
BitC (0.11 Transitional) Language Specification†

Version 0.11+

Jonathan Shapiro, Ph.D.
The EROS Group, LLC

Swaroop Sridhar Scott Doerrie
Systems Research Laboratory
Dept. of Computer Science
Johns Hopkins University

September 28, 2008

Abstract

BitC is a systems programming language that combines
the “low level” nature of C with the semantic rigor of
Scheme or ML. BitC was designed by careful selection
and exclusion of language features in order to support
proving properties (up to and including total correctness)
of critical systems programs.

This document provides an English-language descrip-
tion of the BitC semantics. It will in due course be aug-
mented by a formal specification of the BitC semantics.
The immediate purpose of this document is to quickly
capture an informal but fairly complete description of the
language so that participants in ongoing discussions about
verifiable systems programming languages have a com-
mon frame of reference on which to base their discus-
sions.
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1 Overview

The BitC project is part of the successor work to the EROS
system [12]. By 2004, it had become clear that a number
of important practical “systems” lessons had been learned
in the EROS effort. These motivated a re-examination of
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the architecture. With the decision to craft a revised de-
sign and a new implementation came the opportunity to
consider methods of achieving greater and more objective
confidence in the security of the system. In particular, the
question of whether a formally verifiedimplementationof
the EROS successor might be feasible with modern theo-
rem proving tools. Following some thought, it appeared
that the answer to this question might be “yes,” but that
there existed no programming language providing an ap-
propriate combination of power, formally founded seman-
tics, and control over low-level representation. BitC was
created to fill this gap.

1.1 About the Language

BitC is conceptually derived in various measure from
Standard ML, and C. Like Standard ML [10], BitC has
a formal semantics, static typing, a type inference mech-
anism, and type variables. Like C [1], BitC provides full
control over data structure representation, which is nec-
essary for high-performance systems programming. BitC
also provides support for unboxed mutable locations. The
BitC language is a direct expression of the typed lambda
calculus with side effects, extended to be able to reflect
the semantics of explicit representation.

Versions of BitC up to 0.10 used an s-expression syntax
similar to that of Scheme [8]. This allowed us to focus our
attention on type inference and semantic issues first. The
main goal of version 0.11 is to choose the production sur-
face syntax for the language. For the sake of people who
are already familiar with the s-expression syntax, this ver-
sion of the specification includesbothsyntactic variants.

The transitional syntax is testing a curried style of appli-
cation syntax so that we can experiment with mixfix oper-
ators. In spite of this syntax, BitC application is not cur-
ried. Currying encourages the formation of closures that
capture non-global state. This requires dynamic storage
allocation to instantiate these closures at runtime, and it
is difficult for the programmer to determine syntactically
when this is happening. Since there are applications of
BitC in which dynamic allocation is prohibited, currying
is an inappropriate default idiom for this language. We
will consider introducing explicit convenience syntax for
curried application if this proves to be an impediment to
effective use of the language.

In contrast to both Scheme and ML, BitC doesnotprovide
or require full tail recursion. Procedure calls must be tail
recursive exactly if the called procedure and the calling
procedure are bound in the samedef , and if the identity
of the called procedure is statically resolvable at compile
time. This restriction preserves all of the useful cases of
tail recursion that we know about, while still permitting a

high-performance translation of BitC code to C code.

As a consequence of these modifications, BitC is suitable
for the expression of verifiable, low-level “systems” pro-
grams. There exists a well-defined, statically enforceable
subset language that is directly translatable to a low-level
language such as C. This translation is direct in both the
sense that the translation is simple and the result does
not violate programmer intuitions about what the program
does or the program’s data representation. Indeed, this
was a key reason for our decision to move our implemen-
tation efforts into BitC.

1.2 Transitional Input Language

We are in the process of migrating from the S-expression
syntax to the final BitC surface syntax. S-expression
forms are now being incrementally replaced by the cor-
responding block-style forms, and the compiler no longer
accepts some of the older S-expression conventions. I am
trying to update this document as the S-expression forms
are retired.

1.3 Conventions Used in This Document

In the description of the language syntax below, certain
conventions are used to render the presentation more com-
pact.

Input that is to be typed as shown appears infixed font.

Syntactic “placeholders” are shown in italics, and should
generally be self-explanatory in context. Variable names,
expressions, patterns, and types appear respectively as
italic v, e, p, or T, with an optional disambiguating sub-
script. For clarity, the defining occurrence of a name will
sometimes appear in the abstract syntax asnm.

When a sequence of similar elements is permitted, this is
shown using ”,...” or ”;...”, according to whether the el-
ements are separated by commas or semicolons. Such a
sequence must have at least one element. For example:

{e; ... e}

indicates that a block consists of a (non-empty) sequence
of expressions separated by “;”. When it is intended that
zero elements should be permitted in a sequence, the ex-
ample will be written:

{[ e; ... e] }

Note that the square braces[ and ] have no syntactic
significance in the BitC core language after s-expression
expansion. When they appear in the specification, they
should be read as metasyntax.
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1.4 Type Inference

BitC incorporates a polymorphic type inference mecha-
nism. Like SML, BitC imposes the value restriction for
polymorphic type generalization. The algorithm for type
inference is not yet specified here, and will be added at
a future date — we want to be sure that it converges.
We currently plan to use a constraint-based type inference
system similar to the Hindy-Milner type inference algo-
rithm [10].

The practical consequence of type inference is that explic-
itly stated types in BitC are rare. Usually, it is necessary
to specify types only when the inference engine is unable
to resolve them unambiguously, or to specify that two ex-
pressions must have the same result type. In this situation,
a type may be written by appending a trailing type quali-
fier to an expression indicating its result type, as in:

(a + b) : int32
( + a b) : int32

by similarly qualifying a formal parameter, as in:

def fact x =
if (x < 0) then - (fact (-x))
else if (x == 0) then 1
else x * fact (x - 1)

(def (fact x:int32)
(cond (( < x 0) (- (fact (- x))))

((= x 0) 1)
(otherwise

( * x (fact (- x 1))))))

In general, wherever a type is permitted by the grammar,
it is also permissible to write atype variable. A type vari-
able is written as an identifier prefixed by a single quote.
The scope of a type variable is the scope of its containing
definition form. The type inference engine will infer the
type associated with the type variable. Within a definition,
all appearances of a type variable will be resolved to the
same type. This is particularly useful in the specification
of recursive types. For historical reasons,’a , ’b , etc. are
often pronounced “alpha,” “beta,” and so forth.

1.5 Documentation Strings

Certain productions in the grammar (Section 15) in-
corporate an optional documentation string labeled
docstring. Documentation strings have predefined
syntactic positions to facilitate automated extraction by
documentation tools. If present, the documentation string
must be a syntactically well-formed string, but the string
is otherwise ignored for compilation purposes. In certain

contexts a documentation string may be followed by an
expression syntax, which creates a parse ambiguity. The
parser should handle these cases by accepting the expres-
sion sequence and then checking to see if it has length
greater than 1 and its first element is a string. Note that in
such cases the string would be semantically irrelevant in
any case. The only point of care here is to note that an ex-
pression sequence consisting of a single string is a value,
not a documentation string.

I The Core Language

2 Input Processing

The BitC surface syntax is an impure s-expression lan-
guage. Expressions can be augmented with type quali-
fiers, and the language provides syntactic conveniences
for field reference and array indexing. All of these have
canonicalizing rewrites into s-expressions.

Input units of compilation are defined to use the Uni-
code character set as defined in version 4.1.0 of the Uni-
code standard [13]. Input units must be encoded using
the UTF-8 encoding and Normalization Form C. All key-
words and syntactically significant punctuation fall within
the 7-bit US-ASCII subset, and the language provides for
7-bit US-ASCII encodable “escapes” that can be used to
express the full Unicode character code space in character
and string literals.

Tokens are terminated by white space if not otherwise
terminated. For purposes of input processing, the char-
actersspace(U+0020), tab (U+0009),carriage return
(U+000D), andlinefeed(U+000A) are considered to be
white space.

Input lines are terminated by a linefeed character
(U+000A), a carriage return (U+000D) or by the two
character sequence consisting of a carriage return fol-
lowed by a line feed. This is primarily significant for com-
ment processing, layout processing, and diagnostic pur-
poses, as the rest of the language treats linefeeds carriage
returns as white space without further significance.

2.1 Comments

A comment introduced by the two-character sequence ”//”
extends up to but not including the trailing newline and/or
carriage return of the current line (the end of line markers
are significant for purposes of line numbering).

A comment introduced by the two-character sequence
”/*” extends up to the following two-character sequence
”*/”. If an end-of-line sequence is encountered within the
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comment, the next token encountered after the comment
is considered the first token on a new line.

For lexical purposes, comments are considered white
space. This implies that the comment syntax cannot be
successfully exploited for identifier splicing as in early C
preprocessors.

Characters within comments are processed only to deter-
mine where the comment ends. Nested comments are not
supported.

2.2 Identifiers

Because of BitC’s support for user-defined expression
syntax (mixfix), the definition of a well-formed identifier
is regrettably more complicated than in most languages.
We begin by defining three lexical classes:

• Any sequence of code points beginning with an
“identifier character” (Unicode 4.1.0 [13] character
class XIDStart), followed by any number of op-
tional “identifier continue characters” (Unicode 4.1.0
character class XIDContinue) is aalphanumeric
identifier fragment.

• Any sequence of the following characters is a valid
operator identifier fragment:

! $ % & * + - / < = > ? ˆ | ˜

• An underscore (U+005F, “ ”), sharp underscore
(U+005F U+0023, “# ”), or the at-sign (U+0040,
“@”) is a valid separator.

A well-formed identifier matches the regular expression:

* ( # ) ?fragment(( |# |@) fragment) * ( # | ) ?

that is: a sequence of alphanumeric or punctuation frag-
ments that are joined by separators with an optional lead-
ing and trailing separator, with the whole optionally pre-
ceded by an arbitrary number of underscores. Each frag-
ment is either an alphanumeric or a punctuation sequence.

Identifiers are case sensitive. Reserved words are not
identifiers. Identifiers starting withtwo or moreleading
underscores (U+005F, “ ”) are reserved for use by the
runtime system. Non-reservedIdentifiers are valid for use
as mixfix identifiers.

The sheer perverse obscurity of the specification for iden-
tifiers is motivated by mixfix support, and will hopefully
make more sense after a review of that section.

2.3 Interface Names and Identifiers

Interface names consist of a sequence of interface iden-
tifiers joined by dots (“.”). An interface may start with
any interface identifier character, followed by any inter-
face continue character. In addition, an underscore (“”)
may appear in any position of an interface identifier, and
a hyphen (“-”) may be used in any positionother thanthe
first position.

Interface identifier characters are the Unicode identifier
characters (Unicode 4.1.0 [13] character class XIDStart)
falling within the 7-bit US ASCII subset (the first 128
Unicode code points). Interface continue characters are
similarly the Unicode identifier continue characters (Uni-
code 4.1.0 [13] character class XIDContinue) falling
within the 7-bit US ASCII subset.

The restriction on acceptable character code points in
interface identifiers is designed to ensure that interface
names can be mapped directly to file names in current file
systems. It is expected that the legal namespace for inter-
face identifiers will expand as the capabilities of widely
used file system interfaces improve.

Interface names whose leading interface identifier is
“bitc” are reserved for use by the BitC runtime system
and standard library.

Reserved words arepermittedas interface identifiers.

While BitC treats interface identifiers as case-sensitive,it
is strongly discouragedfor source code to rely solely on
case distinctions to discriminate between interface names.
The choice of legal interface identifiers is intentionally
chosen to support a direct mapping to file names across a
wide range of file systems. At least one pervasively used
file system provides only haphazard support for case sen-
sitivity in file names.

2.4 Reserved Words

The following identifiers are syntactic keywords, and may
not be rebound:

- > and apply
array ArrayRef as
begin bitc bitfield
block bool boxed
ByRef case catch
char cond const
continue declare def
exception deref
disable do double
dup enable exception
extends external false
fill fixint float
from if import
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impure in instance
int8 int16 int32
int64 interface is
fn lambda let
letrec MakeVector member
mutable not object
opaque or otherwise
pair proclaim provide
pure quad repr
return sizeof
string struct suspend
switch tag the
throw trait try
true uint8 uint16
uint32 uint64 unboxed
union use vector
version where until
word

The following identifiers are reserved for use as future
keywords:

assert break check
constrain deep object
deftype do * inner-ref
int let * list
location module namespace
ptr read-only require
ref sensory super
tycon tyfn typedef
using value-at

In addition to the reserved words identified above, all defi-
nitions provided in the standard prelude are implicitly im-
ported into the initial top-level environment of every com-
pilation unit.

Note that BitC doesnotpermit redefinition of bound vari-
ables in the same scope. This guarantees that top-level
forms receive the default bindings of these identifiers in
their environment.

For the moment, all identifiers beginning with “def ” are
reserved words. This restriction is a temporary expedient
that is not expected to last in the long term.

Finally, the identifiers defined as part of the BitC standard
runtime environment (described below) are bound in the
top-level environment.

2.5 Literals

The handling of literal input and output is implemented by
the standard prelude functionsread andshow. Source
tokenization, requires that foundational literals have a de-
fined canonical form.

2.5.1 Integer Literals

An integer literal takes one of the following forms:

decimal digits // decimal integer literal
0xhex digits // hexadecimal integer literal
0ooctal digits // octal integer literal
0bbinary digits // binary integer literal
0octal digits // octal integer literal

A decimal integer literal may not begin with a leading
zero.Digits are selected from the characters

0 1 2 3 4 5 6 7 8 9 a b c d e f

with the customary hexadecimal valuations. The letters
may appear in either lowercase or uppercase. It is an error
for a digit to be present whose value as a digit is greater
than or equal to the specified base.

Integer literals of a particular fixed-precision type may be
written by using a type qualifier. The expression:

564 : uint32

specifies an unsigned 32 bit quantity whose value is 564.
It is a compile-time error to qualify an integer literal with
a type that is incapable of representing the literal’s value.
In the absence of explicit qualification, the type assigned
to an integer literal will be some subset of:

int8 int16 int32 int64
uint8 uint16 uint32 uint64
word

Any concrete type that cannot represent the literal value
will be omitted from the set of types assigned.1

2.5.2 Floating Point Literals

The general form of a floating point literal is:

digits. digits[ e[ - ] exponent]

where all digits are decimal. Floating point values may
not have any radix other than 10. Theexponentmay in-
clude an optional initial minus sign. Note that the decimal
point is not optional, and must have at least one digit on
both sides. Thus,0.0 is a valid floating point literal, but

1 There is an issue here: doesn’t the initial set need to be the set of all
integer field sizes so that initialization can work? Shap thinks that the
answer is probably yes, but that it isn’t a problem in practice because
the arithmetic operators are only defined over homogeneous argument
types. Swaroop points out that expanding the set isn’t what creates the
problem for type inference.
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0. and.0 are not. Also1e11 is not a valid floating point
literal; 1.0e11 should be used instead.

