
Using Swift with Cocoa and Objective-C

Contents

Getting Started 5

Basic Setup 6
Setting Up Your Swift Environment 6
Understanding the Swift Import Process 7

Interoperability 9

Interacting with Objective-C APIs 10
Initialization 10
Accessing Properties 11
Working with Methods 11
id Compatibility 12
Working with nil 14
Extensions 14
Closures 15
Object Comparison 16
Swift Type Compatibility 16
Objective-C Selectors 18

Writing Swift Classes with Objective-C Behavior 19
Inheriting from Objective-C Classes 19
Adopting Protocols 19
Writing Initializers and Deinitializers 20
Integrating with Interface Builder 20

Working with Outlets and Actions 20
Live Rendering 21

Specifying Property Attributes 22
Strong and Weak 22
Read/Write and Read-Only 22
Copy Semantics 22

Implementing Core Data Managed Object Subclasses 22

Working with Cocoa Data Types 24

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

2

Strings 24
Localization 25

Numbers 25
Collection Classes 26

Arrays 26
Dictionaries 27

Foundation Data Types 28
Foundation Functions 28
Core Foundation 29

Remapped Types 29
Memory Managed Objects 29
Unmanaged Objects 30

Adopting Cocoa Design Patterns 31
Delegation 31
Lazy Initialization 32
Error Reporting 32
Key-Value Observing 33
Target-Action 33
Introspection 33

Interacting with C APIs 35
Primitive Types 35
Enumerations 36
Pointers 37

C Mutable Pointers 38
C Constant Pointers 39
AutoreleasingUnsafePointer 40

Global Constants 41
Preprocessor Directives 41

Simple Macros 41
Complex Macros 41
Build Configurations 42

Mix and Match 44

Swift and Objective-C in the Same Project 45
Mix and Match Overview 45
Importing Code from Within the Same App Target 46

Importing Objective-C into Swift 46

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

3

Contents

Importing Swift into Objective-C 47
Importing Code from Within the Same Framework Target 48

Importing Objective-C into Swift 48
Importing Swift into Objective-C 48

Importing External Frameworks 49
Using Swift from Objective-C 49
Naming Your Product Module 51
Troubleshooting Tips and Reminders 51

Migration 52

Migrating Your Objective-C Code to Swift 53
Preparing Your Objective-C Code for Migration 53
The Migration Process 53

Before You Start 53
As You Work 54
After You Finish 55

Troubleshooting Tips and Reminders 55

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

4

Contents

Important: This is a preliminary document for an API or technology in development. Apple is supplying
this information to help you plan for the adoption of the technologies and programming interfaces described
herein for use on Apple-branded products. This information is subject to change, and software implemented
according to this document should be tested with final operating system software and final documentation.
Newer versions of this document may be provided with future betas of the API or technology.

 ● Basic Setup (page 6)

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

5

Getting Started

Swift is designed to provide seamless compatibility with Cocoa and Objective-C. You can use Objective-C APIs
(ranging from system frameworks to your own custom code) in Swift, and you can use Swift APIs in Objective-C.
This compatibility makes Swift an easy, convenient, and powerful tool to integrate into your Cocoa app
development workflow.

This guide covers three important aspects of this compatibility that you can use to your advantage when
developing Cocoa apps:

 ● Interoperability lets you interface between Swift and Objective-C code, allowing you to use Swift classes
in Objective-C and to take advantage of familiar Cocoa classes, patterns, and practices when writing Swift
code.

 ● Mix andmatch allows you to create mixed-language apps containing both Swift and Objective-C files that
can communicate with each other.

 ● Migration from existing Objective-C code to Swift is made easy with interoperability and mix and match,
making it possible to replace parts of your Objective-C apps with the latest Swift features.

Before you get started learning about these features, you need a basic understanding of how to set up a Swift
environment in which you can access Cocoa system frameworks.

Setting Up Your Swift Environment
To start experimenting with accessing Cocoa frameworks in Swift, create a Swift-based app from one of the
Xcode templates.

To create a Swift project in Xcode

1. Choose File > New > Project > (iOS or OS X) > Application > your template of choice .

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

6

Basic Setup

2. Click the Language pop-up menu and choose Swift.

A Swift project’s structure is nearly identical to an Objective-C project, with one important distinction: Swift
has no header files. There is no explicit delineation between the implementation and the interface, so all the
information about a particular class resides in a single .swift file.

From here, you can start experimenting by writing Swift code in the app delegate, or you can create a new
Swift class file by choosing File > New > File > (iOS or OS X) > Other > Swift.

Understanding the Swift Import Process
After you have your Xcode project set up, you can import any framework from the Cocoa platform to start
working with Objective-C from Swift.

Any Objective-C framework (or C library) that’s accessible as a module can be imported directly into Swift. This
includes all of the Objective-C system frameworks—such as Foundation, UIKit, and SpriteKit—as well as common
C libraries supplied with the system. For example, to import Foundation, simply add this import statement to
the top of the Swift file you’re working in:

import Foundation

This import makes all of the Foundation APIs—including NSDate, NSURL, NSMutableData, and all of their
methods, properties, and categories—directly available in Swift.

Basic Setup
Understanding the Swift Import Process

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

7

The import process is straightforward. Objective-C frameworks vend APIs in header files. In Swift, those header
files are compiled down to Objective-C modules, which are then imported into Swift as Swift APIs. The importing
determines how functions, classes, methods, and types declared in Objective-C code appear in Swift. For
functions and methods, this process affects the types of their arguments and return values. For types, the
process of importing can do the following things:

 ● Remap certain Objective-C types to their equivalents in Swift, like id to AnyObject

 ● Remap certain Objective-C core types to their alternatives in Swift, like NSString to String

 ● Remap certain Objective-C concepts to matching concepts in Swift, like pointers to optionals

In Interoperability (page 9), you’ll learn more about these mappings and about how to leverage them in your
Swift code.

The model for importing Swift into Objective-C is similar to the one used for importing Objective-C into Swift.
Swift vends its APIs—such as from a framework—as Swift modules. Alongside these Swift modules are generated
Objective-C headers. These headers vend the APIs that can be mapped back to Objective-C. Some Swift APIs
do not map back to Objective-C because they leverage language features that are not available in Objective-C.
For more information on using Swift in Objective-C, see Swift and Objective-C in the Same Project (page 45).

Note: You cannot import C++ code directly into Swift. Instead, create an Objective-C or C wrapper
for C++ code.

Basic Setup
Understanding the Swift Import Process

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

8

 ● Interacting with Objective-C APIs (page 10)

 ● Writing Swift Classes with Objective-C Behavior (page 19)

 ● Working with Cocoa Data Types (page 24)

 ● Adopting Cocoa Design Patterns (page 31)

 ● Interacting with C APIs (page 35)

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

9

Interoperability

Interoperability is the ability to interface between Swift and Objective-C in either direction, letting you access
and use pieces of code written in one language in a file of the other language. As you begin to integrate Swift
into your app development workflow, it’s a good idea to understand how you can leverage interoperability
to redefine, improve, and enhance the way you write Cocoa apps.

One important aspect of interoperability is that it lets you work with Objective-C APIs when writing Swift code.
After you import an Objective-C framework, you can instantiate classes from it and interact with them using
native Swift syntax.

Initialization
To instantiate an Objective-C class in Swift, you call one of its initializers with Swift syntax. When Objective-C
init methods come over to Swift, they take on native Swift initializer syntax. The “init” prefix gets sliced off
and becomes a keyword to indicate that the method is an initializer. For init methods that begin with
“initWith,“ the “With” also gets sliced off. The first letter of the selector piece that had “init” or “initWith” split
off from it becomes lowercase, and that selector piece is treated as the name of the first argument. The rest
of the selector pieces also correspond to argument names. Each selector piece goes inside the parentheses
and is required at the call site.

For example, where in Objective-C you would do this:

UITableView *myTableView = [[UITableView alloc] initWithFrame:CGRectZero
style:UITableViewStyleGrouped];

In Swift, you do this:

let myTableView: UITableView = UITableView(frame: CGRectZero, style: .Grouped)

You don’t need to call alloc; Swift correctly handles this for you. Notice that “init” doesn’t appear anywhere
when calling the Swift-style initializer.

You can be explicit in typing the object during initialization, or you can omit the type. Swift’s type inference
correctly determines the type of the object.

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

10

Interacting with Objective-C APIs

let myTextField = UITextField(frame: CGRect(x: 0.0, y: 0.0, width: 200.0, height:
40.0))

These UITableView and UITextField objects have the same familiar functionality that they have in
Objective-C. You can use them in the same way you would in Objective-C, accessing any properties and calling
any methods defined on the respective classes.

