
PIXS: Programmable Intelligence for
Cross-Platform Socialization

Pili Hu
Department of Information

Engineering
The Chinese University of

Hong Kong
hupili@ie.cuhk.edu.hk

Junbo Li
Institute of Network

Technology
Beijing University of Posts and

Telecommunications
lijunbo@bupt.edu.cn

Wing Cheong Lau
Department of Information

Engineering
The Chinese University of

Hong Kong
wclau@ie.cuhk.edu.hk

ABSTRACT
With the proliferation of the emerging Online Social Net-
works and other conventional communication services, there
is an increasing need for a tool which can facilitate individual
users to effectively socialize across multiple, heterogeneous
platforms. While the diverse nature of the heterogeneous
services already makes the design of a cross-platform social-
ization tool challenging, an even more daunting task is to
tackle the “noisy” nature of the Social Networking Services
(SNS). Existing solutions all lack flexibility and extensibil-
ity, especially in supporting advanced users to better man-
age their cross-platform socialization via customized infor-
mation processing. In this paper, we propose PIXS (Pro-
grammable Intelligence for Cross-platform Socialization) –
an open-source, extensible middleware which provides effi-
cient information acquisition and dissemination across het-
erogeneous SNSs. A distinguishing feature of PIXS is its
support of script-based operations. As a proof-of-concept
to demonstrate the flexibility and effectiveness of PIXS, we
have developed for it a Python-based semi-supervised learn-
ing application which can prioritize incoming messages from
different platforms via a Rank Preserving Regression (RPR)
framework. This framework can readily incorporate the do-
main knowledge of the end user. Our SGD-based approach
also enables adaptive and incremental training of the rank-
ing system according to the gradual evolution of the user
preference. Performance evaluation based on real message
traces shows that the proposed system can boost the user’s
efficiency in identifying and forwarding important messages
across heterogeneous SNS platforms. Additional use-cases
of PIXS are also discussed.

Categories and Subject Descriptors
H.3.4 [INFORMATION STORAGE AND RETRIE-
VAL]: Systems and Software; I.2.6 [ARTIFICIAL IN-
TELLIGENCE]: Learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotPlanet’13, August 16, 2013, Hong Kong, China.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2177-8/13/08 ...$15.00.

Keywords
Social Networking Services; Middleware; Personalization

1. INTRODUCTION
A key function of SNS like Facebook, Twitter and Sina-

Weibo, is to support the dissemination of information among
a specific group/ community of users. From this viewpoint,
many other conventional communication services can also
be abstracted using the same primitives of SNS. Consider
the following examples:

• In standard SNS, users first specify their relationship
with each other (in form of directed or undirected
links) and subsequent information is automatically sha-
red according to the topology of the friend-network
and/or other additional community structure associ-
ated with the friend-networks.

• Under conventional communication services such as
those supported by the telephone, SMS and email net-
works, relationships between users are not declared ex-
plicitly or in advance. Instead, the participants of an
information-sharing session are defined in an ad hoc
and on-demand fashion during“call initiation”by spec-
ifying the list of intended recipients. Both uni- and
bi-directional communications can be supported.

• For other one-way information distribution channels
such as RSS feeds, blogs, and even search engines, user
subscribes to the information source by specifying the
keyword/ hash-tag or writing a script to monitor the
response of the search engine to a particular keyword.
The subscription actions implicitly establish the log-
ical topology for information dissemination, which is
relatively static and with directed links in nature.

From the above examples, one can see the major differences
between the different types of SNS and conventional infor-
mation services are: 1) whether links/relationships between
different parties are declared explicitly beforehand or im-
plicitly established dynamically; 2) whether the information
flow is uni- or bi-directional; 3) whether a user is allowed to
read and/or write from/into the information sharing chan-
nel; 4) whether user authentication and/or authorization are
required.

Parametrized according to the above dimensions, hetero-
geneous communication services can be abstracted and mod-
eled under a single generic template. Such a unified view also
plays a critical role in realizing effective information process-
ing/ dissemination across multiple platforms. For example,

33

with the unification of their interfaces, customized user op-
erations, preference feedback as well as programmable in-
telligence on one platform can be readily transferred and
reused on other platforms.

