
One Pass Real-Time Generational Mark-SweepGarbage CollectionJoe Armstrong and Robert VirdingComputer Science LaboratoryEllemtel Telecommunications Systems LaboratoriesBox 1505S-125 25 �ALVSJ�OSWEDENEmail: joe@erix.ericsson.se, rv@erix.ericsson.seAbstract. Traditionalmark-sweep garbage collection algorithms do notallow reclamation of data until the mark phase of the algorithm hasterminated.For the class of languages in which destructive operations are not al-lowed we can arrange that all pointers in the heap always point back-wards towards \older" data. In this paper we present a simple scheme forreclaiming data for such language classes with a single pass mark-sweepcollector.We also show how the simple scheme can be modi�ed so that the col-lection can be done in an incremental manner (making it suitable forreal-time collection). Following this we show how the collector can bemodi�ed for generational garbage collection, and �nally how the schemecan be used for a language with concurrent processes.1 IntroductionThe garbage collector described in this paper is one of the collectors used inthe implementation of the programming language Erlang [1]. Erlang is a single-assignment, eager functional language designed for programming real-time con-current fault-tolerant distributed systems. It has no destructive operations whichcan create forward pointers.Erlang is currently being used in commercial products where the applicationsrequire relatively large online data-bases. For this type of application it is criticalthat the garbage collection method used is su�ciently real-time and is able tohandle large amounts of data e�ciently. Real-time copying garbage collectorssuch as [3] are inappropriate in our problem domain since they entail the copyingof large amounts of static data, and make ine�cient use of the available memory.Note that in this paper we will not describe various garbage collections tech-niques and relative virtues except where they are directly relevant to our discus-sion. We refer interested readers to surveys like [12].

2 LaTEX style �le for Lecture Notes in Computer Science { documentation2 The Basic AlgorithmThis section describes the basic algorithm where all the objects on the heap areof the same type. ? 6� ? SCAVHIGHLOW
Fig. 1. Heap organisation.Assume a heap organisation as in Figure 1. New objects are allocated at the\high" end of heap and all pointers in the heap point from high to low addresses.Assume that each cell in the heap has a mark bit which can be set toMARKED or CLEAR. New cells on the heap have their mark bit set to CLEAR.Assume also that cells in the heap which are pointed to by pointers in the rootset have their mark bit set to MARKED.To garbage collect such a structure we need single pointer SCAV. This scansthe heap in the direction of the dotted line in Figure 1. If it encounters aMARKED cell, then the cell is kept. If the marked cell contains a pointer thecell which is pointed to is marked. If it encounters a CLEAR cell then this cellcontains garbage.To illustrate this we start by showing how to garbage collect a conventionallist memory consisting of cons cells with car and cdr �elds.We assume the following functions are available:car(i) returns the car �eld of cell icdr(i) returns the cdr �eld of cell imarked(i) returns true if cell i is marked, otherwise falsetype(i) returns atomic if cell i contains an atomic value,otherwise cons if cell i contains a pointer to a cons celladdress(i) returns the address of a cell, this is only de�ned whentype(i) != atomicmark(i) sets the mark bit in cell iunmark(i) clears the mark bit in cell iIn Algorithm 1 we show the simple one pass mark algorithm which marks allaccessible cells on the heap. Before executing Algorithm 1 the routine mark_rootis called, it marks all the cells on the heap which are pointed to directly from

LaTEX style �le for Lecture Notes in Computer Science { documentation 3the root set { note that only the `top-level' cons cells pointed to by the root setare marked, cons cells which are pointed to by these cells are not marked, thesewill be dealt with later.SCAV = free - 1;while (SCAV > HEAP_MIN) {if (marked(SCAV)) {%% cell SCAV is marked-- so we keep itpossibly_mark(car(SCAV));possibly_mark(cdr(SCAV));unmark(SCAV)}SCAV = SCAV - 2;} Algorithm 1. Single pass marking.possibly_mark(x) checks �eld x to see if it contains a pointer and if sofollows the pointer and marks the indicated cell:possibly_mark(x){ if (type(x) != atomic) mark(address(x))}Note that this algorithm �nds all garbage in the heap in a single pass andthat garbage is detected as soon as the scavenger pointer reaches an unmarkedcell.In the algorithm presented so far the age of an object is de�ned by its address,the lower the address the greater the age. This means that it is impossible toreuse the unmarked cells found in Algorithm 1, the invariant that pointers alwayspoint backwards in time, that is towards lower addresses, would be broken.To be able to reclaim the unmarked cells we need a new method of keepingtrack of the relative ages of objects, to do so we introduce the idea of a historylist. The history list is a chain of all the cells connected in the chronologicalorder in which cells were allocated. In what follows we assume that cons cellsare represented as in Figure 2.CAR CDR HISTFig. 2. Cons cell structure.

