
The National Security Agency’s Review of Emerging Technologies

High
Confidence
Software
and
Systems

High
Confidence
Software
and
Systems

The Next Wave is published to disseminate technical advancements and research activities in telecomm-

unications and information technologies. Mentions of company names or commercial products do not

imply endorsement by the US Government.

Letter from the Guest Editor

For years the National Security Agency (NSA) has pursued research in high confidence

software and systems (HCSS) technologies to improve the assurance of security critical

algorithms, protocols, software, and hardware. Along the way, NSA has been a leader in the

development of a national, collaborative community of HCSS researchers and sponsors, some of

whom are represented in this issue of The Next Wave (TNW).

HCSS research has primarily focused upon developing foundational technology and

techniques, yielding components and systems that are “correct by construction.” HCSS research

has also been aimed at creating analytic techniques to assess and improve the quality of existing

code and specifications. Over the years, HCSS research projects have delivered significant

advances within both developmental and analytic areas, and yet substantial questions remain

unanswered:

can one obtain high assurance that security has been achieved?

or worse, are of unknown provenance?

 This issue of TNW provides a glimpse into the multi-faceted research strategy gaining

traction within and beyond the HCSS community—a strategy that attempts to tackle tough

questions such as those identified above. Each facet of the strategy, whether preventive or

analytic, will require better evidence—evidence capable of supporting an objective assessment

that the system in question meets specified requirements. In short, the need for evidence-based

assurance is the core tenet of each approach discussed here. Additionally, each article in this issue

highlights the strong overlap between preventive and analytic methods, with an emphasis on the

early application of analytic methods in the development process. When used at the earliest stages

in the process, analytic methods guide development choices, thereby lessening engineering risks.

 In closing, it would be irresponsible to publish this issue of TNW without explicitly

acknowledging the one person I consider to be the heart of the HCSS community within the United

States—Dr. Helen Gill from the National Science Foundation. Dr. Gill has worked tirelessly

within this community, giving of her time, her talent, and her wisdom. Dr. Gill exemplifies the

William B. Martin,

Chief, High Confidence Software and Systems Division

The Next Wave is published to disseminate technical advancements and research activities in telecomm-

unications and information technologies. Mentions of company names or commercial products do not

imply endorsement by the US Government.

The Next Wave Vol 19 No 1 2011 7

FEATURE

Implement:
The Cryptol FPGA

Type 1 cryptographic devices
protect information of national
importance. The information assurance
standards for such products are
correspondingly high. In addition, crypto
modernization requirements mandate field
programmability, and various operational
requirements call for a reduced space,
weight, and power footprint.

FPGAs offer a compelling platform
to address these needs. They are field
updatable by design, offer tremendous
performance potential, and have fewer
nonrecurring engineering costs than
traditional ASIC designs.

However, FPGA development
still requires the considerable time and
talents of skilled hardware designers,
which increases development time
and costs. Mainstream design tools
supplied by FPGA vendors have more
in common with VLSI (very-large-
scale integration) design tools than with
modern programming environments.
These design tools automatically limit
the user population to designers trained in
VLSI design.

The Cryptol FPGA generator
introduces a new design flow that allows
engineers and mathematicians to program
cryptographic algorithms on FPGAs
in a high-level language incorporating
concepts and constructs familiar to
cryptologists. The vision is that instead
of demanding low-level hardware design
knowledge, users are able to express their
designs and programs at a much higher
level of abstraction and take advantage
of powerful automated mechanisms
for generating, placing, and routing the
circuits.

In some ways, the mathematics
behind a cryptographic specification is
like a hardware description. Both give
unambiguous specification of how bits
are to be handled and how bit-level

operations are to be applied. But there
the resemblance ends. Sequences, which
appear repeatedly in the mathematical
descriptions of crypto algorithms,
have many different instantiations as
hardware. At one extreme, the sequence
can be spread out in space as side-by-
side parallelism. At the other extreme,
the sequence can be laid out in time as
consecutive values held in a register, or
over many registers in a pipeline. Many
combinations of these are also possible.

The Cryptol FPGA generator uses a
wide variety of engineering heuristics to
pick an appropriate translation of a Cryptol
function to an FPGA configuration that
will make effective and efficient use of
the silicon. The user can also provide
pragmas (compiler commands) about
space/time mappings, thereby guiding the
translation process without compromising
the integrity of the original specification.

The declarative quality of Cryptol,
which makes Cryptol a good specification
language, also plays a key role in the
effectiveness of automatic generation
of FPGA cores. In contrast, the inherent
sequentiality of mainstream program-
ming languages makes them a poor match
for the highly parallel nature of FPGAs.

Creating high-performance

designs

The Cryptol FPGA generator
produces cores whose throughput and
area usage have been comparable to
(and in some cases better than) hand-
coded VHDL/Verilog. For example, an
implementation of 128-bit AES for the
Xilinx Virtex 4 FPGA has been generated
with clock rates in excess of 200 MHz
(which translates to throughput of better
than 25 Gbps) using only 6912 slices (25
percent of the slices on the chip) and 100
Block RAMs (62 percent of the available
Block RAMs). Theoretical results based
on Xilinx tools indicate that 500 MHz (65
Gbps) is achievable by these cores.

High-level exploration of
the design space

Good design is always at the root of
great performance. One of the key factors
in Cryptol’s performance results is its
ability to explore the implementation
design space at a very high level. A
Cryptol developer can experiment with
many different microarchitectures in the
course of a few days, covering ground
that would otherwise take weeks or
months using traditional methods. A
variety of implementation approaches can
be modeled and characterized quickly.

For example, at the Cryptol level,
a straightforward idiom identifies pipe-
lined functional units in hardware. Recall
the specification for DES shown in Figure
3. The designer has created a pipelined
version of the round function by hand
by factoring the high-level Cryptol
specification, as shown in Figure 4. The
Cryptol FPGA generator produces an
efficient pipelined circuit, also shown in
Figure 4 on page 8.

High-level design exploration pro-
vides a profound advantage in the devel-
opment of high-performance algorithms
(or in algorithms meeting other design
constraints). The key is the speed with
which the developer is able to iterate the
design, the bottleneck of hardware design.
A crypto developer can produce rapid de-
sign iterations using the Cryptol Toolkit,
effectively increasing productivity by up
to an order of magnitude over traditional
VHDL development.

Trust: The Cryptol
verification framework

The FPGA generator uses semantic
models to establish the correctness of
the process. To gain final assurance,
Cryptol developer Galois provides an
automatic equivalence checker to prove
that the actual code that will run on the
FPGA is equivalent to the reference
implementation.

The Next Wave Vol 19 No 1 2011 9

FEATURE

need for sophisticated run-time exception
handling mechanisms.

The Cryptol toolset comes with a
push-button equivalence/safety checking
framework to answer these questions
automatically for a large subset of the
Cryptol language [6]. Cryptol uses off-
the-shelf SAT/SMT solvers such as
ABC [7] or Yices [8] as the underlying
equivalence-checking engine, translating
Cryptol specifications to appropri-
ate inputs for these tools automatically.
However, the use of these external tools
remains transparent to the users, who
only interact with Cryptol as the main
verification tool.

Of course, equivalence checking
applies not only to handwritten programs
but also to generated code. Cryptol’s
synthesis tools perform extensive and
often very complicated transformations
to turn Cryptol programs into hardware
primitives available on target FPGA
platforms. The formal verification
framework of Cryptol allows equivalence
checking between Cryptol and netlist
representations that are generated by
various parts of the compiler, as we will
explain shortly. Therefore, any potential
bugs in the compiler itself are also caught
by the same verification framework. This
is a crucial aspect of the system: proving
the Cryptol compiler correct would be an
extremely challenging if not impossible
task. Instead, Cryptol provides a verifying
compiler that generates code along with a
formal proof that the output is functionally
equivalent to the input.

Design and verification flow

Figure 5 provides a high-level
overview of a typical Cryptol development
and verification flow. Starting with a
Cryptol reference specification, the
designer iteratively refines the program
and “runs” it at the Cryptol command
line. These refinements typically
include various pipelining and structural

transformations to increase speed and/or
reduce space usage. Behind the scenes,
the Cryptol toolchain translates Cryptol to
a custom signal-processing intermediate
representation (SPIR), which acts as a
bridge between Cryptol and FPGA-based
target platforms. The SPIR representation
allows for easy experimentation with
high-level design changes, because it
remains fully executable while also
providing essential timing/space usage
statistics without going through the
computationally expensive synthesis
tasks.

Once the programmer is happy with
the design, Cryptol translates the code to
VHDL, which is further fed to third-party
synthesis tools. Figure 5 shows the flow
for the Xilinx toolchain, taking the VHDL
through synthesis, place and route, and
bit-file generation steps. In practice,
these steps might need to be repeated,
using feedback from the synthesis tools,
until the implementation satisfies the
requirements. The overall approach aims
at greatly reducing the number of such
repetitions by providing early feedback
to the user, at the SPIR level. The final
outcome is a binary file that can be
downloaded onto a Xilinx FPGA board,
completing the design process.

Cryptol’s verification flow is
interleaved with the design process. As
depicted in Figure 5, Cryptol provides
custom translators at various points in
the translation process to generate formal
models in terms of AIG (and�inverter-
graph) representations [9]. In particular,
the user can generate AIG representations
from the reference (unoptimized) Cryptol
specification, from the target (optimized)
Cryptol specification, from the SPIR
representa tion, from the post synthesis
circuit description, and from the final
(post-place-and-route) circuit description.
By successive equivalence checking of
the formal models generated at these

check points, Cryptol provides the user
with a high-assurance development
environment, ensuring that the applied
transformations preserve semantic
equivalence. The final piece of the puzzle
for end-to-end verification is generating
an AIG for the bit file generated by the
Xilinx tools, as represented by the dashed
line in Figure 5. At this time, the format of
this file remains proprietary.

Verification for the cryptography

domain: Why this works

Cryptol’s formal verification
framework clearly benefits from recent
advances in SAT/SMT solving. However,
it is also important to recognize that the
properties of cryptographic algorithms
make applications of automated formal
methods particularly successful. This
is especially true for symmetric key
encryption algorithms that rely heavily
on low-level bit manipulations instead
of the high-level mathematical functions
employed by public-key cryptography.

