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ABSTRACT 

In the last 30 years, palm oil production has known a ninefold increase, with almost all production growth 
concentrated in Malaysia and Indonesia. Several public reports have associated the palm oil boom with 
extensive deforestation, often pointing to the increase in biofuel demand in developed nations as a main 
driver of this phenomenon. Other demand drivers, especially as related to the food sector, have not been 
studied as much. In particular, regulations on genetically modified (GM) food in European nations and on 
trans fats in a number of developed countries have reportedly induced food companies to switch from 
soybean oil to palm oil and could therefore have contributed to additional demand for palm oil. This 
article provides a first analysis of the drivers of growth in palm oil production during the 1980–2010 
boom, using a price dynamics analysis of the markets for palm oil, soybean oil, and crude oil. Soybean oil 
is selected as the leading vegetable oil in food markets, and crude oil is taken to represent the energy 
sector. We estimate two models of the oil price system: a vector auto regression model that treats all three 
prices as stationary and a vector error correction model that allows co-integration among the three prices. 

The two models consistently find that palm oil prices do not appear to respond to short-run 
fluctuations in crude oil prices. Instead, short-run dynamics in palm oil prices are a function of lagged 
palm oil prices and current and lagged soybean oil prices. Thus, short-run fluctuations in crude oil prices 
do not appear to be a driver of the boom in palm oil production. Short-run fluctuations in soybean oil 
prices, however, do affect palm oil markets. We also find a long-run equilibrium relationship among 
prices of palm oil, soybean oil, and crude oil. In the long run, prices of palm oil and crude are negatively 
correlated. These results point to a potentially important relationship in the short and long run between 
palm oil markets and soybean oil markets, but this analysis does not point to the crude oil market as an 
important driver of the palm oil boom. 

Keywords: palm oil, biofuel, price cointegration 
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1.  INTRODUCTION 

The production, trade, and market share of palm oil have grown dramatically in the last two decades. 
From 1980 to 2009, the global production of palm oil grew from 5 million tons to more than 45 million 
tons, equivalent to an annual average growth of 7.8 percent (FAO 2011). From traditional use in West 
Africa and originally colonial plantations in tropical countries in Southeast Asia, palm oil has become one 
of the leading vegetable oils in the world market, sharing this role with soybean oil. Most of the 
production has been concentrated in two Asian countries, Malaysia and Indonesia, as shown in Figure 1.1. 
These two countries combined account for approximately 90 percent of world palm oil exports in recent 
years, as shown in Figure 1.2 (FAO 2011).  

Figure 1.1—Production (in million metric tons) of palm oil, 1980–2009 

 
Source:  FAO 2011. 

Figure 1.2—Total exports (in million metric tons) of palm oil, 1980–2009 

 
Source:  FAO 2011. 
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While this palm oil boom has created positive outcomes for local agricultural incomes (see, for 
example, Zen, Barlow, and Gondowarsito 2005 for the case of Indonesia), it has also been criticized for 
its effects on deforestation (Proforest 2003). Increased production of palm oil has been associated with 
clearing of old growth forests, resulting in reported biodiversity losses and increased greenhouse gas 
emissions (see, for example, Kessler et al. 2007). In the past few years, the issue has been highlighted in 
international news headlines, leading major food and consumer product companies, like Nestlé and 
Unilever, to actively engage in certification for sustainable palm oil production (Bird 2010; Byrne 2010), 
if not completely ban the use of palm oil in their products. Furthermore, countries in the European Union 
adopted a regulation on the sustainable use of biofuel to reduce the potential for domestic and imported 
products to affect biodiversity and generated greenhouse gas emissions (for example, see European 
Council, 2009).  

The recent surge in biofuels production is often one of the first culprits to be named as a cause of 
the palm oil boom, particularly in popular press articles that rhetorically link the fuel in the readers’ car 
tanks to deforestation of rainforests on the other side of the world (Byrne 2010). Conceptually there is 
some reason to suspect that the biofuel surge could play a role, inasmuch as vegetable oils can be 
converted to biodiesel or can serve as a substitute in food and industrial uses for those oils that have been 
pulled into energy production (Carter et al. 2007). Palm oil can be used in both roles, either as a fuel stock 
for energy production or as a consumable substitute that fills the shortage left by the appropriation of 
vegetable oil for biodiesel.  

Figure 1.3—Global consumption (in million metric tons) of palm oil: food versus non-food uses 

 
Source:  Derived from USDA-FAS (2012). 

However, other possible drivers of the palm oil boom have received much less attention. As 
shown in Figure 1.3, despite the growth in non-food uses over the last decade (consumption share 
growing from 16 to 26 percent), palm oil has remained primarily used for food consumption. Reduced 
support policies in the soybean sector in line with the policies of the World Trade Organization and 
increased demand for edible oil in large developing countries (China and India) were reportedly 
generating palm oil growth even before the introduction of biofuel policies and have continued to push 
Malaysia and Indonesia to increase their palm oil production. More recently, new food regulatory 
developments may have contributed to fueling palm oil demand in the last decade. More specifically, 
genetically modified (GM) food, trans fat labeling regulations, and associated GM-free and trans fat–free 
private standards in developed countries have been reported as candidate drivers of palm oil demand (for 
example, by PRWeb 2008), without being linked explicitly to the palm oil boom and its consequences. 
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The European Union’s regulations of GM food require food companies to display whether oils 
are derived from GM crops. This labeling requirement, combined with continued anti-GM perceptions 
among consumers, has pushed companies to avoid using any GM ingredient in their food products (Carter 
and Gruere 2003). Some companies have adopted explicit GM-free private standards, while others have 
simply avoided GM ingredients since labeling was mandated (Gruere 2006; Gruere and Sengupta 2009). 
Originally these practices resulted in a shift from GM soybean sources to non-GM soybean sources, 
however, growing adoption of GM soybeans limited non-GM soybean availability.1 With this growth in 
GM soybean adoption, companies have shifted their purchase to other oils, including palm oil, the 
cheapest alternative. While the extent of this phenomenon is not well known, it has been recognized by 
observers as a significant reason for the replacement of soybean oil by palm oil in food products in 
Europe (Partos 2004; Proforest 2003) and was an expected effect of a proposed mandatory GM food 
labeling regulation in India in 2006 (Patton 2006).  