For consistency and simplicity, Objective-C factory methods get mapped as convenience initializers in Swift.
This mapping allows them to be used with the same concise, clear syntax as initializers. For example, whereas
in Objective-C you would call this factory method like this:

UIColor *color = [UIColor colorWithRed:0.5 green:0.0 blue:0.5 alpha:1.0];

In Swift, you call it like this:

let color = UIColor(red: 0.5, green: 0.0, blue: 0.5, alpha: 1.0)

Accessing Properties
Access and set properties on Objective-C objects in Swift using dot syntax.

myTextField.textColor = UIColor.darkGrayColor()

myTextField.text = "Hello world"

When getting or setting a property, use the name of the property without appending parentheses. Notice that
darkGrayColor has a set of parentheses. This is because darkGrayColor is a class method on UIColor,
not a property.

In Objective-C, a method that returns a value and takes no arguments can be treated as an implicit getter—and
be called using the same syntax as a getter for a property. This is not the case in Swift. In Swift, only properties
that are written using the @property syntax in Objective-C are imported as properties. Methods are imported
and called as described in Working with Methods (page 11).

Working with Methods
When calling Objective-C methods from Swift, use dot syntax.

Interacting with Objective-C APIs
Accessing Properties

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

11

When Objective-C methods come over to Swift, the first part of an Objective-C selector becomes the base
method name and appears outside the parentheses. The first argument appears immediately inside the
parentheses, without a name. The rest of the selector pieces correspond to argument names and go inside
the parentheses. All selector pieces are required at the call site.

For example, whereas in Objective-C you would do this:

[myTableView insertSubview:mySubview atIndex:2];

In Swift, you do this:

myTableView.insertSubview(mySubview, atIndex: 2)

If you’re calling a method with no arguments, you must still include the parentheses.

myTableView.layoutIfNeeded()

id Compatibility
Swift includes a protocol type named AnyObject that represents any kind of object, just as id does in
Objective-C. The AnyObject protocol allows you to write type-safe Swift code while maintaining the flexibility
of an untyped object. Because of the additional safety provided by the AnyObject protocol, Swift imports id
as AnyObject.

For example, as with id, you can assign an object of any class type to a constant or variable typed as AnyObject.
You can also reassign a variable to an object of a different type.

var myObject: AnyObject = UITableViewCell()

myObject = NSDate()

You can also call any Objective-C method and access any property without casting to a more specific class
type. This includes Objective-C compatible methods marked with the @objc attribute.

let futureDate = myObject.dateByAddingTimeInterval(10)

let timeSinceNow = myObject.timeIntervalSinceNow

Interacting with Objective-C APIs
id Compatibility

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

12

However, because the specific type of an object typed as AnyObject is not known until runtime, it is possible
to inadvertently write unsafe code. Additionally, in contrast with Objective-C, if you invoke a method or access
a property that does not exist on an AnyObject typed object, it is a runtime error. For example, the following
code compiles without complaint and then causes an unrecognized selector error at runtime:

myObject.characterAtIndex(5)

// crash, myObject doesn't respond to that method

However, you can take advantage of optionals in Swift to eliminate this common Objective-C error from your
code. When you call an Objective-C method on an AnyObject type object, the method call actually behaves
like an implicitly unwrapped optional. You can use the same optional chaining syntax you would use for
optional methods in protocols to optionally invoke a method on AnyObject. This same process applies to
properties as well.

For example, in the code listing below, the first and second lines are not executed because the count property
and the characterAtIndex: method do not exist on an NSDate object. The myLength constant is inferred
to be an optional Int, and is set to nil. You can also use an if–let statement to conditionally unwrap the
result of a method that the object may not respond to, as shown on line three.

let myCount = myObject.count?

let myChar = myObject.characterAtIndex?(5)

if let fifthCharacter = myObject.characterAtIndex(5) {

println("Found \(fifthCharacter) at index 5")

}

As with all downcasts in Swift, casting from AnyObject to a more specific object type is not guaranteed to
succeed and therefore returns an optional value. You can check that optional value to determine whether the
cast succeeded.

let userDefaults = NSUserDefaults.standardUserDefaults()

let lastRefreshDate: AnyObject? = userDefaults.objectForKey("LastRefreshDate")

if let date = lastRefreshDate as? NSDate {

println("\(date.timeIntervalSinceReferenceDate)")

}

Of course, if you are certain of the type of the object (and know that it is not nil), you can force the invocation
with the as operator.

Interacting with Objective-C APIs
id Compatibility

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

13

let myDate = lastRefreshDate as NSDate

let timeInterval = myDate.timeIntervalSinceReferenceDate

Working with nil
In Objective-C, you work with references to objects using raw pointers that could be NULL (also referred to as
nil in Objective-C). In Swift, all values—including structures and object references—are guaranteed to be
non–nil. Instead, you represent a value that could be missing by wrapping the type of the value in an optional
type. When you need to indicate that a value is missing, you use the value nil. For more information about
optionals, see Optionals in The Swift Programming Language .

Because Objective-C does not make any guarantees that an object is non–nil, Swift makes all classes in argument
types and return types optional in imported Objective-C APIs. Before you use an Objective-C object, you should
check to ensure that it is not missing.

In some cases, you might be absolutely certain that an Objective-C method or property never returns a nil
object reference. To make objects in this special scenario more convenient to work with, Swift imports object
types as implicitly unwrapped optionals . Implicitly unwrapped optional types include all of the safety features
of optional types. In addition, you can access the value directly without checking for nil or unwrapping it
yourself. When you access the value in this kind of optional type without safely unwrapping it first, the implicitly
unwrapped optional checks whether the value is missing. If the value is missing, a runtime error occurs. As a
result, you should always check and unwrap an implicitly unwrapped optional yourself, unless you are sure
that the value cannot be missing.

Extensions
A Swift extension is similar to an Objective-C category. Extensions expand the behavior of existing classes,
structures, and enumerations, including those defined in Objective-C. You can define an extension on a type
from either a system framework or one of your own custom types. Simply import the appropriate module, and
refer to the class, structure, or enumeration by the same name that you would use in Objective-C.

For example, you can extend the UIBezierPath class to create a simple Bézier path with an equilateral
triangle, based on a provided side length and starting point.

extension UIBezierPath {

convenience init(triangleSideLength: Float, origin: CGPoint) {

self.init()

Interacting with Objective-C APIs
Working with nil

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

14

let squareRoot = Float(sqrt(3.0))

let altitude = (squareRoot * triangleSideLength) / 2

moveToPoint(origin)

addLineToPoint(CGPoint(x: triangleSideLength, y: origin.x))

addLineToPoint(CGPoint(x: triangleSideLength / 2, y: altitude))

closePath()

}

}

You can use extensions to add properties (including class and static properties). However, these properties
must be computed; extensions can’t add stored properties to classes, structures, or enumerations.

This example extends the CGRect structure to contain a computed area property:

extension CGRect {

var area: CGFloat {

return width * height

}

}

let rect = CGRect(x: 0.0, y: 0.0, width: 10.0, height: 50.0)

let area = rect.area

// area: CGFloat = 500.0

You can also use extensions to add protocol conformance to a class without subclassing it. If the protocol is
defined in Swift, you can also add conformance to it to structures or enumerations, whether defined in Swift
or Objective-C.

You cannot use extensions to override existing methods or properties on Objective-C types.

Closures
Objective-C blocks are automatically imported as Swift closures. For example, here is an Objective-C block
variable:

void (^completionBlock)(NSData *, NSError *) = ^(NSData *data, NSError *error) {/*
... */}

Interacting with Objective-C APIs
Closures

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

15

And here’s what it looks like in Swift:

let completionBlock: (NSData, NSError) -> Void = {data, error in /* ... */}

Swift closures and Objective-C blocks are compatible, so you can pass Swift closures to Objective-C methods
that expect blocks. Swift closures and functions have the same type, so you can even pass the name of a Swift
function.

Closures have similar capture semantics as blocks but differ in one key way: Variables are mutable rather than
copied. In other words, the behavior of __block in Objective-C is the default behavior for variables in Swift.

Object Comparison
There are two distinct types of comparison when you compare two objects in Swift. The first, equality (==),
compares the contents of the objects. The second, identity (===), determines whether or not the constants or
variables refer to the same object instance.

Swift and Objective-C objects are typically compared in Swift using the == and === operators. Swift provides
a default implementation of the == operator for objects that derive from the NSObject class. In the
implementation of this operator, Swift invokes the isEqual: method defined on the NSObject class. The
NSObject class only performs an identity comparison, so you should implement your own isEqual:method
in classes that derive from the NSObject class. Because you can pass Swift objects (including ones not derived
from NSObject) to Objective-C APIs, you should implement the isEqual: method for these classes if you
want the Objective-C APIs to compare the contents of the objects rather than their identities.

As part of implementing equality for your class, be sure to implement the hash property according to the rules
in Object comparison. Further, if you want to use your class as keys in a dictionary, also conform to the Hashable
protocol and implement the hashValue property.

Swift Type Compatibility
When you define a Swift class that inherits from NSObject or any other Objective-C class, the class is
automatically compatible with Objective-C. All of the steps in this section have already been done for you by
the Swift compiler. If you never import a Swift class in Objective-C code, you don’t need to worry about type
compatibility in this case as well. Otherwise, if your Swift class does not derive from an Objective-C class and
you want to use it from Objective-C code, you can use the @objc attribute described below.

