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Abstract

  Games are commonly programmed in imperative languages. Functional languages have
been known to have benefits but have rarely been used to program games.
  In this thesis we implement a first person shooting game in Haskell and Yampa. The
merits of this approach are examined.
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1. Introduction

The computer gaming industry began in the 1970s with Pong, and has grown with the
progress of computing technology into a billion-dollar industry. [1]

Todays commercial games are sophisticated pieces of software and may be written in
hundreds of thousands of lines of code. Most commercial games require one to three
years to develop in contrast to the development cycle typical of games in past. Most of
the development cycle involves initial programming and then lengthy testing and changes
to the initial code. [2]

Many game developers are concerned with the length of game development cycles, as
longer game development cycles mean higher costs and a longer period before there is a
return on investment.

Recent advances in computing have seen functional languages lead to better productivity
in many industries. Ericsson have used a home-grown FPL, Erlang Language to build
large telecom systems. In certain tests, they claimed to have measured improvements in
productivity between 9 and 25 times greater.[3]

It is plausible the video and computer gaming industry may also benefit from the use of
functional languages. Functional programming languages offer many advantages
compared with the imperative languages that are widely used in this industry.

Functional programs are much more concise when compared with imperative programs.
They allow for the use of powerful abstractions which can be used to improve structure
and modularity of code. Functional languages also allow for polymorphism which
promotes the reuse of code and less redundancy in programs.[3]

An important aspect of game development is the gameplay. In simple terms gameplay
means how a game is played. Many games fail to sell well because the way they were
designed to be played does not appeal to the consumer. The prototyping of a game is vital
when trying to get a third party to fund or distribute a game before it is completed.

Game developers have to verify whether their ideas are viable through the playtesting of
the prototype before they continue to code the game. Unfortunately this may be time
consuming. With functional languages, an executable specification for a game may be
written and playtesting can be completed in less time.
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The potential benefits of functional languages when applied to game development form
the motivation of this thesis project. It is hoped that this research will help in reducing the
problems that game developers currently face and increase productivity.

1.1 Goals

The goal of this thesis is to program a 3D game in Haskell. Also, Yampa - an embedded
DSL for modeling hybrid systems is used to program the games objects. The games
graphics are programmed with HOpenGL, a Haskell binding to the OpenGL graphics
library.

The genre of the game is first person shooter. A first-person shooter is a shooting game
where the player's view of the game world is exactly that of the character the player
assumes. The player explores the game world and shoots at objects.

The performance of the game is benchmarked and the languages used to program this
game are evaluated.

1.2 Overview of the Thesis

The thesis is divided into the following:

Background -      This chapter explains concepts used in FRPs, examines implementations
                            of games and provides an introduction to Yampa

Implementation -The design and implementation of the game is detailed here.  Examples
                            and explanations of how Yampa’s signal functions were used in the
                             game are given.

Benchmarks -      The performance of our game is measured here

Discussion -         The use of Yampa and Haskell for programming our game is evaluated
                             here.

Conclusion -        “Wraps up” the thesis
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2. Background

Functional Reactive Programming applied to games will be a key area of research for this
thesis project. DSLs will be explained briefly, examples in Fran[4] will be used to
introduce key concepts in FRP.

2.1 DSLs

DSL is an acronym for Domain Specific Language. DSLs are programming languages
tailored for use in a specific application domain. DSLs provide useful notations and
abstractions to simplify programming in an application domain. Programs written with a
DSL are more concise and readable than those written with general-purpose languages.

Another important aspect of DSLs is they are more declarative than they are imperative.
With DSLs the focus is on specifying what something is, rather than the steps needed to
do something. More examples of this concept will be seen later in this report.

Embedded Domain Specific Languages, are DSLs that are embedded into a host
programming language. The advantage is the DSL would be able to inherit the properties
of its host language and the task creating a new language from scratch is avoided.

2.1.2 Functional Reactive programming

Functional Reactive Programming was first manifested in Fran, an embedded domain
specific language (EDSL) for graphics and animation developed by Conal Elliott at
Microsoft Research. Fran is a high-level language for modeling reactive animations.
FAL[5], Frob[6], Fvision[7], Fruit[8] and Yampa[9] are four other examples of
Functional Reactive Programming that were developed for use in particular application
domains.
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2.1.3 Fran

As mentioned previously, Fran is embedded in Haskell and inherits its properties such as
laziness. Technically Fran is a library of functions in Haskell but its domain specific
abstractions and special notations disguises that fact and makes Fran seem like a
language of its own.

The syntax used in Fran is simpler and easier to understand compared with other
implementations of FRP. Thus examples of code written in Fran will be used as examples
to explain the basic concepts of FRP.

2.1.3.1 Composability of Functions

Figure 2.1:  An animation of a pot being circled by a light. Figure taken from [4].

In Fran the above animation is declared with the following line:

Listing 2.1:  The code for the animation in figure 2.1. Code taken from [4].

potAndLight is declared as the composition of a green teapot with a moving light.

unionG is an infix function used to compose two animations together. The resulting

animation – potAndLight is also of the same type as the animations used to compose
it, thus it can be composed with other animations.

In FRP domain specific functions can be composed together which allows powerful
expressions to be built.

potAndLight = withColorG green teapot ‘unionG‘ movingLight
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2.1.3.2 Continuous time semantics

Code used to create the animation in figure 2.1 is shown here. The motion of the yellow
light is described concisely with a time varying spherical coordinate.

The line, vector3Spherical 1.5 (pi*time)(2*pi*time), specifies the light will be
1.5 units from the center of the teapot, while its latitude will be twice its longitude.

Listing 2.2:  The code for the moving light in figure 2.1. Code taken from [4].

Games make use of physical equations that use integrals with respect to time, such as
those for acceleration and velocity. FRP provides a concise way of expressing these
equations.

A notable detail is the use of the  “**%” operator. It is an example of the special notations
found in DSLs. It is implemented as a higher order function in Haskell.

2.1.3.3 Encapsulation and Abstraction

The behavior of the moving light in figure 2.1 is encapsulated in the function

movingLight. Unlike regular functions, which take a parameter and return a value, no

parameters are required in movingLight, the function can be used in an expression like
a value. Also, the state of the function is encapsulated, it does not require the current state
of the function to be used as a parameter to calculate the next iteration.

potAndLight and movingLight are functions that are written in a declarative style as
opposed to an imperative style. The operations needed to perform the transformations are
abstracted. Programming animations in an imperative language would require these
operations be defined.

