by
plugging it into its probabilistic proof, as in [17, 19, 20].

Proof of Theorem 6: Let G be a graph with n vertices and m ≥ 6.95n edges and consider
a drawing of G with cr(G) crossings. Construct a random subgraph of G by selecting every
vertex independently with probability p = 6.95n/e ≤ 1. Let G′ be the subgraph of G that is
induced by the selected vertices. Denote by n′ and m′ the number of vertices and edges in
G′, respectively. Clearly, E[n′] = pn and E[m′] = p2e. Denote by x′ the number of crossing
in the drawing of G′ inherited from the drawing of G. Then E[cr(G′)] ≥ E[x′] = p4cr(G). It
follows from Theorem 5 that cr(G′) ≥ 5m′ − 139

6 n
′ (note that this it true for any n′ ≥ 0),

and this holds also for the expected values: E[cr(G′)] ≥ 5E[m′] − 139
6 E[n′]. Plugging in the

expected values we get that cr(G) ≥
(

5
6.952

− 139
6·6.953

)
m3

n2 = 2000
57963

m3

n2 ≥ 1
29
m3

n2 .
Consider now the case that m < 6.95n. Comparing the bounds (1)–(5) one can easily see

that (1) is best when 3(n− 2) ≤ m < 4(n− 2), (2) is best when 4(n− 2) ≤ m < 5.3(n− 2),
(3) is best when 5.3(n−2) ≤ m < 6(n−2), and (5) is best when 6(n−2) ≤ m. If we consider
the possible values of m < 6.95 according to these intervals and use the best bound for each
interval, then we get that cr(G) ≥ 1

29
m3

n2 − 35
29n. 2

The new bound for the Crossing Lemma immediately implies better bounds in all of its
applications. We recall three such improvements from [19] and [20]. Since the computations
are almost verbatim to the proofs in [19], we omit them.
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Corollary 3.1. Let G be an n-vertex multigraph with m edges and edge multiplicity t. Then
cr(G) ≥ 1

29
m3

mn2 − 35
29nt

2.

Corollary 3.2. Let G be an n-vertex simple topological graph. If every edge of G is crossed
by at most k other edges, for some k ≥ 2, then G has at most 3.81

√
kn edges.

Corollary 3.3. The number of incidences between m lines and n points in the Euclidean
plane is at most 2.44m2/3n2/3 +m+ n.

The previous best constant in the last upper bound was 2.5. It is known [20] that this
constant should be greater than 0.42.

3.2 Albertson conjecture

Recall that according to Albertson conjecture if χ(G) = r then cr(G) ≥ cr(Kr). A graph G
is r-critical if χ(G) = r and the chromatic number of every proper subgraph of G is less than
r. Obviously, if H is a subgraph of G then cr(H) ≤ cr(G). therefore, it is enough to prove
Albertson conjecture for r-critical graphs. Recall also that it suffice to consider graphs with
no subdivision of Kr. The next result shows that we may consider only graphs with at least
r + 5 vertices.

Lemma 3.4 ([8, Corollary 11]). An r-critical graph with at most r + 4 vertices contains a
subdivision of Kr (and thus satisfies Albertson conjecture).

The approach of [7] and [8] for proving Albetson conjecture is to plug lower bounds on
the minimum number of edges in r-critical graphs into lower bounds on the crossing number
and compare the results to an upper bound on cr(Kr). By using the same method with the
new bounds on the crossing number, we can verify Albertson conjecture for further values
of r.

Let fr(n) be the minimum number of edges in an n-vertex r-critical graph. Since Kr is
the only r-critical graph with r vertices we have fr(r) = r(r − 1)/2. Another trivial bound
is fr(n) ≥ n(r − 1)/2, because the degree of every vertex in an r-critical graph must be at
least r− 1. The study of fr(n) goes back to Dirac [10]. He proved that there is no r-critical
graph on r + 1 vertices and that if r ≥ 4 and n ≥ r + 2 then

fr(n) ≥ n(r − 1)/2 + (r − 3)/2. (6)

This was improved by Kostochka and Stiebitz [14] to

fr(n) ≥ n(r − 1)/2 + (r − 3), (7)

when n 6= 2r − 1. Considering the case n = 2r − 1, Barát and Tóth [8] concluded

Lemma 3.5 ([8, Corollary 7]). Let G be an n-vertex r-critical graph with m edges, such that
r ≥ 4. If G does not contain a subdivision of Kr then m ≥ n(r − 1)/2 + (r − 3).