As with integer literals, floating point literals of an explic-
itly stated representation type may be written using a type
qualifier. The expression:

0.0 : float

specifies a 32-bit (single precision) IEEE floating point
quantity whose value is zero. As with integer literals, it
is a compile-time error to specify a value cannot be rep-
resented within the representable range of the qualifying
type.2 In the absence of explicit qualification, the type of
a floating point literal is some subset of:

float double quad

Any concrete type whose representable range cannot ex-
press the literal value will be omitted from the assigned
set.

Conversion of a floating point literal to internal represen-
tation follows the customary IEEE floating point rounding
rules when the specified literal cannot be exactly repre-
sented.3

2.5.3 Character Literals

BitC uses the Unicode character set as defined in version
4.1.0 of the Unicode standard [13]. Characters are 32 bits
wide. Character literals can be expressed in two ways.

A character literal may be written as

’ printable-character’

Whereprintable-character is any character spec-
ified in the Unicode 4.1.0 standardexceptthose with gen-
eral categories ”Cc” (control codes) ”Cf” (format con-
trols), ”Cs” (surrogates), ”Cn” (unassigned), or ”Z” (sepa-
rators). That is, any printable character, excluding spaces.
Notwithstanding the listed Unicode categories, the char-
acters “\” (U+005C) and single quote (U+0027) are ex-
cluded, and the character “space” (U+0020) is considered
printable.

An arbitrary character may also be specified numerically
in one of the following forms:

’ \U+hex digits’ // unicode code point

2 It is not an error if conversion of the literal value causes loss of preci-
sion in the low-order bits of the mantissa.

3 A more precise statement is needed for floating point literalconver-
sion, but I don’t know enough about floating point conventions to
know what that statement should be.

’ \decimal digits’ // unicode code point expressed in
’ \0xhex digits’ // unicode code point expressed in hexadecimal
’ \0ooctal digits’ // unicode code point expressed in
’ \0bbinary digits’ // unicode code point expressed in
’ \0octal digits’ // unicode code point expressed in

The value supplied must be a valid unicode code point,
which is a value in the range 0..10FFFF hexadecimal.

Certain commonly used non-printing characters have con-
venience representations as character literals:

’ \space’, ’ \s’
’ \linefeed’, ’ \n’
’ \return’, ’ \r’
’ \tab’, ’ \t’
’ \backspace’, ’ \b’
’ \formfeed’, ’ \f’
’ \backslash’, ’ \\’
’ \squote’, ’ \’’
’ \dquote’, ’ \"’

2.5.4 String Literals

BitC strings are written within double quotes, and may
contain the previously listed “printable characters”ex-
cluding backslash “\” (U+005C), or the double quote
character.

Within a string, the backslash character “\” (U+005C) is
interpreted as beginning an encoding of an escaped char-
acter. The character following the “\” (U+005C) is either
a single-character embedding from the list given above,
or a curly brace character “{” (U+007B) identifying the
start of a numeric or named embedding that is terminated
by “}” (U+007D).

2.6 Compilation Units

There are two types of compilation units in BitC: inter-
faces and source compilation units. An interface compi-
lation unit defines or declares types (and consequently the
code of type constructors), defines type classes, defines
constants, and declares values. A source compilation unit
can define types, type classes, constants, and values.

Every valid BitC compilation unit must begin (ignoring
comments) with abitc version form. The syntax of
thebitc version form is:

bitc version n.m

wheren.m is the version of BitC version (majordot mi-
nor) to which this program conforms. For the version
of BitC described in this document, the proper version is
0.11 +. It is a compile-time error if the language version
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accepted by the current compiler is not backwards com-
patible with the version specified by thebitc version
form.

In an interface compilation unit, thebitc version
form is followed by exactly oneinterface form
(Section 9). In a source compilation unit, the optional
bitc version form is followed by one or more
module forms (Section 9).

A source compilation unit may alternatively consist of the
bitc version form followed by an arbitrary sequence
of imports, definitions, declarations, and use forms that
arenot interface forms. In this case the forms fol-
lowing thebitc version are deemed to be implicitly
enclosed by amodule form, and the compilation unit de-
fines exactly one source module.

2.6.1 Definitions and Declarations

The top level forms that introduce programmatic defini-
tions and declarations are:

def Introduces value declarations and definitions, in-
cluding functions.

struct Introduces structure declarations and defini-
tions.

union Introduces union declarations and definitions.

repr Introduces repr definitions and declarations. Reprs
are a special kind of union with fine-grain layout and
tag control.

trait Introduces traits definitions, which restrict how
type variables can be instantiated and provide over-
loading.

instance Introduces trait instance definitions, which
identify the types for which a trait is defined.

The def , union , struct , and repr , forms support
simple recursion. That is, the identifier(s) being defined
may be used in their definition. However, identifier(s) be-
ing defined are deemed incomplete until the end of the
enclosing defining form. Restrictions on the use of in-
complete identifiers are described in the sections on types
and value binding.

The proclaim form is used to provide opaque value
declarations. The identifier declared by aproclaim
form is considered incomplete. If a completing defini-
tion is later provided within the same compilation unit,
the identifier is considered complete in the balance of the
defining compilation unit after the the close of its defin-
ing form. An incomplete declaration may be used within

a procedure, but may not be used as part of a top-level
initializer (seedef , Section 5.2).

All defining forms are expressions that return a value of
typeunit .

2.7 Layout

The goal of the layout system is to provide programmer
convenience by automatically inserting curly braces and
semicolons wherever they have not been inserted by the
programmer. Left curly braces are conditionally inserted
after certain preceding tokens. Semicolons are condition-
ally inserted based on the indentation level of each line.
Right curly braces are conditionally inserted before cer-
tain tokens and also based on the indentation level of the
curren tline.

2.7.1 Concept

The “trick” to the layout scheme is in two parts:

1. There are several sequencing constructs in the lan-
guage whose general form is a semicolon-separated
sequence of things surrounded by curly braces. This
lets us use the same layout rules for multiple pur-
poses.

2. At each point where a left curly brace might be au-
tomatically inserted, a preceding token (one oflet ,
do , or “=”) signals unambiguously that a left curly
brace must follow:

def f x y = { ...
def x = { 5 }
struct S ’a ’b = { a : int; ...
let { x = { 5 } } in { ...
while ( expr) do { ...
do { ... } while ( expr)

We rely on the fact that (a) knowing the preceding and
current token is enough to know whether to insert a curly
brace (b) because blocks are values, all binding expres-
sions can safely be wrapped in blocks, (c) because such
wrapping is always safe, it can be done in a way that is
invisible to the programmer In fact, the parser insists that
this be true. While it is nearly universal practice in Bitc
to write code without semicolons in many places, most
notably:

let x = 5 in body

But what the compiler actuallyseesis:

let { x = { 5 } } in body
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We also rely on the fact that correct programs do not
under-indent lines capriciously.

2.7.2 Specification

• The termoffset, as used here, is defined as the num-
ber of preceding UCS4 code points that occur to the
left of the token on the same line. The first code point
on a line is deemed to have offset zero. Offsets are
determined without regard to comments. That is, in:

a b c / *
* / x

the tokenx appears at offset 5 and is the first token
on its line.

• The termlayout item sequenceis a sequence of lay-
out items that are separated by semicolons and sur-
rounded (bracketed) by curly braces. An opening ’{’
signals the beginning of a layout item sequence.

• A left curly brace will be automatically inserted after
the keywordslet, do, and= (binding) if none appears
explicitly in the input. Note that a left curly brace is
required by the grammar at each of these positions.

• The lexer maintains a record of every left curly brace
(whether or not inserted), in a stack of layout con-
texts. Each entry records the preceding keyword (let,
do, or=), whether the left curly brace in question was
automatically inserted or not, and the offset of that
layout context. The most recent entry on the layout
context stack is “popped” whenever an implicit or
explicit ’}’ is encountered.

• On encountering thein token, the lexer will insert
implicit close braces (’}’), popping layout contexts
as it goes, until one of the following conditions
holds:

1. The last layout context popped was associated
with the let keyword. That is: curly braces
inserted beforein will only balance up to the
nearest precedinglet.

2. The top entry on the context stack was explicit.
That is: implicit closing curly braces will only
balance implicit open curly braces.

• On encountering end-of-file, the lexer will insert im-
plicit close braces (’}’), popping layout contexts as
it goes, until the top entry on the context stack is ex-
plicit.

• Every (implicit or explicit) ’{’ begins a layout item
sequence. After processing the ’{’, the lexer exam-
ines the next token. If it is end-of-file orin, process-
ing proceeds as described above. Otherwise:

– If the offset of the token isgreater thanthe cur-
rent sequence offset, it becomes the current se-
quence offset and is recorded in the top (most
recent) layout context stack entry. Regardless
of offset, no implicit semicolon will be inserted
before this token.

– If the offset of the token isless than or equal to
the current sequence offset, and the most recent
open brace was implicit, an implicit close brace
is immediately inserted.

• Provided it does not follow an opening brace, the
offset of the first token on every line is used to de-
termine whether a closing curly brace ’}’ or a semi-
colon should be conditionally inserted as follows:

– If the offset of the token isgreater thanthe cur-
rent sequence offset, the token is “,” or “(”, or
the preceding token is “,” or “(”, nothing is in-
serted. This special-case suppression enables
the use of longer string literals as arguments in
I/O.

– If the offset of the token isless thanthe current
sequence offset, and the most recent open brace
was implicit, an implicit close brace is immedi-
ately inserted.

– If the offset of the token isequal tothe current
sequence offset, the token is not a semicolon
(’;’), and the most recently returned token was
not a semicolon, a semicolon is automatically
inserted.Qualifications to this rule are needed
concerning the current and immediately pre-
ceding token.

• An implicit ’ {’ must be matched by an implicit ’}’.
Similarly, an explicit ’{’ must be matched by an ex-
plicit ’ }’. If this requirement is violated, an error is
signalled.

3 Types

3.1 Overview

To mitigate mitigate the effects of forward reference in the
specification, we begin with a high-level overview of the
BitC type system. This overview is non-normative.

BitC provides explicit control over data structure repre-
sentation while preserving a memory-safe and type-safe
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language design. Where types are specified explicitly by
the developer, both the layout and size of the underly-
ing data structures for a given compilation target plat-
form are fully specified. Different target platforms may
yield different layouts and sizes due to (e.g.) differences
in underlying pointer types. In consequence, the use
of constructs such assizeof and bitsizeof , or of
the machine-dependent typeword , can render a program
target-dependent.

BitC provides a powerful type inference mechanism.
In the absence of concrete declaration or specification
through type parameters, the type of a binding isinferred
by type inference based on its initializing expression and
their context(s) of use.

3.1.1 Terms vs. Locations

Term Bindings If the initializing expression is pure, and
the bound value is never mutated, that it is aterm bind-
ing, and is given polymorphic type. For example, the type
reported for the following definition:

def i = 1 + 3;
i: ’a where IntLit(’a)

indicates thati is a term binding. It inhabits any type
that satisfies theIntLit(’a) constraint, which is to
say: any type that admits both1 and3 and as valid lit-
erals.4 The intuition is that a term binding’s semantics is
defined by substitution at the point of use. The final type
of the binding is determined by inference following sub-
stitution. The implementation is free to actually perform
such substitution or to instantiate a concrete binding for
each concrete type ofi that is actually seen.

With two exceptions, the BitC inference mechanism pro-
duces typings that are complete; the derived type will be
the least constrainingtype that is permissible given the
initializing expression and the context(s) of use. The ex-
ceptions are:

• The current inference algorithm does not infer array,
ArrayRef, or ByRef types.

• BitC does not (yet) provide polymorphic recursion.

It is expected that both of these limitations will be lifted
in upcoming enhancements to the language.

Location bindings If the binding’s initializer has side
effects, or if the bound variable is mutated (in whole or
in part), then the binding is alocation binding. Location

4 This particular typing is expected to change when we introduce the
Nat kind.

bindings are given monomorphic type and the value occu-
pies some concrete location. Because their values are sub-
ject to change, location bindings are not equivalent under
term substitution.

The concrete type of a monomorphic binding must be
fully known by the close of its defining form. When
the binding occurs at top-level, this means that use-
occurrences cannot be considered by the inference engine
to determine whether the binding is a location binding or
a term binding. In the absence of specification, a term
binding is inferred:

def i = 1 + 3;
i: ’a where IntLit(’a)
def mi : mutable(’a) = 1 + 3 : int32;
mi: mutable(int32)
def bad mi : mutable(’a) = 1 + 3
error: ’a monomorphic, not fully determined

Because it is able to consider the contexts of use, the BitC
inference algorithm will infer a location for local location
bindings.

3.1.2 Boxed and Unboxed Types

Most languages having advanced type systems have a
heap-based value semantics. Conceptually, all values live
in the heap and are manipulated through references. BitC
has two categories of types — boxed and unboxed — each
with associated values.

An unboxed type is one whose values are “contained”
within some composite value (which may be a stack
frame). The lifetime of an instance of unboxed type is
determined by the lifetime of its container, and it is the re-
sponsibility of the container to reserve storage for its con-
tained value types. Such types are said to be “unboxed.”
All of BitC’s primary types are unboxed types.

A boxed type is one whose values live in the heap. Every
instance of a boxed type has at least one reference that
denotes it. The reference is an unboxed value; the value it
denotes is boxed.

If T is an unboxed type, thenboxed( T) is the type of
a reference denoting a heap-allocated instance ofT. Un-
boxed values can be copied to the heap usingdup() .

Similarly, if T is a boxed type whose target is of statically
known size, and whose type unifies with(boxed ’a) ,
then unboxed( T) is the corresponding value type.
Need to explain why the qualification is needed. Issue is
unboxing of boxed unions, but I can’t remember the de-
tails at the moment.Unboxed copies of boxed values can
be obtained usingderef() .

At the moment, BitC requires that all structure and union
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declarations explicitly state whether the type defined is
boxed or unboxed. We will eventually relax this require-
ment, makingboxed the default for union types and
unboxed the default for struct types. Exception types
are boxed by definition; specification that an exception
type is boxed is permitted, but not required.