Similarly, changes in health-related regulations and standards for food have reportedly resulted in 
the increased appeal of palm oil, despite its own well-known health disadvantages. Palm oil includes a 
relatively significant amount of saturated fats, whose consumption is associated with an increased ratio of 
high-density lipoprotein (HDL, or bad) cholesterol, which can result in low content in polyunsaturated 
fatty acids, which become trans-fatty acids (so-called trans fats) in the processing of food (chemical 
hydrogenation). Trans fats have recently been reported as a source of bad cholesterol, which can lead to 
coronary heart diseases (see, for example, Tribe and Kalla 2005). With increased attention on trans fats, 
potentially worse for heath than saturated fats, trans fat labeling regulations have been introduced in the 
United States in 2006, and food companies have voluntarily shunned away from trans fat–inducing 
vegetable oils, like soybean oil, in favor of canola and palm oil (Partos 2005).  

The role of these potential demand factors that would have driven food companies to switch 
ingredients primarily from soybean oil to palm oil, if confirmed, could have important policy 
implications. First, imposing the labeling of highly processed food products that do not contain GM traces 
but that contain ingredients derived from GM crops could have had negative environmental 
consequences. Second, the food industry movement against trans fat, while justified for health reasons, 
may not have been truly beneficial if it resulted in an increase in palm oil consumption and a renewed 
interest in the use of palm oil in food, despite its inherent risks.  

A full understanding of the causes and consequences of the rapid growth in palm oil production 
requires analyzing the economic forces that link the production of palm oil to specific sources and 
determinant consumption of palm oil, and more broadly to the markets for vegetable oil and for 
feedstocks for biofuels. This study aims to provide a first step toward understanding these economic 
relationships, through an exploratory study of the price relationships across the vegetable oil markets and 
related fuel markets.  

The objective of the study is to explore the long- and short-term price dynamics between palm 
oil, soybean oil, and crude oil markets to try to assess the role of fuel versus food demand drivers in the 
palm oil boom. In the absence of available disaggregated long term data on consumption of palm oil by 
type of use, prices of the two other oils are taken as proxies for different consumption sources. Crude oil 
is selected to represent the energy market as a whole. On the other hand, soybean oil demand was the 
primary target of the above-mentioned food regulations, and apart from palm oil, it represents the most 
important edible oil on the market, and leading competitor with palm oil on the global market. Soybean 
oil is also a source of input for biodiesel production, but the share of use for biodiesel remains limited, 
even if it has grown overtime, as shown for recent years in Table 1.1. 

                                                      
1 The rapid adoption of GM soybeans has been partially enabled by the liberalization of import policies in China as part of 

its acceptance into the WTO in 2002, as well as its conditional acceptance of GM soybean imports (Tuan, Fang, and Cao, 2004). 
U.S. soybean exports to China have grown rapidly in this period, accounting for more than 25 percent of total 2009 production; 
concurrently, GM soybean adoption in the U.S. reached 91 percent, an acceptance level only possible given permissive Chinese 
imports (FAOSTAT, 2011; USDA-ERS, 2012). 
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Table 1.1—Soybean oil use (in thousand pounds) between 2005/06-2008/09 

Years Biodiesel use Other (food and feed) Share of biodiesel 
2005/06 1,555,026  17,958,608  8% 

2006/07 2,761,567  18,574,448  13% 

2007/08 3,245,322  18,334,765  15% 

2008/09 1,907,058  16,384,862  10% 

Source:  USDA (2010). 

As a caveat, this study does not provide a structural analysis of palm oil demand; it does not 
allow isolating the effect of specific national regulations (on GM or trans fats) on palm oil demand. 
Instead, the study here provides a unique overview of the dynamic price relationships among edible oils 
and energy markets and tests the hypothesis of whether palm oil market growth has been driven by one or 
the other type of driver. More specifically, it enables us to test whether there may be a relationship 
between increased palm oil demand and soybean oil demand, which stands as a necessary condition for 
food regulations to be considered as partial drivers of the boom. Finding that palm oil was related only to 
the energy-related demand would disqualify the role of food regulations. Therefore, our analysis serves as 
a necessary first step toward a better understanding of the possible role of new food regulatory 
requirements in palm oil production and, indirectly, in possible deforestation in Southeast Asia.  
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2.  DATA USED IN THE ANALYSIS 

The dataset comprises prices from the World Bank Commodity Price Dataset, also referred to as the Pink 
Sheet. This dataset is a compilation of monthly prices for a collection of commodities, sorted into broad 
categories of energy, beverages, fats and oils, grains, other food, timber, other raw materials, fertilizers, 
and metals and minerals (World Bank, 2011).  

We focus on prices of three of these commodities: crude oil, palm oil, and soybean oil. The crude 
oil price is a weighted average of the spot prices for Brent crude 38° API (American Petroleum Institute 
gravity), Dubai Fateh crude 32° API, and West Texas Intermediate crude 40° API. These prices are all 
free on board (FOB) values taken at United Kingdom ports; Dubai; and Midland, Texas, respectively. The 
soybean oil price series is the price of crude-grade oil of any origin (FOB) ex-mill the Netherlands. The 
palm oil series is based on Malaysia oil at 5 percent bulk cost, insurance, and freight (CIF) prices to 
northwestern Europe. Crude oil is reported in nominal US dollars2 per barrel, while palm and soybean oil 
prices are reported in nominal US dollars per ton. We deflate all prices using the Producer Price 
Commodity Index published by the US Bureau of Labor Statistics; this series best fits the nature of the 
data and shows no resulting difference from other possible deflating indexes. We conduct our analysis on 
monthly prices dating from January 1960 through February 2011, as well as a subset of the data from 
January 1982 through February 2011. Figure 2.1 plots the data for soybean oil and palm oil prices. Figure 
2.2 plots the data for crude oil prices. 