Interacting with Objective-C APIs
Object Comparison

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

16

The @objc attribute makes your Swift API available in Objective-C and the Objective-C runtime. In other words,
you can use the @objc attribute before any Swift method, property, or class that you want to use from
Objective-C code. If your class inherits from an Objective-C class, the compiler inserts the attribute for you. The
compiler also adds the attribute to every method and property in a class that is itself marked with the @objc
attribute. When you use the @IBOutlet, @IBAction, or @NSManaged attribute, the @objc attribute is added
as well. This attribute is also useful when you’re working with Objective-C classes that use selectors to implement
the target-action design pattern—for example, NSTimer or UIButton.

When you use a Swift API from Objective-C, the compiler typically performs a direct translation. For example,
the Swift API func playSong(name: String) is imported as - (void)playSong:(NSString *)name
in Objective-C. However, there is one exception: When you use a Swift initializer in Objective-C, the compiler
adds the text “initWith” to the beginning of the method and properly capitalizes the first character in the
original initializer. For example, this Swift initializer init (songName: String, artist: String) is
imported as - (instancetype)initWithSongName:(NSString *)songName artist:(NSString
*)artist in Objective-C.

Swift also provides a variant of the @objc attribute that allows you to specify name for your symbol in
Objective-C. For example, if the name of your Swift class contains a character that isn’t supported by Objective-C,
you can provide an alternative name to use in Objective-C. If you provide an Objective-C name for a Swift
function, use Objective-C selector syntax. Remember to add a colon (:) wherever a parameter follows a selector
piece.

@objc(Squirrel)

class Белка {

@objc(initWithName:)

init (имя: String) { /*...*/ }

@objc(hideNuts:inTree:)

func прячьОрехи(Int, вДереве: Дерево) { /*...*/ }

}

When you use the @objc(<#name#>) attribute on a Swift class, the class is made available in Objective-C
without any namespacing. As a result, this attribute can also be useful when you migrate an archivable
Objective-C class to Swift. Because archived objects store the name of their class in the archive, you should
use the @objc(<#name#>) attribute to specify the same name as your Objective-C class so that older archives
can be unarchived by your new Swift class.

Interacting with Objective-C APIs
Swift Type Compatibility

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

17

Objective-C Selectors
An Objective-C selector is a type that refers to the name of an Objective-C method. In Swift, Objective-C selectors
are represented by the Selector structure. You can construct a selector with a string literal, such as let
mySelector: Selector = "tappedButton:". Because string literals can be automatically converted to
selectors, you can pass a string literal to any method that accepts a selector.

import UIKit

class MyViewController: UIViewController {

let myButton = UIButton(frame: CGRect(x: 0, y: 0, width: 100, height: 50))

init(nibName nibNameOrNil: String?, bundle nibBundleOrNil: NSBundle?) {

super.init(nibName: nibNameOrNil, bundle: nibBundleOrNil)

myButton.addTarget(self, action: "tappedButton:", forControlEvents:
.TouchUpInside)

}

func tappedButton(sender: UIButton!) {

println("tapped button")

}

}

Note: The performSelector: method and related selector-invoking methods are not imported
in Swift because they are inherently unsafe.

If your Swift class inherits from an Objective-C class, all of the methods and properties in the class are available
as Objective-C selectors. Otherwise, if your Swift class does not inherit from an Objective-C class, you need to
prefix the symbol you want to use as a selector with the @objc attribute, as described in Swift Type
Compatibility (page 16).

Interacting with Objective-C APIs
Objective-C Selectors

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

18

Interoperability lets you define Swift classes that incorporate Objective-C behavior. You can subclass Objective-C
classes, adopt Objective-C protocols, and take advantage of other Objective-C functionality when writing a
Swift class. This means that you can create classes based on familiar, established behavior in Objective-C and
enhance them with Swift’s modern and powerful language features.

Inheriting from Objective-C Classes
In Swift, you can define subclasses of Objective-C classes. To create a Swift class that inherits from an Objective-C
class, add a colon (:) after the name of the Swift class, followed by the name of the Objective-C class.

import UIKit

class MySwiftViewController: UIViewController {

// define the class

}

You get all the functionality offered by the superclass in Objective-C. If you provide your own implementations
of the superclass’s methods, remember to use the override keyword.

Adopting Protocols
In Swift, you can adopt protocols that are defined in Objective-C. Like Swift protocols, any Objective-C protocols
go in a comma-separated list following the name of a class’s superclass, if any.

class MySwiftViewController: UIViewController, UITableViewDelegate,
UITableViewDataSource {

// define the class

}

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

19

Writing Swift Classes with Objective-C Behavior

Objective-C protocols come in as Swift protocols. If you want to refer to the UITableViewDelegate protocol
in Swift code, refer to it as UITableViewDelegate (as compared to id<UITableViewDelegate> in
Objective-C).

Because the namespace of classes and protocols is unified in Swift, the NSObject protocol in Objective-C is
remapped to NSObjectProtocol in Swift.

Writing Initializers and Deinitializers
The Swift compiler ensures that your initializers do not leave any properties in your class uninitialized to increase
the safety and predictability of your code. Additionally, unlike Objective-C, in Swift there is no separate memory
allocation method to invoke. You use native Swift initialization syntax even when you are working with
Objective-C classes—Swift converts Objective-C initialization methods to Swift initializers. You can read more
about implementing your own initializers in Initializers.

When you want to perform additional clean-up before your class is deallocated, you can implement a
deninitializer instead of the dealloc method. Swift deinitializers are called automatically, just before instance
deallocation happens. Swift automatically calls the superclass deinitializer after invoking your subclass’
deinitializer. When you are working with an Objective-C class or your Swift class inherits from an Objective-C
class, Swift calls your class’s superclass deallocmethod for you as well. You can read more about implementing
your own deinitializers in Deinitializers in The Swift Programming Language .

Integrating with Interface Builder
The Swift compiler includes attributes that enable Interface Builder features for your Swift classes. As in
Objective-C, you can use outlets, actions, and live rendering in Swift.

Working with Outlets and Actions
Outlets and actions allow you to connect your source code to user interface objects in Interface Builder. To
use outlets and actions in Swift, insert @IBOutlet or @IBAction just before the property or method declaration.
You use the same @IBOutlet attribute to declare an outlet collection—just specify an array for the type.

When you declare an outlet in Swift, the compiler automatically converts the type to a weak implicitly unwrapped
optional and assigns it an initial value of nil. In effect, the compiler replaces @IBOutlet var name: Type
with @IBOutlet weak var name: Type! = nil. The compiler converts the type to an implicitly unwrapped

Writing Swift Classes with Objective-C Behavior
Writing Initializers and Deinitializers

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

20

optional so that you aren’t required to assign a value in an initializer. It is implicitly unwrapped because after
your class is initialized from a storyboard or xib file, you can assume that the outlet has been connected.
Outlets are weak by default because the outlets you create usually have weak relationships.

For example, the following Swift code declares a class with an outlet, an outlet collection, and an action:

class MyViewController: UIViewController {

@IBOutlet var button: UIButton

@IBOutlet var textFields: [UITextField]

@IBAction func buttonTapped(AnyObject) {

println("button tapped!")

}

}

Because the sender parameter of the buttonTapped: method wasn’t used, the parameter name can be
omitted.

Live Rendering
You can use two different attributes—@IBDesignable and @IBInspectable—to enable live, interactive
custom view design in Interface Builder. When you create a custom view that inherits from UIView or NSView,
you can add the @IBDesignable attribute just before the class declaration. After you add the custom view
to Interface Builder (by setting the custom class of the view in the inspector pane), Interface Builder renders
your view in the canvas.

Note: Live rendering can be used only from imported frameworks.

You can also add the @IBInspectable attribute to properties with types compatible with user defined runtime
attributes. After you add your custom view to Interface Builder, you can edit these properties in the inspector.

@IBDesignable

class MyCustomView: UIView {

@IBInspectable var textColor: UIColor

@IBInspectable var iconHeight: CGFloat

/* ... */

}

Writing Swift Classes with Objective-C Behavior
Integrating with Interface Builder

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

21

Specifying Property Attributes
In Objective-C, properties have a range of potential attributes that specify additional information about a
property’s behavior. In Swift, you specify these property attributes in a different way.

Strong and Weak
Swift properties are strong by default. Use the weak keyword to indicate that a property has a weak reference
to the object stored as its value. This keyword can be used only for properties that are optional class types. For
more information, see Attributes.

Read/Write and Read-Only
In Swift, there are no readwrite and readonly attributes. When declaring a stored property, use let to
make it read-only, and use var to make it read/write. When declaring a computed property, provide a getter
only to make it read-only and provide both a getter and setter to make it read/write. For more information,
see Properties in The Swift Programming Language .

Copy Semantics
In Swift, the Objective-C copy property attribute translates to @NSCopying. The type of the property must
conform to theNSCopyingprotocol. For more information, see Attributes in The Swift Programming Language .