(**%) :: Transform3B -> GeometryB-> GeometryB

movingLight =

translate3 motion **%

uscale3 0.1       **%

withColorG yellow (sphereLowRes ‘unionG‘ pointLightG)

where
   motion =  vector3Spherical 1.5 (pi*time)(2*pi*time)
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2.1.3.4 Reactivity and Events

Listing 2.3:  Code for the spinning teapot in figure 2.2. Code taken from [4].

In FRP, behaviors can change in response to events.

bSign creates a stream of values over time, based on the users input.  The constantB

operator used in selectLeftRight is used to repeat the discrete values that are

arguments to selectLeftRight. Depending on the mouse button that is pressed,

selectLeftRight will continuously generate the value 1 or -1. If neither are pressed a
stream of 0s will be generated. This is an example of a behavior that responds to events.

The function integral is an example of a stateful function used in FRP. It sums the

values generated by bSign. The ‘reactive’ value from integral, is used as an argument

to spin2 that rotates the teapot horizontally.

Aspects of a game that are event driven, such as artificial intelligence, can be modeled
with reactive behaviors.

grow :: User -> RealB

grow u = integral (bSign u)

bSign :: User -> RealB

bSign u = selectLeftRight 0 (-1) 1 u

selectLeftRight :: a -> a -> a -> User-> Behavior a

selectLeftRight none left right u =

 ifB (leftButton u)

(constantB left)

(ifB (rightButton u)

                   (constantB right)

                   (constantB none).

spin2 :: User -> ImageB

spin2 = withSpin potSpin1

   withSpin f u = growHowTo u ‘over‘

renderGeometry (f (grow u) u) defaultCamera

potSpin1 angle u = spinPot red angle

spinPot :: ColorB -> RealB -> GeometryB

spinPot potColor potAngle =
   rotate3 zVector3 potAngle **% withColorG potColor teapot
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        Figure 2.2: The resulting teapot from listing 2.3. Figure taken from [4].
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2.2 Games Implemented with FRP

Paul Hudak implemented PaddleBall with 17 lines of code in FAL, a language similar to
Fran[5]. One may speculate that Functional Reactive Programming may allow for games
to be developed with less lines of code and less time compared with other languages.

However, initially  there were some problems in programming more complex games with
the older implementations of Functional Reactive Languages such as Fran, Fal and Fruit.

Antony Courtney and Henrik Nilsson and John Peterson addressed these problems in the
paper “The Yampa Arcade” [9]. The introduction of this paper details the difficulties of
implementing a Space Invaders like game with Functional Reactive Programming.

“This paper was inspired by some gentle taunting on the Haskell GUI list by
George Russell: I have to say I’m very sceptical about things like Fruit which rely
on reactive animation, ever since I set our students an exercise implementing a
simple space-invaders game in such a system, and had no end of a job producing
an example solution. Things like getting an alien spaceship to move slowly
downward, moving randomly to the left and right, and bouncing o. the walls,
turned out to be a major headache. Also I think I had to use ”error” to get the
message out to the outside world the aliens had won. My suspicion is that reactive
animation works very nicely for the
examples constructed by reactive animation folk, but not for my examples.[10]

Two problems were identified in that paper. The first problem was there was no support
for switching over dynamic collections of reactive objects in the earlier FRP incarnations.
This was needed so reactive game objects could be added or removed. The other problem
that was identified was the lack of examples of FRP code for more complex games. This
problem was also addressed in the paper by providing the code for a working Space
Invaders-like game.
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2.2.1 Yampa

In “the Yampa Arcade” the task of switching over dynamic collections of reactive entities
was handled with Yampas delayed parallel switching functions[9].

 Listing 2.4: The type signature for dPswitch, Yampas delayed parallel switcher

        Figure 2.3: The structure of the Space Invaders game in the Yampa Arcade Paper.
                                          Picture taken from [9]

dpSwitch is a function that is used to model the main loop found in games. The first and
second arguments are the routing function and the initial collection of reactive objects
respectively. The third argument is a function that updates the collection of objects in
response to events generated from the object. The final argument is the continuation of
the game after a parallel switch has been performed.

dpSwitch :: Functor col =>

 (forall sf . (a -> col sf -> col (b, sf)))

-> col (SF b c)

-> SF (a, col c) (Event d)

-> (col (SF b c) -> d -> SF a (col c))

-> SF a (col c)
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Every object in the collection is paired with their inputs by the routing function. The

killandspawn function observes the output of the objects after input had been applied
to them.  When an object had to be added or removed it would produce a switching event
that invokes the fourth argument, which is the continuation of the game. When the
function is invoked, the state of running behaviors is preserved, the collection is updated
and the game is resumed.

Listing 2.5: The function  killOrSpawn for updating the collection of game objects

The way events are distributed in this game is specified explicitly with a routing function.
The advantage of this approach is that unexpected behaviors are prevented from
occurring as game objects can only “see” values the programmer wants them to.

Listing 2.6: The function route for distribution of input among objects

Also, in this implementation each game objects state is encapsulated in the objects code,
instead of being a part of a monolithic game state. Each game object could be coded in
separate modules and could be tested in isolation. Coding of the objects in the game
could be performed incrementally. Also, encapsulation lessens the likelihood of errors
such as reading another objects state by mistake.

2.2.2 FranTK

FranTk[11], a library for building GUIs provided functionality similar to Yampas

dpSwitch.

FranTks Bvars, which are mutable variables that use IO, represent the state of separate

GUI objects. Behaviors and events can be extracted from Bvars. Frantk allows for

collections of behaviors with ListBvars

Listing 2.7: Bvars, ListVars and functions to update sets of bVars

Bvars are updated with listeners. A listener, is a function, that performs an IO action

with the values passed to it. Each listener refers to a Bvar. The events that a listener
responds to are defined explicitly by the programmer.  Whenever an event occurs the

Listeners associated with that event will update their Bvar.

data BVar a

newListBVar :: [a] -> IO (ListVar a)

insertSetB :: SetBVar a -> Listener a
deleteSetB :: SetBVar a -> Listener a
resetSetB  :: SetBVar a -> Listener [a]

killOrSpawn :: (a, IL ObjOutput) -> (Event (IL Object -> IL Object))

route :: (GameInput, IL ObjOutput) -> IL sf -> IL (ObjInput, sf)
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insertSetB, deleteSetB allow behaviors to be removed from the collection and

resetSetB allows for the collection of behaviors to be updated. Game objects can be

modeled as behaviors and stored in a ListBVar which are updated with these functions.