Figure 2.1—Prices of soybean oil and palm oil, January 1960–February 2011, real (1986)  
US $/ton 

 
Source:  World Bank Commodity Price Data. 

 

                                                      
2 All dollar amounts are in US dollars. 
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Figure 2.2—Prices of crude oil, January 1960–February 2011, real (1986) $/barrel 

 
Source:  World Bank Commodity Price Data. 
Notes:  These figures suggest, at first view, a close correlation between soybean oil and palm oil prices, and a less visible 

relationship between crude oil prices and those of the two other oils. But assessing any possible cross-relationship, 
including any possible time correlation, requires delving into statistical analysis.  
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3.  EXPLORING THE RELATIONSHIPS AMONG PRICES OF PALM OIL,  
SOYBEAN OIL, AND CRUDE OIL 

Vector Autoregression Analysis 
We first examine price dynamics in the context of a vector autoregression (VAR) model. Since the 
modeling framework requires all included variables to be stationary, we include the crude oil prices in 
first differences. Stationarity of the first-differenced crude oil prices was confirmed using an augmented 
Dickey-Fuller (ADF) test. 

Given the small size of the vegetable oil market relative to that of the crude oil market, we 
assume that crude oil prices are exogenous to the system but potentially influence prices of the edible oils. 
It is also worth noting that the structure of the VAR model conditions that one price can have a 
contemporaneous effect on both prices, while the other price can have a contemporaneous effect only on 
itself. This is a restriction necessary for identifying the system. In this case, soybean oil is structured to 
have contemporaneous and lagged effects on palm oil prices, while palm oil is able to have only lagged 
effects on soybean oil. This ordering is derived from the economic intuition of the observed markets. The 
VAR model framework can be expressed as 

 𝒚𝑡 = 𝜷 +∑ 𝛑′𝑧𝑡−𝑖
𝑞
𝑖=1 + ∑ 𝚷𝑖𝒚𝑡−𝑖

𝑝
𝑖=1 + 𝜺𝑡, (1) 

where yt is a 2 x 1 vector of the soybean and palm oils in levels at time t, zt is a common regressor of 
crude oil prices in first differences at time t, β is a 3 x 1 vector of estimated constants, π is a q x 1 vector 
of estimated coefficients, and Πi is a 2 x 2 matrix of estimated coefficients for the ith lag of the series. The 
optimal lag length p was determined to be two lags by iterating through all reasonable lag lengths and 
comparing the Akaike information criterion (AIC) and Schwarz Bayesian information criterion (SBIC) 
statistics for each model.  

The key outputs from the VAR model are the plots of the orthogonalized impulse response 
functions (IRFs). These functions map out the response of palm and soybean oil prices to positive shocks 
in their own price and the other price. We present the IRF plots, including the 90 percent confidence 
intervals, in Figures 3.1–3.4, with plots for palm oil, our primary interest, in Figures 3.1 and 3.2. One of 
the first points to stand out is duration of the impact on palm oil price from a shock to either palm oil or 
soybean oil price. In both cases the lower bound of the 90 percent confidence interval is greater than zero 
even four years after the initial shock. It is also worth noting that the IRF for palm oil price in response to 
shocks to the soybean oil price (Figure 3.2) is only slightly less than the own-price IRF for palm oil. That 
is to say, palm oil prices respond to innovations in the soybean oil price series nearly as much as they 
respond to direct innovations in the palm oil market. 



 

8 

Figure 3.1—Plot of IRF for palm oil price in response to a positive shock in its own price 

 
Source:  Authors. 

Figure 3.2—Plot of IRF for palm oil price in response to a positive shock in the price of soybean oil 

 
Source:  Authors. 
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Figure 3.3—Plot of IRF for soybean oil price in response to a positive shock in its own price 

 
Source:  Authors. 

Figure 3.4—Plot of IRF for soybean oil price in response to a positive shock in the price of palm oil 

 
Source:  Authors. 
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Modeling Oils Prices with Potential Unit Roots: Testing for Cointegration 
The preceding VAR analysis presumes that model variables are stationary in levels or, more specifically, 
I(0). The assumption of stationarity for prices of edible oils and crude is quite strong. Indeed, previous 
work on these prices has found nonstationarity over various time periods (for some examples, see Ardeni 
1989; Zapata and Fortenbery 1996; Sabuhoro and Larue 1997; Chaudhuri 2001; Yang, Bessler, and 
Leatham 2001). Here we describe standard stationarity tests for the price series. 

The original, full dataset included observations dating back to January 1960. Standard stationarity 
tests over this full dataset indicated prices for palm oil and soybean oil were stationary. This unexpected 
result could be due to mis-specification—for example, failing to account for structural breaks (Perron 
1989; Amsler and Lee 1995; Lee, Huang, and Shin 1997).  

Given the implausibility that edible oils prices were stationary over the full length of the data and 
the apparent volatility in the more recent years of the data, we investigated whether these series were 
stationary over a subset of the data. The lag length for each price series was determined by estimating the 
ADF function for up to twelve lag lengths and testing for the significance of the last lag. ADF tests were 
then conducted iteratively on subsets of the data, by iteratively eliminating the earliest year of the dataset 
until all three series (crude, soybean, and palm oil) were found to be nonstationary.  