Gallai [12] found exact values of fr(n) for 6 ≤ r + 2 ≤ n ≤ 2r − 1:

fr(n) =
1

2
(n(r − 1) + (n− r)(2r − n)− 2). (8)

He also characterized the graphs obtaining this bound. His results yield:

Lemma 3.6 ([8, Corollary 5]). Let G be an n-vertex r-critical graph with m edges, such that
6 ≤ r + 2 ≤ n ≤ 2r − 1. If G does not contain a subdivision of Kr then m ≥ 1

2(n(r − 1) +
(n− r)(2r − n)− 1).
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Instead of using the linear bound of Theorem 5 directly, we will use a more refined bound
obtained from it using the probabilistic argument (as is done in [8]).

Lemma 3.7. Let cr(n,m, p) = 5m
p2
− 139n

6p3
+ 139

3p4
− 6n2(1−p)n−2

p4
. For every graph G with n ≥ 9

vertices and m edges and every 0 < p ≤ 1 we have cr(G) ≥ cr(n,m, p).

Proof. We will use the linear bound of Theorem 5, however it does not hold for n ≤ 2.
Therefore, for every graph G we define

cr′(G) =


cr(G) if n ≥ 3

5 if n = 2

24 if n = 1

47 if n = 0

Thus, for every graph G we have

cr′(G) ≥ 5m− 139

6
(n− 2). (9)

Let G be a graph with n vertices and m edges and let 0 < p ≤ 1. Consider a drawing
of G with cr(G) crossings. Construct a random subgraph of G by selecting every vertex
independently with probability p. Let G′ be the subgraph of G that is induced by the
selected vertices. Denote by n′ and m′ the number of vertices and edges in G′, respectively.
Consider the drawing of G′ as inherited from the drawing of G, and let x′ be the number of
crossings in this drawing. Clearly, E[n′] = pn, E[m′] = p2m, and E[x′] = p4cr(G). From (9)
and the linearity of expectation we get:

E[x′] ≥ E[cr(G′)]− 5 · Pr(n′ = 2)− 24 · Pr(n′ = 1)− 47 · Pr(n′ = 0)

≥ 5p2m− 139

6
pn+

139

3
− 5

(
n

2

)
p2(1− p)n−2 − 24np(1− p)n−1 − 47(1− p)n

≥ 5p2m− 139

6
pn+

139

3
− 6n2p2(1− p)n−2.

Dividing by p4, the lemma follows.

Before proving Theorem 7, let us recall the best known upper bound on the crossing
number of Kr [13]:

cr(Kr) ≤ Z(r) =
1

4

⌊r
2

⌋⌊r − 1

2

⌋⌊
r − 2

2

⌋⌊
r − 3

2

⌋
. (10)

Proof of Theorem 7: We follow the proof of Theorem 2 in [8]. Given r let G be an r-critical
graph with n vertices and m edges. We assume that G does not contain a subdivision of Kr

for otherwise we are done. By Lemma 3.4 we may assume that n ≥ r + 5. Lemma 3.5 is
used to get a lower bound on m, namely m ≥ (r − 1)n/2 + (r − 3). This bound is plugged
into Lemma 3.7 and for an appropriate value of p we get a lower bound on cr(G) that is
greater than Z(r) for n ≥ n′. Then it remains to verify the conjecture for each n in the
range r + 5, . . . , n′. This is done using a lower bound on m we get from either Lemma 3.5
or Lemma 3.6 and picking p such that cr(n,m, p) ≥ Z(r). We will always have n ≥ 22 and
p ≥ 0.5, therefore we may assume that

cr(n,m, p) ≥ 5m

p2
− 139n

6p3
+

139

3p4
− 0.05 (11)
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r = 18, cr(K18) ≤ 1008

n m p dcr(n,m, p)e
23 228 0.555 1073
24 240 0.556 1132
25 251 0.560 1176
26 261 0.567 1204
27 270 0.576 1217
28 278 0.586 1218
29 285 0.599 1206
30 291 0.613 1183
31 296 0.628 1151
32 300 0.646 1111
33 303 0.665 1064
34 305 0.686 1010

r = 19, cr(K19) ≤ 1296

n m p dcr(n,m, p)e

24 251 0.523 1321
25 264 0.524 1397
26 276 0.527 1455
27 287 0.533 1495
28 297 0.540 1518
29 306 0.548 1527
30 314 0.558 1520
31 321 0.570 1501
32 327 0.583 1471
33 332 0.597 1430
34 336 0.613 1380
35 339 0.631 1322
36 341 0.650 1259
37 349 0.656 1269
38 358 0.659 1292

Table 1: Lower bounds on the number of edges and crossing numbers for specific values of n
for r = 18 (left) and r = 19 (right).