Implementing Core Data Managed Object Subclasses
Core Data provides the underlying storage and implementation of properties in subclasses of the
NSManagedObject class. Add the @NSManaged attribute before each property definition in your managed
object subclass that corresponds to an attribute or relationship in your Core Data model. Like the @dynamic
attribute in Objective-C, the @NSManaged attribute informs the Swift compiler that the storage and
implementation of a property will be provided at runtime. However, unlike @dynamic, the @NSManaged
attribute is available only for Core Data support.

Writing Swift Classes with Objective-C Behavior
Specifying Property Attributes

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

22

Swift classes are namespaced—they’re scoped to the module (typically, the project) they are compiled in. To
use a Swift subclass of the NSManagedObject class with your Core Data model, prefix the class name in the
Class field in the model entity inspector with the name of your module.

Writing Swift Classes with Objective-C Behavior
Implementing Core Data Managed Object Subclasses

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

23

As part of its interoperability with Objective-C, Swift offers convenient and efficient ways of working with Cocoa
data types.

Swift automatically converts some Objective-C types to Swift types, and some Swift types to Objective-C types.
There are also a number of data types in Swift and Objective-C that can be used interchangeably. Data types
that are convertible or can be used interchangeably are referred to as bridged data types. For example, in Swift
code, you can pass an Array value to a method expecting an NSArray object. You can also cast between a
bridged type and its counterpart. When you cast between bridged types with as—or by explicitly providing
the type of constant or variable—Swift bridges the data type.

Swift also provides a convenient overlay for interfacing with Foundation data types, letting you work with
them using a syntax that feels natural and unified with the rest of the Swift language.

Strings
Swift automatically bridges between the String type and the NSString class. This means that anywhere you
use an NSString object, you can use a Swift String type instead and gain the benefits of both types—the
String type’s interpolation and Swift-designed APIs and the NSString class’s broad functionality. For this
reason, you should almost never need to use the NSString class directly in your own code. In fact, when Swift
imports Objective-C APIs, it replaces all of the NSString types with String types. When your Objective-C
code uses a Swift class, the importer replaces all of the String types with NSString in imported API.

To enable string bridging, just import Foundation. For example, you can call capitalizedString—a method
on the NSString class—on a Swift string, and Swift automatically bridges the Swift String to an NSString
object and calls the method. The method even returns a Swift String type, because it was converted during
import.

import Foundation

let greeting = "hello, world!"

let capitalizedGreeting = greeting.capitalizedString

// capitalizedGreeting: String = Hello, World!

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

24

Working with Cocoa Data Types

If you do need to use an NSString object, you can convert it to a Swift String value by casting it. The String
type can always be converted from an NSString object to a Swift String value so there’s no need to use
the optional version of the type casting operator (as?). You can also create an NSString object from a string
literal by explicitly typing the constant or variable.

import Foundation

let myString: NSString = "123"

if let integerValue = (myString as String).toInt() {

println("\(myString) is the integer \(integerValue)")

}

Localization
In Objective-C, you typically used the NSLocalizedString family of macros to localize strings. This set of
macros includes NSLocalizedString, NSLocalizedStringFromTable,
NSLocalizedStringFromTableInBundle, and NSLocalizedStringWithDefaultValue. In Swift you
can use a single function that provides the same functionality as the entire set of NSLocalizedString
macros—NSLocalizedString(key:tableName:bundle:value:comment:). The NSLocalizedString
function provides default values for the tableName, bundle, and value arguments. Use it as you would use
the macro it replaces.

Numbers
Swift automatically bridges certain native number types, such as Int and Float, to NSNumber. This bridging
lets you create an NSNumber from one of these types:

let n = 42

let m: NSNumber = n

It also allows you to pass a value of type Int, for example, to an argument expecting an NSNumber. However,
note that because NSNumber can contain a variety of different types, you cannot pass it to something expecting
an Int value.

All of the following types are automatically bridged to NSNumber:

 ● Int

 ● UInt

 ● Float

Working with Cocoa Data Types
Numbers

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

25

 ● Double

 ● Bool

Collection Classes
Swift automatically bridges the NSArray and NSDictionary classes to their native Swift equivalents. This
means you can take advantage of Swift’s powerful algorithms and natural syntax for working with
collections—and use Foundation and Swift collection types interchangeably.

Arrays
Swift automatically bridges between the Array type and the NSArray class. When you bridge from an NSArray
object to a Swift array, the resulting array is of type [AnyObject]. An object is AnyObject compatible if it is
an instance of an Objective-C or Swift class, or if the object can be bridged to one. You can bridge any NSArray
object to a Swift array because all Objective-C objects are AnyObject compatible. Because all NSArray objects
can be bridged to Swift arrays, the Swift compiler replaces the NSArray class with [AnyObject] when it
imports Objective-C APIs.

After you bridge an NSArray object to a Swift array, you can also downcast the array to a more specific type.
Unlike casting from the NSArray class to the [AnyObject] type, downcasting from AnyObject to a more
specific type is not guaranteed to succeed. The compiler cannot know for certain until runtime that all of the
elements in the array can be downcasted to the type you specified. As a result, downcasting from [AnyObject]
to [SomeType] returns an optional value. For example, if you know that a Swift array contains only instances
of the UIView class (or a subclass of the UIView class), you can downcast the array of AnyObject type
elements to an array of UIView objects. If any element in the Swift array is not actually a UIView object at
runtime, the cast returns nil.

let swiftArray = foundationArray as [AnyObject]

if let downcastedSwiftArray = swiftArray as? [UIView] {

// downcastedSwiftArray contains only UIView objects

}

You can also downcast directly from an NSArray object to a Swift array of a specific type in a for loop:

for aView: UIView! in foundationArray {

// aView is of type UIView

}

Working with Cocoa Data Types
Collection Classes

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

26

Alternatively, you can place a downcast after the array you are iterating over—both of these styles are equivalent.

for aView in foundationArray as [UIView] {

// aView is of type UIView

}

Note: This cast is a forced cast, and will result in a runtime error if the cast does not succeed.

When you bridge from a Swift array to an NSArray object, the elements in the Swift array must be AnyObject
compatible. For example, a Swift array of type [Int] contains Int structure elements. The Int type is not an
instance of a class, but because the Int type bridges to the NSNumber class, the Int type is AnyObject
compatible. Therefore, you can bridge a Swift array of type [Int] to an NSArray object. If an element in a
Swift array is not AnyObject compatible, a runtime error occurs when you bridge to an NSArray object.

You can also create an NSArray object directly from a Swift array literal, following the same bridging rules
outlined above. When you explicitly type a constant or variable as an NSArray object and assign it an array
literal, Swift creates an NSArray object instead of a Swift array.

let schoolSupplies: NSArray = ["Pencil", "Eraser", "Notebook"]

// schoolSupplies is an NSArray object containing NSString objects

In the example above, the Swift array literal contains three String literals. Because the String type bridges
to the NSString class, the array literal is bridged to an NSArray object and the assignment to schoolSupplies
succeeds.

When you use a Swift class or protocol in Objective-C code, the importer replaces all Swift arrays of any type
in imported API with NSArray. If you pass an NSArray object to a Swift API that expects the elements to be
of a different type, a runtime error occurs. If a Swift API returns a Swift array that cannot be bridged to NSArray,
a runtime error occurs.

Dictionaries
In addition to arrays, Swift also automatically bridges between the Dictionary type and the NSDictionary
class. When you bridge from an NSDictionary object to a Swift dictionary, the resulting dictionary is of type
[NSObject: AnyObject]. You can bridge any NSDictionary object to a Swift dictionary because all
Objective-C objects are AnyObject compatible. Recall that an object is AnyObject compatible if it is an
instance of an Objective-C or Swift class, or if it can be bridged to one. All NSDictionary objects can be

Working with Cocoa Data Types
Collection Classes

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

27

bridged to Swift dictionaries, so the Swift compiler replaces the NSDictionary class with [NSObject:
AnyObject] when it imports Objective-C APIs. Likewise, when you use a Swift class or protocol in Objective-C
code, the importer remaps Objective-C compatible Swift dictionaries as NSDictionary objects.

After you bridge from an NSDictionary object to a Swift dictionary, you can also downcast the dictionary
to a more specific type. Just as with downcasting a Swift array, downcasting a Swift dictionary is not guaranteed
to succeed. The result of a downcast of [NSObject: AnyObject] to a more specific type is an optional value.

When you cast in the reverse direction—from a Swift dictionary to an NSDictionary object—the keys and
values must be instances of a class or bridgeable to an instance of a class.

You can also create an NSDictionary object directly from a Swift dictionary literal, following the same bridging
rules outlined above. When you explicitly type a constant or variable as an NSDictionary object and assign
it a dictionary literal, Swift creates an NSDictionary object instead of a Swift dictionary.