This is an alternative method of handling dynamic collections of reactive objects, that
uses Haskells IO monad.

2.3 Non FRP Implementations of Games

In Luths[12] implementation of an asteroids type game there was a monolithic data
structure that contained the state of all objects within the game.

Listing 2.8:  The state datatype for Luth’s Asteroids game

Clean, a language similar to Haskell, provided a library for programming platform
games, called the Clean Game Library[13]. Every game object had access to a globalised
mutable game state that was updated with I/O callbacks.

Having a large monolithic state is enough for simple games. But as the number of
different objects increases, it becomes a chore to add more fields to the monolithic
datatype so new types of game objects can be accommodated.

With a globalised mutable game state, it may be difficult eliminate bugs if they occur, as
any object can access and change this state variable in unpredictable ways.

With Yampa each game object updates its own state information. There is no state data
type that has to be changed to accommodate new objects. Also, separate objects can be
implemented and tested in isolation before they are used in combination with other game
objects. This method of incremental coding and testing will result in less time spent on

debugging and more concrete code.

Also in the Space-Invaders example, operations such as collision detection, updating of
the collection of game events and obtaining user input are abstracted from the objects.
The game objects do not know how these operations are performed, there are no libraries
of functions to call that would allow them to infer how they are performed, this allows
code to be more maintainable.

data State =

   State { bullets   :: [Bullet],

           asteroids :: [Asteroid],

           ship      :: Ship
         }



17

2.4 Introduction to Yampa

Yampa will be used to program the game. There was enough documentation and
examples of code in Yampa. Most importantly, a game – a clone of Space Invaders, had
been successfully implemented in Yampa and was more sophisticated compared with
previous games implemented in FRP.

This is a brief introduction to some of the Yampa syntax that is going to be used in the
game.

2.4.1 Signal Functions

Yampa is based on continuous concepts such as signals and signal functions. A signal is a
time-varying value. In other implementations of FRP these are called behaviors.

Listing 2.9: Signals are time varying values

A signal function is a function that transforms a signal into another signal.

Listing 2.10: Signal functions and arr

The function arr lifts functions of type (a -> b) into stateless signal functions.  These
can be composed with other signal functions.

2.4.2 Signal function composition.

Listing 2.11: The signal function composition operator (<<<)

(<<<) is similar to Haskells composition operator (.), it allows the pipelining of the output of
one signal function, to the input of another signal function, resulting in a new function.

(<<<) :: SF b c -> SF a b -> SF a c

Signal a  ~ Time -> a

SF a b ~ signal a -> signal b
arr :: (a -> b) -> SF a b
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2.4.3 Arrow syntax

Arrow syntax is syntactic sugaring that allows signal functions to be programmed with
less wiring combinators so readability is improved.

Listing 2.12: Signal functions written without arrow syntax. Code taken from [19]

Listing 2.13: Arrow Syntax. Code taken from [19]

In listing 2.13, proc is a keyword that is similar to  “\” used in lambda expressions in
Haskell. This is followed by

Listing 2.14: A single line of arrow syntax. that binds a name to the output of a signal function

sfexp can only be a signal function while exp can be any Haskell expression. pat is
used to name the output of the signal function. The code in listing 2.14 is similar to a

Haskell let or where clause, where if expr1 is of type T1 -> T2, then expr2 must have

type T1 and pat will be of the type T2.

. Listing 2.15:  The similarity between pats and let statements

Named output can only be used in an expression that follows it and cannot be used with

sfexpr. Let statements such as let a = b can also be used with arrow syntax.

proc pat -> do

pat 1 <- sfexp 1 -< exp 1

pat 2 <- sfexp 2 -< exp 2

...

pat n <- sfexp n -< exp n

returnA -< exp

xSF :: SF SimbotInput Distance

xSF = let v = (vrSF &&& vlSF) >>> arr2 (+)

          t = thetaSF >>> arr cos
      in (v &&& t) >>> arr2 (*) >>> integral >>> arr (/2)

pat <- sfexp -< exp

let pat = expr1 expr2
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2.4.4 Discrete Events

Events are modeled in Yampa as discrete occurrences the time. Events can be “tagged”
with information to associate a value with the occurrence.

Listing 2.16: discrete events in Yampa, tag and edge

edge is a rising edge detector, it is used as an event source, that produces an event the
moment a condition is satisfied.

2.4.5 Switching Combinators

Listing 2.17: rSwitch

Switching combinators are used to select between behaviors in response to events. The
first argument to this function is the initial behavior of the switcher. Should an event
occur the switcher assumes the behavior that is “tagged” to the event.

2.4.6 Integrals

Listing 2.18: integral

integral  integrates with respect to time. The amount of time that has elapsed does not
have to be provided, as the flow of time is abstracted.

data Event a = NoEvent | Event a

tag :: Event a -> b -> Event b

edge :: SF Bool (Event ())

rSwitch :: SF a b -> SF (a,Event (SF a b)) b

integral :: VectorSpace a s => SF a a
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3. Design and Implementation

This chapter, details the design and implementation of the game. The structure of the
game is similar to that of the Space Invaders game detailed in the background section.
Code for the game can be divided into 3 main sections:

• The main loop and the game facilities

• The game objects

• Graphics

Figure 3.1: Structure of the game

3.1 Programming the main loop

In figure 3.1, the main loop obtains player input, then functions in the body of the loop
use the previous game state and player input to obtain the next game state. After the game
state is rendered, the player response is sampled, and the main loop begins its next
iteration.

As detailed in the paper “the Yampa Arcade”, Yampas delayed parallel switcher,

dpSwitch, is used to program our main loop. The only difference is an extra argument

which is the BSP map. route is used to distribute input among game objects and

killOrSpawn updates the collection of game objects.