1. Suppose that r = 17 and let G be an n-vertex 17-critical graph with m edges. By (10)
we have cr(Kr) ≤ 784. It follows from Lemmas 3.4 and 3.5 that we may assume that n ≥ 22
and m ≥ 8n + 14. From (11) we have cr(G) ≥ cr(n, 8n + 14, 0.727) ≥ 15.38n + 298.25.
Therefore, if n ≥ 784−298.25

15.38 ≥ 31.58 the conjecture holds. Since Barát and Tóth [8] have
already verified Albertson conjecture for r = 17 and n ≤ 31, we are done.

2. Suppose that r = 18 and let G be an n-vertex 18-critical graph with m edges. By (10)
we have cr(Kr) ≤ 1008. It follows from Lemmas 3.4 and 3.5 that we may assume that n ≥ 23
and m ≥ 8.5n + 15. From (11) we have cr(G) ≥ cr(n, 8.5n + 15, 0.69) ≥ 18.74n + 361.88.
Therefore, if n ≥ 1008−361.88

18.74 ≥ 34.47 the conjecture holds. It remains to verify the conjecture
for n = 23, . . . , 34. Table 1 (left) shows the lower bound on m for each n, the value of p we
choose, and the corresponding lower bound on the crossing number that we get. Note that
since we are interested in values of n such that r + 2 ≤ n ≤ 2r − 1, we may use Lemma 3.6
instead of the Lemma 3.5.

3. Suppose that r = 19 and let G be an n-vertex 19-critical graph with m edges. By (10)
we have cr(Kr) ≤ 1296. It follows from Lemmas 3.4 and 3.5 that we may assume that
n ≥ 23 and m ≥ 9n+ 16. From (11) we have cr(G) ≥ cr(n, 9n+ 16, 0.66) ≥ 22.72n+ 427.78.
Therefore, if n ≥ 1296−427.78

22.72 ≥ 38.21 then the conjecture holds. It remains to verify the
conjecture for n = 24, . . . , 38. Table 1 (right) shows the lower bound on m for each n, the
value of p we choose, and the corresponding lower bound on the crossing number that we
get.2

Therefore, the conjecture holds for r = 19 and every n /∈ {36, 37, 38}. As is done in [8],
we can handle the case n = 36 by using a result of Gallai [12], who proved that an r-critical
graph with 2r−2 vertices is the join3 of two smaller critical graphs. Therefore, if n = 36 then
G is the join of an r1-critical graph G1 = (V1, E1) and an r2-critical graph G2 = (V2, E2),

2The code of our calculations appears in Appendix A.
3A join of two graphs G1 = (V1, E1) and G2 = (V2, E2) consists of the two graphs and the edges {(v1, v2) |

v1 ∈ V1, v2 ∈ V2}.
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such that r1 + r2 = 19. Let ni = |Vi| and mi = |Ei|, for i = 1, 2. Then n1 + n2 = 36 and
m = m1 +m2 + n1n2.

We assume without loss of generality that r1 ≤ r2, and therefore have to consider the
cases r1 = 1, . . . , 9. Suppose that r1 = 1, which implies that G1 = K1. If G2 contains a
subdivision of K18 then G contains a subdivision of K19 and we are done. Otherwise, by
Lemma 3.5 we get m2 ≥ 313. Therefore, m = n1n2 +m2 ≥ 348 when r1 = 1.

Since G1 is r1-critical and G2 is r2-critical we have m ≥ fr1(n1) + fr2(n2) + n1n2. Note
that n1 = 36− n2 ≤ 36− r2 = r1 + 17 and if r1 = 2 then G1 = K2. A computer calculation
using the trivial bound for fr(n) along with (7), reveals that m ≥ 348 for every r1 = 2, . . . , 9
and every n1 = r1, . . . , r1 + 17 (ignoring cases where n1 = r1 + 1 or n2 = r2 + 1 since there
are no such critical graphs). Therefore, we conclude that G has at least 348 edges. Picking
p = 0.635 we get that cr(G) ≥ cr(36, 348, 0.635) = 1343 ≥ cr(K19). 2

Recall that Barát and Tóth [8] showed that if Albertson conjecture is false, then the
minimal counter-example is an r-critical graph with at least r + 5 vertices (Lemma 3.4).
They also gave an upper bound of 3.57r on the number of vertices in such a minimal counter-
example (improving a 4r bound due to Albertson et al. [7]). Using Theorem 5 we can improve
upon this bound as well.

Lemma 3.8. If G is an r-critical graph with n ≥ 3.03r vertices, then cr(G) ≥ cr(Kr).