In particular, symmetric-key
cryptographic algorithms almost never
perform control flow based on input data,
in order to avoid attacks based on timing.
The series of operations performed are
typically “fixed,” without any dependence
on the actual input values. Similarly, the
loops used in these algorithms almost
always have fixed bounds; typically these
bounds arise from the number of rounds
specified by the underlying algorithm.
Techniques like SAT-sweeping [10] are
especially effective on crypto�algorithm
verification, since simulation-based
node-equivalence guesses are likely to
be quite accurate for algorithms that
rely heavily on shuffling input bits.
Obviously, these properties do not make
formal verification trivial for this class of
crypto algorithms; rather, they make the
use of such techniques highly feasible in
practice [11].

10 Empowering the Experts: High-Assurance, High-Performance, High-Level Design with Cryptol

Verify: Evaluating

third-party VHDL

implementations
The process of verification in

Cryptol typically begins with
understanding the high-level interface of
the VHDL implementation under study.
Through Cryptol’s foreign-function
interface, the base interface to the VHDL is
simply imported using Cryptol’s “extern”
declaration capability. Then the required
interface-matching code is written in
Cryptol, mainly implementing the proper
use of control signals. This process makes
the external implementation available at
the Cryptol command prompt, enabling
the user to call it on specific values, pass it
through previously generated test vectors,
essentially making the external definition
behave just like any other Cryptol
function. This facility greatly increases
productivity, since it unifies software and
hardware under one common interface.
Once the reference specification and
the Cryptol/VHDL hybrid expose the
same interface, the user generates formal
models for both of them, and checks for
equivalence.

Challenges ahead
Increasing the coverage of formal

methods. Cryptol’s formal verification
framework works on a relatively large
subset of Cryptol [6]. The main limitation
is in verifying algorithms for all time, i.e.,
programs that receive and produce infinite
streams of data. Currently, Cryptol
can verify such algorithms only up to a
fixed number of clock cycles, effectively
introducing a time bound. While this
restriction is irrelevant for most block-
based crypto algorithms, it does not
generalize to stream ciphers in general.
The introduction of induction capabilities
in the equivalence checker or the use of
hybrid methods combining manual top-
level proofs with fully automated SAT/
SMT-based sub proofs might provide
a feasible alternative for handling such
problems.

 Proving security properties. Not

all properties of interest can be cast as

functional equivalence problems. This

is especially true for cryptography. For

instance, if we are handed an alleged

VHDL implementation of AES, in

addition to knowing that it implements

AES correctly, we would like to be

sure that it does not contain any “extra

circuitry” to leak the key. In general,

we would like to show that an end user

cannot gain any information from an

implementation that cannot be obtained

from a reference specification.

Reducing the size of the trusted
code base. Cryptol’s formal verification

system relies on the correctness of the

Cryptol compiler’s front-end components

(i.e., the parser, the type system, etc.), the

symbolic simulator, and the translators

to SAT/SMT solvers. Note that Cryptol’s

internal compiler passes, optimizations,

and code generators (i.e., the typical

compiler back-end components) are not

in the trusted code base. While Cryptol’s

trusted code base is only a fraction of the

entire Cryptol tool suite, it is nevertheless

a large chunk of code from the open-

source functional programming language,

Haskell. Reducing the footprint of this

trusted code base, and/or increasing

assurance in these components of the

system, is an ongoing challenge.

The Next Wave Vol 19 No 1 2011 15

FEATURE

Collins was their capability with the
AAMP7G microprocessor and high-
assurance FPGA development. The
AAMP7G supports strict time and space
partitioning in hardware, and has received

on a formal proof of correctness of its

by the EAL-7 level of the Common

the AAMP7G partitioning system was
conducted using the ACL2 theorem
prover and culminated in the proof of a
theorem that the AAMP7G partitioning
microcode implements a high-level
security policy [2].

Perhaps more important than
their hardware capabilities, Rockwell
Collins has a solid approach to
software development. It features an
integrated, model-based development
suite of tools—a toolchain—with a

modeling environment that abstracts
the implementation details, promotes
architectural level design, and provides
automated transformations between
the problem domain formalisms and
the target platform. The tools simplify
code development and facilitate the
application of automated formal analysis
tools. In addition, the toolchain is capable
of interfacing directly to a simulation
environment, providing another level of
assurance of design correctness.

For their part, HCSS researchers

descriptions for several internal
development projects [4]. In these
projects, [5,6] HCSS researchers
played the role of customers and read

High Integrity Systems. In addition to
experience in the requirements stage of
development, HCSS people are familiar

with the security evaluation work done by
other NSA personnel.

The approach we chose for the
HSCC project was for HCSS researchers
to take the lead in writing control
software requirements in the form of

input into their established development
process. They would look for
opportunities to strengthen the process,
including the support for evaluation, or
save time and money by taking advantage

2. Z specification work

Over the last ten years, HCSS
researchers have worked with other

variety of development projects. We use

found it quite suitable for our needs.
Based on our experience, we chose to use

high-assurance controller project.

On this project we tried to follow
good habits acquired over the years. We
think carefully about names and try to

use clear helpful names and well-chosen
abbreviations. We have a house style for
notational details such as capitalization.
The important point is that both writers

of the style are not nearly as important
as the fact that there is a set of standard

we adhered strictly to the principle that

preceded by an accurate natural language
translation.

Since the HSCC project was to
produce the controller for a crypto
system, we had to describe, at a suitable
level of abstraction, the main work of
the system. On the outbound data path

formatting unsecured data in the Red
Ingress data accelerator; encrypting in the
encrypt core; and formatting and sending
secure data out in the Black Egress data
accelerator. The inbound data path is a
mirror image with a decrypt core.

From this basic system analysis we
could see what control data structures
had to be provided by the controller to

Figure 1: High-Speed Crypto System functional block diagram

RI_DA
(Red Ingress Data Accelerator)

RE_DA
(Red Engress Data Accelerator)

BE_DA
(Black Egress Data

BI_DA
(Black Ingress Data

EncryptCore

DecryptCore

RedIngress

PolicerDB

RedEgress

PolicerDB

BlackEgress

PolicerDB

BlackIngress

PolicerDB

EncryptDB

DecryptDB

Status

Status StatusStatus

Status Status

FPGA_Info

outControlSAs inControlSAs

Security
ProtocolInfo

ControlPending
DB

RedTEK_DB

NetworkConfig

ControlsDB

Control Block

The Next Wave Vol 19 No 1 2011 17

FEATURE

The HSCC software development
process relies on a several tools:

MATLAB® are products of The
MathWorks, Inc. [9] Simulink was chosen
for development because it is the standard
model-based development environment
at Rockwell Collins and has extensive
existing tool support, including support
for formal analysis.

Reactis® [10], a product of
Reactive Systems, Inc., is an automated
test generation tool that uses a Sim-

of the model. The test suites may be
used in testing of the implementation for
behavioral conformance to the model, as
well as for model testing and debugging.

Gryphon [8] refers to the Rockwell
Collins tool suite that automatically
translates from two popular commercial
modeling languages, Simulink/

several back-end analysis tools, including
model-checkers and theorem provers.
Gryphon also supports code generation
into SPARK/Ada and C. Gryphon uses

as its internal representation and has
been used at Rockwell Collins on several

involving Simulink models.

Prover [12] is a best-of-breed
commercial model-checking tool for
analysis of the behavior of software and
hard-ware models. Prover can analyze

models, that is, models with unbounded

integers and real numbers, through the
use of integrated decision procedures for
real and integer arithmetic.

By leveraging its existing Gryphon
translator framework, Rockwell Collins
designed and implemented a toolchain
capable of automatically generating
SPARK-compliant Ada95 source code

3.2 Transaction development

as the common starting point for both the
implementation and analysis. Each model
corresponds to a single database transac-
tion. Model inputs correspond to SPARK
procedure “in” parameters and outputs
correspond to “out” parameters. Note the
database object used by each transaction
model may appear as both an input and an

transaction. In this case, the database ob-
ject access appears as an “in-out” param-
eter in the generated code. For each data-
base, one model must be created to initial-
ize the data object, in addition to models
to perform necessary transactions (add,
delete, lookup) on the database. Addi-
tional models are required for the formal
analysis to model invariants on the data-
base object. This topic will be covered in
more detail in subsequent sections.

The screenshot in Figure 4 shows a
sample Simulink model that contains the
Dest_Encr_Addr_Found lookup func-
tion performed on the routing table. This
function performs a lookup in the routing

-
nation encryptor address is found in the

table. The inputs (at left) are the routing
table (Rt_Tbl) and the destination en-
cryptor address (Dest_Encr_Addr) for
which to search. The output (at right) is
the Boolean value (Found) resulting from
the search. The rectangular block in the
center is a Simulink subsystem block that
implements the database lookup.

Typically, a transaction model

to the implementation of the database
operations. The screenshot in Figure 5
shows the contents of the Simulink sub-
system block depicted in Figure 4. The
heavy vertical bar at the left is a Simulink
bus selector. Simulink bus objects are
roughly analogous to a record in Ada or
SPARK. (The Reactis tool does not allow

so a bus selector is used to separate the
component parts of the bus object into

The large rounded rectangle block is a

As stated earlier, a model must be
built for each transaction in each database.
In the case of the routing table, these are:

Init – procedure to initialize the routing

table data structure (called upon reset)

Add – database transaction to add a

routing record to the routing table

Delete – database transaction to remove

a routing record from the routing table

Dest_Encr_Addr_Found – database

query to determine existence of

destination encryptor address

Get_Dest_Addr_List – database lookup

to return list of addresses mapped to an

encryptor address

Figure 4: Destination Encryptor Address Found model Figure 5: Stateflow chart inside the model

1

2

Rt_TblRt_Tbl

Dest_Encr_Addr

1

Found

Dest_Encr_Addr_Found

Dest_Encr_Addr
Found

1

Rt_Tbl

num_routing_records_in

addr_count_list_in

dest_addr_map_in

dest_addr_valid_list_in

found
dest_addr_list_in

dest_addr_revmap_in

dest_encr_addr_list_in

dest_encr_addr

2
Dest_Encr_Addr

Routing Table_dest_encr_addr_found

L

1
Found

The Next Wave Vol 19 No 1 2011 19

FEATURE

element in question has been removed
from the database.

summary

the project as a whole resulted in the proof
of some 840 properties for the HSCC
databases, of which 140 were written by

(mainly well-formedness checks)
automatically generated by the Gryphon

over the course of seven calendar months.

3.5 Code generation

Code generation is performed after
a transaction is proven to satisfy all of its
invariant properties. Code generation for
this project is accomplished through the
use of a translation tool, developed during
the program, that leverages the existing
Gryphon framework to generate SPARK-
compliant Ada95 source code for use on
the AAMP7G, including the automatic
generation of SPARK annotations.