Foundation Data Types
Swift provides a convenient overlay for interfacing with data types defined in the Foundation framework. Use
this overlay to work with types like NSSize and NSPoint, using a syntax that feels natural and unified with
the rest of the Swift language. For example, you can create an NSSize structure using this syntax:

let size = NSSize(width: 20, height: 40)

The overlay also lets you call Foundation functions on structures in a natural way.

let rect = CGRect(x: 50, y: 50, width: 100, height: 100)

let width = rect.width // equivalent of CGRectGetWidth(rect)

let maxX = rect.maxY // equivalent of CGRectGetMaxY(rect)

Swift bridges NSUInteger and NSInteger to Int. Both of these types come over as Int in Foundation APIs.
Int is used for consistency whenever possible in Swift, but the UInt type is available if you require an unsigned
integer type.

Foundation Functions
NSLog is available in Swift for logging to the system console. You use the same formatting syntax you would
use in Objective-C.

Working with Cocoa Data Types
Foundation Data Types

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

28

NSLog("%.7f", pi) // Logs "3.1415927" to the console

However, Swift also has print functions like print and println available. These functions are simple, powerful,
and versatile due to Swift’s string interpolation. They don’t print to the system console but are available for
general printing needs.

NSAssert functions do not carry over to Swift. Instead, use the assert function.

Core Foundation
Core Foundation types are automatically imported as full-fledged Swift classes. Wherever memory management
annotations have been provided, Swift automatically manages the memory of Core Foundation objects,
including Core Foundation objects that you instantiate yourself. In Swift, you can use each pair of toll-free
bridged Foundation and Core Foundation types interchangeably. You can also bridge some toll-free bridged
Core Foundation types to Swift standard library types if you cast to a bridging Foundation type first.

Remapped Types
When Swift imports Core Foundation types, the compiler remaps the names of these types. The compiler
removes Ref from the end of each type name because all Swift classes are reference types, therefore the suffix
is redundant.

The Core Foundation CFTypeRef type completely remaps to the AnyObject type. Wherever you would use
CFTypeRef, you should now use AnyObject in your code.

Memory Managed Objects
Core Foundation objects returned from annotated APIs are automatically memory managed in Swift—you do
not need to invoke the CFRetain, CFRelease, or CFAutorelease functions yourself. If you return Core
Foundation objects from your own C functions and Objective-C methods, annotate them with either
CF_RETURNS_RETAINED or CF_RETURNS_NOT_RETAINED. The compiler automatically inserts memory
management calls when it compiles Swift code that invokes these APIs. If you use only annotated APIs that
do not indirectly return Core Foundation objects, you can skip the rest of this section. Otherwise, continue on
to learn about working with unmanaged Core Foundation objects.

Working with Cocoa Data Types
Core Foundation

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

29

Unmanaged Objects
When Swift imports APIs that have not been annotated, the compiler cannot automatically memory manage
the returned Core Foundation objects. Swift wraps these returned Core Foundation objects in an Unmanaged<T>
structure. All indirectly returned Core Foundation objects are unmanaged as well. For example, here’s an
unannotated C function:

CFStringRef StringByAddingTwoStrings(CFStringRef string1, CFStringRef string2)

And here’s how Swift imports it:

func StringByAddingTwoStrings(CFString!, CFString!) -> Unmanaged<CFString>!

When you receive an unmanaged object from an unannotated API, you should immediately convert it to a
memory managed object before you work with it. That way, Swift can handle memory management for you.
The Unmanaged<T> structure provides two methods to convert an unmanaged object to a memory managed
object—takeUnretainedValue() and takeRetainedValue(). Both of these methods return the original,
unwrapped type of the object. You choose which method to use based on whether the API you are invoking
returns an unretained or retained object.

For example, suppose the C function above does not retain the CFString object before returning it. To start
using the object, you use the takeUnretainedValue() function.

let memoryManagedResult = StringByAddingTwoStrings(str1, str2).takeUnretainedValue()

// memoryManagedResult is a memory managed CFString

You can also invoke the retain(), release(), and autorelease() methods on unmanaged objects, but
this approach is not recommended.

Working with Cocoa Data Types
Core Foundation

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

30

One aid in writing well-designed, resilient apps is to use Cocoa’s established design patterns. Many of these
patterns rely on classes defined in Objective-C. Because of Swift’s interoperability with Objective-C, you can
take advantage of these common patterns in your Swift code. In many cases, you can use Swift language
features to extend or simplify existing Cocoa patterns, making them more powerful and easier to use.

Delegation
In both Swift and Objective-C, delegation is often expressed with a protocol that defines the interaction and
a conforming delegate property. In contrast with Objective-C, when you implement delegation in Swift, the
pattern stays the same but the implementation changes. Just as in Objective-C, before you send a message to
the delegate you check to see whether it’s nil—and if the method is optional, you check to see whether the
delegate responds to the selector. In Swift, these questions can be answered while maintaining type safety.
The code listing below illustrates the following process:

1. Check that myDelegate is not nil.

2. Check that myDelegate implements the method window:willUseFullScreenContentSize:.

3. If 1 and 2 hold true, invoke the method and assign the result of the method to the value named
fullScreenSize.

4. Print the return value of the method.

// @interface MyObject : NSObject

// @property (nonatomic, weak) id<NSWindowDelegate> delegate;

// @end

if let fullScreenSize = myDelegate?.window?(myWindow, willUseFullScreenContentSize:
mySize) {

println(NSStringFromSize(fullScreenSize))

}

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

31

Adopting Cocoa Design Patterns

Note: In a pure Swift app, type the delegate property as an optional NSWindowDelegate object
and assign it an initial value of nil.

Lazy Initialization
Information forthcoming. You can read more about lazy initialization in Lazy Stored Properties in The Swift
Programming Language .

Error Reporting
Error reporting in Swift follows the same pattern it does in Objective-C, with the added benefit of offering
optional return values. In the simplest case, you return a Bool value from the function to indicate whether or
not it succeeded. When you need to report the reason for the error, you can add to the function an NSError
out parameter of type NSErrorPointer. This type is roughly equivalent to Objective-C’s NSError **, with
additional memory safety and optional typing. You can use the prefix & operator to pass in a reference to an
optional NSError type as an NSErrorPointer object, as shown in the code listing below.

var writeError : NSError?

let written = myString.writeToFile(path, atomically: false,

encoding: NSUTF8StringEncoding,

error: &writeError)

if !written {

if let error = writeError {

println("write failure: \(error.localizedDescription)")

}

}

When you implement your own functions that need to configure an NSErrorPointer object, you set the
NSErrorPointer object’s memory property to an NSError object you create. Make sure you check that the
caller passed a non-nil NSErrorPointer object first:

func contentsForType(typeName: String!, error: NSErrorPointer) -> AnyObject! {

if cannotProduceContentsForType(typeName) {

if error {

Adopting Cocoa Design Patterns
Lazy Initialization

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

32

error.memory = NSError(domain: domain, code: code, userInfo: [:])

}

return nil

}

// ...

}

Key-Value Observing
Information forthcoming.

Target-Action
Target-action is a common Cocoa design pattern in which one object sends a message to another object when
a specific event occurs. The target-action model is fundamentally similar in Swift and Objective-C. In Swift, you
use the Selector type to refer to Objective-C selectors. For an example of using target-action in Swift code,
see Objective-C Selectors (page 18).

Introspection
In Objective-C, you use the isKindOfClass: method to check whether an object is of a certain class type,
and the conformsToProtocol: method to check whether an object conforms to a specified protocol. In
Swift, you accomplish this task by using the is operator to check for a type, or the as? operator to downcast
to that type.

You can check whether an instance is of a certain subclass type by using the is operator. The is operator
returns true if the instance is of that subclass type, and false if it is not.

if object is UIButton {

// object is of type UIButton

} else {

// object is not of type UIButton

}

Adopting Cocoa Design Patterns
Key-Value Observing

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

33

You can also try and downcast to the subclass type by using the as? operator. The as? operator returns an
optional value that can be bound to a constant using an if-let statement.

if let button = object as? UIButton {

// object is successfully cast to type UIButton and bound to button

} else {

// object could not be cast to type UIButton

}

For more information, see Type Casting in The Swift Programming Language .

Checking for and casting to a protocol follows exactly the same syntax as checking for and casting to a class.
Here is an example of using the as? operator to check for protocol conformance:

if let dataSource = object as? UITableViewDataSource {

// object conforms to UITableViewDataSource and is bound to dataSource

} else {

// object not conform to UITableViewDataSource

}

Note that after this cast, the dataSource constant is of type UITableViewDataSource, so you can only call
methods and access properties defined on the UITableViewDataSource protocol. You must cast it back to
another type to perform other operations.

For more information, see Protocols in The Swift Programming Language .

Adopting Cocoa Design Patterns
Introspection

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

34

As part of its interoperability with Objective-C, Swift maintains compatibility with a number of C language
types and features. Swift also provides a way of working with common C constructs and patterns, in case your
code requires it.

Primitive Types
Swift provides equivalents of C primitive integer types—for example, char, int, float, and double. However,
there is no implicit conversion between these types and core Swift integer types, such as Int. Therefore, use
these types if your code specifically requires them, but use Int wherever possible otherwise.