Proof. The proof is similar to the proof of Lemma 3 in [8]. We repeat it here for completeness,
and because there is a small typo in the calculation in [8].

Let G be an r-critical graph with n vertices drawn in the plane with cr(G) crossings. We
may assume that r ≥ 19, since for r ≤ 18 the conjecture holds. If n ≥ 3.57r then it follows
from [8] that cr(G) ≥ cr(Kr). Therefore, we assume that n = αr for some 3.03 ≤ α < 3.57.
Note that n ≥ 3r ≥ 57. Let 5 ≤ k ≤ n be an integer and let G1, G2, . . . , Gt, t =

(
n
k

)
, be

all the (inherited drawings of) subgraphs induced by exactly k vertices in G. Denote by mi

the number of edges in Gi, and note that by Theorem 5 we have cr(Gi) ≥ 5mi − 139
6 (k− 2).

Observe also that every crossing in G appears in
(
n−4
k−4
)

subgraphs and every edge in G appears

in
(
n−2
k−2
)

subgraphs. Finally, recall that m ≥ n(r − 1)/2 since G is r-critical. Thus we have,

cr(G) ≥ 1(
n−4
k−4
) t∑
i=1

cr(Gi) ≥
1(
n−4
k−4
) t∑
i=1

(
5mi −

139(k − 2)

6

)

= 5m

(
n−2
k−2
)(

n−4
k−4
) − 139(k − 2)

(
n
k

)
6
(
n−4
k−4
)

≥ 5(r − 1)n

2

(n− 2)(n− 3)

(k − 2)(k − 3)
− 139n(n− 1)(n− 2)(n− 3)

6k(k − 1)(k − 3)

=
n(n− 2)(n− 3)

2(k − 3)

(
5(r − 1)

k − 2
− 139(n− 1)

3k(k − 1)

)
=

α3r(r − 2
α)(r − 3

α)

2(k − 3)

(
5(r − 1)

k − 2
− 139(αr − 1)

3k(k − 1)

)
≥ α3r(r − 2)((r − 3) + 2)

2(k − 3)

(
5(r − 1)

k − 2
−

139(r − 1)(α+ α−1
r−1 )

3k(k − 1)

)

=
α3r(r − 1)(r − 2)(r − 3)

2(k − 3)

(
5

k − 2
− 139α

3k(k − 1)

)
+ h(α, r, k),

32



where

h(α, r, k) =
α3r(r − 1)(r − 2)

2(k − 3)

(
10

k − 2
− 139

3k(k − 1)

(
2α+ 2

α− 1

r − 1
+
r − 3

r − 1
(α− 1)

))
≥ α3r(r − 1)(r − 2)

2(k − 3)

(
10

k − 2
− 139

3k(k − 1)

(
2α+

α− 1

9
+ (α− 1)

))
.

Suppose now that 3.17 ≤ α ≤ 3.57. Then for k = 47 < n we have h(α, r, 47) ≥ 0 and
therefore

cr(G) ≥ α3

2 · 44

(
5

45
− 139α

3 · 47 · 46

)
r(r − 1)(r − 2)(r − 3)

≥ 1

64
r(r − 1)(r − 2)(r − 3) ≥ cr(Kr).

Suppose now that 3.05 ≤ α ≤ 3.17. Then for k = 41 < n we have h(α, r, 41) ≥ 0 and
therefore

cr(G) ≥ α3

2 · 38

(
5

39
− 139α

3 · 41 · 40

)
r(r − 1)(r − 2)(r − 3)

≥ 1

64
r(r − 1)(r − 2)(r − 3) ≥ cr(Kr).

Finally, suppose that 3.03 ≤ α ≤ 3.05. Then for k = 40 < n we have h(α, r, 40) ≥ 0 and
therefore

cr(G) ≥ α3

2 · 37

(
5

38
− 139α

3 · 40 · 39

)
r(r − 1)(r − 2)(r − 3)

≥ 1

64
r(r − 1)(r − 2)(r − 3) ≥ cr(Kr).
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[6] M. Ajtai, V. Chvátal, M. Newborn, and E. Szemerédi, Crossing-free subgraphs, Theory and Practice of
Combinatorics, North-Holland Math. Stud. 60, North-Holland, Amsterdam, 1982, 9–12.