All of the transactions are compiled
into single Ada95 package for use by
the system programmer. The procedures
in the package declaration are shown in
Figure 6.

4. Conclusion

Our experiences developing the
HSCC system have shown that the
methodology described in this paper is
a viable process for the development
of high-assurance software for use in
cryptographic systems.

NSA-provided specifications

to be superior to those written in English
language in producing a complete
and unambiguous set of software

as the main development artifact,
Rockwell Collins was able to quickly and

accurately determine the necessary “pre”
and “post” conditions for each database
transaction.

The use of a model-based approach
to transaction development provides
early simulation capabilities, leading to
earlier discovery of errors in both the

The use of automated code generation
removes the possibility of human coding
errors. The application of automated
model checkers provides a proof of
correctness at a level unattainable

through traditional software testing
methods. With all these components in
our software development approach, we
have exercised a viable methodology to
deliver high-assurance software with a

software developed through traditional
approaches.

The use of SPARK information

the system level provides assurance
the system code is properly routing
information to each of the devices

Model-based development is used with increasing frequency in the

development of aircraft avionics. By using a model-based development

approach, developers can detect errors early, avoiding more expensive fixes

later on.

Model-based development was used successfully to develop the ADGS-

2100 Adaptive Display and Guidance System (ADGS) Window Manager.

In modern aircraft critical status information is provided to pilots through

computerized display panels like those shown. The ADGS-2100 is a Rockwell

Collins product that provides the heads-up and heads-down displays and

display management software for next-generation commercial aircraft.

The system ensures that data from different applications is routed to the

correct display panel, and in the case of a component failure decides which

information is most important and routes that inaformation to the correct

display panel. The displays are essential to the safe flight of an aircraft since

they provide critical flight information to the flight crew.

Rockwell Collins has developed tools that translate models used to

develop systems like the ADGS-2100 to a suite of analysis tools. Verification

throughout a design process—while a design is still changing—leads to

earlier error detection. During the ADGS-2100 development project, 563

properties were developed and checked and 98 errors were found and

corrected in early versions of the model where they are much easier to fix.

The Next Wave Vol 19 No 1 2011 21

FEATURE

References
[1] Hardin D. Invited tutorial: Consider-

microprocessors for safety-critical and
security-critical applications. In: Cimatti
A, Jones R, editors. Proceedings of the
Eighth International Conference on Formal
Methods in Computer-Aided Design
(FMCAD 2008); Nov 2008; Portland
(OR). p. 1–7. Available at: doi: 10.1109/
FMCAD.2008.ECP.5

[2] Greve D, Richards R, Wilding M.
A summary of intrinsic partitioning

Workshop on the ACL2 Theorem Prover
and Its Applications (ACL2-2004); Nov
2004; Austin (TX). Available at: http://
www.cs.utexas.edu/users/moore/acl2/
workshop-2004/

Manual. 2nd ed. Prentice Hall International
Series in Computer Science; 1992. Available
at: http://spivey.oriel.ox.ac.uk/~mike/zrm/

[4] Johnson R. Engineering protection
software for the Tokeneer ID station (TIS).
The Next Wave. 2006;15(2):21–25, 28–31.

[5]. AdaCore. The Tokeneer Project.
Available at: http://www.adacore.com/
home/products/sparkpro/tokeneer/

[6] Barnes J, Chapman R, Johnson
R, Widmaier J, Cooper D, Everett W.
Engineering the Tokeneer enclave
protection software. In: Proceedings
of the 1st International Symposium on
Secure Software Engineering (ISSSE);

http://www.altran-praxis.com/downloads
/SPARK/technicalReferences/issse2006
tokeneer.pdf

Bowen JP, Hinchey MG, Till D, editors.
Proceedings of the 10th International

1997; Reading, UK. p. 72–86. Available
at: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.50.4825

[8] Whalen M, Cofer D, Miller S, Krogh
B, Storm W. Integration of formal analysis
into a model-based software de-velopment
process. In: Proceedings of the 12th
International Workshop on Industrial
Critical Systems (FMICS 2007), Jul 2007;
Berlin, Germany. p. 68–84. Available at:
http://www.msse.umn.edu/publi cations/
I ntegrati on-Formal -Anal ysis-Model -
Based-Software-D

[9] The Mathworks, Inc. Simulink product
description. Available at: http://www.
mathworks.com/products/s imul ink/
description1.html

[10] Reactive Systems, Inc. Reactis product
description. Available at: http://www.
reactive-systems.com

[11] Esterel Technologies, Inc. SCADE
Suite product description. Available at:
http://www.esterel-technologies.com/
products/scade-suite

[12] Prover Technologies, Inc. Prover SL/
DE plug-in product description. Available
at: http://www.prover.com/products/prover_
plugin

Further reading

sequential and concurrent programs. 3rd
ed. Springer; 28 Oct 2010. ISBN-10:
1848827448

Barnes J. High integrity software: The
SPARK approach to safety and security.
Addison-Wesley Professional; 25 Apr 2003.
ISBN-10: 0321136160

Brooks FP Jr. The mythical man-month:
Essays on software engineering. Addison-
Wesley Professional; 12 Aug 1995,
anniversary edition. ISBN-10: 0201835959

Clarke EM Jr, Grumberg O, Peled DA.
Model checking. The MIT Press; 7 Jan
1999. ISBN-10: 0262032708

Gries D. The science of programming.
Springer; 1 Feb 1987. ISBN-10:

0387964805

of microprocessor systems for high-

assurance applications. 1st ed. Springer; 15

Mar 2010. ISBN-10: 1441915382

Harrison J. Handbook of practical

logic and automated reasoning. 1st ed.

Cambridge University Press; 13 Apr 2009.

ISBN-10: 0521899574

Jackson D. Software abstractions: Logic,

language, and analysis. The MIT Press; 24

Mar 2006. ISBN-10: 0262101141

Kaufmann M, Manolios P, Moore JS.

Computer-aided reasoning: An approach.

1st ed. Springer; 31 Jul 2000. ISBN-10:

0792377443

Kozen DC. Automata and comput-

ability. Springer; Aug 1997. ISBN-10:

0387949070

foundations of computer programming.

Addison-Wesley Professional; 10 Mar

1993. ISBN-10: 0201548860

CRC; 22 Sep 2009. ISBN-10: 1439801673

Pierce BC. Basic category theory for com-

puter scientists. 1st ed. The MIT Press;

7Aug 1991. ISBN-10: 0262660717

Pierce BC. Types and programming lan-

guages. 1st ed. The MIT Press; 1 Feb 2002.

ISBN-10: 0262162098

Thompson S. Haskell, the craft of function-

al programming. 2nd ed. Addison-Wesley

Professional; 8 Apr 1999. ISBN-10:

0201342758

Wiedijk F, editor. The seventeen provers

of the world: Foreword by Dana S. Scott.

1st ed. Springer; 16 Mar 2006. ISBN-10:

3540307044

The Next Wave Vol 19 No 1 2011 23

FEATURE

1. CxC foundations

Many areas of computer science
research provide the foundation for

Center (now Rome Laboratory) provided
the impetus for CxC research in 1983

of the captured information approaches

to automated construction of the software

have prompted industry and academia

and software process improvements and

2. Advanced software
engineering

The Specware software

Methods”?

2.1 Definition of

formal methods

(FM) are used to

be studied with

the term formal

methods

The FM process can be depicted

description comprise the foundation of

Real World Problem

Formal
Methods

Triad

SolutionRequirements

Problem
Description

Solution
Description

Specify Interpret

Analyze

Figure 1: The Formal Methods Triad

24 Correct by Construction: Advanced Software Engineering

2.2 The use of formal methods

in the DoD

The US Department of Defense

referred to as the Rainbow Series of

2.2.1 Formal methods at design time

Software lifecycle cost reductions

due to a CxC development process

In a recent study, Kestrel researchers

examined the suite of documentation required

for certifying Type 1 devices, and the possibilities

to extend Specware’s correct-by-construction

(CxC) development process to auto-generate

certification documents. Our thesis is that

by using automated tools to generate both

the software and significant portions of its

certification documentation, a CxC approach

will dramatically lower lifecycle costs, including

the cost of recertification. Furthermore, by

speeding up the recertification process, a CxC

approach facilitates the evolution process,

resulting in higher quality products over the

lifecycle.

To quantify these claims, we first

estimated the cost reductions that arise from

a CxC process independently from certification

costs. The dominant factor seems to be the

size reduction in formal specifications relative

to executable code. This size reduction varies

considerably over projects, but a ballpark figure

of 4-5x is consistent with the JavaCard project

and related efforts. A 4-5x reduction in size of

the formal text usually correlates with a similar

reduction in development and evolution costs.

Consequently we estimate that, independent

of certification costs, a CxC process should

reduce lifecycle costs by roughly 75-80 percent.

Second, we estimated the cost reduction due

to extensions of the CxC process that allow

auto-generation of certification documents as

a by-product of the code generation process.

For each of the thirteen documents required

for certifying Type 1 devices, we estimated

that the average cost savings vary from a high

of 75 percent for Formal Security Policy Model

(FSPM) documents to a low of 20 percent for

a Security Verification Plan and Procedures

(SVP) documents. Assuming roughly equal

weight to each of the 13 documents, we

estimated an average overall cost reduction of

about 59 percent per certification application

due to using CxC methods.

These two estimates can be combined in

a variety of ways. For example, if we assume

that certification costs are roughly the same

as development costs, then CxC brings about

a 70 percent reduction in lifecycle costs

(evolution plus certification); that is, a CxC

process will produce a certified product for 30

percent of the cost of a conventional process.

If we assume, as is the case in aerospace

applications, that the cost of certification is

about 7x development costs, then we obtain

an estimate of 63 percent cost reduction for

a CxC process. This leads us to conclude that

a CxC process will produce a certified product

for roughly 30-40 percent of the cost of a

conventional process. This estimate does not

account for the possibility that some forms of

certification become unnecessary because of

the strong form of evidence provided by a CxC

process.

The Next Wave Vol 19 No 1 2011 25

FEATURE

An improvement to this method

the more concrete system and security

2.2.2 Code-based analysis

to discover and prove properties about the

conditions based on the code and the

“automated theorem prover” derives the

JAVA Card Runtime Environment

We used Specware to formally

specify a real-world smart card operating

system, the Java Card Runtime

Environment (JCRE). The JCRE consists of

a JAVA virtual machine (VM) and system

libraries (e.g., for I/O and cryptography),

along with card management capabilities

according to the Global Platform

Standard. The formal specification is

about 30,000 lines long and over 6,000

consistency proofs of it have been

mechanically verified so far. A desktop

simulator (reference implementation)

has been generated by refinement from

the formal specification; the correctness

of the refinements is currently being

mechanically verified. A C implementation

for a commercial chip has been manually

derived from the formal specification;

a new version of this implementation is

currently being generated via automated

refinements, with mechanical proofs. We

anticipate that this will be the highest

level of assurance yet achieved, and that

it will reduce the cost and increase the

confidence of a Type 1 certification.