Listing 3.1: The main loop implemented with dpSwitch

game :: IL Object -> BSPMap ->

   SF (GameInput, IL ObjOutput) (IL ObjOutput)

game objs bspmap = dpSwitch (route bspmap)

           objs

              (noEvent --> arr killOrSpawn)

              (\sfs' f -> game (f sfs') bspmap)
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3.2 Game Facilities

This section describes the various facilities provided to our objects.  As mentioned

previously, the function route,which is a parameter of dpswitch, is used to pair each

object with input. The ObjInput data type is composed of various events, player input
and results from collision detection tests, that are returned from the games facilities.

Listing 3.2: route and ObjInput

3.2.1 Messaging

Messaging allows objects to communicate with one another. These messages are

collected and distributed among objects by route.

Game objects are stored in an identity list. The identity list associates each object with a
unique key. An object can gain another objects key through collision events, visibility
detection events or from a message.

Listing 3.3: The identity list and the Message data type

type ILKey = Int

data IL a = IL { ilNextKey :: ILKey, ilAssocs :: [(ILKey, a)] }

data Message = Coord !(Double,Double,Double) |

PlayerLockedOn |

TargetPosition !(Double,Double,Double) |

EnemyDown

route :: BSPMap->(GameInput,IL ObjOutput)->IL sf ->IL(ObjInput, sf)

data ObjInput = ObjInput {

       oiHit            :: !(Event [(ILKey, ObsObjState)]),

       oiMessage        :: !(Event [(ILKey, Message)]),

       oiCollision      :: !Camera,

       oiCollisionPos   :: !(Double,Double,Double),

       oiOnLand         :: !Bool,

       oiGameInput      :: !GameInput,

       oiVisibleObjs    :: !(Event [(ILKey,ObsObjState)])
     }
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3.2.2 Collision detection

Collision detection is important in any game. It is used determine the response of an
object to its environment and other objects. Every object is tested for collisions with level
geometry and other objects.

Collision detection with level geometry

The BSP data structure allows us to perform collision detection efficiently [15].

The position of an object, its bounding volume and its movement vector are parameters to
functions that test for collisions with level geometry. The bounding volume may be a
sphere or an axis-aligned bounding box.

Collision detection functions test for collisions and return the position where the collision
occurred. This is used to correct the position of the object, so the objects movement is
bounded by the geometry of the level.

Objects react differently in response to collisions. Separate functions take this into
account when returning correcting the objects position. A position is that matches the
collision response of the player is returned. For example, the player object uses a
collision detection function that allows it to move over steps and slide against walls and
floors. Whereas the collision detection function for a projectile just returns the point
where it collides with the level.

Collision detection between objects

Collision detection can be performed on different combinations of bounding volumes,
these include axis-aligned bounding boxes, rays and spheres.

Whenever a collision is detected, an Event containing the state of the object and its key,
is sent to every other object that is involved in the collision. When a collision event has
been received a response can be determined from the state information attached to the
event. The key from an event allows messaging to be started with other objects involved
in the collision

3.2.3 Visibility Testing

Visibility testing is used to determine what an AI object can see. If an object lies within
the AIs field of view or is near the AI, a ray is “fired” from the AIs position to the object.
If the ray collides with an obstacle then it is assumed the AI cannot see the object. If an
object is visible its state information is revealed to the AI.
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3.2.4 Updating the collection of GameObjects

The killorspawn function from the paper “The Yampa Arcade” is used to remove or
insert objects in the game. The only difference is that it calls a modified version of

insertIL when inserting objects into the identity list.

Listing 3.4:  ObjOutput

Objects request their removal or the creation of another object with ooKillReq and

ooSpawnReq respectively. These events are observed by killorspawn that updates the
collection in response to them.

Objects inserted by killorspawn are of type ILKey->Object. The version of

insertIL that is used, applies the Ilkey assigned to the object, which allows objects to
use their key for messaging.

Listing 3.5: killOrSpawn, insertILA and appFunc

killOrSpawn :: (a, IL ObjOutput) -> (Event (IL Object -> IL Object))

killOrSpawn (_, oos) = (foldl (mergeBy (.)) noEvent es

      where

       es :: [Event (IL Object -> IL Object)]

       es = case ([ mergeBy (.)

                         (ooKillReq oo `tag` (deleteIL k))

                         (fmap (foldl (.) id . map insertILA_)

                               (ooSpawnReq oo))

               | (k,oo) <- assocsIL oos ]) of x -> x

insertILA_ :: (ILKey -> a) -> IL a -> IL a

insertILA_ f (IL {ilNextKey = k, ilAssocs = kas}) = il' where

    il' = IL {ilNextKey = k + 1, ilAssocs = (k, f k) : kas}

appFunc :: [(ILKey -> a)] -> [ILKey] -> [a]

appFunc [] _ = []
appFunc (f:fs) (k:ks) = (f k):(appFunc fs ks)

data ObjOutput = ObjOutput {

    ooObsObjState :: !ObsObjState,

    ooSendMessage :: !(Event [(ILKey,(ILKey,Message))]),

    ooKillReq     :: (Event ()),

    ooSpawnReq    :: (Event [ILKey->Object])

}
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3.3 Implementation of Game Objects in Yampa

The entities in our game are modeled as separate objects that behave in parallel. Yampa

allows us to simulate objects in parallel with its delayed parallel switcher, dPswitch.
The various behaviors of our objects are modeled with Yampas signal functions, and state
information is encapsulated within the functions.

Listing 3.6: The Object datatype

All game objects are of the type Object, the ObjInput and ObjOutput types mentioned
previously, are the input and output types of the objects respectively.

3.3.1 Gravity

Gravity affects the position of an object along the y-axis. The function falling’ is used
to model the motion of an object that is falling. As dictated by the laws of physics, the
velocity is the integral of the acceleration due to gravity and the displacement is the
integral of the velocity. The displacement and initial position is summed to obtain the
position of the object that is falling.

In imperative languages the amount of time that has elapsed is required to calculate
integrals, but in Yampa the flow of time is abstracted. Mathematical formulas that use

integration with respect to time can be elegantly expressed with Yampas integral
function.

Listing 3.7: falling’

falling' :: Double -> Double -> SF () Double

falling' grav init = proc () -> do

      vel <- integral -< grav

      pos <- integral -< vel

      returnA -< (pos+init)

type Object = SF ObjInput ObjOutput
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3.3.2 Jumping Falling and Landing

falling is used model the position of the player when jumping, falling and when it has
landed.