BitC does not provide automatic assignment conversion
between value types and reference types.

3.1.3 Type Variables

BitC permits types to be parameterized by means of type
variables. Type variables provide a means of specifying
that the type of some element will be provided at a later
point of specialization. Permitted instantiations may be
constrained bytype classes. For example, the type:

def isLessThan(a,b) = a < b;
fn(’a, ’a) -> bool

where Ord(’a)

indicates thatisLessThan() is defined over any spe-
cialization of ’a for which a definition of ordering
methods has been provided by an instantiation of the
Ord(’a) trait.

3.2 Primary Types

The primary types of BitC are:

unit The unit type, having as its singleton member the
unit value, both of which are written as() .5

bool A boolean value, eitherfalse or true . The rep-
resentation of this type is a single byte, aligned at a
byte boundary.

char A unicode code point. The representation of this
type is a 32-bit unsigned integer, aligned at a 32-bit
boundary.

word The typeword is the smallest unsigned integral
type whose range of values is sufficient to represent
the bit representation of a pointer on the underlying
machine. This type is architecture dependent, and
is not directly assignment compatible with unsigned
integral types of the same size. Values of typeword
are aligned at a boundary that is a multiple of their
size.

bitfield This is not a primary type, and it’s description
needs to move into the section dealing with aggregate
types.

5 Note thatunit is not a keyword.

Thebitfield form describes a fixed-precision in-
teger field:

basetype( size)

Where basetype is one of the primary fixed-
precision integral types andsize is a literal not ex-
ceeding the size in bits of the base type.

The form

int32(4)

describes a two’s complement four bit field placed
within a 32-bit alignment frame.

Bitfields may only be used as types of structure,
union, or tag fields. The type of a bitfield is deemed
to be assignment and binding compatible with its
basetype. A bitfield over a signed base type is sign-
extended as needed when copying to its base type. A
bitfield over an unsigned base type is zero extended.

float, double, quad The types float , double , and
quad describe, respectively, IEEE floating point val-
ues as described in [2][3]. Thequad type is an ex-
tended precision floating point type with a 15 bit ex-
ponent and a 112 bit mantissa.

3.3 Type Variables

A type variable is an alphanumeric identifier fragment
preceded by a single quote, as in’a . A type variable,
may appear in any position where a type can appear. This
indicates a type parameter whose actual (concrete) type
is to be specified later. A type containing type variables
within its description must be “specialized” by supplying
the type corresponding to each parameter. In the case of
parameterized structure and union types, each type vari-
able is specialized by supplying it at the point of use:
list(char) is an instantiation oflist(’a) . In the
case of function types and let/letrec bindings, type vari-
ables are specialized automatically during compilation by
inferring the required type of each type variable at each
point of application.

The scope of a type variable is generally its outermost
defining form. In some cases, aletrec , let , or local
definition can introduce a new type variable scope. Be-
cause a type variable’s scope covers an entire definition,
type variables can be used used to annotate that two ex-
pressions must have the same type. The expression:

myfun(x, y:’a):’a

says that the type ofx is unspecified by the program au-
thor (and should therefore be inferred), the return type is
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also unspecified (and should be inferred), but the return
type and the last argument type are the same. This type
of annotation is sometimes useful to assist the inference
engine.

3.4 Simple Constructed Types

Constructed types compose existing types into new types.
Type equivalence for the simple constructed types is de-
termined by structural equivalence.

3.4.1 Reference Types

If T is a value type, then

boxed( T)

is the type of a reference denoting a heap-allocated in-
stance ofT.

Storage Layout The representation of aref instance
is architecture dependent. It is customarily determined by
the size of the machine’s integer registers, and aligned at
any address that is congruent mod 0 to the integer register
size.

3.4.2 Function Types

If targ and tresult are types (including type vari-
ables), then:

fn ( targ 1, ... targ n) - > tresult)

is the type of a function takingn arguments of typestarg1
throughtargn, respectively, and returning a value of type
tresult. The type of a function taking zero arguments
is written as:

fn () - > tresult)

Storage Layout Function types are considered reference
types that denote an object of statically undefined size.
The size and alignment of a value of function type is the
size and alignment of the underlying architecture’s pointer
size.

3.5 Sequence Types

BitC provides fixed-length (array ) and variable-length
(vector ) types.

3.5.1 Arrays

An array is a value type whose value is a fixed product
typeTi>0, all of whose elements are of common type.
The type:

(array T i)

describes the type of fixed-length arrays of element type
T and lengthi, wherei is an integer literal of typeword
that is greater than zero.

Storage Layout The value representation of ak-element
array is laid out in memory as the concatenation ofk con-
tiguous element cells whose size and alignment are deter-
mined by their respective element types. The elements of
the array appear at increasing addresses in order from left
to right.

3.5.2 Vectors

A vector is a dynamically sized array whose elements are
of typeT. Vectors are reference types. Because they are
dynamically sized, there is no corresponding value type.
The type:

(vector T)

describes vectors of element typeT.

3.5.3 Array References

An array reference is a sequence type whose elements are
of typeT and whose length is dynamic. A parameter or
let binding of type(ArrayRef T) will accept as its
corresponding actual parameter or initializer a value of
either type(ArrayRef T) or type(array T len)
for any length. There is no value constructor for array
reference types.

Array references are not permitted to escape. Pending
definition of a standardized escape analysis for BitC, the
ArrayRef type is not permitted as the return value of a
procedure, a non-value expression, a structure field, or a
closed-over value. The type:

(ArrayRef T)

describes array references of element typeT.

3.6 Named Constructed Types

The named constructed types are types whose compatibil-
ity rules are determined by name equivalence. Two values
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of named constructed types are equivalent if (a) they are
instances of the same statically appearing type definition,
and (b) their corresponding elements are equivalent.

Unless otherwise qualified, a named constructed type dec-
laration declares a reference type.

3.6.1 Structures

A structure definition defines a named type whose in-
stances are an ordered sequence of named cells. The syn-
tax of a structure declaration is:

(struct nm field ...)
(struct ( nm tv1 ... tvn) field ...)

where eachfield is one of:

nm: type
(the type nm)
(fill bitfield-type)
(reserved bitfield-type value)

All namesnm are disjoint identifiers giving the names of
the structure fields, and the respectivetype forms are the
types of the respective fields. Given a variablev that is
an instance of a structure type having a field namedf ,
the expressionv.f unifies with the fieldf within that
structure.

A fill element may be used to support precise speci-
fication of alignment. The alignment and storage layout
of a fill field follows the alignment and storage layout of
its base type, however a fill field has no name or defined
value, and cannot be programatically referenced.

A reserved element may be used to specify a reserved
bit position in a low-level data structure that is required to
hold a known value. It is otherwise identical to afield
element.

An identifier that is bound to a structure type may be used
as a procedure to instantiate new values of that structure
type. The arguments to this procedure are the initial val-
ues of the respective structure fields.

An identifier that is bound to a non-parameterized struc-
ture type may be used as a type name. An identifier that
is bound to a parameterized structure type may be used in
a type constructor application within a type specification.
Its arguments are the types over which the newly instan-
tiated structure type should be instantiated. For example,
the declarations:

(struct ipair a:int32 b:int32)

(struct (tree-of ’a):boxed

left : (optional (tree-of ’a))
right : (optional (tree-of ’a))
height : int8
value : ’a)

define (respectively) the type nameipair and the single
argument type constructortree-of .

Storage Layout A structure havingk fields is laid out
in memory at increasing addresses from left to right ask
contiguous cells whose size and alignment are determined
by their respective element types. These cells are then
packed according to the previously described alignment
and layout packing rules.Did we describe them?

3.6.2 Unions

The union form defines enumerations, discriminated
unions, and mixes of these. The type being defined is in-
scope within the definition of the type, but is incompletely
defined. The syntax of a union declaration is one of:

(union nm C1 ... Cn)
(union ( nm tv1 ... tvn)
C1 ... Cn)

where eachtvi is a type variable andCi is aconstructor
form . A constructor form consists of either a single iden-
tifier or a parenthesized identifier followed by a sequence
of field or fill declarations (seestruct ). All field names
appearing in aunion , including constructor names, must
be disjoint.

An identifier bound to a union constructor having no fields
denotes the value of the unique corresponding union in-
stance for that union type.

An identifier bound to a union constructor having associ-
ated fields is a procedure that may be used to instantiate
new instances of that union type. The arguments to this
procedure are the initial values of the union fields associ-
ated with that union variant.

An identifier that is bound to a non-parameterized union
type is a valid type name. An identifier that is bound to a
paramterized union type may be used in a type constructor
application within a type specification. Its arguments are
the types over which the newly instantiated structure type
should be instantiated. For example, the declarations:

(union contrived
(asChar c:char) (asInt i:int32))

(union (optional ’a) :unboxed
none
(some value:’a))
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define (respectively) a reference type holding either a
char or an int32 , and a value type of optional ele-
ments.

The declaration:

(union (list ’a):boxed
nil
(cons car:’a cdr:(list ’a)))

Defines the reference type of homogeneous lists.

Storage Layout Each variant of a union declaration ef-
fectively defines ak+1 element structure, where the first
element contains the tag and the remainingk elements are
the fields of the constructor leg. In the usual case, the rep-
resentation of the union leg is arranged as though it had
actually been this structure, without regard to the layout
of other legs.

In the unusual case of a union whose tag representation
can be elided (see below), each individual union leg will
be arranged as though it had been the corresponding struc-
ture declaration.

In the case of a union having no tag, the union repre-
sentation will match the size and alignment of reference
cells. The storage occupied by a union of value type is
the maximum of the storage required for each individual
case of the discriminated union (including the type tag, if
present).

Type Tag Size and Alignment In the absence of decla-
ration, the union type tag will be given an implementation-
defined size and alignment selected to maximize perfor-
mance efficiency. Explicit control over the size and align-
ment can be achieved using atag-type declaration.
The declaration:

(union (list ’a):boxed
(declare (tag-type uint8))
nil
(cons car:’a cdr:(list ’a)))

indicates that the tag should be implemented using an un-
signed byte. The declared tag type must be an unsigned
integral or bitfield type having a sufficient number of dis-
tinct values to assign a unique value to each constructor.

Tag Representation The prelude type
nullable(’a) must be implemented in a single
pointer-sized machine word, with theNull case being
tagged by a word value of zero and theptr case being
tagged by a non-null word value. This yields a concrete

representation that is compatible with the representation
of nullable pointers in other languages.

The following representation requirements are required
unless they cannot be legally implemented on the under-
lying machine, as in JVM or CLR.

In the absence of an explicit declaration of the type
tag representation, a union type having exactly one
union leg whose first element’s type’a unifies with
RefType(’a) or nullable(’a) , and all of whose
other legs have no fields shall be represented in such a
way that the tag word reuses the storage of the ref/nullable
field. The ref/nullable leg shall be denoted by a tag field
whose least significant bit is zero. The n’th enumeration
leg’s tag value (in order of appearance) shall be encoded
asn* 2+1. This representation is sometimes known as
the Cardelli optimization, because it permits a two-word
implementation of CONS cells, as in Scheme or LISP.

If a union type tag is explicitly declared to be of a field
type whose size in bitsb is such that the machine’s natu-
ral heap alignment restriction for objects isalign >=2b,
the total number of distinct legs of the union does not
exceed2b, and there is exactly one union leg whose
first element’s’a type unifies withRefType(’a) or
nullable(’a) , then the tag field shall overlay the least
significant bits of the ref/nullable field, the tag value zero
shall denote the ref/nullable leg, and all other tag values
shall be non-zero.

3.6.3 Reprs

There are examples of low-level hardware data structures
for which the unions and structures that can be specified
using struct or union are insufficiently expressive.
One example is the Pentium GDT data structure, which
has nested union discriminators, but simultaneously has
an overall bit-level layout requirement. Another exam-
ple is data structures where the representation of the tag
must appear at a specific location that is not adjacent to
the fields guarded by the tag. Therepr form is included
to permit the expression of these data structures.

The following scheme forrepr is based on the bit-data
representation proposed by Iavor Diatchki,et. al.[11].

Similar to unions and structures, arepr delaration takes
the following form:

(repr name
(Ctr1 f11:type f21:type ... fn1:type

(where (== fp1 v11) (== fq1 v21) ...
(== fm1 vm1))

(Ctr2 f12:type f22:type ... fn2:type
(where (== fp2 v12) (== fq2 v22) ...

(== fm2 vm2))
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... )

The following restrictions apply. For all constructors
Ctrx , Ctry , Ctrz , ... :

• All fields fpx , fqx...fmx appearing in thewhen
clause of a constructor formCtrx must be described
within the body ofCtrx . That is,{fpx , fqx , ...
fmx } ⊆ {f1x , ... fnx }.

• Identically named fields within two different con-
structor forms must be located at the same bit level
offset from the beginning of both the constructor
forms. That is,fpx = fpy implies bit-offset(fpx ) =
bit-offset(fpy ).

• Identically named fields within two different con-
structor must have the same type. That is,fpx =
fpy implies type-of(fpx ) = type-of(fpy ).

• The fields within thewhen clauses of all construc-
tor forms must uniquely distinguish all constructible
values of the union. The compiler will not introduce
any more tag bits for arepr value.

• Currently, therepr form will not accept type argu-
ments over which it can be instantiated. That is, the
following definition is not legal.

(repr (name ’a ’b ... ) ... )

• Currently, the discriminating fieldsfp1 , fp2 , etc
must have a integer/bitfield type, and the discrimina-
tor valuesv11 , v12 , etc must be an integer literal.

We can envision a larger language constructUNION,
which accepts both type arguments andwhen clauses.
The union and repr are just specializations of this
UNIONconstruct. However, currently the language only
supportsunion (which does not accept thewhen clause)
andrepr (which does not accept type arguments).

3.6.4 Objects

This description is provisional. The feature is a work in
progress.

In BitC, an object provides a form of existential dispatch.
Objects are declared similarly to structures. The syntax of
an object declaration is:

(object nm field ...)
(object ( nm tv1 ... tvn) field ...)

where each field is required to be of method type.

An identifier that is bound to a object type may be used as
a procedure to instantiate new values of that object type.
The single argument to this procedure must be an instance
of some compatible structure typeS. A structure typeS is
deemed compatible ifS is of reference type and for every
methodm in the object type, there must be a correspond-
ing method of the same name inS whose type is at least
as general as the method type declared in the object type.