Results from the ADF tests for each of the three oil prices in levels and first differences are 
reported in Table 3.1. For each series we conducted the test with alternative deterministic components, 
and the table reports F-statistics for the significance of the deterministic components. The key parameter 
to make inference on stationarity is τ; τ = 0 under the null hypothesis that the series is nonstationary. We 
fail to reject the null for all three level series for the period January 1982–February 2011, concluding that 
the level series are nonstationary over this period. 

Table 3.1—ADF stationarity tests for prices of soybean oil, palm oil, and crude, 1982–2011 

Type Lags ρ ρ p-value τ τ p-value F-statistic F-statistic  
p-value 

Soybean oil in levels 

No constant 10 -0.3432 0.6045 -0.22 0.6072   

Constant 10 -28.0471 0.0016 -2.87 0.0504 4.22 0.0739 

Trend 10 -27.4997 0.0128 -2.84 0.1854 4.18 0.3377 
Palm oil in levels 

No constant 10 -0.8036 0.5079 -0.44 0.5238   

Constant 10 -25.9643 0.0026 -2.83 0.0560 4.06 0.0838 

Trend 10 -25.6364 0.0195 -2.75 0.2179 3.99 0.3757 
Crude oil in levels 

No constant 6 -0.0803 0.6642 -0.05 0.6646   

Constant 6 -3.8368 0.5562 -1.04 0.7285 0.63 0.9130 

Trend 6 -8.8938 0.5113 -2.12 0.5305 3.66 0.4433 
Soybean oil in first differences 

No constant 10 -288.204 0.0001 -5.24 < 0.0001   

Constant 10 -209.116 0.0001 -5.24 < 0.0001 13.78 0.0010 

Trend 10 -299.907 0.0001 -5.26 < 0.0001 13.87 0.0010 
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Table 3.1—Continued 

Type Lags ρ ρ p-value τ τ p-value F-statistic F-statistic p-
value 

Palm oil in first differences 

No constant 10 -588.544 0.0001 -5.60 < 0.0001   

Constant 10 -588.374 0.0001 -5.59 < 0.0001 15.68 0.0010 

Trend 10 -649.914 0.0001 -5.62 < 0.0001 15.83 0.0010 
Crude oil in first differences 

No constant 6 -12173.57 0.9999 -8.16 < 0.0001   

Constant 6 -10444.85 0.9999 -8.16 < 0.0001 33.34 0.0010 

Trend 6 -2714.04 0.9999 -8.33 < 0.0001 34.73 0.0010 
Source:  Authors. 

Given this result, the VAR model of the previous section is inappropriate, since it may suffer 
from spurious regression. However, it has been demonstrated that nonstationary variables may have long-
run relationships that the data series consistently revert back to over time. These cointegrating 
relationships, as they are known, provide a stationary residual series that can be used to introduce the 
long-run information from the nonstationary variables into a stable model. The resulting formulation is 
referred to as a cointegration model. A conventional model for cointegrated series is the Engle-Granger 
(1987) methodology for error correction: 

 𝚫𝒚𝑡 = 𝜷𝟎 + 𝜷𝟏𝑒𝑡 + ∑ 𝚷𝑖𝚫𝒚𝑡−𝑖
𝑝
𝑖=1 + 𝜺𝑡, (2) 

where Δyt is an m x 1 vector of the first differences of the m-variables at time t, β0 is an m x 1 vector of 
estimated constants, β1 is the estimated parameter on the error correction term, Πi is an m x m matrix of 
estimated parameters for the ith lag, and etis the residual from the model 

 𝑦1𝑡 = 𝛼0 + ∑ 𝛼𝑗𝑦𝑗𝑡 + 𝑒𝑡𝑚
𝑗=2 . (3) 

The error correction model accounts for both the long- and short-run interactions between 
variables in a system. A popular update to this methodology is that of Johansen (1991), which examines 
the rank of the matrices estimated in a standard VAR model constructed of only the lagged variables, 
excluding the error correction terms.  

However, the drawback to both the Engle-Granger and Johansen methods is that they require all 
the variables to be of the same order of integration, generally being all I(1). Given the uncertainty in the 
order of integration for the variables in use, we adopted the autoregressive distributed lag (ARDL) model 
developed by Pesaran, Shin, and Smith (2001) for testing cointegration when the orders of integration of 
the individual series are uncertain, but either I(0) or I(1). The model framework was  

 ∆𝑦𝑡 = 𝛼0 + 𝛼1𝑡∗ + 𝝅′𝒗𝑡−1 +∑ 𝜑𝑥𝑖∆𝑥𝑡−𝑖
𝑝𝑦
𝑖=0 + ∑ 𝜑𝑦𝑗∆𝑦𝑡−𝑗

𝑝𝑥
𝑗=1 + ∑ 𝜑𝑧𝑘∆𝑧𝑡−𝑘

𝑝𝑧
𝑘=0 + 𝜀𝑡, (4) 

where Δ is the first-difference operator; yt, xt, and zt are prices for palm oil, crude oil, and soybean oil, 
respectively; t* is a time trend; and vt = [yt, xt, zt]’. The optimal lags py, px, and pz were determined by grid 
search over all possible lag-length combinations (123 = 1,728 combinations in total). For each 
combination, the AIC and SBIC values for the model were calculated and stored. The models were then 
sorted by both AIC and SBIC parameters and compared. As might be expected, the SBIC ordering 
provided a much more parsimonious lag combination of py = 1, px = 1, and pz = 2. However, simple serial 
correlation testing of the residuals of this model on their own lags indicated that some autocorrelation 
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remained in the residuals. The AIC ordering established a lag combination of py = 6, px = 1, and pz = 6; 
this combination eliminated autocorrelation from the residuals. As a result, the distributed lags for this 
model were chosen to be 6–1–6.  