Specware has also been used to study

the extension of (standard) JCRE with

MILS and MLS separation. The study has

been carried out on a formal specification

of an idealized subset of the JCRE.

Separation policies have been formally

specified, along with run-time monitors

to enforce the policies. The monitors

have been formally proved to guarantee

the policies. The monitors and the formal

proofs are currently being extended from

the idealized to the complete JCRE.

See http://www.kestrel.edu/java

for more information.

26 Correct by Construction: Advanced Software Engineering

approach that combines the best of both

2.3 A correct-by-construction
approach

with automation moves the work from

“how” has been determined and expressed

Software System Development

CxC
Triad

Software

Implementation

System & Security

Requirements

Problem Formal
Specification

Solution Formal
Specification

Specify Generate

Compute

Figure 2: The CxC Triad

The Next Wave Vol 19 No 1 2011 27

FEATURE

2.4 Specware, a
correct-by-construction tool

Researchers have used Specware for

2.4.1 An NSA security token

AutoSmart

The AutoSmart (automatic generator

of smart card applets) tool is an example

of a domain-specific CxC generator. It

features a specification language tailored

to the smart card domain, with constructs

to conveniently capture concepts

like personal identification numbers,

cryptography, ISO 7816 I/O exchanges,

and so on. AutoSmart performs several

consistency checks on the applet

specifications, including a security analysis

that flags potential leaks of confidential

information like private and secret

keys. AutoSmart compiles the applet

specifications to Java Card code, which

can be compiled and loaded into a Java

Card. Along with the code, AutoSmart

also generates documentation for FIPS

140-2 certification as well as informal

documentation for the applets (e.g.,

tables of commands and internal data).

AutoSmart is currently being extended

with the capability to generate a machine-

checkable formal proof of the correctness

of the generated Java Card code with

respect to the input specifications. This

“credible compiler” capability enables

trust in the correctness of the code to be

shifted from the AutoSmart tool to a much

smaller and simpler proof checker, in the

spirit of proof-carrying code.

See http://www.kestrel.edu/jcapp

lets for more information.

Software System Development

Formal
Methods

Triad

Software

Implementation

System & Security

Requirements

Problem Formal
Specification

In Metaslang

Solution Formal
Specification

In Metaslang

Specify and

Compose
Translate and

Generate

Refine and

Transform

Figure 3: The Specware Triad

30 Correct by Construction: Advanced Software Engineering

or denied access based on a database of

3. An extreme CxC vision

and cost to maintain and recertify:

direction and provides evidence that

The Next Wave Vol 19 No 1 2011 31

FEATURE

References and Further Reading:

[1] Trusted computer system evaluation criteria. Department of Defense Standard 5200.28-STD; Dec 1985

Available at: http://csrc.nist.gov/publications/history/dod85.pdf

[2] Common criteria for technology security evaluation, version 3.1.

 Part 1: Introduction and general model, Revision 1, Sep 2006

 Part 2: Security functional components, Revision 2, Sep 2007

 Part 3: Security assurance components, Revision 2, Sep 2007

Available at: http://www.niap-ccevs.org/cc-scheme/cc_docs/

[3] Specware 4.2 User Manual. Kestrel Institute; 2009. Available at: http://www.specware.org/doc.html

[4] Specware 4.2 Tutorial. Kestrel Institute; 2009. Available at: http://www.specware.org/doc.html

[5] Specware 4.2 Language Manual. Kestrel Institute; 2009.

Available at: http://www.specware.org/doc.html

[6] Specware to Isabelle Interface Manual. Kestrel Institute; 2009.

Available at: http://www.specware.org/doc.html

[7] Specware 4.2 Quick Reference. Kestrel Institute; 2009.

Available at: http://www.specware.org/doc.html

[8] Kestrel Institute (home page). Palo Alto (CA). Available at: http://www.kestrel.edu

[9] Isabelle generic proof assistant (home page). Cambridge University, UK; 20 Sep 2010

Available at: http://www.cl.cam.ac.uk/research/hvg/Isabelle/index.html

[10] Martin W, White P, Taylor FS, Goldberg A. Formal construction of the Mathematically Analyzed

Separation Kernel. In: Proceedings of the 15th IEEE International Conference on Automated Software

Engineering (ASE’00); Sep 2000; Grenoble, France. p. 133–141.

Available at: doi: 10.1109/ASE.2000.873658

[11] Anton J, Coglio A, McDonald J. Tokeneer. Kestrel Institute technical report; released at the 2006 High

Confidence Software and Systems Conference.

[12] Green C, Luckham D, Balzer R, Cheatham T, Rich C. Report on a knowledge-based software assistant.

Kestrel Institute; 15 Jun 1983. Technical report number: KES.U.83.2.

Available at: http://www.kestrel.edu/home/publications/

[13] AdaCore. The Tokeneer Project. Available at: http://www.adacore.com/home/products/sparkpro/

tokeneer/

[14] Barnes J, Chapman R, Johnson R, Widmaier J, Cooper D, Everett W. Engineering the Tokeneer enclave

protection software. In: Proceedings of the 1st International Symposium on Secure Software Engineering

(ISSSE); Mar 2006; Arlington (VA). Available at: http://www.altran-praxis.com/downloads/SPARK/

technicalReferences/issse2006tokeneer.pdf

[15] Escher Technologies Ltd. (home page). Aldershot, UK.

Available at: http://www.eschertech.com/index.php

The Next Wave Vol 19 No 1 2011 33

FEATURE

rapidly in both scale and functionality. A range of

analysis, state space exploration, constraint solving,
automated and interactive proof generation, and test
case generation are now available and in use. These

woven into the software development process.

agenda of experimental work. Tool construction
and experiments must be supported by novel
theoretical insights leading to accurate and tractable

and constraint solving are being used to model
physical and biological systems and to generate
plans, schedules, and optimizations. They are also

and viruses and to check hardware and software

malicious code.

software development can address a number
of challenges in software engineering. At the

modeling framework for describing discrete and
continuous behavior, time and resource constraints,
fault models, and security policies. These formal
models can be analyzed for anomalies and putative
properties, and also used for generating test cases.

be used to verify algorithms and architectures;
decompose the system into modules; establish the

software components; support semantic service
discovery and composition; and facilitate resilient
system operation in the face of device, platform,
or operator failure. During the implementation
phase, various integrated tools for synthesis and
analysis can be used to generate and optimize

interface properties; compose software modules;
schedule tasks on multicore processors; and even

repair system state through constraint solving.
Seamless integration between different tools is

test cases, counterexamples, conjectures, scenarios,
abstractions, and proofs. A formal integrated

can be used to construct an assurance case for

the assurance argument to be decomposed along the
lines of components and service layers, each with its
own reusable assurance case. Software is expected
to operate in a safe, secure, and predictable manner
in a world of physical uncertainty and virtual

will be needed to economically develop, validate,
and maintain software that is not only reliable, but
manifestly trustworthy.

34 Software for Dependable Systems: Sufficient Evidence?

Software for Dependable Systems:

Sufficient Evidence?

The Next Wave n Vol 19 No 1 n 2011 35

FEATURE

A system is dependable when it can
be depended on to produce the
consequences for which it was designed,
and no adverse effects, in its intended

foremost, that the term dependability has
no useful meaning for a given system
until these consequences and the intended
environment are made explicit by a
clear prioritization of the requirements
of the system and an articulation of
environmental assumptions. The effects of
software are felt in the physical, human,
and organizational environment in which
it operates, so dependability should be
understood in that context and cannot be
reduced easily to local properties, such as
resilience to crashing or conformance to
a protocol. Humans who interact with the
software should be viewed not as external
and beyond the boundary of the software
engineer’s concerns but as an integral part
of the system. Failures involving human
operators should not automatically be

assumed to be the result of errors of usage;

considered as well as the role of the human

operator. As a consequence, a systems

engineering approach— which views

the software as one engineered artifact

in a larger system of many components,

some engineered and some given, and the

pursuit of dependability as a balancing of

risks— is vital.

of software engineering suffers from

a pervasive lack of evidence about the

incidence and severity of software failures;

about the dependability of existing software

proposed development methods; about the

There are many anecdotal reports, which—

although often useful for indicating areas

of concern or highlighting promising

Note: The following article is the introduction to the National Academy of Science (NAS) report, Software for

H
ow can software and the systems that rely on it be made

dependable in a cost-effective manner, and how can one obtain

assurance that dependability has been achieved? Rather than

focusing narrowly on the question of software or system certification

per se, this report adopts a broader perspective.

36 Software for Dependable Systems: Sufficient Evidence?

avenues of research—do little to establish
a sound and complete basis for making
policy decisions regarding dependability.
Moreover, there is sometimes an implicit
assumption that adhering to particular
process strictures guarantees certain levels
of dependability. The committee [NAS

Software Systems] regards claims of
extraordinary dependability that are
sometimes made on this basis for the most
critical of systems as unsubstantiated,

regarding the lack of evidence for system
dependability leads to two conclusions,

recommendations below: (1) that better
evidence is needed, so that approaches
aimed at improving the dependability
of software can be objectively assessed,
and (2) that, for now, the pursuit of
dependability in software systems should
focus on the construction and evaluation
of evidence.

The committee thus subscribes to
the view that software is “guilty until
proven innocent,” and that the burden of
proof falls on the developer to convince

is dependable. This approach is not novel
and is becoming standard in the world
of systems safety, in which an explicit
safety case (and not merely adherence
to good practice) is usually required.
Similarly, a software system should be
regarded as dependable only if it has a
credible dependability case, the elements
of which are described below. Meeting
the burden of proof for dependability
will be challenging. The demand for
credible evidence will, in practice, make
it infeasible to develop highly dependable
systems in a cost-effective way without
some radical changes in priorities. If
very high dependability is to be achieved
at reasonable cost, the needs of the

dependability cas

aspects of the development, including the

choice of programming language and the

software architecture, and simplicity will

be key. For high levels of dependability,

the evidence provided by testing alone

augmented by analysis. The ability to

make independence arguments that allow

global properties to be inferred from

an analysis of a relatively small part of

the system will be essential. Rigorous

processes will be needed to ensure that

the chain of evidence for dependability

claims is preserved.