An identifier that is bound to a non-parameterized object
type may be used as a type name. An identifier that is
bound to a parameterized object type may be used in a
type constructor application within a type specification.
Its arguments are the types over which the newly instanti-
ated object type should be instantiated. For example, the
declarations:

(object O i:int32)
(object (Oparam ’a) x:’a)

define (respectively) the type nameOand the single argu-
ment type constructorOparam.

An object occupies two words of storage one of which is a
reference to a method table and the other is a reference to
an object of corresponding structure type. Construction of
an object from a structure instance entails capturing a ref-
erence to that instance and a reference to a method table
mapping the method declarations of the object onto the
corresponding method definitions of the referenced struc-
ture type. Invocation of an object method is realized as
invocation of the corresponding method of the referenced
structure instance.

Storage Layout An object occupies two machine
words, the first of which is a reference to a method ta-
ble and the second of which is a reference to an object of
corresponding structure type. The alignment of this struc-
ture is dictated by the pointer alignment requirements of
the underlying hardware implementation.

3.6.5 Value vs. Reference Types

In the absence of other specification, thestruct , repr ,
union , andobject , forms declare reference types. The
developer may optionally qualify the declaration to make
this intention explicit:

(struct nm:boxed field ...)
(struct ( nm tv1 ... tvn) :boxed
field ...)

(union nm:boxed C1 ... Cn)
(union ( nm tv1 ... tvn) :boxed

15



C1 ... Cn)
(repr nm:boxed ( body))
(repr ( nm tv1 ... tvn) :boxed ( body))

The qualifier “:boxed” indicates that the type declared
(and consequently the type returned by value construc-
tors) is a heap-allocated type, sometimes known as a “ref-
erence type.” The qualifier “:unboxed” indicates that the
type declared is a type whose storage is allocated within
its containing data structure (which may be the stack).
These are sometimes refered to as “value types.” The
qualifier “:opaque” indicates that the type declared is a
value type whose internal structure is not accessable out-
side of the defining interface and the providers of that in-
terface. An importer of an opaque type may declare fields
and variables of that type and cancopy instances of that
type, but can neither apply the type constructors nor make
reference to the contents of instances.

Note that if the type declared is a value type, it cannot be
instantiated within the body of the declaration because its
size is not statically known. That is, it is legal to have
a field that is areferenceto a value of the type currently
being defined, but not a value of that type.

3.6.6 Forward Declarations

The declarations

qual struct nm [ external];
qual union nm [ external];
qual repr nm [ external];
qual struct nm( tv1, ... tvn)

[ external]
qual union nm( tv1, ... tvn)

[ external]
qual repr nm( tv1 ... tvn)

[ external]

state (respectively) thatnm is a structure (respectively
union) reference type of the stated arity whose internal
structure is not disclosed. The qualifierqual declares the
type to be one of “boxed”, “unboxed”, or “opaque”. In the
absence of qualification, the default is “boxed”6 If present,
theexternalportion consists of the keywordexternal
followed by an optional identifier (see discussion of exter-
nal identifiers inproclaim ).

For example, the following declaration is include in the
library bitc.int interface to declare the bignum type:

unboxed struct int external bitc int

6 The qualifier is presently mandatory on struct, union, and repr decla-
rations during syntax transition. This requirement will berelaxed in a
future revision of the specification.

The structure of these types may optionally be disclosed
later in the same compilation unit by a type definition for
nm. If the declaring form appears within an interface, the
corresponding type definition may appear in a providing
unit of compilation, in which case the type is opaque to
importers of the interface.

Note that a forward declaration of a value type is sufficient
to declarereferencesto that type, but notinstancesof that
type. A complete definition of the value type is required
to be in scope in order to declare fields and variables of
value type.

3.6.7 Method Types

If S is a structure or object type, andtarg andtresult
are types (including type variables), then a fieldm of S
may be declared as:

(method targ 1... targ n - > tresult)

A method type may only be specified as a field type of a
field within a structure or object type. Methods occupy no
storage in their associated structure or object.

Structure Methods In a structure type, methods may
be viewed as a procedure proclamation that is coupled to
a convenience syntax supported by application. The dec-
larations:

(struct S
m: (method int32 - > bool))

(struct T : val
m: (method int32 - > bool))

implicitly proclaim (respectively) the procedures:

(proclaim S.m: fn (S, int32) - > bool)
(proclaim T.m:

fn (ByRef T, int32) - > bool)

where the parameter corresponding to the argument of
structure type isByRef exactly if the corresponding
structure type is a value type. Implementations of these
procedures must be provided elsewhere by the developer.

Given these declarations, and an expressione returning a
value of typeS, the application:

( e.m 3)

is a syntactic convenience for:

(S.m e 3)
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Object Methods In an object type, methods may be
viewed as a procedure proclamation that is likewise cou-
pled to a convenience syntax supported by application.
As with structure methods, they implicitly proclaim cor-
responding procedures. Incontrastto structure methods,
the implementation of these procedures is provided by the
compiler.

3.6.8 Named Type Conveniences

The following types are defined in the BitC standard pre-
lude.

(struct (pair ’a ’b) :unboxed
fst:’a snd:’b)

(union (list ’a) :boxed
nil
(cons ’a (list ’a)))

Note thatpair is a keyword that is specially recognized
in binding patterns.

The pair type is supported by a right-associative infix
convenience syntax:

(a, b) = > (pair a b)
(a, b, c) = > (pair a (pair b c))

This convenience syntax may be used in types, binding
patterns, and value construction.

3.7 Const

The const keyword is a typemetaconstructor. If T
is a type, then the typeconst( T) is a type that is
copy-compatible (3.10) withT, but has had all mutabil-
ity stripped (recursively) at all shallow constituent fields.
This enables a local, shallowly constant copy to be made
of a structure containing mutable constituents.

The const construct is considered a meta-constructor
because of its “sticky” behavior under unification. The
type const( ’a) does not unify with any type (shal-
lowly) containing a mutable constituent field.

3.8 Mutable

Unless modified by themutable keyword, the preceding
types yield immutable instantiations. IfT is a type, then
the typemutable( T) is the type of mutable instances
of T. If the typeT is a reference type (including:boxed
structure types), then the typemutable( T) describes a
mutable reference to a memory location in the heap.

3.8.1 Mutability of Aggregates

Array types and by-value structure types are aggregate
types. While all fields of an array are of like type,
structures may contain a combination of mutable and im-
mutable constituent fields. An instance of aggregate type
is mutable as a whole exactly if all of its contained con-
stituent fields are mutable:

(def p (pair mutable(# \c) 3:int32))
...
// legal, field is mutable:
(set! p.first # \d)
// illegal
(set! p.second 5)

(def mp (pair mutable(# \c)
3:mutable(int32)))

// legal, all fields mutable:
(set! mp (pair # \d 4))

The test of constituent mutability does not extend across
reference boundaries.

If T is an aggregate type, thenmutable( T) is a valid
type exactly ifT is mutable at all constituents.

3.8.2 Shallow vs. Deep Mutability

If T is an immutable type, and if all of its unboxed fields
(recursively) are of immutable type up toref boundaries,
thenT is said to beshallow immutable. If any of those
elements are mutable, thenT is said to beshallow muta-
ble. We use the termdeep mutableto refer to mutable
types that appearbehinda ref boundary.

The type boxed(mutable(’a)) is shallow im-
mutable but deep mutable.

3.9 Exceptions

BitC provides declared exceptions. The type
exception should be viewed as an “open” union
reference type whose variant constructors are defined by
exception . The syntax of an exception declaration is:

(exception nm [ field1 ... fieldn])

where eachfieldi is a field declaration (seestruct )
whose type is a concrete type.

An identifier bound to an exception name is a procedure
that may be used to instantiate new instances of that ex-
ception. The arguments to this procedure are the values of
the fields associated with the exception.

17



3.10 Copy Compatibility

The combination of mutability and value types in the BitC
type system raises the need to specify what happens at
“copy boundaries.” Given a value of typeT1 and a loca-
tion or formal parameter (the receiver) of typeT2, when is
the value compatible with the receiver for purposes of ar-
gument passing and assignment? We refer to this ascopy
compatibility .

3.10.1 Trivial Copy Compatibility

The typesT andmutable( T) are trivially copy com-
patible, because they differ only in top-level mutability.A
location of typemutable( T) may be assigned a value
of either type, and a parameter of typeT may be passed a
value of either type.

The intrinsic type class(top-copy-compat T1 T2)
describes a relation between all pairs of typesT1 andT2
that are trivially copy compatible. This type class is rarely
the right thing to use in input programs, but may some-
times be seen in the type checker output.

3.10.2 Structural Copy Compatibility

Two structured typesT1 and T2 are structurally copy
compatible if (a) they are trivially copy compatible or (b)
they are value types that are fieldwise structurally copy
compatible. Note that this definition explicitly doesnot
descend recursively across reference types. The concep-
tual intuition is this: any element that will actually be
copied by assignment or argument passing must be com-
patible ignoring mutability, but any object that ispointed
to must have exactly matching type in both the value and
its receiver.

The intrinsic type class(copy-compat T1 T2) de-
scribes a relation between all pairs of typesT1 andT2 that
are structually copy compatible. If you are trying to ab-
stract over mutability, this type class is usually the one that
you want. Note that(top-copy-compat T1 T2)
implies(copy-compat T1 T2) , but the reverse is not
true.

3.10.3 Inner and Outer Procedure Types

A curious consequence of copy compatibility is that func-
tions have two types. Consider the function:

(def (inc x:mutable(int32))
(set! x ( + x 1))
x)

From the perspective of the function’s implementation,x
is a mutable location having typemutable(int32) ,
and sincex is returned, the return type of this function is
alsomutable(int32) . From this, we would conclude
that the type ofinc should be:

inc: fn (mutable(int32) - > mutable(int32)

Given the copy compatibility rules, however, the fact that
inc internally mutates its argument is not something that
the caller needs to know in order to callinc directly.
The externally observable type reported forinc therefore
strips shallow mutability, giving:

inc: fn (int32) - > int32

In addition to preserving abstraction, reducing type in-
compatibilities at function reference types, and providing
some degree of separation of concerns, copy compatibil-
ity can also be exploited by polyinstantiating implemen-
tations to significantly reduce the amount of redundant in-
stantiation that would otherwise be required.

3.11 Restrictions

BitC imposes a value restriction [4] on polymorphism. A
binding is only permitted to be of polymorphic type if its
defining expression is a syntactic value.

As is usual in let-polymorphic languages, polymor-
phic function arguments cannot be used polymorphically
within the function. For example, the following function
is disallowed:

(def (foo f)
(pair

(f (cons 1 (cons 2 nil)))
(f (cons true (cons false nil)))))

4 Type Classes and Qualified Types

A type classdefines an n-ary relation on types, and pro-
vides a means for specifyingad hocpolymorphism. Every
type class is parameterized overn≥1 types, and defines a
set of methods over those types. Type classes provide a
form of opentype-directed operations: a user can add a
new member to the relation established by a given type
class by providing a new instantiation of the type class.

Closely connected with type classes is the notion ofquali-
fied types. For example, consider the following definition
of list-max :
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(def (list-max x)
(switch tmp x

(nil (raise ValueError))
(cons

(if (null? tmp.cdr)
tmp.car
(let ((m (list-max tmp.cdr)))

(if ( >= tmp.car m)
tmp.car m))))))

which is typed as:

fn (list(’a)) - > ’a
where Ord(’a)

This type should be read informally as “list-max is a
procedure accepting lists of type’a and returning a value
of type ’a . It is defined over all types’a such that there
is an instantiation of theOrd(’a) type class.”

In this example,Ord(’a) is the type class that describes
types having a total order. That is: types over which the
procedure>= is defined. Obviously, it not semantically
sensible to request the greatest element of a list whose
element type does not have at total ordering.

Contrast this example with the following alternative:

(def (list-max gte x)
(switch tmp x

(nil (raise ValueError))
(cons

(if (null? tmp.cdr)
tmp.car
(let ((m (list-max tmp.cdr)))

(if (gte tmp.car m)
tmp.car m))))))

which is typed as:

fn (fn (’a, ’a) - > bool,
list(’a)) - > ’a

In this second example, the comparison operator is pro-
vided as an argument, and there is no requirement for ad-
ditional type constraints. Note, however, that in practice
any comparison function that might actually be passed in
this position is likely to depend on the<= operator in
some fashion, and is therefore likely to end up having a
qualified type.

4.1 Definition of Type Classes

A type class is defined by the abstract syntax:

(trait ( nm tv ... tv)
[ tyfn-declarations]
[:closed]
method-definitions)

where atyfn-declarationis a statement of functional de-
pendency between types [6]:

(tyfn ( tv ... tv) tv)

and each method definition takes the form:

nm : function-type

Each method is an abstract procedure that may be instanti-
ated for some particular type by a later use ofinstance .
The method may be invoked prior to the point where the
instantiation is visible. Each method defined by a type
class is introduced into the scope containing the type class
definition.

By providing an instantiation of a class over some partic-
ular set of types, the programmer simultaneously proves
(by example) that the set of types is a member of the class
and defines (by example) how the operations of the class
are implemented for that type. If the type class has been
marked “closed,” the instance definition must appear in
the same interface or module that contains the type class
definition.

Type functions, when present, indicate that there is a de-
pendent relationship between two or more types of the
type class relation. For example, the (incomplete) dec-
laration:

(trait (sample ’a ’b ’c)
(tyfn (’a ’b) ’c)
...)

states thatsample is a type relation over three types, but
also says that for any pair of types’a and’b there there
is one valid choice of’c .

4.1.1 Example:Eql

As a first example, consider the equality comparison oper-
ations. The type classEql defines a single element type
relation on types’a : describing whether the type is ad-
missable under equality. Some types — notably function
types — cannot be compared for equality. The definition
of this type class is written:

(trait Eql(’a)
== : fn (’a, ’a) bool)
!= : fn (’a, ’a) bool)
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which states thatEq. is the single element type relation
over all types’a that can be passed as arguments to==
and!= .

4.1.2 Qualification: Ord

A type class can also be introduced in qualified form. The
syntax for such a type class definition is:

(forall ( constraint ... constraint)
(trait

( nm tv ... tv))
[ tyfn-declarations]
method-definitions)

where each constraint takes the form:

( tc-name tv ... tv)

wheretc-name is a typeclass name. An example of this
use is theOrd type class:

trait Ord(’a)
where Eql(’a)

is < : fn (’a, ’a) ’a

This type class states thatOrd is the single element type
relation over all types’a that can be passed as arguments
to <. It also states that theOrd relation is only defined
for types that are also members of theEql relation (that
is: types that admit equality comparison).