4 LaTEX style �le for Lecture Notes in Computer Science { documentationThe car and cdr �elds contain conventional tagged pointers. The hist �eldstores a pointer to the last previously allocated cons cell.Two additional pointers first and current point to the �rst allocated celland the last allocated cell respectively.The chain of pointers in the hist cells we call the history list. It representsthe historic order in which the list cells were allocated.SCAV = current;while (SCAV != first) {SCAV = hist(SCAV);} Algorithm 2. Traverse all cells.The pseudo code in shown Algorithm 2 traverses all cells in the system.Where we assume that the function hist(i) returns the address of the last cellallocated before cell i was allocated.We can now modify Algorithm 1 to develop a one pass mark and sweepgarbage collection algorithm. We assume, as before, that cons cells in the heapare unmarked prior to calling Algorithm 3.last = current;SCAV = hist(last);while (SCAV != first) {if (marked(SCAV)) {possibly_mark(car(SCAV));possibly_mark(cdr(SCAV));unmark(SCAV);last = SCAVSCAV = hist(last);} else {%% Free cell SCAV, and re-link the%% adjacent cells in the history listtmp = SCAV;SCAV = hist(SCAV);set_history(last, SCAV);free_cons(tmp);};} Algorithm 3. One pass concurrent mark and sweep.Algorithm 3 is very similar to Algorithm 1, the di�erences are that the vari-able SCAV now traverses the history list and that cells which the collector dis-covers to be unused are freed. The routine free_cons(i) frees the cons cell i

LaTEX style �le for Lecture Notes in Computer Science { documentation 5for reuse and the routine set_history(i, j) is assumed to set the value of thehist �eld of cell i to the cell address j.When freeing a cons cell we must also be careful to correctly adjust thehistory list by bridging over the 'gap' left by the cell which was returned to thefree list.This pointer manipulation can be seen in Figure 3 where we assume thatfree_cons(i) adds cell i to a free list of cons cells with head Free. The freelist is assumed to be linked through the hist cell of the cons cells.-6?? 6 6 -66 -?6
FreeSCAV lastBefore removing the cell "SCAV"SCAV lastAfter removing the cell.FreeFig. 3. Freeing a cell.Algorithm 3 only works if we can ensure that all pointers in an object pointto objects which are \older" than the current object.This algorithm avoids all the problems of marking deep data structures, eitherby recursive algorithms or more complex but
at pointer reversal techniques[7]. As the ages of objects are determined by their position in the history list,however, it can be very di�cult to test the relative age of two objects.3 Extensions to the Basic AlgorithmWe now show some extensions to the basic algorithm which make it practical touse, also show how it can be extended to be su�ciently real-time to be usefulwhen implementing Erlang.

6 LaTEX style �le for Lecture Notes in Computer Science { documentation3.1 Multiple Object-types on the HeapExtending the basic algorithm to handle di�erent types of objects is very simple.For each object in the history list we need to be able to determine how manypointers it contains to other objects in the list. This can be done by eitherknowing its type or by storing in the object information about where pointersto other objects can be found.Knowing the type is probably easier to handle and is useful for other things.Whether we obtain the type through type information stored in the object orthrough typed pointers is irrelevant for the algorithm.Once the basic history list has been extended to allow objects of di�erenttypes we can keep all objects in the history list and extend the collection toobjects of di�erent types.Note that we make no assumptions as to how the di�erent types of objects aremanaged.We are free to use free lists, single or multiple, or any other mechanismssuch as BIBOP (Big Bag Of Pages) [8] or Ungar's large object area [10]. We alsonote that as the freeing of objects is explicit then it is easy to add �nalisationof objects where necessary.3.2 Incremental CollectionAlgorithm 3 can easily be made incremental by limiting the number of iterationsin the inner while loop:start_gc(){ mark_root();last = current;SCAV = list(last);}resume_gc(){ i = 0;while(SCAV != first && i++ < MAX){%% same body of the while loop as in Algorithm 3}}Algorithm 4. One pass incremental concurrent mark and sweep.By setting MAX to some suitable limit resume_gc() will execute in boundedtime. Interleaving resume_gc() with the mutator provides a suitably interactivegarbage collection that would be su�cient for most soft real-time systems.For hard real-time systems this simple test may not be precise enough inlimiting the time spent in sweeping. In such cases it would be easy to count