The committee also recognized

the importance of adopting the practices

that are already known and used by the

best developers; this summary gives a

sample of such practices in more detail

below. Some of these (such as systematic

regression testing) are relatively easy to

adopt; others (such as constructing hazard

analyses and threat models, exploiting

formal notations when appropriate, and

applying static analysis to code) will

require new training for many developers.

However valuable, though, these practices

are in themselves no silver bullet, and new

techniques and methods will be required

in order to build future software systems

to the level of dependability that will be

required.

Assessment

Society is increasingly dependent on

software. Software failures can cause or

contribute to serious accidents that result

accidents have already occurred, and,

without intervention, the increasingly

pervasive use of software—especially in

arenas such as transportation, health care,

and the broader infrastructure—may make

them more frequent and more serious. In

the future, more pervasive deployment of

software in the civic infrastructure could

lead to more catastrophic failures unless

improvements are made.

Software, according to a popular

view, fails because of bugs: errors in the

code that cause a program to fail to meet its

of failures can be attributed to bugs. As is

well known to software engineers, by far

the largest class of problems arises from

errors made in the eliciting, recording,

and analysis of requirements. A second

major class of problems arises from poor

human factors design. The two classes

are related; bad user interfaces usually

the user’s domain and the absence of a

coherent and well-articulated conceptual

model. Security vulnerabilities are

to some extent an exception to this

observation: The overwhelming majority

of security vulnerabilities reported in

The Next Wave n Vol 19 No 1 n 2011 37

FEATURE

software products—and exploited to

attack the users of such products—are at

the implementation level. The prevalence

of code-related problems, however, is

a direct consequence of higher-level

decisions to use programming languages,

design methods, and libraries that admit

these problems.

In systems where software failure

costs, it is crucial that software be

dependable—that it can be depended

upon to function as expected and to not

cause or contribute to adverse events in

the environment in which it operates.

Improvements in dependability would

allow such systems to be used more

software itself has great potential to bring

improvements in safety in many areas.

Complete and reliable data about

software-related system failures or

development approaches are hard to come

reporting of software-related system

failures is a serious problem that makes

costs of such failures and to measure

the effectiveness of proposed policies or

interventions.

This lack of evidence has two direct

consequences for this report. First, it has

informed the key recommendations in this

report regarding the need for evidence to be

at the core of dependable software system

development; for data collection efforts

to be established; and for transparency

and openness to be encouraged. Second,

it has tempered the committee’s desire

to provide prescriptive guidance: The

approach recommended is therefore

largely free of endorsements or criticisms

of particular development approaches,
tools, or techniques. Moreover, the report
leaves to the developers and procurers of
individual systems the question of what
level of dependability is appropriate, and
what costs are worth incurring to achieve it.

Nonetheless, the evidence available
to the committee did support several
qualitative conclusions. First, developing
software to meet even existing

costly. Large software projects fail at a
high rate, and the cost of projects that do
succeed in delivering highly dependable
software is often exorbitant. Second,
the quality of software produced by the
industry is extremely variable, and there
is inadequate oversight in some critical

consensus standards have a mixed record.
Some are largely ineffective, and some
are counterproductive. They share a
heavy reliance on testing, which cannot

levels of dependability required in many
critical applications.

of an organization in which software is
produced can have a dramatic effect on
its quality and dependability. It seems
likely that the excellent record of avionics
software is due in large part to a safety
culture in that industry that encourages
meticulous attention to detail, high
aversion to risk, and realistic assessment
of software, staff, and process. Indeed,

as DO-178B, Software Considerations
in Airborne Systems and Equipment

culture that their strictures induce.

Toward certifiably
dependable software

The focus of this report is a set of
fundamental principles that underlie

software system dependability and

that suggest a different approach to

the development and assessment of

dependable software. Due to a lack of

any particular approach, a software

system may not be declared “dependable”

based on the method by which it

was constructed. Rather, it should be

dependable—only when adequate

evidence has been marshaled in support

of an argument for dependability that can

be independently assessed. The goal of

therefore be achieved by mandating

particular processes and approaches,

regardless of their effectiveness in certain

situations. Instead, software developers

should marshal evidence to justify an

explicit dependability claim that makes

clear which properties in the real world

the system is intended to establish. Such

evidence forms a dependability case,

and creating a dependability case is the

cornerstone of the committee’s approach

software systems.

Explicit claims, evidence,

and expertise

The committee’s proposed approach

can be summarized in “the three Es”—

explicit claims, evidence, and expertise:

 No system can be

“dependable” in all respects and under

all conditions. So to be useful, a claim

of dependability must be explicit. It

must articulate precisely the properties

the system is expected to exhibit and

the assumptions about the system’s

environment upon which the claim is

contingent. The claim should also indicate

explicitly the level of dependability

claimed, preferably in quantitative terms.

38 Software for Dependable Systems: Sufficient Evidence?

Dif ferent properties may be assured to
different levels of dependability.

For a system to be regarded
as dependable, concrete evidence
must be present that substantiates the
dependability claim. This evidence will
take the form of a dependability case
arguing that the required properties
follow from the combination of the
properties of the system itself (that is, the
implementation) and the environmental
assumptions. Because testing alone

properties, the case will typically combine
evidence from testing with evidence
from analysis. In addition, the case will
inevitably involve appeals to the process
by which the software was developed—
for example, to argue that the software

that was subjected to analysis or testing.

 Expertise—in software

development, in the domain under
consideration, and in the broader
systems context, among other things—is
necessary to achieve dependable systems.
Flexibility is an important advantage of
the proposed approach; in particular the
developer is not required to follow any
particular process or use any particular

allows experts freedom to employ new
techniques and to tailor the approach to
the system’s application and domain. But
the requirement to produce evidence is
highly demanding and likely to stretch
today’s best practices to their limit. It will
therefore be essential that developers are
familiar with best practices and deviate
from them only for good reason.

These prescriptions shape any
particular development approach only in
outline and give considerable freedom
to developers in their choice of methods,
languages, tools, and processes. This
approach is not, of course, a silver bullet.
There are no easy solutions to the problem
of developing dependable software, and
there will always be systems that cannot be
built to the required level of dependability
even using the latest methods. But, the
approach recommended is aimed at

today, and the committee believes it holds
promise for developing the systems that
will be needed in the future.

In the overall context of engineering,
the basic tenets of the proposed approach
are not controversial, so it may be a
surprise to some that the approach is
not already commonplace. Nor are the
elements of the approach novel; they have
been applied successfully for more than
a decade. Nevertheless, this approach
would require radical changes for most
software development organizations
and is likely to demand expertise that is
currently in short supply.

Systems engineering approach

Complementing “the three Es” are

several systems engineering ideas that

provide an essential foundation for the

building of dependable software systems:

with long experience in building complex

systems (for example, aerospace,

chemical, and nuclear engineering)

have developed approaches based on

“systems thinking.” These approaches

focus on properties of the system as a

whole and on the interactions among its

components, especially those interactions

(often neglected) between a component

being constructed and the components of

its environment. As software has come to

be deployed in—indeed has enabled—

increasingly complex systems, the system

aspect has come to dominate in questions

of software dependability.

Dependability is not an intrinsic

property of software. The committee

strongly endorses the perspective of

systems engineering, which views the

software as one engineered artifact in

a larger system of many components,

some engineered and some given, and

views the pursuit of dependability as

a balancing of costs and benefits and

a prioritization of risks. A software

component that may be dependable in

the context of one system might not be

dependable in the context of another.

the operators and users (and even

the developers and maintainers) of a

system—may also be viewed as system

components. If a system meets its

dependability criteria only if people act

in certain ways, then those people should

be regarded as part of the system, and an

estimate of the probability that they will

The Next Wave n Vol 19 No 1 n 2011 39

FEATURE

behave as required should be part of the

evidence for dependability.

of interest to the user of a system are
typically located in the physical world:
that a radiotherapy machine deliver a
certain dose, that a telephone transmit
a sound wave faithfully, that a printer
make appropriate ink marks on paper,
and so on. The software, on the other

properties at its interfaces, which usually
involve phenomena that are not of direct
interest to the user: that the radiotherapy
machine, telephone, or printer send or
receive certain signals at certain ports,
with the inputs related to the outputs
according to some rules. It is important,
therefore, to distinguish the requirements
of a software system, which represent
these properties in the physical world,

system, which characterizes
the behavior of the software
system at its interface with
the environment. When the
software system is itself only
one component of a larger
system, the other components
in the system (including
perhaps, as explained above,
the people who work with the system)
will be viewed as part of the environment.
The dependability properties of a software
system, therefore, should be expressed
as requirements, and the dependability
case should demonstrate how these
properties follow from the combination

assumptions.

Coping with complexity

The need for evidence of

producing such evidence for complex
systems have a straightforward but

profound implication. Any component
for which compelling evidence of
dependability has been amassed at
reasonable cost will likely be small by
the standards of most modern software

property, therefore, will have to be
assured by one, or at most a few, small
components. Sometimes it will not be
possible to separate concerns so cleanly,
and in that case, the dependability case
may be less credible or more expensive
to produce.

As a result, one key to achieving
dependability at reasonable cost is a
serious and sustained commitment to
simplicity, including simplicity of critical
functions and simplicity in system
interactions. This commitment is often
the mark of true expertise. An awareness
of the need for simplicity usually comes
only with bitter experience and the

humility gained from years of practice.
There is no alternative to simplicity.
Advances in technology or development
methods will not make simplicity
redundant; on the contrary, they will
give it greater leverage. To achieve high
levels of dependability in the foreseeable
future, striving for simplicity is likely to
be by far the most cost-effective of all
interventions. Simplicity is not easy or
cheap, but its rewards far outweigh its costs.

The most important form
of simplicity is that produced by
independence, in which particular
system-level properties are guaranteed by

individual components much smaller than

the system as a whole, which can preserve

these properties despite failures in the

rest of the system. Independence can be

established in the overall design of the

system, with the support of architectural

mechanisms. Its effect is to dramatically

reduce the cost of constructing a

dependability case for a property, since

only a relatively small part of the system

needs to be considered.

Appropriate simplicity and

independence cannot be accomplished

without addressing the challenges of

“interactive complexity” and “tight

coupling.” Both interactive complexity,

where components may interact in

unanticipated ways, and tight coupling,

wherein a single fault cannot be isolated

but brings about other faults that cascade

through the system, are correlated

with the likelihood of system failure.