[7] M.O. Albertson, D.W. Cranston, and J. Fox, Crossings, colorings and cliques, Elec. J. Combinatorics
16 (2010), #R45.
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A sage code of the calculations in the proof of Theorem 7

sage: Dirac(n,r)=((r-1)*n+r-3)/2
sage: KS(n,r)=((r-1)*n+2*r-6)/2
sage: Gallai(n,r)=((r-1)*n+(n-r)*(2*r-n)-2)/2
sage: BT_Gal(n,r)=Gallai(n,r)+0.5
sage: cr_prime(n,m,p)=5*m/pˆ2-139*n/(6*pˆ3)+139/(3*pˆ4)-0.05
sage: Z(r)=floor(r/2)*floor((r-1)/2)*floor((r-2)/2)*floor((r-3)/2)/4
sage: def proc1(r):
... sols = solve([cr_prime(n,KS(n,r),p).diff(p)==0, cr_prime(n,KS(n,r),p)==Z(r)],n,p,

solution_dict=True)
... for s in sols:
... if (s[n].imag()==0 and s[p].imag()==0): # output only real solutions
... print "p=",s[p].n(),",n=",s[n].n()
sage: proc1(17)
p= 0.727523979840676 ,n= 31.5627659574468
sage: cr_prime(n,KS(n,17),0.727)
15.3896636507376*n + 298.258502516192
sage: proc1(18)
p= 0.690689920492434 ,n= 34.4659498207885
sage: cr_prime(n,KS(n,18),0.69)
18.7463154231188*n + 361.887598221377
sage: def proc2(n,r):
... if n <= 2*r-2:
... m = ceil(BT_Gal(n,r))
... else:
... m = ceil(KS(n,r))
... sols = solve(diff(cr_prime(n,m,p),p)==0, p, solution_dict=True)
... best_p= round(sols[1][p],3)
... best_cr = ceil(cr_prime(n,m,best_p))
... str = ’\t\t’+repr(n)+’ & ’+repr(m)+’ & ’+repr(best_p.n())+’ & ’+repr(best_cr) + ’

\\\\’
... print str
sage: for n in range(23,35):
... proc2(n,18)
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23 & 228 & 0.555000000000000 & 1073 \\
24 & 240 & 0.556000000000000 & 1132 \\
25 & 251 & 0.560000000000000 & 1176 \\
26 & 261 & 0.567000000000000 & 1204 \\
27 & 270 & 0.576000000000000 & 1217 \\
28 & 278 & 0.586000000000000 & 1218 \\
29 & 285 & 0.599000000000000 & 1206 \\
30 & 291 & 0.613000000000000 & 1183 \\
31 & 296 & 0.628000000000000 & 1151 \\
32 & 300 & 0.646000000000000 & 1111 \\
33 & 303 & 0.665000000000000 & 1064 \\
34 & 305 & 0.686000000000000 & 1010 \\

sage: proc1(19)
p= 0.659831121833534 ,n= 38.2051696284330
sage: cr_prime(n,KS(n,19),0.66)
22.7249538544304*n + 427.789066289688
sage: for n in range(24,39):
... proc2(n,19)

24 & 251 & 0.523000000000000 & 1321 \\
25 & 264 & 0.524000000000000 & 1397 \\
26 & 276 & 0.527000000000000 & 1455 \\
27 & 287 & 0.533000000000000 & 1495 \\
28 & 297 & 0.540000000000000 & 1518 \\
29 & 306 & 0.548000000000000 & 1527 \\
30 & 314 & 0.558000000000000 & 1520 \\
31 & 321 & 0.570000000000000 & 1501 \\
32 & 327 & 0.583000000000000 & 1471 \\
33 & 332 & 0.597000000000000 & 1430 \\
34 & 336 & 0.613000000000000 & 1380 \\
35 & 339 & 0.631000000000000 & 1322 \\
36 & 341 & 0.650000000000000 & 1259 \\
37 & 349 & 0.656000000000000 & 1269 \\
38 & 358 & 0.659000000000000 & 1292 \\

sage: def f(n,r): # lower bound for the number of edge in n-vertex r-critical graph
... best=0
... if n==r: # K_r
... best=n*(n-1)/2
... elif n>r+1:
... best=ceil(n*(r-1)/2) # trivial
... if (r>=4 and n>=r+2):
... best=max(best,ceil(Dirac(n,r)))
... if n!=2*r-1:
... best=max(best,ceil(KS(n,r)))
... if n<=2*r-1:
... best=max(best,ceil(Gallai(n,r)))
... return best
sage: # considering the case r=19, n=36
sage: min_m=348
sage: for r1 in range(2,10):
... r2 = 19-r1
... if r1==2:
... max_n1=2
... else:
... max_n1=36-r2
... for n1 in range(r1,max_n1+1):
... n2 = 36-n1
... if (n1!=r1+1 and n2!=r2+1):
... curr = f(n1,r1)+f(n2,r2)+n1*n2
... min_m = min(min_m,curr)
...
sage: print min_m
348
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