Listing 3.8:  falling

Separate signal functions that model the jumping, falling and landing behaviors of the
player object are written. Also, event sources are written for each behavior. In lines 6, 7

and 14, edge produces an event the moment a condition is satisfied. These events are
used to signal the start of the falling, jumping and landing behaviors.

Events are associated with their behaviors with the `tag` infix and are merged with

lMerge. The result of the merge is either an Event() tagged with a behavior or

noEvent. Merging of events with lMerge is left biased, should two events occur
simultaneously, only the leftmost event is returned.

When an event occurs, rSwitch assumes the behavior associated with the event. The
events used come from user input and in-game events. Dynamic behaviors that respond to
events can be programmed with these switching combinators.

1 falling :: SF (Bool,GameInput,Double) Double

2 falling = proc (land,gi,dt) -> do

3

4 --generate events that mark the beginning of a behavior.

5       key       <- keyStat     -< gi

6       landed    <- edge        -< land == True

7       isJumping <- edge        -<

8                 (fromEvent key) == ('e',True) && (land  == True)

9

10 --middle of jump is an local variable that stores

11 --whether we are in the middle of a jump. This

12   middleOfJump <- midJump -< (key, land)

13

14      notlanded <- edge -< land == False && middleOfJump == False

15

16

17      let grav = -200

18

19

20  --switch behaviors in reponse to events

21      pos   <- rSwitch (falling' grav 0) -<

22                ((),   (isJumping `tag` jumping grav)    `lMerge`

23                       (landed    `tag` constant -0.05)  `lMerge`

24                       (notlanded `tag` falling' grav 0))

25   returnA -< pos
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3.3.3 Projectiles

The AI objects fires projectiles to damage the player. Projectiles move at a constant
velocity and are not affected by gravity. The projectiles position is calculated by
integration.

Listing 3.9: projectile

imIntegral used in lines 12 to 14, is similar to integral, its argument is used to
specify the initial value of the integral.

In line 18, iPre is an initialised delay operator. It is used here to hold the position of the

projectile that was calculated in the last iteration. The argument to iPre, is the initial

value output at t = 0.

1 projectile :: (Vec3,Vec3) -> ILKey -> ILKey -> Object

2 projectile ((sx,sy,sz),(vx,vy,vz)) firedfrom id = proc oi -> do

3      let clippedPos = oiCollisionPos oi

4      let grounded = oiOnLand oi

5      let hits = oiHit oi

6

7

8     --the new position is the integral of the velocity along

9     --the vector (vx,vy,vz)

10    let vel = 500

11

12      x <- imIntegral sx-< vel*vx

13      y <- imIntegral sy-< vel*vy

14      z <- imIntegral sz-< vel*vz

15

16 -- a delay is used here to store the previous

17 --position of the projectile

18 oldpos <- iPre (sx,sy,sz) <<< identity -< (x,y,z)

19

20 --if the projectile has hit the player or the level

21 --generate an event

22      hitEv <- edge -< (isEvent clipEv || isEvent hits)

23

24 returnA -< ObjOutput {

25   --the state of the projectile is assigned to ooObsObjState

26         ooObsObjState = OOSProjectile {

27                                 projectileOldPos = oldpos,

28                                 projectileNewPos = (x,y,z),

29 firedFrom = firedfrom},

30        --ooKillReq is used by the projectile to request its removal

31         ooKillReq     = hitEv,

32         ooSpawnReq    = noEvent,

33         ooSendMessage = noEvent
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The projectile expires when it has collided. By setting ooKillReq to the value produced

by the event source hitEv, a request to have the projectile removed from the collection

of game objects is sent. The object is removed by the function killOrSpawn.

3.3.4 Player

The player object is the means by which a player can influence other objects in the game.
Keyboard input is used to move the object through the level. Mouse input is used to
change the view of the player. The player can fire a ray to cause damage.

In lines 35-39, the player’s health points are stored in a local variable that is defined

recursively. The keyword rec, when applied to a group of definitions, allows the input
to a signal function to be declared, in lines that follow it instead of lines that precede it. It
allows the output of a signal function to be used as its input.

In line 36, iPre is used to initialise the local variable. It is also used as a delay, which
ensures the output of the function is used as input to the function only in the next
iteration. It ensures that a feedback loop is well formed.

ipre is also used in signal functions that receive input from the games facilities, for
example in lines 20, 27 and 31. Initially, input from the facilities arrives only after
outputs from the objects have been received. The initial output from the object is

produced with variables initialised with iPre. Once the initial output is received the
facilities can produce input for the objects.

Listing 3.10: player

1 player :: Camera -> [(String,AnimState,AnimState)] ->

2             [(ILKey,Message)] -> ILKey -> Object

3 player cam modelAnims imsgs  id  = proc oi -> do

4

5  --extract data we need from the input

6      let gi         = oiGameInput oi

7      let clippedcam = oiCollision oi

8      let grounded   = oiOnLand    oi

9      let msgs       = oiMessage   oi

10     pPos       <- ptrPos           -< gi

11     forwardVel <- movementKS 400   -< gi

12     strafeVel  <- strafeKS   400   -< gi

13     trigger    <- lbp              -< gi

14     rtrigger   <- rbp              -< gi

15

16     dt <- getDt -< gi

17

18     --update the camera position and view vector based on –

19     --keyboard and mouse input

20     cam1 <- (iPre cam) <<< (arr setView) -< (pPos,clippedcam)

21     cam2 <- moves         -< (forwardVel, cam1)

22     cam3 <- strafes       -< (strafeVel, cam2)
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Listing 3.10: player

23     yVel <- falling       -< (grounded,gi)

24     cam4 <- (arr dropCam) -< (cam3,yVel)

25    --messages sent from enemy ai. our player object handles

26 --player information requests and enemy killed messages

27 msges <- iPre noEvent <<< identity -< msgs

28

29    --collisions between the player and other objects

30    --result in hit events

31    hitEv <- iPre noEvent <<< identity -< oiHit oi

32

33    --The player’s health starts at 100 and decreases by 5 per

34    --projectile hit

35    rec

36       currentHealth <- (iPre 100) <<< identity -<

37          case (isEvent hitEv) of

38            True -> currentHealth - (length (fromEvent hitEv)*5)

39            False-> currentHealth

40

41 --updates the player’s score

42 rec

43      kills <- (iPre 0) <<< identity -<

44           kills + (length (findKills  (event2List msges)))

45

46    --ccam is the playerstate sent to enemy AI in reponse to

47    --their request for player info.