Note that in the presence of this definition, the procedures
>, <=, and>= can be defined as:

(def ( > x y)
(not (or ( < x y) (== x y)))

(def ( <= x y)
(or ( < x y) (== x y)))

(def ( >= x y)
(or ( > x y) (== x y)))

all of which will be inferred to have the type:

fn(’a, ’a) - > bool
where Ord(’a)

This may seem like a very long-winded way of saying
that an orderable type is any type that can be passed to the
operators< and==. However, type classes are statements
aboutrelationsamong types. This may become clearer
with the following example.

Note that becauseOrd(’a) hasEql(’a) , the types:

fn(’a, ’a) - > bool
where Ord(’a), Eql(’a)

fn(’a, ’a) - > bool
where Ord(’a)

are equivalent. The second is stylistically preferred for
reasons of brevity. It is also more robust: in the (in this
example unlikely) event that the definition ofOrd should
be modified to depend on some other type class in place
of Eql the future, the first definition will mistakenly re-
tain an additional, unncessary type dependency, while the
second will continue to type check as intended.

Restriction: Qualified type relationships must be acyclic.

4.1.3 Example:tyfn

Need an example of type functions.

4.2 Instantiation of Type Classes

Whenever a type class method is invoked, the compiler
must identify some concrete member of the type class re-
lation that is sufficient to choose an appropriate imple-
mentation of that method. This is done by locating an
appropriate instantiation.

A type class instantiation is a demonstration by example
that some particular set of types satisfies the relation re-
quired by the type class. Type class instantiations are
defined by theinstance form. The abstract syntax of
instance is:

(instance tc-instance
function ... function)

(forall ( constraint ... constraint)
(instance tc-instance)

function ... function)

wheretc-instancetakes the form:

( typeclass-name type ... type)

For example, the definition:

(instance Ord(int32)
int32-ops. <)

states thatint32 is member of the type relationOrd be-
cause there is an instance functionint32. < that pro-
vides an implementation of the “less than” operation over
arguments of typeint32 . If the type class definition is
closed, all instance definitions must occur in the same in-
terface or module ad the type class definition.
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In practice, this definition is insufficient, because we must
first demonstrate thatint32 is a member of theEq rela-
tion (which is a superclass ofOrd ) In consequence, two
separate instantiations are required:

(instance (Eq int32)
int32-ops.==
int32-ops.!=)

(instance Ord(int32)
int32-ops. <)

A type class instantiation is deemed to be in scope for
purposes of procedure instantiation if it is defined by the
end of the outermost unit of compilation.

It is a compile time error to define two type class instances
covering the same concrete types unless one instance is
“preferred” to the other. Preference is determined by com-
paring the respective type variable instantiations position-
ally. Given two instances A and B over type variables
tv 1...tv n, instance A is preferable to instance B if there
exists some subset of the respective type variable instanti-
ations such that the instantiation under A is strictly more
concrete than the instantiation under B, and the two in-
stantiations are identical (modulo type variable renaming)
at all other positions. If this comparison does not (tran-
sitively) determine a most preferred instantiation, then no
instantiation is preferred and a compile time error is sig-
nalled.

4.3 Qualified Types

Constraints are now permitted only as the outermost form.
This section needs to be updated accordingly.

It is sometimes necessary to qualify the types of instances,
type classes, constructed type definitions, or value decla-
rations explicitly. A qualified type takes the general form:

(forall ( constraint ... constraint)
type)

Qualified types may appear only as the types of binding
patterns; they may not qualify expressions generally. For
example:

(def add1:(forall ((Num ’a))
(fn ’a ’a))

(lambda (x) ( + (the ’a 1) x)))

explicitly states that theadd1 procedure takes arguments
whose type admit+, and therefore must be members of
theNumtype class.

If multiple qualifications appear in the same binding pat-
tern, they must unify. The following is legal, if somewhat
obscure:

(def
(v1:(forall (Eql(’a)) ’a), v2:’b)
: (forall ((Num ’c))

((fn (’c) bool), ’b)) ...)

with the effect thatv1 receives the qualified type:

(forall (Eql((fn (’c) bool))
(Num ’c))

(fn (’c) bool))

which will ultimately fail to type check, because functions
are not admissable under value equality.

Qualifications may also be applied to structure and union
declarations, with the abstract syntax:

(forall ( constraints)
(struct ( struct-name tvars) [ :unboxed ])

nm1[ : t1] ... nmn[ : tn])
(forall ( constraints)

(union ( union-name tvars) [ :unboxed ])
C1 ... Cn)

Qualifications may similarly appear in the binding pat-
terns of structure, union, and value declarations.

4.4 Core Type Classes

BitC defines several core type classes. These classes
cover type relations that are required internally by the
type checker, or in some cases relations that cannot be
expressed within the language. All of these type classes
are closed, though not necessarily finite — the compiler
implements their membership internally.

4.4.1 ref-types

RefTypes(’a) is the type class consisting of all heap-
allocated types: boxed(’a) , (vector ’a) , and
string . Use of this type class is appropriate when a
structure or union should not be instantiated over value
types. Thenullable(’a) type is an example of this.

4.4.2 copy-compat

(copy-compat ’a ’b) is an equivalence relation
containing all pairs of types’a and ’b that are “copy
compatible”. That is: all types for which a value of type
’b may be assigned to a location of typemutable(’a) ,
and all types for which a formal parameter of type’a may
be passed an actual parameter of type’b .
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4.4.3 top-copy-compat

(top-copy-compat ’a ’b) is an equiva-
lence relation containing all pairs of types’a ,
’b such that ’a==’b , mutable(’a)==’b , or
’a==mutable(’b) . That is: types that are the same
ignoring top-level mutability.

5 Binding of Values

5.1 Binding Patterns

Binding patterns are used to bind names to values. They
appear in the definition of formal parameters and in bind-
ing forms such asdef , let , letrec , anddo . A binding
pattern consists of an identifier that is optionally qualified
by a type:

id
(the T id)
id : T

In top-level bindings (those introduced by a top-level
def , the id may be qualified by an interface bind-
ing name corresponding to some interface that the cur-
rent unit of compilation provides (Section 9.3). Thus, if
my.interface is an interface name, it is legal for a
source unit of compilation to contain:

// State that we are a provider
// of my.interface:
provide if my.interface
//...
// Define some variable declared
// in the interface:
(def (if.varname x)

( + x 1))

5.2 def

Variable and procedure bindings are introduced bydef :

(def bp e)
(def ( id [ bp1 ... bpn])

e ... e)

where eachbp is a binding pattern. In the first form, the
newly bound identifiers are not in scope within the body.
The second form permits recursive bindings. Identifiers
defined within a recursivedef are deemed “incomplete”
until the end of the enclosingdef form.

The right hand form of adef is evaluated to obtain a
value, which is then bound to the identifier on the left-
hand side.

Mutually recursive procedure definitions at top level can
be achieved either by use ofletrec or by declaring the
procedures ahead of their definitions.

5.3 Local Binding Forms

5.3.1 let

The let form provides a mechanism for locally binding
identifiers to the result of an expression evaluation. Each
identifier bound in alet form must appear exactly once
among the collection of binding patterns being bound.
Evaluation of the initialization expressions occurs in or-
der frome1 to en. The environment in which the expres-
sion(s) are evaluated does not contain the identifiers being
bound in the currentlet form.

The syntax oflet is:

(let (( bp1 e1)
...
( bpn en))

ebody-1
...
ebody-n)

One common form of these expressions is the one in
which the left hand patterns are simple identifier names,
as in:

(let ((x e1)
...
(y e2))

; x, y are bound in:
ebody-1
...
ebody-n)

The value of alet form is the value of the last form exe-
cuted within the body.

In similar languages,let is often presented as a form de-
rived from lamdba . In BitC, as in other let-polymorphic
languages, the value restriction for lambda arguments
means that this is not (quite) true.

5.3.2 letrec

The letrec form provides a mechanism for locally
binding identifiers to an expression value. Each identi-
fier bound in aletrec form must appear exactly once
among the collection of binding patterns being bound.
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Evaluation of the initialization expressions occurs in or-
der frome1 to en. The syntax ofletrec is:

(let (( bp1 e1)
...
( bpn en))

; Identifiers in bpi
; are bound in:
ebody-1
...
ebody-n)

The environment in which the expression(s) are evaluated
contains (via unification) the identifiers being bound in
the currentletrec form. This allowsletrec to bind
recursive procedure definitions:

(letrec
((odd

(lambda (x) ; odd
(cond ((= x 0) false)

(( < x 0) (odd (- x)))
(otherwise

(not
(even (- x 1)))))))

(even
(lambda (x) ; even

(cond ((= x 0) true)
(( < x 0) (even (- x)))
(otherwise

(not
(odd (- x 1))))))))

body)

The value of aletrec form is the value of the last form
executed within the body.

Within the defining expressions of aletrec form, use
of the identifiers being defined is subject to the same re-
strictions described fordef . This ensures that cyclical
constant data cannot be introduced.7

5.3.3 local defininitions

Thedef form may be used to introduce local definitions
in any expression sequence, provided the local definition
is not the last form of the sequence. For this purpose,
the bodies ofbegin , lambda (including those implied
by derived form rewrites),let , letrec , while , or
do-while constitute expression sequences.

Local def is a derived form. The canonical rewriting of
the localdef form using core language constructs is:

(begin ...

7 Cyclical constants impede termination reasoning in the prover.

(def id e def ) e 2 [...]) = >

(begin ...
(let ((id e def ))

e2 [...]))
(begin ...

(def (id [args]) e def ) e 2 [...]) = >

(begin ...
(letrec ((id (lambda(args) e def )))

e2 [...]))

This rewrite proceeds left to right. Successive definitions
are gathered intolet or letrec forms that are progres-
sively more deeply nested, which means that later local
definitions of an identifier shadow earlier definitions.

5.4 Value Non-Recursion

In any recursive binding (introduced byletrec or def )
such as:

(def bp e)

if id is an identifier that appears in the binding pattern
(and is therefore incomplete), free occurrences ofid in
e must occur only within alambda body. This ensures
thatid will be initialized before it is used.

This restriction intentionally prevents infinitely recursive
data constant definitions.

5.5 Static Initialization Restriction

I continue to look for a more rigorous way to express the
following requirement.

Statically declared (global) variables must be initialized
before the main entry point is entered. This presents a
challenge of specification. The language definition must
impose a sufficient ordering constraint on initializationsto
ensure that no initializer can depend (transitively) on any
uninitialized variable. To ensure this, we introduce the
notions of “compile-time evaluable” and “compile time
applicable” expressions, and the restriction that every ini-
tializing expression of a statically declared variable must
be compile-time evaluable.8 Informally: it must be possi-
ble for the compiler to evaluate the initializing expression
at compile time without (conservatively) referencing any
uninitialized variable.

Literals are compile-time evaluable.

8 This notion is conceptually related to the Standard ML notion of
“syntactic constants,” and achieves the same goal. The definition of
“compile-time evaluable” is slightly richer, and allows for more ex-
pressive initializing expressions.
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A locally bound identifier is compile-time evaluable ex-
actly if its initializing expression is compile-time evalu-
able. It is compile-time applicable exactly if the return
value of its defining expression is compile-time applica-
ble.

A globally bound identifier is compile-time evaluable pro-
vided its definition is lexically observable and compile-
time evaluable. By “lexically observable,” we mean that
either (a) it appears as a lexically preceding definition in
the same unit of compilation, or (b) there exists some
chain of interfacesI 0...I n such that the global identifier
is defined inI n, the unit definingout imports I 0, I 0
importsI 1, I 1 importsI 2 ... andI n-1 importsI n.

A globally bound identifier is compile-time applicable
provided it is of function type, it is lexically observable,
and all expressions appearing in its defininglambda
form are compile-time evaluable. For purposes of this
analysis, it is assumed that any formal parameter of the
function is both compile-time evaluable and (if of func-
tion type) compile-time applicable.

Any expressionother thanan application or an assign-
ment is compile-time evaluable provided that all of its free
identifiers are compile-time evaluable.

An application is compile-time evaluable provided that
(a) the expression in the function position is compile-time
evaluable, (b) all of its arguments are compile-time evalu-
able, and (c) any arguments of function type are compile-
time evaluable.

An assignment (as withset! ) is compile-time evaluable
provided its expression isboth compile-time evaluable
and (if of function type) compile-time applicable. This
prevents later assignments from altering the compile-time
evaluability of previously defined identifiers.

Dangling:

The result of an expression evaluation (including appli-
cation and constructor application) is observably known
if (a) the definitions of all identifiers that are free in the
expression are observably known, and (b) any procedure
that is applied is observably applicable. Requirement (b)
is satisfied by definition for all type constructors.

Note that these definitions are conservative with respect to
mutability. Because no initializing expression can refer-
ence an observably unknown value, nor perform an appli-
cation that is not observably applicable, it follows that no
assignment performed from within an initializing expres-
sion can cause an identifier to transition from observably
known to observably unknown.

6 Declarations

The proclaim form is used to provide opaque value
declarations. The declaration:

(proclaim x:int32)

states thatx is the name of a value of typeint32 whose
definition and initialization is provided by some imple-
menting unit of compilation. This form can legally ap-
pear only at top level within a source unit of compilation
or within an interface.

The identifier declared by aproclaim form is consid-
ered incomplete. If a completing definition is later pro-
vided within the same compilation unit, the identifier is
considered complete in the balance of the defining com-
pilation unit after the the close of its defining form. An
incomplete declaration may be used within a procedure,
but may not be used as part of a top-level initializer (see
def , Section 5.2).

It is occasionally necessary to make reference to proce-
dures or values that are implemented by an externally pro-
vided runtime library. This may be accomplished by an
external declaration:

(proclaim proc:(fn (int32) char)
external)

(proclaim proc:(fn (int32) char)
external ident)

This has the effect of advising the BitC compiler that no
definition of this identifier will be supplied in BitC source
code. It is primarily intended to support portions of the
BitC runtime library. Use of this mechanism for other
purposes is strongly discouraged, and we reserve the right
to revise this syntax incompatibly in future revisions of
the BitC specification.

If a proclaimed external procedure provides an optional
trailing ident , this identifier will be used verbatim in
the generated code in place of the normal identifier name
generated by BitC. The trailing identifier is permitted only
if the external procedure has non-polymorphic type.