Testing for cointegration was done through a bounds-testing procedure over the joint significance 
of the 𝝅′ parameters. This bounds-testing procedure is a core contribution of Pesaran, Shin, and Smith 
(2001), who developed an F-type test (PSS F-statistic) for cointegration that does not assume all variables 
to be integrated of the same order. In this test, the null hypothesis is that the terms in the π vector are 
jointly equal to zero, indicating no cointegrating relationship exists. Alternatively, if the F-test rejects the 
null and finds that the error correction terms do statistically contribute to the model, then a cointegrating 
relationship is believed to be present. The critical bounds were developed through Monte Carlo analysis 
over the two extremes of all I(0) variables and all I(1) variables. The drawback to this procedure is that it 
allows for an undetermined space in which the existence of cointegration can be statistically neither 
confirmed nor rejected. The estimates from this model are provided in Table 3.2. From Table CI(v) in 
Pesaran, Shin, and Smith (2001), the critical values for a model with unrestricted intercepts and an 
unrestricted trend at a significance level of 5 percent, given three regressors, are 4.01 and 5.07, 
respectively. The estimated PSS F-statistic was 6.108; we therefore rejected the null of no cointegration 
and concluded that a cointegrating relationship exists among the prices for palm oil, soybean oil, and 
crude oil. 

Table 3.2—ARDL linear co-integration model estimates 

Variable Estimate Std. error p-value 
palmt-1  -0.09270  0.02342 9.30E-05 
crudet-1  -0.21690  0.13017 0.09663 
soyt-1  0.08664  0.02670 0.00130 
t* 0.00445  0.04496 0.92124 
Δpalmt-1  0.27450  0.05434 7.29E-07 
Δpalmt-2  -0.02008  0.05551 0.71778 
Δpalmt-3  0.09279  0.05630 0.10030 
Δpalmt-4  0.09636  0.05678 0.09061 
Δpalmt-5  -0.12595  0.05554 0.02400 
Δpalmt-6  -0.11585  0.05450 0.03430 
Δcrudet  -0.03389  0.61017 0.95574 
Δcrudet-1  0.00819  0.61107 0.98930 
Δsoyt  0.79773  0.04290 < 2e-16 
Δsoyt-1  -0.16095  0.06187 0.00971 
Δsoyt-2  -0.08090  0.06171 0.19078 
Δsoyt-3  -0.05004  0.06236 0.42296 
Δsoyt-4  0.04068  0.06186 0.51123 
Δsoyt-5  0.11839  0.06222 0.05797 
Δsoyt-6  0.14093  0.06056 0.02058 
Constant 0.02585  0.05111 0.61340 
Adjusted R-square: 0.6355 
PSS F-statistic: 6.1082 
Source:  Authors. 
Note:  Dependent variable = first difference of palm oil. 
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Cointegration and Error Correction Estimations 
Having found the three price series to be cointegrated, we estimated the cointegrating relationship by 
ordinary least squares. The estimated cointegrating relationship was 

𝑃𝑝𝑎𝑙𝑚 = −0.3178 + 1.0502𝑃𝑠𝑜𝑦 − 1.7779𝑃𝑐𝑟𝑢𝑑𝑒(0.1149)(0.0282)        (0.2936),           (5) 

where values in parentheses are standard errors and R-square = 0.8142. 
Moreover, we estimated the conditional error correction model, replacing the lagged levels in the 

PSS cointegration test regression with the lagged residual from the cointegrating relationship. The results 
are reported in Table 3.3. The estimated coefficient on the lagged cointegrating residual is of the expected 
sign and is statistically significant at conventional thresholds. Thus, palm oil prices appear to respond to 
departures from long-run equilibrium in the oils complex. 

Table 3.3—Vector error correction model 

Variable Estimate Std. error p-value 
𝑣𝑡−1� -0.09658  0.02435 0.00009 

t* -0.00392  0.03759 0.91694 
Δpalmt-1  0.28700  0.05431 0.00000 
Δpalmt-2  -0.01908  0.05558 0.73163 
Δpalmt-3  0.09454  0.05618 0.09337 
Δpalmt-4  0.08534  0.05663 0.13278 
Δpalmt-5  -0.11105  0.05558 0.04654 
Δpalmt-6  -0.09497  0.05501 0.08526 
Δcrudet  0.12869  0.60141 0.83070 
Δcrudet-1  -0.06789  0.60593 0.91086 
Δsoyt  0.81082  0.04221 0.00000 
Δsoyt-1  -0.18819  0.06152 0.00240 
Δsoyt-2  -0.08884  0.06134 0.14849 
Δsoyt-3  -0.05263  0.06202 0.39674 
Δsoyt-4  0.03724  0.06134 0.54422 
Δsoyt-5  0.10218  0.06175 0.09895 
Δsoyt-6  0.11304  0.06016 0.06116 
Constant 0.00095  0.02160 0.96490 
Adjusted R-square: 0.6409 
Source:  Authors. 
Note: Dependent variable = first difference of palm oil.𝑣𝑡−1� is the residual from the estimated cointegrating relationship.  

Estimated short-run dynamics reported in Table 3.3 are consistent with the VAR results reported 
above. In particular, the palm-oil price does not appear to respond to current or lagged fluctuations in 
crude oil prices but does respond in the short run to fluctuations in soybean oil prices. Moreover, changes 
in palm oil prices do not exhibit a trend.  

We used these results to simplify the conditional error correction model, dropping the current and 
lagged changes of crude oil prices, as well as the time trend. The results are reported in Table 3.4. The 
estimates of the remaining variables remain virtually unchanged from the less parsimonious model. The 
short-run fluctuations are consistent with those found in the VAR analysis: Palm oil prices also respond to 
lagged changes in palm oil, as well as current and lagged changes in soybean oil prices, but not to 
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changes in crude oil prices. The conditional error correction model offers the added insight that palm oil 
prices also respond to departures from the long-run equilibrium in the oils complex. 