Nowadays, many users already actively communicate th-
rough more than one of the information-sharing platforms.
It is noteworthy that users often consciously or subcon-
sciously “stitch” the heterogeneous platforms together by
selectively relaying messages across different platforms after
some manual filtering/ editing. For example, after reading a
“juicy” gossip from a blog or subscribed email-list, you may
forward it manually to your personal friends on Facebook,
but not to your professional colleagues on LinkedIn. In fact,
such cross-platform forwarding operations can be viewed as
the formation of new multi-modal SNS which overlays on top
of the existing SNS as well as other communication services.

With these goals in mind, we have designed and imple-
mented PIXS which enables easy manipulations and infor-
mation processing across multiple heterogeneous SNS/ com-
munication platforms. Besides the support of easily con-
figurable default forwarding/ filtering policies for its basic
users, PIXS allows advanced users to program certain intel-
ligence into the system via simple Python scripts. Instead of
targeting the almost-impossible goal of fully-automated con-
tent selection, editing and relay, PIXS provides a framework
under which explicit user feedbacks can be readily incorpo-
rated into the information processing cycle to boost its ef-
fectiveness and accuracy. As a proof-of-concept, we have de-
signed and integrated a customizable message-ranking frame-
work which can help a user to prioritize incoming messages
and determine their suitability to be forwarded to different
communication channels. In short, PIXS is to help users to
efficiently identify important/ interesting incoming messages
amid large volume of input information streams. The final
operations like tagging, editing and forwarding those seem-
ingly important messages remain to be under the manual
control of the PIXS user.

The rest of the paper is organized as follows. In Section 2,
we briefly survey related work. In Section 3, the system ar-
chitecture of PIXS is presented. In Section 4, we formulate
the Rank Preserving Regression problem for message pri-
oritization. In Section 5, we transform the problem and
propose to use Stochastic Gradient Descent (SGD) as the
training algorithm. In Section 6, we evaluate all our system
in terms of efficiency, accuracy, robustness, and flexibility.
Lastly, we conclude this paper and propose future work in
Section 7.

2. RELATED WORK
There are many existing aggregation services on the Inter-

net. Some of them focus on dealing with specific type of re-
sources, e.g. Google Reader [7] is for RSS feeds. Others can
handle heterogeneous resources while supporting rule-based
filtering at different levels of sophistication. For example,
IFTTT [13] abstracts Internet-based information services
as “channels” and allows users to define “IF-This-happens-
Then-do-That” (IFTTT) forwarding recipes. In contrast,
Yahoo Pipes [14] supports fewer platforms but has more
sophisticated processing by allowing users to design a story-
board of logical operations (e.g. condition, loop, etc) be-
tween different resources (e.g. webpage, RSS, etc) and con-
nect them using “pipes”. Yoono [8], SocialOomph [9], and
Hootsuite [10] are other example services which provide par-

tial interoperability between heterogeneous platforms with
some basic personalization functions. While these services
may satisfy novice users, they have at least one of the follow-
ing problems: 1) Only configurable but not programmable,
which severely limits their functions; 2) Non open-source
and thus less reusable for automation; 3) Only support a
small subset of platforms and are not readily extensible to
other platforms. There are also other open source projects
which aim to bridge different OSNs. For example, OpenSo-
cial [11] abstracts multiple OSNs using the same interface.
However, its design is mostly server-side oriented and re-
quires a steep learning curve if users just want some sim-
ple programmable customization to his/her own SNS opera-
tions. Another example we found during the preparation of
this paper is ThinkUp [12]. It is an open-source web service
which reads messages from several OSNs and stores them
in a local database. Further analysis can be performed on
ThinkUp to help the users to find important information.
However, ThinkUp does not provide a comprehensive ab-
straction of heterogeneous SNS like PIXS and ThinkUp’s
web service nature requires more heavy-weight infrastruc-
ture support (e.g. LAMP environment), making it hard to
run on mobile devices.