48    ccam <- (iPre cam) <<< identity -< clippedcam

49

50    let msg4Enemy = map (toTargetPosition id (cpos ccam))

51                              (findEnemies (event2List msges))

52

53    returnA -< ObjOutput {

54      --spawn a ray when the left trigger is pressed

55         ooSpawnReq    = (trigger `tag` [(ray (cpos cam1)

56                            (viewPos cam1) id)]),

57      ooObsObjState = OOSCamera {

58                            newCam =  cam4,

59                            oldCam =  cam1,

60                            health =  currentHealth,

61                            ammo = 100,

62                            score = kills},

63         ooKillReq     = noEvent,

64         ooSendMessage =

65             case (event2List msges) of

66               [] -> noEvent

67               --sends the player state to enemy ai in response

68               --to requests

69               _ -> Event () `tag` msg4Enemy
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3.3.5 Adversarial AI

AI objects are used to challenge the player. The AI in this game has 3 modes of behavior,
patrol attack and death. Yampas switching function rSwitch was used as a high-level
controller to switch between behaviors.

Listing 3.11: switching used to model AI

Initially, the AI patrols a set of waypoints. When the player is sighted, the AI attacks by
firing projectiles at the player. If the AI has lost sight of the player, it jumps to the last
position of the player. The AI continues to attack until it is damaged and “dies”. As in

falling, discrete events signal the start of behaviors,  and  the behavior tagged to the
event is switched into.

Every behavior outputs information, such as the AIs position, the pitch of its torso or its

orientation. drSwitch is used instead of rSwitch to allow the switch to be non-strict.
The effect of the switch is observed an infinitely small time after the event occurred,

instead of immediately This allows the output of drswitch, to be parameters of its
behaviors, so the new behavior that is switched into can be a continuation of the previous

behavior. For example, oldpos is a parameter of attack, so the AI can attack at the
position it patrolled up to.

Animations are played to match the behavior of the Ai. The animations are updated with

updateAnimSF. uEndEv and lEndEv are events generated at the end of each animation

sequence. This is input to the behavior that dPswitch assumes. With these events,
behaviors can be made to match the animations. For example, a projectile is spawned in
response to the event produced at the end of the AIs attack animation. Also, animations
can be composed with switchers, when the end of an animation is reached, an event is
generated and a new animation is switched into.

When a player’s ray hits an AI, the state information of the ray is sent to the AI in a
collision event. The state information contains the key of the player that fired the ray.

rec
  (newPos,oldPos, orientation,pitch,attackEv,(upperAnim,lowerAnim))
     <- drSwitch (patrol) -<(

           (objectInput, uEndEv,lEndEv),

                playerSighted      `tag` attack oldPos `lMerge`

                playerInfoReceived `tag` attack oldPos `lMerge`

                damageReceived `tag` death)

  (uEndEv ,upperState) <- updateAnimSF ua -< (gi, upperAnim)

  (lEndEv ,lowerState) <- updateAnimSF la -< (gi, lowerAnim)
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This key is used to message the player that it has killed the AI and allows the player to
increase its score.

Messaging is used here to request the state of the player object when the AI has lost sight
of the player. A message is sent to the AI containing the position of the player, which is
then used by the AI to jump to the player’s location. Another way that state information
could be requested would be to include the handling of state information requests as part
of the games facilities. This would remove the need for a request and response. Instead,
state information could be received immediately after a request.
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3.4 Animating signal functions

Yampas signal functions are executed with functions that connect Haskell with Yampa.
These functions apply the input and elapsed time sample obtained from Haskell to the
signal functions, the output from the signal function is then used to perform an IO action
such as rendering.

For our implementation we use the functions react, actuate, reactinit and the data

type ReactHandle instead of reactimate. React, because this allows control to be
surrendered to HOpenGL so input samples from HOpenGLs callbacks can be obtained.

Listing 3.12: reactInit, ReactHandle and react

react is the function responsible for animating signal functions. Reactinit is called

once to perform initialisation and returns the ReactHandle which is used by react.

The ReactHandle datatype preserves the state of execution of react across callbacks.

Keyboard and mouse input obtained from HOpenGL callbacks are stored in IORefs.

These are retrieved and sent with the amount time that has elapsed to react. react is

placed within HOpenGLs idle callback, which is called every time HOpenGL has
completed a display operation to draw a single frame of the games graphics.

Listing 3.13: repeatedly used to generate an event at 60Hz

The rate at which the screen is redrawn is synchronised to an event that is repeatedly
produced at 60hz by a signal function. Frames are skipped to maintain the rate of
execution of the program. Also, this limits the framerate of the game to 60 FPS.

reactInit :: IO a

->(ReactHandle a b -> Bool -> b -> IO Bool)

-> SF a b

    -> IO (ReactHandle a b)

type ReactHandle a b = IORef (ReactState a b)

react :: ReactHandle a b

      -> (DTime,Maybe a)

      -> IO Bool

repeatedly (1/60) ()
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3.5 Graphics and Animations

Graphics are used to render the world in which the player sees. The BSP[17] file format
stores information used for rendering levels, while the MD3 file format is used for
character animations. Also, the Targa image file format was used for our textures.

Various editors that support these file formats could be used to create content for the
game. Also, the level editor that supports BSP generates the information used in
algorithms for efficient rendering and collision detection with BSP.

3.5.1 BSP

The BSP file format stores data structures in contiguous sections of the file. The vertex
and texture coordinates used by HOpenGL are read into buffers, the rest of the data
structures are stored in Haskell lists. The lists are sequentially accessed, and not
randomly indexed.