Table 3.4—Vector error correction model (short-run dynamics) 

Variable Estimate Std. error p-value 

𝑣𝑡−1� -0.09647  0.02395 0.00007 
Δpalmt-1  0.28732  0.05394 0.00000 
Δpalmt-2  -0.01904  0.05528 0.73071 
Δpalmt-3  0.09467  0.05589 0.09123 
Δpalmt-4  0.08566  0.05632 0.12925 
Δpalmt-5  -0.11126  0.05530 0.04504 
Δpalmt-6  -0.09478  0.05471 0.08413 
Δsoyt  0.81181  0.04154 0.00000 
Δsoyt-1  -0.18881  0.06077 0.00205 
Δsoyt-2  -0.08845  0.06100 0.14800 
Δsoyt-3  -0.05311  0.06159 0.38918 
Δsoyt-4  0.03702  0.06105 0.54464 
Δsoyt-5  0.10263  0.06145 0.09584 
Δsoyt-6  0.11272  0.05984 0.06049 
Constant -0.00098  0.01066 0.92655 
Adjusted R-square: 0.6444 
Source:  Authors. 
Note: Dependent variable = first difference of palm oil.𝑣𝑡−1� is the residual from the estimated cointegrating 

relationship.  

Nonlinear Cointegration 
A final concern with the analysis was the possibility of nonlinear movements in the long-run relationships 
among the oils studied. The relatively quick upward movement in prices, particularly over the last decade, 
could indicate a connection that the linear cointegration models were not able to pick up on. More to the 
point, the degree to which the prices changed and the rate at which the price movements converged 
suggest that the movements might be not only nonlinear but also changing in time. The issue, then, was 
whether or not the cointegrating variables could be better modeled within a nonlinear, smooth-
transitioning framework. Such a framework was developed by Kapetanios, Shin, and Snell (2006) by 
adding a transition function to the cointegrating level variables. This smooth-transition model was applied 
to the data in this project, specifically testing for nonlinearity in the cointegrating relationships. Testing 
under two different nonlinear functional forms failed to reject the null hypothesis of a linear cointegrating 
relationship for both specifications. Accordingly, the long-term relationship in the data is better fitted with 
a linear model than a nonlinear specification. The statistical preference for a linear model strengthens the 
emphasis on soybean oil over crude oil as a driver in the palm oil market, inasmuch as a strengthening 
crude oil relationship would be expected to appear more clearly in a nonlinear relationship among the 
variables. 
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4.  DISCUSSION AND CONCLUSION 

The dramatic and well-publicized surge in palm oil production has inspired discussion regarding a 
number of possible reasons for the increase. Candidates for demand drivers include rising energy 
demands, increased biofuels production, a drop in food product demand for GM soybeans, and changing 
taste preferences related to health concerns. In particular, the possibility that energy market demands have 
inspired the increase in production has received considerable attention. Pictures of razed rainforests, 
coupled with the possibility of potential price inflation for these basic goods, have become a lightning rod 
for discussion. Consumption of biofuels by relatively affluent countries, and the associated increase in 
prices of agricultural commodities has also been controversial. However, to direct attention to biofuels 
without considering other possible drivers risks missing causes that are potentially more important to 
address. 

This analysis examined the relationships among prices for palm oil, soybean oil, and crude oil. 
Soybean oil is one of the most prominently used vegetable oils and has a number of food and industrial 
uses. As such, it represents the full range of price drivers. Furthermore, it was the target of recent 
regulations on GM foods and trans fats. In contrast, crude oil represents a purely energy-based 
perspective. The analysis presented here employs different time series–based econometric models to 
identify interactions among the three price series in order to shed light on the cause of the growth of palm 
oil demand. We estimate two models of the oil price system: a simple VAR that treats all three prices as 
stationary as well as a vector error correction model that allows cointegration among the three prices. 
Statistical testing favors the error correction model, but our main results are robust to the choice of model. 

A main finding is that palm oil prices do not appear to respond to short-run fluctuations in crude 
oil prices. Instead, short-run dynamics in palm oil prices are a function of lagged palm oil prices and 
current and lagged soybean oil prices. Thus, short-run fluctuations in crude oil prices do not appear to be 
a driver of the boom in palm oil production. Short-run fluctuations in soybean oil prices, however, do 
affect palm oil markets. 

The error correction analysis indicates a long-run equilibrium relationship between prices of palm 
oil, soybean oil, and crude oil. Palm oil prices respond to departures from long-run equilibrium in this oils 
complex. Prices of palm oil and crude are negatively correlated in the long run. This finding is 
inconsistent with long-run growth in crude oil prices as a plausible explanation for growth in palm oil 
production. However, the positive correlation between prices of palm oil and soybean oil in the long run 
is consistent with the emergence of palm oil as a substitute for soybean oil. 

Taken as a whole, these results point to a potentially important relationship in the short and long 
run between palm oil markets and soybean markets. At the same time, the crude oil market does not 
appear to be an important driver of the palm oil boom. These results are consistent with the importance of 
food and feed drivers, and not only biodiesel, in driving up demand for palm oil. While the results do not 
provide any definitive attribution to the palm oil boom, or any answer concerning whether regulatory 
issues affected the growth in palm oil supply, they do validate the plausibility of food-related factors 
playing a significant if not primary role in the observed boom, particularly in the last 15 years in 
Southeast Asia.  

Further analysis should be conducted on the structural relationships between palm oil and 
soybean oil markets, especially accounting for bilateral demands and the role of specific policies. 



 

16 

REFERENCES 

Amsler, C., and J. Lee. 1995. “An LM Test for a Unit Root in the Presence of a Structural Change.” Econometric 
Theory 11 (2): 359–368. 

Ardeni, P. G. 1989. “Does the Law of One Price Really Hold for Commodity Prices?” American Journal of 
Agricultural Economics 71 (3): 661–669. 