Besides interface heterogeneity, another major challenge
of operating multiple SNS is the problem of information ex-
plosion even under selective channel subscriptions and care-
ful formation of one’s friends-network. As such, additional
personalization, e.g. message filtering and prioritization, is
in order. Personalization is a research area of its own right
even for the case of single-platform support and many service
providers have developed their own machine learning algo-
rithms for such purpose. For example, users of SinaWeibo
and Facebook can select between the reranked or reverse
chronological timeline; GMail users find their messages clas-
sified into “important” and “ordinary” types. These existing
approaches focus on training with implicit user feedbacks,
e.g. how long a user stays on one message. Users are seldom
actively involved in the training cycle even if they want. It
is asking machine to solve a harder-than-necessary problem.
Worse still, the solutions provided by the service providers
mostly take the heavy-weight server-side approach targeting
the mass while providing little flexibility for advanced users.

3. SYSTEM ARCHITECTURE
In designing PIXS, we have adopted the following prin-

ciples: 1) Focusing on solving the 80% problems; 2) Com-
bining human and machine intelligence; 3) Staying open to
support future service evolution ; 4) Trading execution per-
formance for script development efficiency. Based on these
principles, we divide the architecture of PIXS into the fol-
lowing key components:

• PIXS Middleware 1 is the middleware which supports
the interfacing with heterogeneous SNSs. Other de-
velopers can write “plugins” to enable the support of
new platforms. Without any modifications, applica-
tions built on PIXS are readily available for any new
platforms to be added in the future.

• PIXS Front-End 2 contains a Web UI (WUI) via which
an user can check home timeline, update status and

1Source code in https://github.com/hupili/snsapi/
2Source code in https://github.com/hupili/sns-router/

34

tag incoming messages. The user will get prioritized
timeline from WUI if ranking module is enabled.

• Rank Preserving Regression (RPR) is the framework
for prioritizing the timeline, which can support light-
weight, client-side learning via the Stochastic Gradient
Descent (SGD) approach. More details about RPR
and SGD will be discussed in Section 4 and 5.

Fig. 1 depicts the architecture of PIXS Middleware, which
consists of the following three layers: 1) The Interface Layer
(IL) where SNSBase is the base class for the SNS. One can
derive from it to implement the actual logic required for
interfacing with each SNS platform. New platforms are en-
abled by writing a “plugin”. Types defined in IL are JSON-
and Pickle- serializable. 2) The Physical Layer (PL) that
realizes common operations like HTTP request/response,
OAuth, and Error definition. This is to facilitate the devel-
opment of additional plugins for future platforms. 3) The
Application Layer (AL) provides a container class to hold a
set of SNSBase instances. With this container class, a user
can easily perform batched operations in a cross-platform
fashion.

A Command-Line Interface (CLI) in form of a Python
shell has also been developed for PIXS. It can interface with
other programming languages via standard input/ output
streams. By providing this flexible and powerful middle-
ware, we hope to attract contributors from the open-source
community to develop additional cross-platform applications
and enable more platforms by writing plugins. Another ob-
jective is to enable researchers to collect relevant informa-
tion from heterogeneous SNS in a convenient and unified
way. This can in turn speed-up the prototyping of new
data-mining/ machine-learning based applications for social
networking.

The focus of PIXS Middleware is to enable interfacing
with heterogeneous SNS. This is achieved by abstracting
common SNS primitives and unifying the data structures
for different platforms. It adopts a synchronous model due
to its nature and applications have to handle the scheduling
themselves. Although the CLI brings much convenience to
advanced users, it is still hard for ordinary users to learn
the basic operations. Towards this end, we build the PIXS
Front-End. It provides an asynchronous queue structure
with persistent storage. Upon the queue facility a more
user friendly Web UI (WUI) is built using Bottle [15] as
the micro-framework. Users can read, tag and relay mes-
sages through the WUI. A ranking module (RPR-SGD to
be detailed later) is running in the backend to prioritize in-
coming messages. With PIXS, users can spot, examine and
route important messages among multiple platforms more
efficiently.