Software-intensive systems tend to have

both attributes. Careful attention should

therefore be paid to the risks of interactive

complexity and tight coupling and the

advantages of modularity, isolation,

and redundancy. The interdependences

among components of critical software

systems should be analyzed to ensure that

there is no fault propagation path from

less critical components to more critical

components, that modes of failure are

well understood, and that failures are

localized to the greatest extent possible.

The reduction of interactive complexity

and tight coupling can contribute not

“Testing is indispensable,
and no software system can be regarded as dependable

40 Software for Dependable Systems: Sufficient Evidence?

only to the improvement of system
dependability but also to the development
of evidence and analysis in the service of
a dependability case.

Rigorous process and preserving

the chain of evidence

Generating a dependability case
after the fact, when a development is
largely complete, might be possible
in theory. But in practice, at least with
today’s technology, the costs of doing so
would be high, and it will be practical to
develop a dependability case only if the
system is built with its construction in
mind. Each step in developing the software
needs to preserve the chain of evidence on
which will be based the argument that the
resulting system is dependable.

At the start, the domain and
environmental assumptions and the
required properties of the system should
be made explicit; they should be expressed
unambiguously and in a form that permits
systematic analysis to ensure that there

the required properties. Each subsequent
stage of development should preserve
the evidence chain—that these properties
have been carried forward without being
corrupted—so each form in which the
requirements, design, or implementation
is expressed should support analysis
to permit checking that the required
properties have been preserved. What

dependability, but preserving the evidence
chain necessitates that the checks are
carried out in a disciplined way, following
a documented procedure, and leaving
auditable records.

The roles of testing, analysis,

and formal methods

Testing is indispensable, and no
software system can be regarded as
dependable if it has not been extensively

tested, even if its correctness has been
proven mathematically. Testing may

it exercises the system in its entirety,
whereas analysis must typically make
assumptions about the execution
platform, the external environment, and
operator responses, any of which may
turn out to be unwarranted. At the same
time, it is important to realize that testing

levels of dependability. It is erroneous
to believe that a rigorous development
process, in which testing and code review

schemes, for example, associate higher
safety integrity levels with more
burdensome process prescriptions and
imply that following the processes
recommended for the highest integrity
levels will ensure that the failure rate is
minuscule. In the absence of a carefully
constructed dependability case, such

Because testing alone will not be

the dependability claim will also
require evidence produced by analysis.
Moreover, because analysis links the
software artifacts directly to the claimed
properties, the analysis component of the
dependability case will usually contribute

for the highest levels of dependability. A
dependability case will generally require
many forms of analysis, including (1) the
validation of environmental assumptions,
use models, and fault models; (2) the
analysis of fault tolerance measures
against fault models; (3) schedulability
analysis for temporal behaviors; (4)
security analysis against attack models;

modules in aggregate achieve appropriate
system-level effects. These analyses will
sometimes involve informal argument
that is carefully reviewed; sometimes
mechanical inference (as performed, for

that memory is used in a consistent way
and that boundaries between modules are
respected); and, sometimes, formal proof.
Indeed, the dependability case for even
a relatively simple system will usually
require all of these kinds of analysis, and

coherent whole.

Traditional software development
methods rely on human inspection and

Formal methods also use testing, but
they employ notations and languages
that are amenable to rigorous analysis,
and they exploit mechanical tools
for reasoning about the properties of

about the practicality of formal methods.
Increasingly, however, there is evidence
that formal methods can yield systems
of very high dependability in a cost-
effective manner, at least for small- to
medium-sized critical systems. Although
formal methods are typically more
expensive to apply when only low levels
of dependability are required, the cost of
traditional methods rises rapidly with the
level of dependability and often becomes
prohibitive. When a highly dependable
system is required, therefore, a formal
approach may be the most cost effective.

Certification,
transparency,
and accountability

exist for software in particular application
domains. For example, the Federal

The Next Wave n Vol 19 No 1 n 2011 41

FEATURE

systems that include software, and this

customers who buy and use the aircraft;

the National Information Assurance

laboratories to assess security software

products for conformance to the Common

Criteria. Some large organizations have

their own regimes for certifying that

the software products they buy meet the

organization’s quality criteria, and many

software product manufacturers have

their own criteria that each version of

their product must pass before release.

regimes encompass the combination

of characteristics recommended in this

report—namely, explicit dependability

claims, evidence for those claims, and

a rigorous argument that demonstrates

establish the validity of the claims. To

establish that a system is dependable

will involve inspection and analysis of

the dependability claim and the evidence

offered in its support. Where the customer

for the system is not able to carry out that

work itself (for lack of time or lack of

expertise) it may need to involve a third

party whose judgment it can rely on to

be independent of commercial pressures

supplier at one extreme, to independent

all circumstances, so a suitable scheme

should be chosen for each circumstance.

Industry groups and professional societies

should consider developing model

domains, taking account of the detailed

recommendations in this report.

When choosing suppliers and

products, customers and users can make

informed judgments only if the claims

are credible. Such claims are unlikely to

be credible if the evidence underlying

them is not transparent. Economists have

established that if consumers cannot

reliably observe quality before they buy,

from providing higher quality than their

competitors, and overall quality can

decline. Sellers are concerned about

future sales, and “reputation effects”

compel them to strive to maintain a

minimum level of quality. If consumers

rely heavily on branding, though, it

enter the market, and quality innovations

spread more slowly.

Those claiming dependability for

their software should therefore make

available the details of their claims,

criteria, and evidence. To assess the

credibility of such details effectively, an

evaluator should be able to calibrate not

only the technical claims and evidence

but also the organization that produced

them, because the integrity of the

evidence chain is vital and cannot easily

be assessed without supporting data. This

suggests that in some cases data of a more

general nature should be made available,

personnel involved in the development;

the track record of the organization in

providing dependable software; and

the process by which the software was

developed. The willingness of a supplier

to provide such data, and the clarity and

integrity of the data that the supplier

provides, will be a strong indication of its

attitude to dependability.

Where there is a need to deploy

dependability claim, it should always be

explicit who is accountable for any failure

to achieve it. Such accountability can be

made explicit in the purchase contract,

or as part of a professional licensing

scheme, or in other ways. Since no single

solution will suit all the circumstances

systems are deployed, accountability

regimes should be tailored to particular

circumstances. At present, it is common

for software developers to disclaim,

so far as possible, all liability for

defects in their products, to a greater

extent than customers and society

expect from manufacturers in other

industries. Clearly, no software should

be considered dependable if it is supplied

with a disclaimer that withholds the

manufacturer’s commitment to provide a

warranty or other remedies for software

that fails to meet its dependability claims.

Determining the appropriate scale of

remedies, however, was beyond the scope

of this study and would require a careful

into account not only the legal issues but

also the state of software engineering,

the various submarkets for software,

the economic impact, and the effect on

innovation.

Key findings and
recommendations

of which is discussed in more detail in

Chapter 4. (The full report is available at:

http://www.nap.edu/catalog.php?record_

id=11923)

Findings

Improvements in software

development are needed to keep pace

with societal demands for software.

Avoidable software failures have already

42 Software for Dependable Systems: Sufficient Evidence?

been responsible for loss of life and for
major economic losses. The quality
of software produced by the industry
is extremely variable, and there is
inadequate oversight in several critical
areas. More pervasive deployment of
software in the civic infrastructure may
lead to catastrophic failures unless
improvements are made. Software has

to society, but it will not be possible to

critical applications—unless software
becomes more dependable.

More data is needed about
software failures and the efficacy of
development approaches. Assessment
of the state of the software industry, the
risks posed by software, and progress
made is currently hampered by the lack
of a coherent source of information about
software failures.

Recommendations to builders

and users of software

Make the most of effective
software development technologies
and formal methods. A variety of
modern technologies—in particular, safe
programming languages, static analysis
(analysis of software and source code
done without actually executing the
program), and formal methods— are

producing dependable software.

Follow proven principles for
software development. The committee’s
proposed approach also includes
adherence to the following principles:

 Here the
dependability of software is viewed not
in terms of intrinsic properties (such as
the incidence of bugs in the code) but
rather in terms of the system as a whole,
including interactions among people,
process, and technology.

 If dependability

is to be achieved at reasonable cost,

simplicity should become a key goal, and

developers and customers must be willing

to accept the compromises it entails.

Make a dependability case for a

given system and context: evidence,

explicitness, and expertise. A software

system should be regarded as dependable

articulated properties is presented to

substantiate the dependability claim.

This approach gives considerable leeway

to developers to use whatever practices

are best suited to the problem at hand.

In practice the challenges of developing

that developers will need considerable

expertise, and they will have to justify

any deviations from best practices.

Demand more transparency, so

that customers and users can make more

informed judgments about dependability.

Customers and users can make informed

judgments when choosing suppliers

and products only if the claims, criteria,

and evidence for dependability are

transparent.

Make use of but do not rely solely

on process and testing. Testing will be an

essential component of a dependability

because even the largest test suites

typically used will not exercise enough

paths to provide evidence that the software

process is essential for preserving the

chain of dependability evidence but is not

per se evidence of dependability.

and analysis of the dependability claim

and the evidence offered in its support.

Because testing and process alone are

require, in addition, evidence produced
by other modes of analysis. Security

beyond functional testing of the security
components of a system and assess the
effectiveness of measures the developer
took to prevent the introduction of
security vulnerabilities.

Include security considerations
in the dependability case. Security
vulnerabilities can undermine the case
made for dependability properties
by violating assumptions about how
components behave, about their
interactions, or about the expected
behavior of users. The dependability
case must therefore account explicitly
for security risks that might compromise
its other aspects. It is also important to

meaningful assurance of resistance to

or systems will fail. Such regimes can be

recommendations of this report, with an
emphasis on the role of the environment—
in particular, the assumptions made about
the potential actions of a hostile attacker
and the likelihood that new classes of
vulnerabilities will be discovered and
new attacks developed to exploit them.

Demand accountability and make it
explicit. Where there is a need to deploy

always be made explicit who or what is
accountable, professionally and legally,
for any failure to achieve the declared
dependability.

Recommendations to agencies
and organizations that support
software education and research

The committee was not constituted
or charged to recommend budget levels

The Next Wave n Vol 19 No 1 n 2011 43

FEATURE

or to assess trade-offs between software
dependability and other priorities.
However, it believes that the increasing
importance of software to society and
the extraordinary challenge currently
faced in producing software of adequate
dependability provide a strong rationale
for investment in education and research
initiatives.

dependability—and its fundamental
underpinnings—in the high school,
undergraduate, and graduate education of
software developers. Many practitioners
do not have an adequate appreciation of the
software dependability issues discussed
in this report, are not aware of the most
effective development practices available
today, or are not capable of applying them
appropriately. Wider implementation of
the committee’s recommended approach,
which goes beyond today’s state of
the practice, implies a need for further
education and training activities.