Swift TypeC Type

CBoolbool

CCharchar, signed char

CUnsignedCharunsigned char

CShortshort

CUnsignedShortunsigned short

CIntint

CUnsignedIntunsigned int

CLonglong

CUnsignedLongunsigned long

CLongLonglong long

CUnsignedLongLongunsigned long long

CWideCharwchar_t

CChar16char16_t

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

35

Interacting with C APIs

Swift TypeC Type

CChar32char32_t

CFloatfloat

CDoubledouble

Enumerations
Swift imports as a Swift enumeration any C-style enumeration marked with the NS_ENUM macro. This means
that the prefixes to enumeration value names are truncated when they are imported into Swift, whether they’re
defined in system frameworks or in custom code. For example, see this Objective-C enumeration:

typedef NS_ENUM(NSInteger, UITableViewCellStyle) {

UITableViewCellStyleDefault,

UITableViewCellStyleValue1,

UITableViewCellStyleValue2,

UITableViewCellStyleSubtitle

};

In Swift, it’s imported like this:

enum UITableViewCellStyle: Int {

case Default

case Value1

case Value2

case Subtitle

}

When you refer to an enumeration value, use the value name with a leading dot (.).

let cellStyle: UITableViewCellStyle = .Default

Interacting with C APIs
Enumerations

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

36

Swift also imports options marked with the NS_OPTIONSmacro. Whereas options behave similarly to imported
enumerations, options can also support some bitwise operations, such as &, |, and ~. In Objective-C, you
represent an empty option set with the constant zero (0). In Swift, use nil to represent the absence of any
options.

Pointers
Swift avoids giving you direct access to pointers whenever possible. However, there are various pointer types
available for your use when you need direct access to memory. The following tables use Type as a placeholder
type name to indicate syntax for the mappings.

For arguments, the following mappings apply:

Swift SyntaxC Syntax

CConstVoidPointerconst void *

CMutableVoidPointervoid *

CConstPointer<Type>const Type *

CMutablePointer<Type>Type *

For return types, variables, and argument types more than one pointer level deep, the following mappings
apply:

Swift SyntaxC Syntax

COpaquePointervoid *

UnsafePointer<Type>Type *

For class types, the following mappings apply:

Swift SyntaxC Syntax

CConstPointer<Type>Type * const *

CMutablePointer<Type>Type * __strong *

AutoreleasingUnsafePointer<Type>Type **

Interacting with C APIs
Pointers

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

37

C Mutable Pointers
When a function is declared as taking a CMutablePointer<Type> argument, it can accept any of the following:

 ● nil, which is passed as a null pointer

 ● A CMutablePointer<Type> value

 ● An in-out expression whose operand is a stored lvalue of type Type, which is passed as the address of the
lvalue

 ● An in-out [Type] value, which is passed as a pointer to the start of the array, and lifetime-extended for
the duration of the call

If you have declared a function like this one:

func takesAMutablePointer(x: CMutablePointer<Float>) { /*...*/ }

You can call it in any of the following ways:

var x: Float = 0.0

var p: CMutablePointer<Float> = nil

var a: [Float] = [1.0, 2.0, 3.0]

takesAMutablePointer(nil)

takesAMutablePointer(p)

takesAMutablePointer(&x)

takesAMutablePointer(&a)

When a function is declared as taking a CMutableVoidPointer argument, it can accept the same operands
as CMutablePointer<Type> for any type Type.

If you have declared a function like this one:

func takesAMutableVoidPointer(x: CMutableVoidPointer) { /* ... */ }

You can call it in any of the following ways:

var x: Float = 0.0, y: Int = 0

var p: CMutablePointer<Float> = nil, q: CMutablePointer<Int> = nil

var a: [Float] = [1.0, 2.0, 3.0], b: Int = [1, 2, 3]

Interacting with C APIs
Pointers

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

38

takesAMutableVoidPointer(nil)

takesAMutableVoidPointer(p)

takesAMutableVoidPointer(q)

takesAMutableVoidPointer(&x)

takesAMutableVoidPointer(&y)

takesAMutableVoidPointer(&a)

takesAMutableVoidPointer(&b)

C Constant Pointers
When a function is declared as taking a CConstPointer<Type> argument, it can accept any of the following:

 ● nil, which is passed as a null pointer

 ● ACMutablePointer<Type>,CMutableVoidPointer,CConstPointer<Type>,CConstVoidPointer,
or AutoreleasingUnsafePointer<Type> value, which is converted to CConstPointer<Type> if
necessary

 ● An in-out expression whose operand is an lvalue of type Type, which is passed as the address of the lvalue

 ● A [Type] value, which is passed as a pointer to the start of the array, and lifetime-extended for the duration
of the call

If you have declared a function like this one:

func takesAConstPointer(x: CConstPointer<Float>) { /*...*/ }

You can call it in any of the following ways:

var x: Float = 0.0

var p: CConstPointer<Float> = nil

takesAConstPointer(nil)

takesAConstPointer(p)

takesAConstPointer(&x)

takesAConstPointer([1.0, 2.0, 3.0])

When a function is declared as taking a CConstVoidPointer argument, it can accept the same operands as
CConstPointer<Type> for any type Type.

If you have declared a function like this one:

Interacting with C APIs
Pointers

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

39

func takesAConstVoidPointer(x: CConstVoidPointer) { /* ... */ }

You can call it in any of the following ways:

var x: Float = 0.0, y: Int = 0

var p: CConstPointer<Float> = nil, q: CConstPointer<Int> = nil

takesAConstVoidPointer(nil)

takesAConstVoidPointer(p)

takesAConstVoidPointer(q)

takesAConstVoidPointer(&x)

takesAConstVoidPointer(&y)

takesAConstVoidPointer([1.0, 2.0, 3.0])

takesAConstVoidPointer([1, 2, 3])

AutoreleasingUnsafePointer
When a function is declared as taking an AutoreleasingUnsafePointer<Type>, it can accept any of the
following:

 ● nil, which is passed as a null pointer

 ● An AutoreleasingUnsafePointer<Type> value

 ● An in-out expression, whose operand is primitive-copied to a temporary nonowning buffer. The address
of that buffer is passed to the callee, and on return, the value in the buffer is loaded, retained, and reassigned
into the operand.

Note that this list does not include arrays.

If you have declared a function like this one:

func takesAnAutoreleasingPointer(x: AutoreleasingUnsafePointer<NSDate?>) { /* ...
*/ }

You can call it in any of the following ways:

var x: NSDate? = nil

var p: AutoreleasingUnsafePointer<NSDate?> = nil

Interacting with C APIs
Pointers

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

40

takesAnAutoreleasingPointer(nil)

takesAnAutoreleasingPointer(p)

takesAnAutoreleasingPointer(&x)

Note that C function pointers are not imported in Swift.

Global Constants
Global constants defined in C and Objective-C source files are automatically imported by the Swift compiler
as Swift global constants.

Preprocessor Directives
The Swift compiler does not include a preprocessor. Instead, it takes advantage of compile-time attributes,
build configurations, and language features to accomplish the same functionality. For this reason, preprocessor
directives are not imported in Swift.

Simple Macros
Where you typically used the #define directive to define a primitive constant in C and Objective-C, in Swift
you use a global constant instead. For example, the constant definition #define FADE_ANIMATION_DURATION
0.35 can be better expressed in Swift with let FADE_ANIMATION_DURATION = 0.35. Because simple
constant-like macros map directly to Swift global variables, the compiler automatically imports simple macros
defined in C and Objective-C source files.

Complex Macros
Complex macros are used in C and Objective-C but have no counterpart in Swift. Complex macros are macros
that do not define constants, including parenthesized, function-like macros. You use complex macros in C and
Objective-C to avoid type-checking constraints or to avoid retyping large amounts of boilerplate code. However,
macros can make debugging and refactoring difficult. In Swift, you can use functions and generics to achieve
the same results without any compromises. Therefore, the complex macros that are in C and Objective-C source
files are not made available to your Swift code.

Interacting with C APIs
Global Constants

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

41

Build Configurations
Swift code and Objective-C code are conditionally compiled in different ways. Swift code can be conditionally
compiled based on the evaluation of build configurations . Build configurations include the literal true and
false values, command line flags, and the platform-testing functions listed in the table below. You can specify
command line flags using -D <#flag#>.

Valid argumentsFunction

OSX, iOSos()

x86_64, arm, arm64, i386arch()

Note: The arch(arm) build configuration does not return true for ARM 64 devices. The
arch(i386) build configuration returns true when code is compiled for the 32–bit iOS simulator.

A simple conditional compilation statement takes the following form:

#if build configuration

statements

#else

statements

#endif

The statements consist of zero or more valid Swift statements, which can include expressions, statements, and
control flow statements. You can add additional build configuration requirements to a conditional compilation
statement with the && and || operators, negate build configurations with the ! operator, and add condition
blocks with #elseif:

#if build configuration && !build configuration

statements

#elseif build configuration

statements

#else

statements

Interacting with C APIs
Preprocessor Directives

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

42

#endif

In contrast with condition compilation statements in the C preprocessor, conditional compilation statements
in Swift must completely surround blocks of code that are self-contained and syntactically valid. This is because
all Swift code is syntax checked, even when it is not compiled.