LaTEX style �le for Lecture Notes in Computer Science { documentation 7the number of objects inspected, objects marked, and objects freed to determinemore precisely how long time to sweep. It can also be seen that there is nodi�culty in \turning o�" the collector for really time critical sections.3.3 Generational Mark-SweepGenerational garbage collection is based on the supposition that most objectsonly live a very short time while a small portion live much longer [6]. By tryingto reclaim newly allocated objects more often than old objects it is expectedthat the collector will work more e�ciently. For the history list collector thismeans that we will sweep the beginning of the list (the new objects) more oftenthan the end of the list (the old objects).Algorithm 4 can be modi�ed so as to only scavenge the most recent data. Allwe have to do is abort the scavenge when SCAV reaches some pre-de�ned limitas is shown in Algorithm 5.start_gc(){mark_root();last = current;SCAV = hist(last);}resume_gc(){i = 0;while(now != LIMIT && i++ < MAX){%% same body of the while loop as in Algorithm 3}}Algorithm 5. One pass \generational" and incremental concurrent mark and sweep.Here we have set the limit at a certain object but it is trivial to modify thealgorithm to stop at some other point, for example after a certain number ofobjects have been swept or a percentage of the total number of objects. In factthe sweeper can be aborted at any time.Note that when we abort the scavenge loop certain cells below the pointwhere we aborted the search may have been marked. On a later pass of thegarbage collector these cells may be retained even through they are no longerreachable from the root set. Such cells can however be collected by allowing thegarbage collector to make a complete cycle though memory without prematurelyaborting the collection.We can choose di�erent methods for collecting the older regions. The sim-plest is to occasionally continue and sweep the whole heap. This can be done instages - more and more seldom we sweep deeper and deeper into the heap. This

8 LaTEX style �le for Lecture Notes in Computer Science { documentationcorresponds to traditional generational algorithms where older generations arecollected more and more seldom, but always after all younger generations havebeen collected. We, however, do this interactively.Another, more sophisticated, method is to run multiple \sweepers" concur-rently with one another. We can do this as follows: when the �rst sweeper reachesits limit we do not stop there but let it continue. At the same time we start anew sweeper at the head of the history list. The two sweepers then sweep con-currently, the one sweeping the older data more slowly, this in keeping with thebasic principle that older data lives longer and dies more seldom. When theyounger sweeper reaches the limit it stops and is restarted at the head of thelist to collect new objects. When the older sweeper reaches the end of the list itis removed and the next time the younger sweeper reaches the limit it is splitagain.Note that we can have more than two generations by having more limits andsplitting the sweepers when they reach a limit.3.4 Forward PointersSo far we have only considered the case where the heap is strictly ordered by age.While this is true for data created by applications in the types of languages weare considering, their implementation may create forward pointers by destructiveassignments of internal data structures, for example in the G-machine [2, 5]. Wenow show how it is possible to modify the basic algorithm to handle forwardpointers if they occur in a restricted and controlled way.A simple way to implement forward pointers is to make all destructive assign-ments pass through one level of indirection. We can then keep all these referencesin a separate list and use them as part of the root set when marking objects. Thisensures that all referenced objects will be marked, even those reached throughforward pointers. When the heap is swept we mark all live references and latersweep the reference list freeing all unmarked references.There are two main problems with this approach:1. We cannot recover circular data structures. As we use the reference list aspart of the root set and mark all referenced objects then a circular referencewill force the reference to be marked, even if there are no external referencesto this data structure.2. It is very di�cult to dereference references, that is bypass the references andmake objects point directly to each other. It is very di�cult to determinethe relative ages of objects so we cannot dereference a reference even to anolder object.An alternative to using indirect references would be to keep a log of alldestructive assignments. We would log both the object which contains the as-signment and the object being assigned. This method would be more di�cult tomanage than using references.