7 Expressions

7.1 Literals

Every literal is an expression whose type is the type of the
literal (as described above) and whose value is the literal
value itself.
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7.2 Identifiers

Every lexically valid identifier is an expression whose
type is the type of the identifier and whose value is the
value to which the identifier is bound.

7.3 sizeof , bitsizeof

Thesizeof andbitsizeof forms report the size, in
bytes (respectively bits), of a type. When applied to ex-
pressions, they report the size of thetypeof that expres-
sion. The expression is typed by the compiler, but it is not
evaluated.

sizeof( e)
sizeof( T)
bitsizeof( e)
bitsizeof( T)

The return type ofsizeof , bitsizeof is word .

7.4 Type-Qualified Expressions

Any expressione may be qualified with an explicit result
type by writing either of

(the T e)
e : T

whereT is a type. This indicates that the result type of
the the form is constrained to be of typeT. The the
form is syntax, its expression argument is not conveyed
by application, and is therefore not subject to copying as
a consequence of type qualification.

The resultvalueof the expression is not changed by type
qualification, except to the extent that a type restriction
may lead the inference engine to resolve the types of
other expressions and the selection of overloaded prim-
itive arithmetic operators in ways that produce different
results.

Syntactic Restriction Thee: T convenience syntax is
not permitted in combination with the member selection
convenience syntax “.”. The sequence of grammar expan-
sions:

expr - > expr.Id
expr - > expr: type.Id
expr - > expr:Id.Id.Id

ˆ

leads to a shift/reduce conflict at the indicated position.
The grammar resolves this by disallowing the helper type-
qualification syntax in this context. If required, a type

qualification in this context can be obtained using either
of the following alternatives:

(the T e).Id
(member e: T Id)

7.5 Value Constructors

7.5.1 unit

The expression:

()

denotes the singleton unit value.

7.5.2 MakeVector

The expression:

(MakeVector elen einit)

creates a new vector whose length is determined by the
value of the expressionelen, which must evaluate to a
value of typeword . The argumenteinit must be a
function from word to some typeT, where the vector cre-
ated will be of type(vector T) . The initializer value
for each cell will be obtained by invoking the procedure
einit a total ofelen times, passing as an argument the
index of the vector position to be initialized. The proce-
dureeinit should return the desired initializer value for
the corresponding position.

For example, the procedurelist- >vector may be
written as:

import bitc.list as ls
(def (list- >vector lst)

(MakeVector
(length lst)
(lambda (n)

(ls.list-nth lst n))))

Care should be taken to ensure that the type returned by
the initializer function is mutable if the slots of the vector
are intended to be mutable.

7.5.3 array, vector

The expressions:

(array e0 ... en)
(vector e0 ... en)
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create a new array (respectively, vector) whose length is
determined by number of arguments. The first argument
expression becomes the first cell of the created array (re-
spectively, vector), the second becomes the second, and
so forth. All expressions must be of like type.

7.5.4 Convenience Syntax

Derived forms

The following are right-associative convenience syntax
for types defined in the standard prelude:

(a,b) = > (pair a b)
(a,b,c) = > (pair a (pair b c))

7.6 Expression Sequences

The expression:

(begin e1 ... en)

executes the formse1 throughen in sequence, where
each form is an expression. The value of abegin expres-
sion is the value produced by the lastexpressionexecuted
in the begin block.

7.7 Labeled Sequences and Escape

The expression:

(block ident e1 ... en)

executes the formse1 throughen in sequence, where
each form is an expression. The value of ablock expres-
sion is the value produced by the lastexpressionexecuted
within the block.

Within the body of theblock form, the identifierident
is lexically bound as an escape label, and the expression

(from ident return e)

Causes an immediate return from theblock with the
value computed by the expressione. Control does not
continue past the end of this form.

The identifierident must be in scope as an escape label,
and theblock and its associatedreturn-from must
appear within the body of the same lambda form. That
is: thereturn-from maynotappear within alambda
that is in turn nested within ablock .

7.8 Iteration

Derived form

BitC provides the looping constructloop , which condi-
tionally evaluates its body multiple times.

(loop (( bp1 einit-1 estep-1)
...
( bpn einit-n estep-n))

( etest eresult)
ebody-1
...
ebody-n)

Do is an iteration construct taken from Scheme [8]. It
specifies a set of variables to be bound along with an ini-
tializer expression and an update expression for each vari-
able. Evaluation of theloop form proceeds as follows:

The einit-i expressions are evaluated in order in the
lexical context containing thedo form. In this context,
the variables bound by the loop have not yet been bound.
All other expressions are evaluated within an inner lexi-
cal context that includes theloop -bound variables. After
all of the initialization values are computed in order, the
loop -bound variables are bound to the initial results in
parallel, and body processing begins.

At the start of each pass over the body, the expression
etest is evaluated. If this expression returnstrue, then
eresult is evaluated and its result returned. Otherwise,
the expresions of the body are evaluated in sequence.

At the end of each execution of the loop body, the
estep-i expressions are evaluated in sequence. Once all
of the expression values have been evaluated, theloop -
bound variables are bound to the newly computed results
in parallel and a new pass is initiated over the loop body
as previously described.

The execution of a given pass of the loop body can be
terminated immediately by the:

(continue)

form. This causes an immediate transfer of control to the
end of the nearest enclosing loop body. Note that the ini-
tializer, step, test, and result expressions arenot part of
the loop body.

The loop form is not let-polymorphic. In consequence,
the binding patterns bound within thedo form are not
polymorphic bindings.

7.9 Interface Member Reference

If if is an identifier naming an interface binding estab-
lished throughimport , andid is an identifier defined in
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that interface, then either of:

(member if id)
if. id

is an expression that returns the value of that identifier.
The returned value is a location, and can be used as an
argument toset! .

7.10 Structure, Repr Field Reference

If eloc is a location expression of structure or repr type,
andfield is an identifier naming some invariant field in
that type then either of:

(member eloc field)
eloc. field

is an expression that returns the field value.member is a
syntactic form. The returned value is a location, and can
be used as an argument toset! .

7.11 Union, Repr Tag Reference

If eloc is a location expression of union or repr type, and
tagid is an identifier naming some union discriminator
tag in that union or repr type then either of:

(member eloc tagid)
eloc. tagid

is a boolean expression that returns true exactly if the tag
value of the corresponding tag istagid .

7.12 Array and Vector Expressions

7.12.1 Array, ArrayRef, and Vector lengths

If e is an expression of array, ArrayRef, or vector type,
then

e.length

returns aword whose value is the number of elements in
the array, ArrayRef, or vector.

7.12.2 Array, ArrayRef, and Vector indexing

If e is an expression of array, ArrayRef, or vector) type,
andei is an expression with result typeword , then:

e[ ei]

returns theei’th element of the array, ArrayRef, or
vector. If the valueei is greater than or equal to
the length of the array, ArrayRef, or vector), then a
IndexBoundsError exception is thrown.

Note that type inference for these types is currently in-
complete. In the absence of declaration, the typevector
will be inferred for e. Since the typeArrayRef can
only be declared at parameters and is never inferred, a
surprising inference result probably means that something
needs to be declared as an array type. Future extensions of
BitC are expected to provide generalized accessors, after
which this inconvenience will be (backwards compatibly)
resolved.

7.13 Procedure Values

Procedure values are introduced by the keywordlambda .
In contrast to Scheme, Haskell, and Standard ML, BitC
procedures take zero or more arguments. The syntax of a
procedure definition is:

(lambda ([ bp1 ... bpn]
e1 ... en)

where eachbpi is a binding pattern matching the formal
parameters of the procedure ande1... en is the body
of the procedure. The return value of the procedure is
the value computed by the last expression executed in the
body.

Each formal argument binding pattern defines a set of
variable bindings that are in scope in the body of the
lambda. Each formal argument binding pattern is uni-
fied with its corresponding actual parameter. Any iden-
tifier that is free in the binding pattern is unified with the
structurally corresponding element of its associated actual
parameter.

BitC argument and return value passing are “by value.”
Formal argument and return values must be of value type,
which means thatreferencescan be passed, but the values
denoted by these references cannot. The “by value” policy
also implies that local variables arecopiesof their initial-
izing expressions, which may yield surprising results if
the initializer is of mutable type. Alet binding is not an
alias for its initializer. Alet binding of a (top level) mu-
table value cannot simply be substituted byβ-reduction
into the body of thelet form.

7.13.1 By-Reference Parameters

By-reference parameters provide an optimized argument
passing mechanism for parameters. A by-reference for-
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mal parameter is analias of the passed argument; the
internal implementation passes a pointer to the argument
rather than a copy of the argument. A by-reference param-
eter may be a reference to an component of an aggregate
type, such as a field or a vector member.

The BitC specification permits the representation of a by-
reference parameter to be either one word or two. This is
intended to simplify the handling of inner pointers by the
garbage collector.

By-reference parameters can escape only as part of a first-
class procedure, but the lifetime of a by-reference param-
eter cannot exceed the lifetime of its containing scope.

The formal parameters of a function can be declared as by
by-reference parameters as in:

(lambda (x:(ByRef τ ) ...) ...) // or
(def (f x:(ByRef τ ) ...) ...)

A ByRef declaration can only appear as a qualifier for
the type of a parameter. This is a syntactic restriction.

A function with a formal parameter declared as(ByRef
τ ) can only be apllied to an actual argument of typeτ .
That is, unlike normal parameters, an actual argument of
typemutable( τ ) where the formal parameter is of type
τ or vice versais not permitted [Here,τ 6= mutable(τ ′)].

7.14 Explicit Procedure Return

Derived form

The expression:

(return e)

causes the nearest enclosinglambda form to immedi-
ately return the value computed by the expressione. This
form executes a form of labeled break. Control does not
continue past the end of this form.

Derivation The canonical rewriting ofreturn requires
that the containinglambda also be rewritten:

(lambda ( args) body) = >

(lambda ( args)
(block return body))

(return e) = >

(from return return e)

7.15 Function Application

The expression:

( efn [ e1 ... en])

denotes function application. The evaluation of the ex-
pressionefn must yield a procedure value.

Note that the identifierfn may either evaluate to a pro-
cedure or may name a value constructor for a named con-
structed type.

7.16 Conditional Execution

7.16.1 if

Derived form

Theif form is used to represent conditional control flow:

(if etest ethen eelse)

Whereetest, ethen, andeelse, are BitC expressions.

The value of anif form is either the value of theethen
form or the value of theeelse expression. Exactly one
of theethen oreelse forms is evaluated.

The value returned by theetest expression must be of
boolean type.

The types of theethen andeelse must be compatible.

Derivation The canonical rewriting ofif is:

(if etest ethen eelse) = >

(case etest
(true ethen)
(false eelse))

(if etest ethen) = >

(case etest
(true ethen ())
(false ())

7.16.2 when

Derived form

The when form is used to represent conditional control
flow when only one condition is of interest:

(when etest ethen ...)

Whereetest andethen are BitC expressions.

The etest expression must compatible with boolean.
There are no restrictions on the types of theethen forms.
The type of awhen form is Unit.

Theethen forms are evaluated only if the value of the
etest form is true .

Derivation The canonical rewriting ofwhen is:

(when etest ethen ...) = >
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(case etest
(true ethen ... ())
(false ()))

7.16.3 not

Derived form

Thenot form is used to invert a boolean result. The form:

(not e)

returns true if its argument evaluates to false, and false it
its argument evaluates to true.

Derivation The canonical rewriting ofnot is:

(not e) = >

(if e false true)

7.16.4 and

Derived form

Theand form is used to perform lazy expression evalua-
tion. The form:

(and e1 e2 ... en)

returns true if every one of the expressionse1 ... en
evaluates as true. Expressions are evaluated left to right.
Each expression must return a result of typebool . If any
expression evaluates asfalse , no further expressions are
evaluated. For this reason, theand form cannot be imple-
mented as a procedure.

Derivation The canonical rewriting ofand proceeds by
first rewriting multiargumentand forms into forms of no
more than two arguments:

(and e1 e2 ... en) = >

(and e1
(and e2 ... en))

and then rewriting each two argumentand form as:

(and e1 e2) = >

(if e1 e2 false)

7.16.5 or

Derived form

The or form is used to perform lazy expression evalua-
tion. The form:

(or e1 e2 ... en)

returns true if any of the expressionse1 ... en eval-
uates as true. Expressions are evaluated left to right. Each
expression must return a result of typebool . If any ex-
pression evaluates astrue , no further expressions are
evaluated. For this reason, theor form cannot be im-
plemented as a procedure.

Derivation The canonical rewriting ofor proceeds by
first rewriting multiargumentor forms into forms of no
more than two arguments:

(or e1 e2 ... en) = >

(or e1
(or e2 ... en))

and then rewriting each two argumentor form as:

(or e1 e2) = >

(if e1 true e2)

7.16.6 cond

Derived form

The cond form is used to represent conditional control
flow where there are multiple possible outcomes:

(cond ( etest1 e1)
( etest2 e2)
; ...
(otherwise en))

Theetest-i expressions are evaluated in sequence un-
til one of them evaluates as true. The correspondingei
is then evaluated and its result becomes the value of the
cond expression. Subsequentetest-i expressions are
not evaluated. Exactly one of theei expressions will be
evaluated. Theotherwise clause isnot optional.

Any cond form can be rewritten as a chain ofif forms
without alteration to meaning.

The values returned by theetest expressions must be of
typebool . All of the expressionsei must be of compat-
ible result types.9

Derivation The canonical rewriting ofcond proceeds
by removing each conditional expression in turn:

(cond ( etest1 e1)
( etest2 e2)
; ...
(otherwise en)) = >

(if etest1
e1

9 If we choose to relax the type compatibility rules forif , we should
relax them here too.
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(cond ( etest2 e2)
; ...
(otherwise en)))

until only two cases remain in thecond expression, the
last of which has a true predicate. This final cond is rewrit-
ten as:

(cond ( etest1 e1)
(otherwise en)) = >

(if etest1
e1
en)

7.17 Mutability

The expression:

(set! eloc eval)

is used to set the value of a mutable entity. The expres-
sion eloc should evaluate to a location of mutable type
mutable( T) . The expressioneval should evaluate to an
assignment-compatible typeT. The return value ofset!
is the unit value.

7.18 References

7.18.1 dup

If e is an expression of non-procedure type, the expression

(dup e)

returns a reference to a heap-allocatedcopyof the value
returned by the expressione.

7.18.2 deref

If e is an expression of reference typeboxed( τ ) , then:

(deref e)

returns the value named by the reference.deref is a
syntactic form. The returned value is a location, and can
be used as an argument toset! .