4. PROBLEM FORMULATION
With the PIXS components, users can operate multiple

SNS platforms easily. Thanks to the open-source and mod-
ular nature of PIXS, users with basic programming knowl-
edge can customize their SNS experience by writing simple
Python scripts. Furthermore, we have also built a general
algorithmic framework based on this system to support more
sophisticated functions such as re-construction of the user’s
timeline with prioritized messages extracted from multiple
information sources. With the help of this framework, users
will be more efficient in identifying and spreading high-value

Figure 1: Architecture of PIXS Middleware

messages in a cross-platform fashion. In this section, we
formulate this challenge as a Rank Preserving Regression
problem.

Recall that users can tag messages via the WUI of PIXS.
The meaning of each tag depends on the users and they can
add their own tags. While the relation between tags and
messages is in general a many-to-many mapping, we hereby
assume it to be one-to-one for simplicity. Furthermore, an
imaginary “null” tag is assigned to each message by default
after the user marks it as read. Under this setup, every
message has one and only one tag.

Suppose we have N messages m1,m2, . . . ,mN and we can
extract a K-dimensional feature-vector for each of the mes-
sages. By combining the feature-vectors of the N messages,
we yield:

XT = [x1, x2, . . . , xN] (1)

where xi ∈ R
K is the feature vector of message mi. Denote

the tag of message i by ti. Based on this information, we
want to rank messages according to their importance per-
ceived by the user.

Towards this end, our first attempt was to formulate the
task as a classification problem. To be more specific, we
tried to automatically assigning a tag to each message ac-
cording to the classification outcome and users can choose
to read messages with a particular tag-type. We tested the
Logit classifier and J48 using Weka [6] with default settings.
The test results indicated poor performance of such fine-
grained approach. Furthermore, the classification approach
also suffers from the following problems: 1) Classifiers usu-
ally output rules with rigid cut-off thresholds ; 2) Human
can only process messages sequentially so prioritization of
different messages is already adequate.

Based on these observations, we proceed to an alterna-
tive regression-based formulation. The system will assign a
score to a message when it first arrives. This score is stored
in database and can be efficiently retrieved to support the
necessary operations such as the construction of a ranked
timeline for a user.

The next question is how to compute a single score based
on the feature values. As a starter, we try the linear com-
bination approach, i.e. let the score y = Xw. For one, non-
linear combination can be casted to linear combination by
extending the dimension of features. Furthermore, the out-

35

put of linear combination is highly interpretable, e.g. “+10
if the message comes from User X”, e.g. “+2 if the mes-
sage comes from Platform Y”, “+5 if the message is about
Topic Z”, etc. Such an intuitive, easily-understandable ap-
proach is particularly desirable as it can encourage users to
further customize their timeline by incorporating additional
features. Based on this setup, we yield the following regres-
sion formulation:

minimize
w

||y −Xw||22 (2)

where yi is the score for message i. If one can find a set
of weights w that can result in a good match to y under
the training data, we can expect the same set of weights to
perform reasonably well on future incoming messages. Un-
der this framework, the processing steps for a newly arrived
message include: 1) Extract features from the message ; 2)
Use learned w to generate a score, ŷi = xT

i w; 3) Store ŷi in
the database; 4) Upon query, sort messages by ŷi.
One difficulty of this approach is that y is unknown and

it is very hard for users to generate consistent y’s even for
the training data. Another problem is that as the inter-
est/ taste of a user evolves, he/she has to re-grade all the
prior messages and train the weights again, which can be a
very tedious process. To work around, we instead ask users
to specify their relative preference between different pair of
messages. This alternate treatment leads to the following
new formulation:

minimize
y,w

||y −Xw||22 (3)

s.t. yi > yj , ∀(mi,mj) ∈ E (4)

where E is a set of message tuples where (i, j) means mes-
sage i is preferred than j. Note that y in this formulation
is an unknown variable. This makes the problem different
from ordinary regression. Furthermore, E only specifies a
partial ordering which, to our best knowledge, results in a
non-standard regression problem. For now, we refer it as
Rank Preserving Regression (RPR). We will describe
the detail procedure for the construction of E in Section 5.1.

5. ALGORITHM DESIGN
In this section, we discuss the design of the algorithm

for training the RPR model. First, we describe how the
preference constraints E are obtained. We then tackle with
challenges associated with the resultant optimization prob-
lem. Both algorithmic and practical considerations will be
covered.