Interacting with C APIs
Preprocessor Directives

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

43

 ● Swift and Objective-C in the Same Project (page 45)

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

44

Mix and Match

Swift’s compatibility with Objective-C lets you create a project that contains files written in either language.
You can use this feature, called mix and match , to write apps that have a mixed-language codebase. Using
mix and match, you can implement part of your app’s functionality using the latest Swift features and seamlessly
incorporate it back into your existing Objective-C codebase.

Mix and Match Overview
Objective-C and Swift files can coexist in a single project, whether the project was originally an Objective-C or
Swift project. You can simply add a file of the other language directly to an existing project. This natural
workflow makes creating mixed-language app and framework targets as straightforward as creating an app
or framework target written in a single language.

The process for working with mixed-language targets differs slightly depending on whether you’re writing an
app or a framework. The general import model for working with both languages within the same target is
depicted below and described in more detail in the following sections.

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

45

Swift and Objective-C in the Same Project

Importing Code from Within the Same App Target
If you’re writing a mixed-language app, you may need to access your Objective-C code from Swift and your
Swift code from Objective-C. The process described in this section applies to non-framework targets.

Importing Objective-C into Swift
To import a set of Objective-C files in the same app target as your Swift code, you rely on anObjective-C bridging
header to expose those files to Swift. Xcode offers to create this header file when you add a Swift file to an
existing Objective-C app, or an Objective-C file to an existing Swift app.

If you accept, Xcode creates the header file along with the file you were creating, and names it by your product
module name followed by adding “-Bridging-Header.h”. For information on the product module name, see
Naming Your Product Module (page 51).

You’ll need to edit this file to expose your Objective-C code to your Swift code.

To import Objective-C code into Swift from the same target

1. In your Objective-C bridging header file, import every Objective-C header you want to expose to Swift.
For example:

#import "XYZCustomCell.h"

#import "XYZCustomView.h"

#import "XYZCustomViewController.h"

2. Under Build Settings, make sure the Objective-C Bridging Header build setting under Swift Compiler - Code
Generation has a path to the header. The path should be relative to your project, similar to the way your
Info.plist path is specified in Build Settings. In most cases, you should not need to modify this setting.

The path should be relative to your project, similar to the way your Info.plist path is specified in Build Settings.
In most cases, you should not need to modify this setting.

Swift and Objective-C in the Same Project
Importing Code from Within the Same App Target

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

46

Any public Objective-C headers listed in this bridging header file will be visible to Swift. The Objective-C
functionality will be available in any Swift file within that target automatically, without any import statements.
Use your custom Objective-C code with the same Swift syntax you use with system classes.

let myCell = XYZCustomCell()

myCell.subtitle = "A custom cell"

Importing Swift into Objective-C
When you import Swift code into Objective-C, you rely on an Xcode-generated header file to expose those files
to Objective-C. This automatically-generated file is an Objective-C header that declares all of the Swift interfaces
in your target. It can be thought of as an umbrella header for your Swift code. The name of this header is your
product module name followed by adding “-Swift.h”. For information on the product module name, see Naming
Your Product Module (page 51).

You don’t need to do anything special to create this file—you just need to import it to use its contents in your
Objective-C code. Note that the Swift interfaces in the generated header include references to all of the
Objective-C types used in them. If you use your own Objective-C types in your Swift code, make sure to import
the Objective-C headers for those types prior to importing the Swift generated header into the Objective-C
.m file you want to access the Swift code from.

To import Swift code into Objective-C from the same target

 ● Import the Swift code from that target into any Objective-C .m file within that target using this syntax,
and substituting the appropriate name:

#import "ProductModuleName-Swift.h"

Any Swift files in your target will be visible in Objective-C .m files containing this import statement. For
information on using Swift from Objective-C code, see Using Swift from Objective-C (page 49).

Import into Objective-CImport into Swift

#import
"ProductModuleName-Swift.h"

No import statementSwift code

#import "Header.h"No import statement; Objective-C
bridging header required

Objective-C code

Swift and Objective-C in the Same Project
Importing Code from Within the Same App Target

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

47

Importing Code from Within the Same Framework Target
If you’re writing a mixed-language framework, you may need to access your Objective-C code from Swift and
your Swift code from Objective-C.

Importing Objective-C into Swift
To import a set of Objective-C files in the same framework target as your Swift code, you’ll need to import
those files into the Objective-C umbrella header for the framework.

To import Objective-C code into Swift from the same framework

1. Under Build Settings, in Packaging, make sure the Defines Module setting for that framework target is set
to Yes.

2. In your umbrella header file, import every Objective-C header you want to expose to Swift. For example:

#import <XYZ/XYZCustomCell.h>

#import <XYZ/XYZCustomView.h>

#import <XYZ/XYZCustomViewController.h>

Swift will see every header you expose publicly in your umbrella header. The contents of the Objective-C files
in that framework will be available in any Swift file within that framework target automatically, without any
import statements. Use your custom Objective-C code with the same Swift syntax you use with system classes.

let myCell = XYZCustomCell()

myCell.subtitle = "A custom cell"

Importing Swift into Objective-C
To import a set of Swift files in the same framework target as your Objective-C code, you don’t need to import
anything into the umbrella header for the framework. Instead, import the Xcode-generated header file for your
Swift code into any Objective-C .m file you want to use that code from.

To import Swift code into Objective-C from the same framework

1. Under Build Settings, in Packaging, make sure the Defines Module setting for that framework target is set
to Yes.

2. Import the Swift code from that framework target into any Objective-C .m file within that framework target
using this syntax, and substituting the appropriate names:

Swift and Objective-C in the Same Project
Importing Code from Within the Same Framework Target

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

48

#import <ProductName/ProductModuleName-Swift.h>

Any Swift files in your framework target will be visible in Objective-C .m files containing this import statement.
For information on using Swift from Objective-C code, see Using Swift from Objective-C (page 49).

Import into Objective-CImport into Swift

#import
<ProductName/ProductModuleName-Swift.h>

No import statementSwift code

#import "Header.h"No import statement;
Objective-C umbrella header
required

Objective-C
code

Importing External Frameworks
You can import external frameworks that have a pure Objective-C codebase, a pure Swift codebase, or a
mixed-language codebase. The process for importing an external framework is the same whether the framework
is written in a single language or contains files from both languages. When you import an external framework,
make sure the Defines Module build setting for the framework you’re importing is set to Yes.

You can import a framework into any Swift file within a different target using the following syntax:

import FrameworkName

You can import a framework into any Objective-C .m file within a different target using the following syntax:

@import FrameworkName;

Import into Objective-CImport into Swift

@import FrameworkName;import FrameworkNameAny language framework

Using Swift from Objective-C
Once you import your Swift code into Objective-C, use regular Objective-C syntax for working with Swift classes.

Swift and Objective-C in the Same Project
Importing External Frameworks

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

49

MySwiftClass *swiftObject = [[MySwiftClass alloc] init];

[swiftObject swiftMethod];

A Swift class or protocol must be marked with the @objc attribute to be accessible and usable in Objective-C.
This attribute tells the compiler that this piece of Swift code can be accessed from Objective-C. If your Swift
class is a descendant of an Objective-C class, the compiler automatically adds the @objc attribute for you. For
more information, see Swift Type Compatibility (page 16).

You’ll have access to anything within a class or protocol that’s marked with the @objc attribute as long as it’s
compatible with Objective-C. This excludes Swift-only features such as those listed here:

 ● Generics

 ● Tuples

 ● Enumerations defined in Swift

 ● Structures defined in Swift

 ● Top-level functions defined in Swift

 ● Global variables defined in Swift

 ● Typealiases defined in Swift

 ● Swift-style variadics

 ● Nested types

 ● Curried functions

For example, a method that takes a generic type as an argument or returns a tuple will not be usable from
Objective-C.

To avoid cyclical references, don’t import Swift into an Objective-C header file. Instead, you can forward declare
a Swift class to use it in an Objective-C header. However, note that you cannot subclass a Swift class in
Objective-C.

To reference a Swift class in an Objective-C header file

 ● Forward declare the Swift class you’re using:

// MyObjcClass.h

@class MySwiftClass;

Swift and Objective-C in the Same Project
Using Swift from Objective-C

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

50

@interface MyObjcClass : NSObject

- (MySwiftClass *)returnSwiftObject;

/* ... */

@end

Naming Your Product Module
The name of the Xcode-generated header for Swift code, and the name of the Objective-C bridging header
that Xcode creates for you, are generated from your product module name. By default, your product module
name is the same as your product name. However, if your product name has any nonalphanumeric characters,
such as a period (.), they are replaced with an underscore (_) in your product module name. If the name begins
with a number, the first number is replaced with an underscore.

You can also provide a custom name for the product module name, and Xcode will use this when naming the
bridging and generated headers. To do this, change the Product Module Name build setting.

Troubleshooting Tips and Reminders
 ● Treat your Swift and Objective-C files as the same collection of code, and watch out for naming collisions.