Federal agencies that support
information technology research and
development should give priority to basic
research to further software-enabled
system dependability, emphasizing a
systems perspective and evidence. In
keeping with this report’s approach, such
research should emphasize a systems
perspective and “the three Es” (explicit
claims, evidence, and expertise) and
should be informed by a systems view
that attaches more importance to those
advances that are likely to have an impact
in a world of large systems interacting
with other systems and operators in
a complex physical environment and
organizational context.

About the report

This report was authored by the
National Research Council’s (NRC)

Software Systems, convened under the
auspices of the NRC’s Computer Science
and Telecommunications Board. The
committee consisted of 13 experts from
industry and academia specializing in
diverse aspects of systems dependability
including software engineering, software
testing and evaluation, software
dependability, embedded systems,
human-computer interaction, systems
engineering, systems architecture,
accident theory, standards setting,
avionics, medicine, economics, security,
and regulatory policy. Committee chair

, a professor of Computer
Science at MIT; committee member
Martyn Thomas, visiting professor
of software engineering at Oxford
University; and Lynette Millett , senior

Discussions initiated by the

Systems Coordinating Group (HCSS
CG) of the National Science and
Technology Council’s Networking and
Information Technology Research and

with the NRC’s Computer Science and
Telecommunications Board resulted
in this study on the current state of

Funding for the study was obtained from
HCSS CG member agencies.

The Next Wave Vol 19 No 1 2011 45

FEATURE

The necessity of sustaining
software innovation

An initial question is whether
software is indeed a strategic building
material, worthy of special attention. This
question has been addressed periodically
by the Defense Science Board (DSB)
since 1985—a 2007 DSB report, for
example, stated that “in the Department
of Defense, the transformational effects

here broadly to include all forms of
computing and communications), joined
with a culture of information sharing,
called Net-Centricity, constitute a
powerful force multiplier. The DoD
has become increasingly dependent for
mission-critical functionality upon highly
interconnected, globally sourced IT of
dramatically varying quality, reliability,
and trustworthiness.”

Despite the strength of this statement,
every few years speculation surfaces
that perhaps software and information
technology may be approaching a plateau
of capability and performance and that
strategic attention to these technologies is
consequently not merited. The committee
emphasizes that this continues to be a
false and dangerous speculation—the
capability and the complexity of hardware
and software systems are both rising at an
accelerating rate, with no end in sight.

It is instructive, in this regard, to
consider the publication in 1958—more
than a half century ago—of the landmark

paper by John Backus describing the

the words “automatic programming.”
The point of this phrase, with respect
to Backus’s great accomplishment,
is that there was a much more direct
correspondence between his high-level
programming notation—the earliest

thinking than had been the case with
the early machine-level code. One can

enabled mathematicians to express
their thoughts directly to computers,
seemingly without the intervention of

indeed an extraordinary and historical
breakthrough. But we know that, in the
end, those mathematicians of 50 years
ago soon evolved into programmers—as
a direct consequence of their growing
ambitions for computing applications.

Just a few years after the Backus

processing applications, typesetting
applications, compilers for other
languages, and other applications whose
abstractions required some considerable
programming sophistication (and
representational gerrymandering) to be

data structures—arrays and numeric
values. Any program that manipulated
textual data, for example, needed to
encode the text characters, textual strings,
and any overarching paragraph and

document structure very explicitly into
numbers and arrays. A person reading
program text would see only numerical
and array operations because that was
the limit of what could be explicitly
expressed in the notation. This meant
that programmers needed to keep track,
in their heads or in documentation, of the
nature of this representational encoding.
It also meant that testers and evaluators
needed to assess programs through this
(hopefully) same layer of interpretation.

As languages have evolved

versions), these additional structures
can be much more directly expressed—
characters and strings, most obviously,
are intrinsic in nearly all modern
languages. It is interesting, however, that
the claim of “automatic programming”
continues to reappear from time to time
as major steps are made in improved
abstractions, for example related to
data manipulation (the so-called 4GLs).
These developments move us forward,
but ironically they do not actually get
us closer to “eliminating programmers”
or otherwise emerging at some plateau
of capability and near-commodity
status. Instead, new software-manifest
capabilities are constantly emerging—
for example, techniques for machine-
learning algorithms and highly parallel
data-intensive analytics—that continue
to demand considerable intellectual effort
on the part of programmers.

46 Critical Code: Software Producibility for Defense

The profound fact is that software
capability is bounded primarily by
our intellectual abilities—our human
capability both to create new abstractions
appropriate for application domains
and to manifest those abstractions in
languages, models, tools, and practices.
As our understanding advances, so can
our software capability advance with us.

As a consequence of this seeming

technological leadership in software is a

key driver of overall capability leadership

in systems—and that at the core of the
ability to achieve integration and maintain
mission agility is the ability of the DoD
to produce and evolve software. The
committee recommends that, to avoid
loss of leadership, the DoD take active

steps to become more fully engaged
in the innovative processes related to
software producibility. In particular,

the extraordinary pace of innovation we
are now witnessing, will not produce
software innovations in areas of defense

allow the DoD to fully meet its software-
related requirements and remain ahead of
potential adversaries.

A loss of leadership could threaten
the ability of the DoD to manifest
world-leading capability, and also to
achieve adequate levels of assurance
for the diversely sourced software it
intends to deploy. This is an important
part of the rationale for the committee
recommendation that the DoD reengage
directly in the innovation processes.

although the DoD relies fundamentally

on mainstream commercial and open
source components, supply chains, and
software ecosystems, it nonetheless has
special needs in its mission systems that
are driven by the growing role of software
in systems overall. The committee
recommends that the DoD regularly

of technological need where the DoD
has “leading demand” and where
accelerated progress is needed.

Three goals for software-
intensive development

where improvements in practice would

to develop, sustain, and assure software-
intensive systems of all kinds. Each of
these areas is the subject of a chapter in

the Critical Code report. (These three
areas of practice correspond to Chapters
2, 3, and 4. Chapter 1 of the report focuses
on the necessary role of DoD in software
innovation. Chapter 5 summarizes the
research agenda related to software
producibility.) The three areas of practice
are summarized below:

Practice improvement 1:

Process and measurement

Advances related to process and
measurement would facilitate broader
and more effective use of incremental
iterative development, particularly in
the arms-length contracting situations
common in DoD.

Incremental development practices

mitigation of engineering risks during
a systems development process.
Engineering risks pertain to the
consequences of particular choices to be

made within an engineering process—
the risks are high when the outcomes of
immediate project commitments are both

Engineering risks can relate to many
different kinds of engineering decisions—

attributes, functional characteristics, and
infrastructure choices.

When well managed, incremental
practices can enable innovative
engineering to be accomplished without a
necessarily consequent increase of overall
programmatic risk. (Programmatic risk
relates to the successful completion
of engineering projects with respect
to expectations and priorities for cost,
schedule, capability, quality, and other
attributes.) This is because incremental

practices enable engineering

and mitigated promptly.
Incremental practices are
enabled through the use
of diverse techniques such
as modeling, simulation,

prototyping, and other means for early
validation—coupled with extensions to
earned-value models that measure and
give credit for the accumulating body
of evidence in support of feasibility.
Incremental approaches include iterative
approaches, staged acquisition, evidence-
based systems engineering, and other
methods that explicitly acknowledge
engineering risk and its mitigation.

incremental and iterative methods are

for innovative, software-intensive
engineering in the DoD, and they can
be managed more effectively through
improvements in practices and supporting
tools. The committee recommends a
diverse set of improvements related
to advanced incremental development
practice, supporting tools, and earned-
value models.

“...to avoid loss of leadership,
the DoD [should] take active steps to become more fully engaged
in the innovative processes related to software producibility.”

The Next Wave Vol 19 No 1 2011 47

FEATUREFEATURE

Practice improvement 2:

Architecture

Advances related to architecture
practice would facilitate the early focus
on systems architecture that is essential
particularly for systems with demanding
requirements related to quality attributes,

Software architecture models the
structures of a system that comprises
software components, the externally
visible properties of those components,
and the relationships among the
components. Good architecture entails
a minimum of engineering commitment
that yields a maximum value. In particular,
architecture design is an engineering
activity that is separate, for example,

standards-related policy setting.

encapsulating areas where innovation
and change are anticipated. Architecture

diverse quality attributes, ranging from
availability and performance to security
and isolation. Additionally, architecture
embodies planning for the interlinking of
systems and for product line development,
enabling encapsulation of individual
innovative elements of a system.

therefore, it may be more effective to
consider architecture and quality attributes

to functionality. Because architecture
includes the earliest and, often, the
most important design decisions—those

to change later—early architectural
commitment (and validation) can
yield better project outcomes with less
programmatic risk.

complex systems with emphasis on

quality attributes, architecture decisions
may dominate functional capability

committee also notes that architecture
practice in many areas of industry is

The committee recommends that DoD
more aggressively assert architectural
leadership, with an early focus on
architecture being essential for systems
with innovative functionality or
demanding quality requirements.

Practice improvement 3:

Assurance and security

Advances related to assurance and
security would facilitate achievement of
mission assurance for systems at greater
degrees of scale and complexity, and
in the presence of rich supply chains
and architectural ecosystems that are
increasingly commonplace in modern
software engineering.

Assurance is a human judgment
regarding not just functionality, but
also diverse quality attributes related
to reliability, security, safety, and other

system characteristics. The weights
given the various attributes are typically
determined on the basis of models of
hazards associated with the operational
context, including potential threats. The
process of achieving software assurance,
regardless of sector, is generally recognized
to account for approximately half the total
development cost for major projects.