LaTEX style �le for Lecture Notes in Computer Science { documentation 94 DiscussionThe garbage collection scheme presented in this paper is a specialisation of thestandard non-compacting mark-sweep scheme. As such it shares most of theadvantages and disadvantages of the standard scheme. It, however, has someadditional advantages:1. Simplicity. The algorithm is much simpler and avoids some of the problemsof the traditional mark-sweep, for example the problem of recursive marking.2. Ease of Extension. It is much easier to extend the algorithm to handle real-time and generational systems.3. Objects can be reused faster as they are reclaimed in one pass.The ideas embodied in Algorithm 1 are similar to those using genetic ordering[4, 9]. Our scheme di�ers in the way we preserve order when collecting objects,genetic ordering algorithms shift the data whereas we use an additional history�eld to maintain the ordering.5 Conclusions and Future WorkThis paper has presented a garbage collection scheme which is suitable for alanguage with non-destructive semantics.We have shown how the basic algorithm can be extended to handle bothreal-time requirements and generational collection.One research �eld currently being investigated with Erlang is large real-timedistributed databases. Real-time copying collectors are very bad at handlinglarge amounts of data [11] so an alternative collector is needed. As Erlang isa non-destructive language then this type of mark-sweep collector has distinctadvantages. Whether the lack of compaction leads to an unacceptable amountof fragmentation is something which must be investigated.Work is at present going on in implementing Erlang with a garbage collectorbased on the principles presented in this paper. While not yet complete the initialresults seem promising. Future work will look at the possibility of combining anallocator of this type with a copying collector in a generational scheme. Hopefullythis will combine the best aspects of both.References1. Joe Armstrong, Robert Virding, and Mike Williams. Concurrent Programming inERLANG. Prentice Hall, 1993.2. Lennart Augustsson. A compiler for lazy ML. In Conference Record of the 1984ACM Symposium on LISP and Functional Programming, pages 218{227, Austin,Texas, August 1984. ACM Press.3. Henry G. Baker, Jr. List processing in real time on a serial computer. Commu-nications of the ACM, 21(4):280{294, April 1978. Originally appeared as MITArti�cial Intelligence Laboratory Working Paper No. 39, February 1977.

10 LaTEX style �le for Lecture Notes in Computer Science { documentation4. David A. Fisher. Bounded workspace garbage collection in an address-order pre-serving list processing environment. Information Processing Letters, 3(1):29{32,July 1974.5. T. Johnsson. E�cient compilation of lazy evaluation. In M. Van Deusen, editor,Compiler construction: Proceedings of the ACM SIGPLAN '84 symposium (Mon-treal, Canada, June 17{22, 1984), ACM SIGPLAN Notices, vol. 19, no. 6, June,1984, pages 58{69, New York, NY, USA, 1984. ACM Press.6. Henry Lieberman and Carl Hewitt. A real-time garbage collector based on thelifetimes of objects. Communications of the ACM, 26(6):419{429, June 1983.7. H. Schorr and W. M. Waite. An e�cient machine-independent procedure forgarbage collection in various list structures. Communications of the ACM,10(8):501{506, 1967.8. Guy L. Steele Jr. Data representation in PDP-10 MACLISP. MIT AI Memo 421,Massachusetts Institute of Technology, 1977.9. Motoaki Terashima and Eiichi Goto. Genetic order and compactifying garbagecollectors. Information processing Letters, 7(1):27{32, January 1978.10. David Ungar and Frank Jackson. Tenuring policies for generation-based storagereclamation. In Proceedings OOPSLA '88, ACM SIGPLAN Notices, pages 1{17,November 1988. Published as Proceedings OOPSLA '88, ACM SIGPLAN Notices,volume 23, number 11.11. Robert Virding. A garbage collector for the real-time concurrent language Erlang.Submitted to IWMM95.12. Paul R. Wilson. Uniprocessor garbage collection techniques. In Yves Bekkers andJacques Cohen, editors, International Workshop on Memory Management, number637 in Lecture Notes in Computer Science, pages 1{42, St. Malo, France, September1992. Springer-Verlag.

This article was processed using the LaTEX macro package with LLNCS style