Bird, K. 2010. “Unilever Buys Sustainable Palm Oil Certificates for European Business.” FoodNavigator.com, April 
13. www.foodnavigator.com/On-your-radar/Sustainable-sourcing/Unilever-buys-sustainable-palm-oil-
certificates-for-European-business.  

Byrne, J. 2010. “Biofuels to Blame for Palm Oil Deforestation, Says Nestlé.” FoodNavigator.com, April 19. 
www.foodnavigator.com/Financial-Industry/Biofuels-to-blame-for-palm-oil-deforestation-says-Nestle.  

Carter, C., W. Finley, J. Fry, D. Jackson, and L. Willis. 2007. “Palm Oil Markets and Future Supply.” European 
Journal of Lipid Science and Technology 109:307–314. 

Carter, C. A., and G. P. Gruere. 2003. “Mandatory Labeling of GM Food: Does It Really Provide Consumer 
Choice?” AgBioForum 6 (1&2): 68–70. 

Chaudhuri, K. 2001. “Long-Run Prices of Primary Commodities and Oil Prices.” Applied Economics 33 (4): 531–
538. 

Engle, R. F., and C. W. Granger. 1987. “Cointegration and Error Correction Representation: Estimation and 
Testing.” Econometrica 55: 251–276. 

European Council. 2009. Directive 2009/30/EC of the European Parliament and the Council of 23 April 2009. 
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0088:0113:EN:PDF 

FAO (Food and Agriculture Organization of the United Nations). 2011. FAOSTAT. Accessed July 12. 
http://faostat.fao.org/default.aspx.  

Gruere, G. P., and D. Sengupta. 2009. “The Effects of GM-Free Private Standards on Biosafety Policymaking in 
Developing Countries.” Food Policy 34 (5): 399–406.  

Gruere, G.P. 2006. "A preliminary comparison of the retail level effects of genetically modified food labelling 
policies in Canada and France." Food Policy 31(2): 148-161. 

Johansen, S. 1991. “Estimation and Hypothesis Testing of Cointegrating Vectors in Gaussian Vector Autoregressive 
Models.” Econometrica 59:1551–1580. 

Kapetanios, G., Y. Shin, and A. Snell. 2006. “Testing for Cointegration in Nonlinear Smooth Transition Error 
Correction Models.” Econometric Theory 22:279–303. 

Kessler, J. J., T. Rood, T. Tekelenburg, and M. Bakkenes. 2007. “Biodiversity and Socioeconomic Impacts of 
Selected Agro-commodity Production Systems.” Journal of Environment and Development 16 (2): 131–
160.  

Lee, J., C. J. Huang, and Y. Shin. 1997. “On Stationary Tests in the Presence of Structural Breaks.” Economics 
Letters 55 (2): 165–172. 

Partos, L. 2004. “Growing Palm Oil Market Needs Sustainable Supplies.” FoodNavigator.com. June 16. 
www.foodnavigator.com/Financial-Industry/Growing-palm-oil-market-needs-sustainable-supplies.  

________. 2005. “Loders Plant Feeds Demand for Trans Fat Alternatives.” FoodNavigator.com, September 14. 
www.foodnavigator.com/Financial-Industry/Loders-plant-feeds-demand-for-trans-fat-alternatives.  

Patton, D. 2006. “Palm Oil Price to Climb Higher on European Demand.” FoodNavigator.com, April 20. 
www.foodnavigator.com/Financial-Industry/Palm-oil-price-to-climb-higher-on-European-demand.  

Perron, P. 1989. “The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis.” Econometrica 57 (6): 1361–
1401. 



 

17 

Pesaran, M. H., Y. Shin, and R. J. Smith. 2001. “Bounds Testing Approaches to the Analysis of Level 
Relationships.” Journal of Applied Econometrics 16 (3): 289–326. 

Proforest. 2003. Palm Oil, Forests, and Sustainability. Discussion paper for the Round Table on Sustainable Oil 
Palm. Oxford, UK: Proforest. 

PRWeb. 2008. “World Vegetable Oils Market to Reach 138 Million Metric Tons by 2010, According to New Report 
by Global Industry Analysts, Inc.” Press release. March 10. 
www.prweb.com/releases/soybean_olive_oils/vegetable_canola/prweb749254.htm.  

Sabuhoro, J. B., and B. Larue. 1997. “The Market Efficiency Hypothesis: The Case of Coffee and Cocoa Futures.” 
Agricultural Economics 16 (3): 171–184. 

Tribe, D., and T. Kalla. 2005. “Economic Impact of Two GM Crops in Australia.” Paper presented at 9th ICABR 
conference, Ravello, Italy, July 6–10.  

Tuan, F.C., C. Fang and Z. Cao.  2004.  “China’s soybean imports expected to grow despite short-term disruptions.”  
Electronic Outlook Report OCS-04J-01.  Washington, DC: USDA-ERS.    

United States Department of Agriculture [USDA]. 2010. Oil Crops Yearbook 2010. Washington, DC: USDA. 

United States Department of Agriculture – Economic Research Service [USDA-ERS].  2012. “Adoption of 
genetically engineered crops in the U.S.: soybeans varieties.” ERS Data Sets. Washington, DC: USDA-
ERS. Accessed January 26.  http://www.ers.usda.gov/Data/BiotechCrops/ExtentofAdoptionTable3.htm   

United States Department of Agriculture- Foreign Agricultural Service [USDA-FAS]. 2012. “Oilseeds: World 
Market and Trade”. Circular Series FOB 1-12. Washington DC: USDA FAS 

World Bank. 2011. “World Bank Commodity Price Data.”  General Economic Monitor Commodities Database. 
Washington, DC.  Accessed June 6.  http://data.worldbank.org/data-catalog/commodity-price-data. 