The expression:

eˆ

is a convenience shorthand for

(deref e)

7.19 Value Matching

The switch form provides a mechanism for obtaining
access to variant fields of a value of union or repr type.
The syntax ofswitch is:

(switch id e
( match1 e1.1 ... e1.n1)
( match2 e2.1 ... e2.n2)
; ...
( otherwise eother))

where eachmatchform is either a single union tag identi-
fier (constructor) or a parenthesized sequence of union tag
identifiers. Multiple union constructors may be matched
by a single clause only if all matched constructors domi-
nate identical fields. Since the type and bit-offsets of iden-
tically named fields within repr-constructors are required
to be the same, multiple repr-constructors can be matched
in a single clause. In this case, only the common fields of
all matched repr-constructors will be visible for selection
within ei.i... ei.i.

A switch expression performs a value match on the tag
fields of the expressione (or if e is of repr type, on
the tags of its outermost body) in sequence. The first
matchi expression containining a matching tag value
is selected, and the corresponding expression sequence
ei.1... ei.ni is executed in an environment wherex
is a value of anonymous type. For every field of the origi-
nal expresion type such that all of its containing union or
repr tag qualifications are satisfied, the anonymous type
contains a field with the same name denoting the same
portion of the The value ofx is a copyof the (discrimi-
nated) value returned by the expressione.

An expression of anonymous type may only appear only
as the expression argument of themember form, or as the
expressione of a switch form. It may not be passed as
an argument, rebound, or returned as a result value.

If an otherwise form is present, then the body of the oth-
erwise clause is executed in an environment wherex is
bound to acopyof the (undiscriminated) value returned
by the expressione.10

If the matches performed by a givenswitch are exhaus-
tive, theotherwise clause can be omitted.

For purposes of literal case analysis, theswitch form
will also accept expressionse of primary scalar type and
matching values that are literals of the corresponding type.

10 Technically, this need not be a copy, and we are reviewing whether
the copy should be bypassed in the otherwise form.
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7.20 Exception Handling

7.20.1 Try/Catch

Thetry form is used as the control flow resumption point
of a throw form. When athrow occurs, control re-
sumes at the nearest dynamically containingtry form
whose matching patterns match the name of the exception
that was thrown.

The try block syntax is:

(try expr
(catch id [( tagid1 e1)

...
( tagid2 e2)
(( tagidx tagidy) exy)]
[(otherwise en)]))

In the absence of a programmer-specifiedotherwise
clause, thecatch block behaves as though the clause

(otherwise (throw id))

had been present.

If the evaluation ofexpr does not cause an exception, the
value of thetry block is the value ofexpr.

If the evaluation ofexpr causes an exception to be
thrown, execution proceeds as if the catch block were
rewritten to the procedure:

(lambda (e:exception)
(switch nm e

( tagid1 e1)
( tagid2 e2)
...
(otherwise eotherwise)))

and this procedure were applied to the received exception
value. The return value from this procedure is returned as
the value of thecase expression.

7.20.2 Throw

The throw form is used to raise an exception. It per-
forms a non-local control flow transfer to the most recent
(nearest temporally enclosing)try block, with the effect
that the thrown exception value is received by the corre-
spondingcatch block as described above. Thethrow
expression has no return value type. The form:

(throw e)

throws the exception computed by the expressione,
which must be an expression of typeexception or of

some concrete exception type. The latter case permits the
locally bound identifier in a discriminated catch block to
be passed directly to throw so that a pre-existing exception
can be re-thrown without allocating new storage.

8 Locations

This section is a work in progress, but it is as accurate as
I (shap) can currently make it. Corrections, comments,
identification of omissions, and so forth are welcome.

BitC is a language supporting mutation. Because of this,
a specification of the type system and expression evalua-
tion semantics of BitC does not entirely account for how
the behavior ofset! interacts with the behavior of ac-
cessor expressions such asa[i] , member, deref , and
expressions consisting of a single identifier. In particular,
the characterization ofset! as

(set! e1 e2)

does not account for howe1 can be mutated in place, be-
cause the language specification (to this point) does not
distinguish between expressions that generate new values
(in the sense of values that occupy new storage) and ex-
pressions that return pre-existing values. To address this,
we present here an informal characterization of locations
in BitC.

8.1 Expressions Involving Locations

The following expressions accept locations (addresses of
cells) in the indicated positions, and return locations as
their result:

id
loc[ ndx]
(member loc ident)
(deref e)

in addition, theset! form requires a location as its first
argument, and returns the unit value.

(set! loc e)

8.2 Implicit Value Extraction

When a value of location type appears in any context ex-
pecting an expression, the location is implicitly derefer-
enced to give the expected value as a result. The “value
extraction rule” applies both to return values and to ap-
plications, with the consequence that “bare” locations can

31



never escape their binding frame in either the upward or
downward directions. Only those forms identified explic-
itly above as accepting and returning locations are excep-
tions to the value extraction rule.

For example, in the expression:

(let ((a b)) ...)

the expressionb evaluates (internally) to a location, but it
is then discovered to appear in a binding context requiring
an expression, so the value at that location is returned in-
stead. Similarly, the expressiona evaluates (internally) to
a location, allowing it to be initialized in place.

8.3 Generalized Accessors

Note

This section describes a possiblefuture en-
hancement to the language. It is considered ex-
perimental, and it is possible that it will never
be implemented at all.

It is customary for programs that introduce “collection”
types to provide operations for both insertion and lookup.
It would be exceedingly convenient if the lookup opera-
tion could be used to support efficient access as well, for
example:

(btree-insert bt key some-obj)
(btree-lookup bt key).field

That is, it is sometimes appropriate for the lookup func-
tion could return a location.

This cannot be supported for local objects, but it is possi-
ble for the type system to successfully infer the distinction
between local object locations and global object locations.
In this case, we could relax the value extraction rule so
that it wouldnot apply to return values, with the effect
that we could write an accessor function such as:

(def (4th-elem vec)
vec[4])

4th-elem: (fn ((vector ’a word))
(location ’a))

Given such an accessor function, it would even be possi-
ble to write:

(set! (4th-elem vec) 5)

If introduced, this feature would need to be handled
with care. It would be all too easy for a binary tree’s

lookup handler to return the internal node structure, with
the effect that external code could modify the stored
key “in place,” violating the integrity of the binary tree.
Because of this risk, it is unclear whether the type
(location T) should ever be inferred automatically.

9 Interfaces

BitC recognizes two kinds of compilation units: interfaces
and modules. An interface contains a public set of defini-
tions and declarations. From the perspective of an im-
porter, it describes the identifiers that are published by
one or more providing bodies of code. From the imple-
mentor perspective, an interface describes a set of decla-
rations that must be exported by some providing module.
Interfaces provide the only means by which functions and
types may be shared across multiple units of compilation.

A module contains a private set of definitions and delara-
tions. In most cases, these are not visible outside of the
scope of the module. The exception is when a module
imports some interface and also declares explicitly that it
provides definitions for one or more public declarations of
that interface.

9.1 Specifying an Interface

An interface unit of compilation consists of abitc
version form followed by a singleinterface form.
The interface form wraps a sequence of imports,
aliases, definitions, and declarations that describe the pub-
lic identifiers associated with that interface. For example,
the interface:

interface sample {
(def x 1) ; constant definition
(union (list ’a):boxed

nil
(cons ’a (list ’a)))

(struct (tree-of ’a):boxed)
(proclaim y : int32))
(struct S :opaque (int32 i))

}

Defines a constantx with value 1, defines the now-
familiar list type, declares thattree-of is an opaque
reference type defined in some (unspecified) source unit
of compilation, and thaty is a value of typeint32 de-
clared in some (unspecified) source unit of compilation.

Note that the declaration oftree-of provided by this
interface is incomplete and therefore opaque. Because
tree-of is a reference type, clients of this interface
can declare variables and arguments of typetree-of ,
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but cannot instantiate them because no function returning
typetree-of is exposed by this interface.

Note further thatval-type is both incomplete and un-
declarable, because it is a value type. Clients may declare
arguments of type

boxed(sample.value-type)

but not of type value-type , because the size of
value-type is not revealed.

9.2 Importing an Interface, Aliasing

In order to use the identifiers supplied by an interface, the
client unit of compilation must first import those identi-
fiers using a top-levelimport form. There are three such
forms. It is a compile-time error if any local identifier
bound by animport is already bound.

9.2.1 Hygienic Import

The syntax of the hygienic import form is:

import if-name as local-name

whereif-name is an interface name andlocal-name
is an identifier to be bound in the current scope. If
pubName is a name published byTheInterface , then
after executing

import TheInterface as myName

it is legal to writemyName.pubName at any identifier
use occurrence. This is referred to as ahygienic alias.
Hygienic aliases may appear in any use occurrence where
an identifier might ordinarily appear. When a hygienic
alias names a provided symbol, the hygienic alias may
also appear as the defined identifier of a top-level defi-
nition. Hygienic aliases maynot appear in the defined
position of alocal definition.

Hygienic import preserves a strong distinction between
the namespace of the imported interface and the local
namespace of the importing unit of compilation. This is
appropriate when importing interfaces that are not fully
mature, or for which the possibility of future name colli-
sions as a result of interface evolution must be defended
against.

9.2.2 Qualified Import

The qualified import syntax importsselectedpublic iden-
tifiers from a specified interface. The selected identi-
fiers are aliased (after optional re-naming) in the top-level

namespace of the importing unit of compilation. The syn-
tax of this form is:

import if-name ident-or-remap+

whereident-of-remapis either some identifier published
by the imported interface or it is:

localName = pubName

If a single identifier is given, the local alias is bound using
the public name. If the “as” variant is given, the local alias
is bound under the specified local name instead.

It is a compile-time error to form more than one top-level
alias in a single unit of compilation for the same public
name in a given interface.

9.2.3 Promiscuous Import

The promiscuous import form imports all public identi-
fiers from the imported interface that do not already have
top-level aliases in the importing unit of compilation. The
syntax of this form is:

import if-name

This form does not support identifier re-naming on im-
port. Name collisions resulting from import can, if nec-
essary, be managed by first performing a qualified import
that re-maps the colliding public name, and then perform-
ing a promiscuous import to import the remainder of the
interface.

9.2.4 Compile-Time Import Resolution

To locate the source representation of an imported in-
terface, the compiler shall attempt to locate a file
name.bitc , wherename is the identifier used to name
the corresponding interface. The default search path used
for this resolution is not defined by this standard, but shall
provide a resolution for every interface specified in the
language definition. It is permissable for a compiler to im-
plement some or all of the default search path internally,
without reference to any external file name space.

Every file-based compilation environment for BitC shall
provide a command-line option-I that enables the build
environment to append directories to the interface search
path.

9.2.5 Error Reporting

When reporting errors, a conforming BitC compiler
shouldalways report the defining name of the type or
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variable. It mayoptionally report the alias (use) name
by which the type or value was referenced. Only defin-
ing names should be exposed for resolution by the linker.
For identifiers defined or declared within an interface, the
defining name is the fully qualified name of the identifier
with respect to its interface. For all other identifiers, the
defining name is the one that appears in the defining form.

The BitC interface system provides primarily for separate
compilation and name hiding. In contrast to the module
system of Standard ML [9], BitC interfaces are purely a
tool for namespace control.

9.3 Providing an Interface

A source unit of compilation can indicate that it provides
definitions for one or more declarations of an interface
by means of theprovide declaration. The syntax of
provide is:

provide interface-name ident+

Where eachident is an identifier proclaimed by the
named interface. That is: the name as specified in the
interface rather than any alias of that name that may have
been locally bound.

The effect ofprovide is to authorizethe definition of
the named identifiers. The definitions must then be de-
fined by binding an arbitrarily selected local alias of the
public identifier. For example:

bitc version "0.11 +"
import sample as ln
provide sample TreeOf

(struct (ln.TreeOf ’a):boxed
left : (optional

(ln.TreeOf ’a))
right : (optional

(ln.TreeOf ’a))
height
value : ’a)

The requirement that an arbitrary alias be defined can re-
sult in strange appearances. The following alternative def-
inition is equivalent in all respects to the one above:

bitc version "0.11 +"
import sample as ln
provide sample TreeOf
(use (ln.TreeOf as mumble))

(struct (mumble ’a):boxed
left : (optional (mumble ’a))
right : (optional (mumble ’a))

height
value : ’a)

It is not required that a single source unit of compilation
provide the entirety of an interface. For sufficiently large
interfaces (e.g. the standard BitC library), this would be
impractical. However the flexibility to define an interface
with a collection of independently compiled source units
of compilation demands some means to prevent circular
type and value declarations. Circular value definitions are
precluded by the type-level definition observability rule

9.4 The Reserved Interfacebitc

The interface name “bitc” is reserved for use by the BitC
implementation.

10 Source Modules

A source unit of compilation consists of one or more mod-
ules. Each module consists of amodule form containing
an arbitrary sequence of imports, definitions, declarations,
and use forms that arenot interface forms.

The module syntax is:

module module-name? docstring? { mod form+ }

A source module constitutes a scope. Except for those
definitions that are explicitly exported usingprovide
(Section 9.3), identifiers bound in a module are not vis-
ible in other source modules.

11 Storage Model

This entire section had become hopelessly stale, and
needs to be rewritten.

12 Pragmatics

12.1 Closure Construction

BitC seeks to enable the crafting of programs that do not
make unexpected use of the heap, and which can make use
of lambda andletrec forms to describe rich [mutual]
tail recursions. Becuase of this, it is necessary to state the
minimaldegree of closure analysis that every BitC com-
piler is required to perform when constructing closures,
and more generally, the conditions under which closures
will be formed at all.
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Closure construction proceeds in two phases. During the
initial phase, free identifiers are added to the closure and
the program is rewritten to heap-allocate closed values if
that is necessary. During the second phase, a check is
performed to determine whether the resulting closure is
not actually necessary.

Phase 1 Given an identifierid appearing free in a
lambda form L:

1. Globals If id resolves to a globally defined identi-
fier, it will not be added to any closure record.

2. Closed Lambda Forms If id:t is an immutably
bound identifier whose initializing form is alambda
term (i.e. a literallambda , not merely an expres-
sion returning a value of function type), andid ap-
pears in Lin non-applicative position, thenid , then
a corresponding field of type T is added to the closure
record, and this field is populated at closure construc-
tion time by acopyof id .