 ● If you’re working with frameworks, make sure the Defines Module build setting under Packaging is set to
Yes.

 ● If you’re working with the Objective-C bridging header, make sure the Objective-C Bridging Header build
setting under Swift Compiler - Code Generation has a path to the header that’s relative to your project.
The path must be directly to the file itself, not just to the directory that it’s in.

 ● Xcode uses your product module name—not your target name—when naming the Objective-C bridging
header and the generated header for your Swift code. For information on product module naming, see
Naming Your Product Module (page 51).

 ● To be accessible and usable in Objective-C, a Swift class must be a descendant of an Objective-C class or
it must be marked @objc.

 ● When you bring Swift code into Objective-C, remember that Objective-C won’t be able to translate certain
features that are specific to Swift. For a list, see Using Swift from Objective-C (page 49).

 ● If you use your own Objective-C types in your Swift code, make sure to import the Objective-C headers
for those types prior to importing the Swift generated header into the Objective-C .m file you want to
access the Swift code from.

Swift and Objective-C in the Same Project
Naming Your Product Module

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

51

 ● Migrating Your Objective-C Code to Swift (page 53)

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

52

Migration

Migration provides an opportunity to revisit an existing Objective-C app and improve its architecture, logic,
and performance by replacing pieces of it in Swift. For a straightforward, incremental migration of an app,
you’ll be using the tools learned earlier—mix and match plus interoperability. Mix-and-match functionality
makes it easy to choose which features and functionality to implement in Swift, and which to leave in Objective-C.
Interoperability makes it possible to integrate those features back into Objective-C code with no hassle. Use
these tools to explore Swift’s extensive functionality and integrate it back into your existing Objective-C app
without having to rewrite the entire app in Swift at once.

Preparing Your Objective-C Code for Migration
Before you begin migrating your codebase, make sure that your Objective-C and Swift code will have optimal
compatibility. This means tidying up and modernizing your existing Objective-C codebase. Your existing code
should follow modern coding practices to make it easier to interact with Swift seamlessly. For a short list of
practices to adopt before moving forward, see Adopting Modern Objective-C .

The Migration Process
The most effective approach for migrating code to Swift is on a per-file basis—that is, one class at a time.
Because you can’t subclass Swift classes in Objective-C, it’s best to choose a class in your app that doesn’t have
any subclasses. You’ll replace the .m and .h files for that class with a single .swift file. Everything from your
implementation and interface will go directly into this single Swift file. You won’t create a header file; Xcode
generates a header automatically in case you need to reference it.

Before You Start
Create a Swift class for your corresponding Objective-C .m and .h files by choosing File > New > File >
(iOS or OS X) > Source > Swift File. You can use the same or a different name than your Objective-C class.
Class prefixes are optional in Swift.

Import relevant system frameworks.

Fill out an Objective-C bridging header if you need to access Objective-C code from the same app target
in your Swift file. For instructions, see Importing Code from Within the Same App Target (page 46).

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

53

Migrating Your Objective-C Code to Swift

To make your Swift class accessible and usable back in Objective-C, make it a descendant of an Objective-C
class or mark it with the @objc attribute. To specify a particular name for the class to use in Objective-C,
mark it with @objc(<#name#>), where <#name#> is the name that your Objective-C code will use to
reference the Swift class. For more information on @objc, see Swift Type Compatibility (page 16).

As You Work
You can set up your Swift class to integrate Objective-C behavior by subclassing Objective-C classes,
adopting Objective-C protocols, and more. For more information, see Writing Swift Classes with Objective-C
Behavior (page 19).

As you work with Objective-C APIs, you’ll need to know how Swift translates certain Objective-C language
features. For more information, see Interacting with Objective-C APIs (page 10).

When writing Swift code that incorporates Cocoa frameworks, remember that certain types are bridged,
which means you can work with Swift types in place of Objective-C types. For more information, see
Working with Cocoa Data Types (page 24).

As you incorporate Cocoa patterns into your Swift class, see Adopting Cocoa Design Patterns (page 31)
for information on translating common design patterns.

For considerations on translating your properties from Objective-C to Swift, read Properties in The Swift
Programming Language .

Use the @objc(<#name#>) attribute to provide Objective-C names for properties and methods when
necessary. For example, you can mark a property called enabled to have a getter named isEnabled in
Objective-C like this:

var enabled: Bool {

@objc(isEnabled) get {

/* ... */

}

}

Denote instance (-) and class (+) methods with func and class func, respectively.

Declare simple macros as global constants, and translate complex macros into functions.

Migrating Your Objective-C Code to Swift
The Migration Process

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

54

After You Finish
Update import statements in your Objective-C code (to #import "ProductModuleName-Swift.h"),
as described in Importing Code from Within the Same App Target (page 46).

Remove the original Objective-C .m file from the target by deselecting the target membership checkbox.
Don’t delete the .m and .h files immediately; use them to troubleshoot.

Update your code to use the Swift class name instead of the Objective-C name if you gave the Swift class
a different name.

Troubleshooting Tips and Reminders
Each migration experience is different depending on your existing codebase. However, there are some general
steps and tools to help you troubleshoot your code migration:

 ● Remember that you cannot subclass a Swift class in Objective-C. Therefore, the class you migrate cannot
have any Objective-C subclasses in your app.

 ● Once you migrate a class to Swift, you must remove the corresponding .m file from the target before
building to avoid a duplicate symbol error.

 ● To be accessible and usable in Objective-C, a Swift class must be a descendant of an Objective-C class or
it must be marked @objc.

 ● When you bring Swift code into Objective-C, remember that Objective-C won’t be able to translate certain
features that are specific to Swift. For a list, see Using Swift from Objective-C (page 49).

 ● Command-click a Swift class name to see its generated header.

 ● Option-click a symbol to see implicit information about it, like its type, attributes, and documentation
comments.

Migrating Your Objective-C Code to Swift
Troubleshooting Tips and Reminders

2014-07-07 | Copyright © 2014 Apple Inc. All Rights Reserved. Apple Confidential Information.

55

Apple Inc.
Copyright © 2014 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any
form or by any means, mechanical, electronic,
photocopying, recording, or otherwise, without
prior written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a single
computer for personal use only and to print
copies of documentation for personal use
provided that the documentation contains
Apple’s copyright notice.

No licenses, express or implied, are granted with
respect to any of the technology described in this
document. Apple retains all intellectual property
rights associated with the technology described
in this document. This document is intended to
assist application developers to develop
applications only for Apple-labeled computers.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Numbers,
Objective-C, OS X, and Xcode are trademarks of
Apple Inc., registered in the U.S. and other
countries.

iOS is a trademark or registered trademark of
Cisco in the U.S. and other countries and is used
under license.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS PROVIDED
“AS IS,” AND YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if advised of
the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer,
agent, or employee is authorized to make any
modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have other
rights which vary from state to state.

	Using Swift with Cocoa and Objective-C
	Contents
	Part I: Getting Started
	Basic Setup
	Setting Up Your Swift Environment
	Understanding the Swift Import Process

	Part II: Interoperability
	Interacting with Objective-C APIs
	Initialization
	Accessing Properties
	Working with Methods
	id Compatibility
	Working with nil
	Extensions
	Closures
	Object Comparison
	Swift Type Compatibility
	Objective-C Selectors

	Writing Swift Classes with Objective-C Behavior
	Inheriting from Objective-C Classes
	Adopting Protocols
	Writing Initializers and Deinitializers
	Integrating with Interface Builder
	Working with Outlets and Actions
	Live Rendering

	Specifying Property Attributes
	Strong and Weak
	Read/Write and Read-Only
	Copy Semantics

	Implementing Core Data Managed Object Subclasses

	Working with Cocoa Data Types
	Strings
	Localization

	Numbers
	Collection Classes
	Arrays
	Dictionaries

	Foundation Data Types
	Foundation Functions
	Core Foundation
	Remapped Types
	Memory Managed Objects
	Unmanaged Objects

	Adopting Cocoa Design Patterns
	Delegation
	Lazy Initialization
	Error Reporting
	Key-Value Observing
	Target-Action
	Introspection

	Interacting with C APIs
	Primitive Types
	Enumerations
	Pointers
	C Mutable Pointers
	C Constant Pointers
	AutoreleasingUnsafePointer

	Global Constants
	Preprocessor Directives
	Simple Macros
	Complex Macros
	Build Configurations

	Part III: Mix and Match
	Swift and Objective-C in the Same Project
	Mix and Match Overview
	Importing Code from Within the Same App Target
	Importing Objective-C into Swift
	Importing Swift into Objective-C

	Importing Code from Within the Same Framework Target
	Importing Objective-C into Swift
	Importing Swift into Objective-C

	Importing External Frameworks
	Using Swift from Objective-C
	Naming Your Product Module
	Troubleshooting Tips and Reminders

	Part IV: Migration
	Migrating Your Objective-C Code to Swift
	Preparing Your Objective-C Code for Migration
	The Migration Process
	Before You Start
	As You Work
	After You Finish

	Troubleshooting Tips and Reminders