Yang, J., D. A. Bessler, and D. J. Leatham. 2001. “Asset Storability and Price Discovery in Commodity Futures 
Markets: A New Look.” Journal of Futures Markets 21 (3): 279–300. 

Zapata, H. O., and T. R. Fortenbery. 1996. “Stochastic Interest Rates and Price Discovery in Selected Commodity 
Markets.” Review of Agricultural Economics 18 (4): 643–654. 

Zen, Z., C. Barlow, and R. Gondowarsito. 2005. Oil Palm in Indonesian Socio-economic Improvement: A Review 
of Options. Economic Department Working Paper 2005-11. Canberra, Australia: Australian National 
University.



 



 

RECENT IFPRI DISCUSSION PAPERS 

For earlier discussion papers, please go towww.ifpri.org/pubs/pubs.htm#dp. 
All discussion papers can be downloaded free of charge. 

1166. The food security system: A new conceptual framework. Olivier Ecker and Clemens Breisinger, 2012. 

1165. Farmers’ information needs and search behaviors: Case study in Tamil Nadu, India. Suresh Chandra Babu, Claire J. 
Glendenning, Kwadwo Asenso-Okyere, and Senthil Kumar Govindarajan, 2012. 

1164. Rural demography, public services, and land rights in Africa: A village-level analysis in Burkina Faso. Margaret 
McMillan, William A. Masters, and Harounan Kazianga, 2012. 

1164. Reforming the public administration for food security and agricultural development: Insights from an empirical study in 
Karnataka. Regina Birner, Madhushree Sekher, and Katharina Raabe, 2012. 

1163. Economic development, external shocks, and food security in Tajikistan. Kamiljon T. Akramov and Ganga Shreedhar, 
2012. 

1162. Infectious disease detection with private information. Alexander E. Saak, 2012. 

1161. Economic transformation in Ghana: Where will the path lead? Shashi Kolavalli, Elizabeth Robinson, Xinshen Diao, Vida 
Alpuerto, Renato Folledo, Mira Slavova, Guyslain Ngeleza, and Felix Asante, 2012. 

1160. Globalization, structural change, and productivity growth. Margaret McMillan and Dani Rodrik, 2012. 

1159. A review of input and output policies for cereals production in India. Ganga Shreedhar, Neelmani Gupta, Hemant 
Pullabhotla, A. Ganesh-Kumar, and Ashok Gulati, 2012. 

1158. Demand and supply of cereals in India: 2010-2025. A. Ganesh-Kumar, Rajesh Mehta, Hemant Pullabhotla, Sanjay K. 
Prasad, Kavery Ganguly, and Ashok Gulati, 2012. 

1157. Close eye or closed eye: The Case of export misinvoicing in Bangladesh. Pranav Kumar Gupta, Devesh Roy, and Kaikaus 
Ahmad, 2012. 

1156. The sophistication and diversification of the African Agricultural sector: A Product Space Approach. John Ulimwengu 
and Thaddée Badibanga, 2012. 

1155. Why women are progressive in education?: Gender disparities in human capital, labor markets, and family arrangement 
in the Philippines. Futoshi Yamauchi and Marites Tiongco, 2012. 

1154. Resource-rich yet malnourished: Analysis of the demand for food nutrients in the Democratic Republic of Congo. John 
Ulimwengu, Cleo Roberts, and Josee Randriamamonjy, 2012. 

1153. Putting gender on the map: Methods for mapping gendered farm management systems in Sub-Saharan Africa. Ruth 
Meinzen-Dick, Barbara van Koppen, Julia Behrman, Zhenya Karelina, Vincent Akamandisa, Lesley Hope, and Ben 
Wielgosz, 2012. 

1152. Household preferences and governance of water services: A Hedonic analysis from rural Guatemala. William F. 
Vásquez, 2011. 

1151. Peer effects, risk pooling, and status seeking: What explains gift spending escalation in rural China? Xi Chen, Ravi 
Kanbur, and Xiaobo Zhang, 2011. 

1150. Agricultural productivity and policies in Sub-Saharan Africa. Bingxin Yu and Alejandro Nin-Pratt, 2011. 

1149. Common-pool resources, livelihoods, and resilience: Critical challenges for governance in Cambodia. Blake D. Ratner, 
2011. 

1148. The impact of global climate change on the Indonesian economy. Rina Oktaviani, Syarifah Amaliah, Claudia Ringler, 
Mark W. Rosegrant, and Timothy B. Sulser, 2011. 

1147. Evaluating the Mexico City Policy: How US foreign policy affects fertility outcomes and child health in Ghana. Kelly M. 
Jones, 2011. 

1146. Income shocks and HIV in Sub-Saharan Africa.Marshall Burke, Erick Gong, and Kelly Jones, 2011. 

1145. Emerging policies and partnerships under CAADP: Implications for long-term growth, food security, and poverty 
reduction. Ousmane Badiane, Sunday Odjo, and John Ulimwengu, 2011. 



 

 

 

INTERNATIONAL FOOD POLICY 
RESEARCH INSTITUTE 

www.ifpri.org 

IFPRI HEADQUARTERS 
2033 K Street, NW 
Washington, DC 20006-1002 USA  
Tel.: +1-202-862-5600 
Fax: +1-202-467-4439 
Email: ifpri@cgiar.org 

mailto:ifpri@cgiar.org

	Abstract
	Acknowledgments
	Abbreviations and Acronyms
	1.  Introduction
	2.  Data Used in the Analysis
	3.  Exploring the Relationships among Prices of Palm Oil,  Soybean Oil, and Crude Oil
	Vector Autoregression Analysis
	Modeling Oils Prices with Potential Unit Roots: Testing for Cointegration
	Cointegration and Error Correction Estimations
	Nonlinear Cointegration

	4.  Discussion and Conclusion
	References
	RECENT IFPRI DISCUSSION PAPERS