Listing 3.14: Tree, BSPLeaf and BSPNode

The data structures are assembled into nodes and leaves. These are then assembled into a
binary tree.

data Tree  = Leaf BSPLeaf | Branch BSPNode Tree Tree

data BSPLeaf = BSPLeaf {

    cluster          :: Int,

    area             :: Int,

    leafMin          :: (Double,Double,Double),

    leafMax          :: (Double,Double,Double),

    leafface         :: Int,

    numOfLeafFaces   :: Int,

    leafBrush        :: Int,

    numOfLeafBrushes :: Int,

    leafFaces        :: [BSPFace],

    leafBrushes      :: [BSPBrush]

}

data BSPNode = BSPNode {

    planeNormal :: (Double,Double,Double),

    dist        :: Double,

    front       :: Int,

    back        :: Int,

    nodeMin     :: (Int,Int,Int),

    nodeMax     :: (Int,Int,Int)
}
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Visibility tests are performed to reduce the amount of geometry that has to be rendered.
Precalculated visibility information is stored within the BSP file as bitfields. Bit masking
is performed to see if a leaf is potentially visible from the player’s location. If a leaf is
potentially visible, the bounding box of the leaf is tested to see if it lies within the view
frustum.

If a leaf has passed the visibility tests, the leafFaces are drawn. Each polygon face has
pointers that refer to the vertex and texture information stored in the buffer. These
pointers are passed to HOpenGL, and the vertices the pointer refers to are rendered with
OpenGL vertex arrays. Vertex arrays allow for efficient rendering, as they eliminate
repeated calls to functions in OpenGL..

Listing 3.15: drawElements renders vertex arrays

Once a face is drawn, it is flagged to prevent redrawing of the face. This has to be done to
prevent repeated rendering, as faces are shared between leaves.

3.5.2 MD3 Animation Format

MD3 is an animation format for Quake 3[16]. In this game, the MD3 animation format is
used for character animations. Playback of animations is performed with vertex
interpolation. Animations are stored as a sequence of keyframes. Each keyframe is
composed of vertices. By interpolating between keyframe vertices, the pose of the model
between frames can be approximated. The frame approximated by interpolation is
rendered between keyframes so animations appear to be smoother.

MD3 files store vertex information and transforms. There are separate MD3 files for the
legs, body, weapon and head. Shader files specify which textures are applied to the
model. An animation,cfg file specifies the number of frames and the rate at which each
animation is played.

Sections of the model stored in separate md3 files are assembled into a hierarchy. The
legs form the root of the hierarchy. This is followed by the torso. Lastly the weapon and
the head are placed at the bottom of the hierarchy.

Tags are the joints of the model. Each tag has a translation and rotation that has to be
applied to join separate sections of model. Each rotation is stored as a 3x3 matrix, these
are converted into quaternions so the rotations can be interpolated. There are separate
tags for every frame of animation. The translation and rotations of a tag affects the
position and orientation of sections lower in the hierarchy.

There are separate sets of animations for the torso and legs of a model. For example, an
attack animation can be played for the torso and running or walking animations can be

drawElements :: PrimitiveMode ->
     NumArrayIndices -> DataType -> Ptr a -> IO ()
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played for the legs. State information stores what animation is being played, which
frames are used for interpolation and the last time the animation was played.

Listing 3.16: The Model and AnimStat data types.

Before rendering, the state information for the legs and torso animations is updated. State

information for the torso and leg animations of the model are set by writing to IORefs.

To render the model, the section at the top of the hierarchy is drawn. Sections lower in
the hierarchy are transformed by applying the translations and rotations stored in tags. A
push matrix operation is performed so the current matrix stack can be preserved, and this
process is repeated for sections lower in the hierarchy. As mentioned previously, the
vertices and transforms of the two keyframes referred to in the animation state, are
interpolated, and the vertices and transforms from the interpolation are used when
rendering the model

Visibility tests are performed before a character model is rendered, to determine if it can
be seen. If a model is visible, vertex arrays are used to render the model.

3.5.3 Textures

Textures are images used to decorate the surface of 3D geometry. Haskell doesn’t have
libraries for loading images, as it is relatively new language.

The Targa image format is a format for describing bitmap images. It supports 24-bit color
and transparencies. It is relatively easier to load compared with JPEG images and many
image editors support it.

To load the image, the header of the image file is read to determine the dimensions of the
image and the number of bits per pixel. The image is loaded into a temporary buffer. An
OpenGL texture object is created and the contents of the buffer are copied into OpenGLs
memory.

data Model = Model {

   modelRef   :: !MD3Model,

   weapFire   :: IORef (Maybe (IO())),

   pitch      :: IORef (Maybe (IO())),

   upperState :: IORef AnimState,

   lowerState :: IORef AnimState

}

data AnimState = AnimState {

                     anims          :: ![MD3Animation],

                     currentAnim    :: !MD3Animation,

                     currentFrame   :: !Int,

                     nextFrame      :: !Int,

                     currentTime    :: !Float,

                     lastTime       :: !Float
                 }
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4. Benchmarks

In this section the performance of the game is assessed. We measure the framerate of the
game and profile the game to analyse the run-time contribution from rendering, executing
object code and game facilities.

The test platform used in this benchmark is equipped with an Athlon XP 1900+ CPU,
512MB of DDR266 Ram and a Nvidia GeForce 4 MX 64MB. The operating system is
Mandrake 10. The resolution of the game is 640x480 with 32 bit color. For framerate
measurements the game was compiled in GHC with the –O2 option. For run-time
analysis the program was compiled with the +RTS –p –O2 –auto-all profiling options.

In general, 60 FPS is a desirable framerate, while 30 FPS is a minimum for smooth
graphics.

4.1 Benchmark 1

The purpose of this benchmark is to measure the performance of the program in an
optimum situation where less performance is spent on rendering graphics. On average a
low amount of polygons have to rendered and most AI objects are obscured from the
players view and are not rendered.

Figure 4.1: Benchmark 1 FPS vs No. of AI Objects

As mentioned previously the framerate is limited to 60 FPS, so no change in framerate is
observed at 5 to 25 objects. The framerate drops to 30 FPS at 62 objects. Even though 60
objects is a reasonable number for this genre, given the specifications of this computer,
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there are many commercial games that outperform our game in terms of the number of AI
objects that can be handled and in terms of rendering performance.