3. Shallow Immutables If id:T is a locally bound
identifier of shallow immutable type, then a cor-
responding field of type T is added to the closure
record, and this field is populated at closure construc-
tion time by acopyof id .

4. Shallow Mutables If id:T is a locally bound
identifier of shallow mutable type, then the program
must be rewritten in such a way as to heap-allocate
id , thereby converting it into a deep mutable value
that is shallow immutable. The resulting reference
id:boxed(T) is then closure converted as a shal-
low immutable identifier.

Phase 2 If a closure record was created in phase 1, but
all elements of that closure were added as a consequence
of rule 2 (closed lambda forms), then no explicitly allo-
catd closure record is either required or permitted. All of
the closed lambda forms can be represented using labels
without any intervening heap-allocated procedure objects.

Whether or not a closure record is fabricated for a given
lambda form L, if an identifierid resolves to a closed
lambda form, then any use-occurrence appearing in ap-
plicative position inL must be implemented by a call (or
if tail recursive, jump) to the associatedlambda form’s
labelrather than proceeding through any procedure object
that may have been allocated forid .

12.2 Tail Recursion

BitC requires a limited form of tail recursion. We do not
require fully proper tail recursion because this is difficult
to accomplish efficiently in C, and we wish to preserve

the ability to compile BitC programs into C for the sake
of portability.

Definition: Within a BitC form f , a formg occurs intail
position with respect to the formf if the evaluation of
g is the final evaluation (and therefore the return value)
computed by the formf . This definition is transitive. A
structural consequence of this relationship is that the type
of g is (copy compatible with) the type off .

An application of a functionf is said to betail recursive
if (a) it appears in tail position with respect to the body
of its most closely containinglambda body, and (b) it
is implemented in such a way as to re-use its containing
stack frame.

The BitC specificationrequires that certain procedure
calls appearing in tail position must be compiled using
a tail-recursive implementation:

• Within a letrec , calls to any function bound in the
letrec that appear in tail position within some func-
tion bound by theletrec must be tail recursive.

• Within any functionf , calls tof that appear in tail
position w.r.t. the body off must be tail recursive.
This is actually a special case of the first rule.

These requirements apply only to function calls whose
destination can be statically resolved by the compiler at
compile time. A BitC compiler is permitted, but is not re-
quired, to implement other function calls tail recursively.

II Standard Prelude

A range of types, type classes, and functions supporting
operations on primary types are defined in the BitC stan-
dard prelude.

This section needs to be defined.

The following types and values are defined in the BitC
standard prelude. The compiler is free to implement some
or all of these types internally, and is further free to rely on
internal knowledge of these types within the implementa-
tion.

13 Foundational Types

The prelude provides definitions for commonly used in-
tegral types. Under normal circumstances, the reader and
pretty printer conspire to hide the fact that these types are
union types.

// There is an open issue here: should
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// strings be primitive? Issue is unicode
// character size and long strings.
// Strings:
//(union string:unboxed (vector char))

// Pairs:
(struct (pair ’a ’b):unboxed

fst:’a snd:’b)

// Optional values:
(union (optional ’a):unboxed

none (some value:’a))

// Nullable pointers:
unboxed union nullable(’a)

where RefTypes(’a)
is Null

non-null is ptr : boxed(’a)

// Homogeneous lists:
(union (list ’a)

nil
(cons car:’a cdr:(list ’a)))

// Bignums
(union int:unboxed

(fix f:(bitfield int32 31))
(big b: boxed((bool, (vector word)))))

14 Foundational Type Classes

The standard prelude provides a number of standard type
classes:

// Equality comparison by identity:
(trait (EqComparison ’a)

eq : (fn (’a ’a) bool))

// Equality comparison by identity,
// with exceptional handling for
// numerics:
(trait (EqlComparison ’a)

eql : (fn (’a ’a) bool))

// Generalized equality:
(trait (EqualityComparison ’a)

== : (fn (’a ’a) bool)
!= : (fn (’a ’a) bool))

// Magnitude comparison
(forall ((EqualityComparison ’a))

(trait Ord(’a)
< : (fn (’a ’a) bool)
<= : (fn (’a ’a) bool)))

// Checked arithmetic
(forall (Ord(’a))

(trait (Arith ’a)
+: (fn (’a ’a) ’a)
-: (fn (’a ’a) ’a)

* : (fn (’a ’a) ’a)
/: (fn (’a ’a) ’a)
<<:(fn (’a word) ’a)
>>:(fn (’a word) ’a)))

// Ring arithmetic
(forall (Ord(’a))

(trait (Ring ’a)
R+: (fn (’a ’a) ’a)
R-: (fn (’a ’a) ’a)
R* : (fn (’a ’a) ’a)
R/: (fn (’a ’a) ’a)
R<<:(fn (’a word) ’a)
R>>:(fn (’a word) ’a)))

// Sign transformations
(forall (Ord(’a))

(trait Signed(’a)
negate: (fn (’a) ’a)
abs: (fn (’a) ’a))

III Formal Specification

15 Grammar

The section below gives the extended EBNF grammar
for the BitC language, including derived forms. Non-
terminals are shown in italics. Tokens are shown in regu-
lar face. The characters “{”, ” }”, and “|”, are quoted when
appearing as tokens. When appearing as a superscript,
the character “*” indicates “zero or more” occurrences,
the character “+” indicates “one or more” occurrences,
and the character “?” indicates “zero or one occurrences.”
These should be read as metasyntactic only when appear-
ing in a superscript. Note that parenthesis arenot meta-
syntactic in extended Backus-Nauer form, and should be
read as single-character tokens.

Within the EBNF productions below, the left and right
parenthesis, period, colon, commma, and single quote
characters should always be read as single character to-
kens. Spaces around these tokens have been omitted for
the benefit of typeset readability.

15.1 Categorical Terminals

The following categorical terminals are defined by the
regular expressions given in the respective sections:

Id Identifiers (Section 2.2)
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IntLit Integer literals (Section 2.5.1)

FloatLit Floating point literals (Section 2.5.2)

CharLit Character literals (Section 2.5.3)

StringLit String literals (Section 2.5.4)

15.2 Interfaces, Units of Compilation

start ::= version? interface
| version? module+

| version? implicit module
ifname ::= {Id. }* Id
interface ::=

interface ifname docstring? { def+) }
module ::=

module ifname? docstring? { mod def+ }
mod def ::= def | provide
implicit module ::= mod def+

import ::= import ifname as Id
provide ::= provide Id ifname Id +

usedecl ::=
(use {Id.Id | (Id.Id as Id) }+)

def ::= import
| usedecl
| typedef
| typedecl
| tcdef
| instdef
| valdef
| proclaim
| declare

15.3 Type Declaration and Definition

The union andstruct forms are semantically deriv-
able from repr (or vice versa),11 but for purposes of
specifying typing it is more convenient to retain them and
use the conventional typing definitions for product and
union types.

constraint ::= typapp | ident
typnm ::= ident

| ( ident tvar+)
| (forall ( constraint+) ident)
| (forall ( constraint+)

( ident tvar+))
val ::= :unboxed | :boxed | :opaque
typedef ::=

(struct typnm val
docstring?

declare+ {field|fill}+)

11 This statement of semantic derivability ignores the Cardelli family
of representation optimizations that are not currently expressable for
repr , but it is intended to fully support control of these optimizations
in future enhancements to the language.

| (union typnm val
docstring?

declare+ {field|fill}+)
| (repr typnm val

docstring? ( reprbody))
| (exception ident

docstring? field* )
field ::= Id : type

| (the type Id)
fill ::=

(fill (bitfield fixpttype IntLit))
reprbody ::= (tag Id +)

| field
| fill
| (case {( tags ( reprbody)) }+)

tags ::= Id | (Id +)
typedecl ::=

(struct typnm val
docstring?

{external Id ?}?)
| (union typnm val

docstring?

{external Id ?}?)
| (repr typnm val

docstring?

{external Id ?}?)
tcdef ::=

(trait typnm
docstring?

{(tyfn ( tvar+) tvar) }*
{ident: fntype}* )

instdef ::=
(instance qual constraint

docstring? expr+)
qual constraint ::= constraint

| (forall ( constraint+) constraint)

15.4 Value Declaration and Definition

valdef ::=
(def defpattern docstring? expr)

| (def ( ident bindingpattern?)
docstring? expr+)

defpattern ::= ident
| ident: qualtype
| (the qualtype ident)
| ()
| (pair defpattern defpattern)
| ( {defpattern, }+ defpattern)

bindingpattern ::= ident
| ident: type
| (the type ident)
| ()
| (pair defpattern defpattern)
| ( {defpattern, }+ defpattern)

proclaim ::=
(proclaim ident: qualtype

{external Id ?}?)
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; Note: external Id may include BitC
; reserved words.

qualtype ::= type
| (forall ( constraint+) type)
| constraint
| (forall ( constraint+) constraint)

15.5 Types

Note that the pair type is semantically a derived form. It
appears in the grammar solely because of the need to sup-
port pattern bindings and multiple return values.

tvar ::= ’Id
inttype ::= int8 | int16 | int32 | int64

| uint8 | uint16 | uint32 | uint64
pairtype ::= (pair type type)

| ( {type, }+ type)
type ::= ident

| tvar
| () | bool | char | string | exception
| inttype
| float | double | quad

// integer bitfield:
| inttype(IntLit)

// boolean bitfield:
| bool(1)
| (boxed type)
| unboxed( type)
| mutable( type)
| (fn ( type* ) type)
| pairtype
| (array type IntLit)
| (vector type)
| ( ident type+)

15.6 Expressions

ident ::= Id | Id.Id
expr ::= eform

| (the type eform)
// eform permits ident via expr.id
eform ::= Id

| ()
| eform.Id
| (the type eform).Id
| (pair expr expr)
| (member expr Id)
| expr [ expr ]
| expr ˆ
| (deref expr)
| (suspend ident expr)
| ( {expr, }+ expr)
| (array expr+)
| (vector expr+)
| (MakeVector expr expr)

| (begin expr+)
| (lambda ( bindingpattern* ) expr+)
| ( expr expr* )
| (if expr expr expr)
| (and expr+)
| (or expr+)
| (set! expr expr)
| (dup expr)
| (cond ( {( expr expr) }* )

(otherwise expr))
// MAY NEED CASE
| (switch Id expr

( {( switchtags expr seq) }*
(otherwise expr seq)))

| (try expr
(catch Id

{( switchtags expr) }*
(otherwise expr) ?))

| (throw expr)
| (let ( {( bindingpattern expr) }+)

expr)
| (letrec ( {( bindingpattern expr) }+)

expr)
| (do ( {( bindingpattern expr expr) }+)

( expr expr)
expr)

| () | false | true | CharLit | StringLit
| IntLit | FloatLit

switchtags ::= ident | ( ident+)

15.7 Miscellaneous

declare ::=
(declare {( ident type) | ident}+)

docstring := StringLit

IV Standard Library

16 BitC Standard Library

This section needs badly to be completely revisited.

The BitC standard library is described as a set of groups.
Each group gives a built-in function, a list of signatures
supported by that built-in function, and a description of
the operation of the function.

16.1 Arithmetic

BitC defines the built-in operators+, - , * , / , and%, with
the usual meanings of two’s complement addition, sub-
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traction, multiplication, division and remainder for signed
types, and one’s complement addition, subtraction, multi-
plication, division, and remainder for unsigned types.

BitC also defines the build-in operatorsbit-or ,
bit-xor , and bit-and , with the usual meanings of
one’s complement bit manipulation.

These operators are defined over the following signatures:

int8× int8→ int8
int16× int16→ int16
int32× int32→ int32
int64× int64→ int64
uint8× uint8→ uint8
uint16× uint16→ uint16
uint32× uint32→ uint32
uint64× uint64→ uint64

Unary minus is also supported over all integral types with
the usual meaning.

16.2 Comparison

BitC defines the built-in comparison operators<, <= >

>= =, and!= with the usual meanings of less than, less
than or equal, greater than, greater than or equal, equal,
and not equal.

These operations are defined over the following signa-
tures:

char× char→ bool
int8× int8→ bool
int16× int16→ bool
int32× int32→ bool
int64× int64→ bool
uint8× uint8→ bool
uint16× uint16→ bool
uint32× uint32→ bool
uint64× uint64→ bool

The = and != operators are additionally defined over
pointers of like type. They perform structural equality
(eq) and inequality.

17 Verification Support

In addition to its role as a means of expressing computa-
tion, BitC directly supports the expression of constraints
on execution, and the expression of proof obligations con-
cerning the results of computations. While the bulk of ver-
ification effort is performed in the BitC Prover, theorems
and invariants also introduce requirements for compile-
time static checking.

Note that the phrase “all possible variable instantiations”
is restricted tolegal instantions as determined by the type

checker. BitC is statically typed, and BitC functions and
theorems are therefore defined only over their stated do-
mains.

17.1 Axioms

Thedefaxiom form introduces a term rewrite that is ac-
cepted as true by the BitC prover. The body of the axiom
is a boolean expression that must always returntrue for
all possible variable instantiations:

(defaxiom name truth-expr)

17.2 Proof Obligations: Theorems

Thedefthm form introduces a proof obligation that must
be discharged by the BitC Prover. The body of a theorem
is a boolean expression that is considered to be discharged
if its result istrue for all possible variable instantiations:

(defthm name truth-expr)

17.3 Proof Obligations: Invariants and Sus-
pensions

Thedefinvariant form introduces a proof obligation
that must be discharged by the BitC Prover at all sequence
points where it is not explicitly suspended. The body of
an invariant is a boolean expression that is considered to
be discharged if its result istrue for all possible variable
instantiations:

(definvariant name truth-expr)

An invariant may be temporarily suspended by the
suspend form:

(suspend name e)

The logical effect ofsuspend is to advise the prover that
the invariant given byname is not expected to hold within
the scope of thesuspend form.

For program semantics purposes,suspend is a derived
form:

(suspend name e) = >

(begin e)

17.4 Theories

Thedeftheory form gathers a number of theorems into
a single group for purposes of suspension:
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(deftheory name thm1 ... thmn)

where eachthmi has been previously introduced by
defthm .

17.5 Suspending and Enabling

For purposes of proof search management, theorems and
theories may be disabled or enabled by thedisable and
enable forms:

(disable name1 ... namen)
(enable name1 ... namen)

where eachnamei has been previously introduced by
defthm or deftheory .

The effect of disablement is to render a theorem or group
of theorems inactive for purposes of proof search. Dis-
abling or enabling remains in force until altered by a sub-
sequent enable or disable or until the end of the containing
lexical scope.
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