In addition to overall cost, DoD
faces several particular challenges for

length relationship between a contractor
development team and government

and share the information necessary to
making assurance judgments. This can
lead to approaches that overly focus on
post hoc acceptance evaluation, rather
than on the emerging practice of “building
in” evidence in support of an overall
assurance case. Second, modern systems
draw on components from diverse
sources. This implies that supply-chain

be contemplated, with “attack surfaces”
existing within an overall application,

48 Critical Code: Software Producibility for Defense

and not just at its perimeter. This has
the consequence that evaluative and
preventive approaches ideally must be
integrated throughout a complex supply
chain. A particular challenge is managing
opaque, or “black box,” components in a
system—this issue is addressed in the full
report. Third, the growing role of DoD

national assets, and in the safeguarding
of human lives creates a diminishing
tolerance for faulty assurance judgments.
Indeed, the Defense Science Board
notes that there are profound risks
associated with the increasing reliance
on modern software-intensive systems:
“this growing dependency is a source of
weakness exacerbated by the mounting
size, complexity, and interconnectedness

losing the lead in the ability to evaluate
software and to prevent attacks can confer
advantage to adversaries with respect
to both offense and defense. It can also
force us to overly “dumb down” systems,
restricting functionality or performance to
a level such that assurance judgments can
be more readily achieved.

The Defense Science Board found
in 2007 that “it is an essential requirement
that the United States maintain advanced
capability for ‘test and evaluation’ of IT
products. Reputation-based or trust-based
credentialing of software (‘provenance’)
needs to be augmented by direct, artifact-
focused means to support acceptance

challenge, due to the rapid advance of
software technology generally and also
the increasing pace by which potential
adversaries are advancing their capability.
This, coupled with the observations
above regarding software innovation, is
an important part of the rationale for the
committee recommendation that the DoD
actively and directly address its software
producibility needs.

In the full report, the committee
addressed a broad range of issues related
to software assurance, including evidence-
based approaches, evaluation practices,
and security-motivated challenges related

the presence of dynamism) and separation
(including isolation and sandboxing).

The committee notes that traditional
approaches based purely on testing and
inspection, no matter how extensive, are

software systems. It emphasizes that
evaluation practices that focus primarily
on post hoc acceptance evaluation are not

to justify useful assurance judgments.
That is, quality and security must be
built in, and not “tested in”—with the
consequence that evidence production in
support of assurance must be integrated
into software development.

is facilitated by advances in diverse aspects
of software engineering practice and
technology, including modeling, analysis,
tools and environments, traceability

programming languages, and process

after many years of slow progress,
recent advances have enabled more
rapid improvement in assurance-related
techniques and tools. This is already
evident in the most advanced commercial
development practice. The committee

assurance-related evidence with ongoing
development has high potential to
improve the overall assurance of systems.
The committee recommends enhancing
incentives for preventive software
assurance practices and production of
assurance-related evidence throughout
the software lifecycle and through
the software supply chain. This
includes both contractor and in-house
development efforts.

The challenge of DoD
software expertise

The committee also took up
the issue of software expertise that is

The committee found that DoD has a
growing need for software expertise,

The Next Wave Vol 19 No 1 2011 49

FEATUREFEATURE

but that it is not able to meet this need
through intrinsic resources. This need
is essential for the DoD to be a smart
software customer and program manager,
particularly for larger-scale innovative
software-intensive projects. In particular,
access to DoD-aligned expertise is
important for the DoD to be able to take
effective action in the three areas of

to DoD-aligned expertise has been an
area of ongoing challenge to the DoD,
with recommendations made by various
panels and committees since the 1980s.

The need to reinvigorate
DoD software engineering
research

In addition to recommending
improvements to the three areas of
practice, as outlined above, the committee

research for consideration by science
and technology program managers
(managing 6.1, 6.2, and 6.3a funds and

the basis of four criteria: (1) Advances

DoD software producibility. (2) A well-
managed research program would result
in feasible progress. (3) The goals are not

agencies. (4) The pace of development
in industry or research labs would be

In each of the seven areas, the

research and technology development
that, in its judgment, could feasibly meet
the four criteria. The areas and, for each,

below. (Details are in the full report.)

1. Architecture modeling and
architectural analysis. Goals include:
(1) Early validation for architecture
decisions; (2) Architecture-aware systems
management, including: Rich supply
chains, ecosystems, and infrastructure;

(3) Component-based development,
including architectural designs for
particular domains

of design and code. Goals include:
(1) Effective evaluation for critical quality
attributes; (2) Components in large
heterogeneous systems; (3) Preventive
methods to achieve assurance, including
process improvement, architectural
building blocks, programming languages,
coding practice, etc.

3. Process support and economic
models for assurance. Goals include:
(1) Enhanced process support for assured
software development, (2) Models for
evidence production in software supply
chains, (3) Application of economic
principles to process decision-making

4. Requirements. Goals include:
(1) Expressive models, supporting tools
for functional and quality attributes;
(2) Improved support for traceability and
early validation

5. Language, modeling, coding, and
tools. Goals include: (1) Expressive
programming languages for emerging
challenges, (2) Exploit modern
concurrency: shared-memory and scalable
distributed, (3) Developer productivity
for new development and evolution

6. Cyber-physical systems. Goals
include: (1) New conventional
architectures for control systems,
(2) Improved architectures for embedded
applications

7. Human-system interaction. Goals
include: (1) Engineering practices for
systems in which humans play critical
roles. (This area is elaborated in a
separate NRC report.)

Science and Technology Policy (OSTP)
and the National Science and Technology
Council (NSTC), there is a National

and Information Technology Research

and Development (NITRD) program. The
NITRD program provides a framework
for diverse federal agencies to coordinate
R&D in areas related to networking and
information technology. The framework
includes two areas that primarily relate to
software producibility, which are Software
Design and Productivity (SDP) and

(HCSS). There is also a third area, Cyber
Security and Information Assurance
(CSIA) that encompasses some activities
related to software producibility.

The committee undertook a
longitudinal study of sponsored R&D

It found that while NITRD overall has
grown over the past decade, there has

overall and DoD-sponsored R&D in SDP
and HCSS. The committee recommends
that DoD take immediate action to
reinvigorate its investment in software
producibility research, with focus in

The Next Wave Vol 19 No 1 2011 51

FEATURE

networking, control, human interaction,
learning theory, as well as electrical,
mechanical, chemical, biomedical, nano-
bioengineering, and other engineering
disciplines) to develop a “new CPS
science.”

Impact/need for the CPS
initiative

A new foundation is required for
future CPS. The existing science and
engineering base does not support the
routine, efficient, and robust design
and development of these inherently
complex systems. Such complex systems
must possess trustworthy qualities that
are lacking in much of today’s cyber
infrastructures. Today we can produce
(at great cost and effort) exceptionally
complicated systems. We lack, however,
the scientific and engineering foundations
to securely, safely, and systematically
understand, build, manage, and adapt CPS
that remain reliable as they interact across
internal subsystems, with each other, with
human users, and with highly complex
and uncertain physical environments.

The design complexity of x-by-
wire for complex systems already is
outstripping safe engineering design and
implementation. Also, the opportunities
for mischief in this generation of
technology will make today’s Internet
security problems pale by comparison. The
consequence is inefficient, unsound, and
potentially dangerous design outcomes, as
well as tedious, costly, and failure-prone
design cycles. Certification is estimated
to consume 50 percent of the resources
required to develop new, safety-critical
systems in the aviation industry. Similar
estimates are predicted for the medical
and automotive domains. Over-design
currently is the only path to safety and
successful system certification, leading to
a mindset of optimizing for a narrow task
instead of encouraging adaptability and

evolvability. Yet, wide design margins
both limit performance and may vanish in
the face of changing usage patterns. This
lack of design discipline induces extreme
risk in technology-impoverished sectors
such as the electric power industry.

The objective of an initiative would
be to establish unified foundations and
technologies, and exemplars for rigorous
joint engineering of the cyber, physical,
and human aspects of systems. This
objective includes science and technology
for the engineering of cyber and physical
components that must be integrated to
constitute such systems. Additionally,
this objective includes the cyber-
physical characterization of complex
environments and human action, within
which such systems must operate and to
which they contribute. In contrast with
today’s artisanal approach, our objective
is to build foundations, tools, and highly
capable infrastructure for rigorous design
and engineering of 21st century systems
that are truly cyber-physical.

Today, CPS grand challenges are
being articulated in many sectors (for
example, net-zero energy buildings, a
smart grid, energy management systems
for petroleum-free energy, zero-fatality
and zero-crash highway and vehicle
systems, zero-prototype manufacturing,
and the wireless and highly automated
operating room of the future). These
heavily computation-, control-, and
communication-centric systems call for
a new, unified systems science and new
engineering technologies imagined by
the CPS initiative. In a keynote address
on the challenges of design automation
for emerging vehicle technologies,
Scott Staley, Chief Engineer, Hybrid &
Fuel Cell Technology Development for
Ford Motor Company argued the need
to abandon ad hoc experimental design
approaches and find more rigorous
methods, saying, “…incremental

modifications on the status quo will not

work!” Don Winter, Vice President for

Engineering and Information Technology,

Boeing Phantom Works, in a hearing

before the House Science Committee,

called for “a national strategy in which

long-term CPS technology needs are

addressed by combined government and

corporate investment.”

A focused initiative in CPS is

needed that would seek to maximize

human capability and well-being through

computationally enabled engineered and

physical systems. The goal would be to

usher in a new era of CPS for which we

have end-to-end science and engineering

principles. The extent to which such

advances are achieved will determine

(and can transform) the course of US

innovation; advancement of consumer

health, safety, and security; and gov-

ernment agency mission effectiveness.

W A T C H T H E V I D E O

KNOWINGMATTERS

You already know that intelligence is vital to

national security. But here’s something you

may not know.

The National Security Agency is the only

Intelligence Community agency that generates

intelligence from foreign signals and protects

U.S. systems from prying eyes.

If you have the professional skills or technical

expertise to support this important mission,

then explore NSA. At NSA you can experience

a variety of opportunities throughout your

career as you work on real-world challenges

with the latest technology. You’ll also be able

to maintain a good balance between work and

family life, as well as enjoy a collaborative

work environment with flexible hours.

You won’t find this kind of experience

anywhere else.

Make a critical difference

with what you know.

U.S. citizenship is required. NSA is an Equal Opportunity Employer. All applicants for employment are considered without regard to race, color, religion, sex, national origin, age, marital status, disability, sexual orientation, or status as a parent.

Excellent Career Opportunities in the Following Fields:

�� Computer/Electrical Engineering

�� Computer Science

�� Information Assurance

�� Mathematics

�� Foreign Language

�� Intelligence Analysis

�� Cryptanalysis

�� Signals Analysis

�� Business Management

�� Finance & Accounting
�� �Paid Internships,

Scholarships, and Co-op

 >> Plus other opportunities

W H E R E I N T E L L I G E N C E G O E S T O W O R K®

Get the free App for your

camera phone at gettag.mobi

and then launch the App and

aim it at this tag.
Search: NSACareers

CAREERS AT THE N ATIONAL S ECURITY A GENCY

iN52281