Figure 4.2: Benchmark 1 runtime cost vs No. of AI objects (stacked area graph)

Figure 4.3 Benchmark 1 runtime cost vs No. of AI objects

Runtime costs are divided into rendering, objects, game and miscellaneous.
Miscellaneous accounts for time spent idling and obtaining input for animating signal
functions. As the number of objects increases, runtime contribution from rendering
decreases while runtime contribution from the execution of object code and game
facilities increases. Also, the amount of time spent idling decreases.
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4.2 Benchmark 2

This benchmark is used to measure the performance of the program when there is a high
load on all areas of the program. In addition to the AI objects, projectiles have to be
handled as all AI objects will be firing at the player. Furthermore, increased stress will be
put on the graphical areas of the program as all objects are visible to the player and will
have to be rendered. The level used in this benchmark has a higher number of polygons
compared with the level used in benchmark 1.

Figure 4.4: Benchmark 2 FPS vs No. of AI Objects

Figure 4.5: Benchmark 2 runtime cost vs No. of AI objects (stacked area graph)
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 Figure 4.6: Benchmark 2 runtime cost vs No. of AI objects

In this benchmark, rendering is the dominant runtime cost. The framerate drops to 30 FPS
at 23 AI objects compared with 62 AI objects in the previous benchmark. The cumulative
cost of rendering all AI objects and the level is greater than the costs from executing
object code and game facilities.

4.3 Comments

As an initial prototype the performance of the game is adequate, but the performance of
the game will have to be improved greatly before it can match the performance of
commercial games. There is room for improvement, as the implementations of algorithms
for rendering and collision detection in our game are not optimised.
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5. Discussion

This section discusses the results of this thesis project. The use Yampa and Haskell for
programming this game is critiqued.

5.1 Yampa

In the game, entities are modeled as separate objects and are updated simultaneously.
There are games that model game objects as separate threads to achieve this[18]. Yampas
parallel switchers and signal functions can be used to simulate objects and update them in
parallel. This can be achieved with less code compared with multithreading.
Synchronisation and concurrency issues associated with the use of virtual machines and
multithreading can be avoided.

Yampas events and switching combinators allow us to program event-driven state
machines, which are commonly used in game programming. Different behaviors of the
AI are modeled as separate continuous functions. The switcher is the high-level
controller, and different behaviors are switched according to event occurrence.

In Yampa, each objects state information is encapsulated within signal functions.
Information about the state of the object can only be obtained from its output. This allows
the internal representation of the object to be changed without changes to other areas of
the program.

As mentioned previously, game objects can be developed and tested in isolation. In this
implementation, once the game facilities were completed, game objects were developed
incrementally. The player object was implemented first. Later, other objects such as the
AI objects and projectiles were programmed one after the other, and added to the game.
Only minor changes had to be performed to accommodate the new objects.

The semantics of Yampa may take a while for a programmer to understand, it may not be
obvious where to insert a delay or where to use a delayed version of the switchers.
Yampa only minimises space leaks. The programmer has to know how to prevent them
and remove them if they occur. It may be time consuming to find these space leaks and
remove them should they occur.

The facilities of the game must be implemented with pure functions in Haskell. There is a
possibility, that it may be impossible to implement certain facilities without the mutable
variables that use the IO monad. UnsafePerformIO transforms functions that use the IO
Monad into pure functions, but it is possible to break referential transparency this way.
Safety must be guaranteed by the programmer.
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5.2 Haskell

With Haskell, some of the datatypes used in the game were expressed elegantly.
Matrices, quaternions, coordinates and vectors are expressed elegantly with tuples.
Recursive datatypes were used to define character models and binary trees used in our

game. Lists can be pattern matched, and higher order functions such as map were
frequently used in the game to perform operations across list elements.

Another advantage of programming in Haskell was that programming errors were
reduced. The programmer is informed of errors at compilation time instead of at run time.
This leads to development time savings as the amount of time that would have been spent
debugging is reduced.

The Haskell OpenGL library, HOpenGL, has many differences compared with other
OpenGL libraries, a notable difference is that GLx prefixes have been removed from the
names of all functions and constants, which is elegant. Syntactic sugaring was provided
in the form of the ($=) operator. This allows us to set up OpenGL state variables in a
manner similar to C which uses an equals sign which is convenient.

For non-trivial rendering tasks, HOpenGL offers high performance options such as vertex
arrays, vertex buffer objects and display lists. Vertex arrays and display lists were used in
our game for improved rendering performance.

The only flaw of HopenGL, was documentation is not as good as it could have been. The
HOpenGL equivalents of constants and functions found in OpenGL libraries for other
languages were not listed, so time had to be spent searching for them.
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6. Conclusion

In conclusion, a first person shooter was successfully implemented with Haskell and
Yampa.

Datatypes used in game development can be expressed elegantly in Haskell. HOpenGL
provides the necessary support for accelerated 3D graphics needed in games.

Yampa allows an event-driven game engine to be programmed with less code. Objects
can be programmed with signal functions that encapsulate state and are updated
simultaneously. The use of Yampa for the prototyping of games should not be
overlooked. Test versions of games can be written in less time and a viable game idea can
be found sooner.

Future work

From the results of this thesis the following work is suggested:

The performance of functions in the game can be improved. A comparison could be made
of the style and performance of an optimised version of this game with another version
that uses FFI and c to program performance critical sections of the game.

The genre of the game we are programming is a first person shooter. Another genre that
could be implemented is Real time strategy, where a significantly greater number of
objects have to be simulated compared to first person shooters.
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Glossary

BSP -                                   BSP is Binary Space Partitioning, a algorithm for drawing
                                             scenes and performing collision detection efficiently.

First person Shooter -           A first-person shooter is a shooting game where the player's
                                              view of the game world is exactly that of the character the
                                              player assumes.

Frustum -                              It is the area of the world visible to the current camera. The
    frustum is bounded by 6 planes. These planes are named the

                                              near, far, left, right, top and bottom planes.

Higher-order functions  -      Higher-order functions are functions that take functions as
                                              an input or output a function.

Quaternions -                        Quaternions represent rotations in three dimensions.
                                              Spherical Linear  Interpolation (SLERP) is used to smoothly
                                              interpolate between two quaternions

Real Time Strategy -            Real time strategy is a strategy game that emphasises unit
                                             management. The game progresses in real time.

Referential Transparency –   In computing, a referentially transparent function is one that,
                                               given the same parameter(s), always returns the same result.
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