5.1 Inducing Preference Relations on Graph
Fig. 2 illustrates how preference relations of tags are de-

rived. Ovals stand for user defined tags. Solid arrows are
user specified preference (extracted from a JSON configu-
ration file). Note that no matter what the meaning of the
tags is, the user should be able to tell which tag is pre-
ferred. We state Tu � Tv if tag Tu is preferred than Tv.
Consider the construction of the tag graph GT =< T,P >,
where T is the set of tags and P = {(Tu, Tv)|Tu � Tv}.
If there exists a path from Tx to Ty, we can conclude that
Tx � Ty. In this way, we extract additional partially or-
dered tag pairs besides the ones explicitly specified by the
user. Since the tag graph is very small in practice, we simply
invoke the Floyd algorithm [2] to induce those path prefer-
ences instead of deriving on our own. The next step is to

Figure 2: Graph Induction of the Relative Prefer-
ence Relations of Tags

collect all of the path preferences in one set PI (named af-
ter “Induced Preference”). Notice that P ⊂ PI by nature.
As such, we can define a message graph GM =< M,E >,
where M = {m1,m2, . . . ,mN} is the set of all messages and
E = {(mi,mj)|(ti, tj) ∈ PI} encodes a partial ordering of
the messages.

This tag based preference induction has some desirable
properties. (1) Flexible: One can either tag in a coarse-
grained manner like “good” and “bad”, or in a finer-grained
manner like“machine learning”,“social computing”, and“net-
working”. (2) Efficient: The user does not have to give every
message a grade in order to let machine learn how to prior-
itize them. (3) Adaptive: When user’s interest shifts from
topic to topic or from followee to followee, one only needs to
change a subset of edges in the preference configuration.

5.2 Direct Optimization Solver
The RPR formulation is in essence a Quadratic Program-

ming (QP) problem. However, the QP approach has the
following drawbacks: (1) Solving QP is costly. It is par-
ticularly problematic if one wants to run PIXS on mobile
devices ; (2) Typical QP solvers only support batch-mode
operations ; In our problem, mi comes continuously and E
is also evolving. If we want to capture time varying user
interest, we must solve the QP in an incremental manner.
(3) The need of a QP solver will introduce more dependen-
cies to our project, making it less portable. Due to these
limitations, we have derived a better training approach by
further transforming the QP formulation.

5.3 Problem Transformation
We first convert the inequality preference constraints into

equality constraints using indicator function: I[yi > yj] =
1, ∀(mi,mj) ∈ E. Since I[.] only takes 0 or 1, the con-
straints become: 1− I[yi > yj] ≤ 0, ∀(mi,mj) ∈ E.

The Lagrangian of the corresponding problem is:

L(y, w, μ) = ||y −Xw||22 +
|E|∑

k=1

μk(1− I[yi > yj]) (5)

We then lower bound the optimal value of the original prob-
lem by solving the Lagrangian dual problem:

v∗d = sup
µ≥0

inf
y,w

L(y, w, μ) (6)

The point (ȳ, w̄, μ̄) which attains the v∗d can be used to ap-
proximate the optimizer for the original problem. ((ȳ, w̄)

36

does not have to be the optimizer for original problem).
The physical meaning of L(y, w, μ) is also clear: The first
term penalizes unmatched predictions with respect to ob-
servations; The second term penalizes unsatisfied relative
preference relations (μk is non-negative).
Even with this modification, directly solving the Lagran-

gian dual problem remains difficult. We therefore restrict
ourselves to a family of (y, w, μ) (instead of exploring the
whole space of (y, w, μ)) where:

y = Xw (7)

μi = λ ≥ 0, ∀i = 1, 2, . . . , |E| (8)

By doing so, it implies that: 1) we only consider the solu-
tions which provide a perfect match between all predictions
and observations; 2) we treat all relative preference relations
equally important.

With this setup, we have L̃(y, w, μ) = λ
∑|E|

k=1(1− I[yi >
yj]) and the supinf problem of Eq. 6 becomes the following
optimization:

minimize
y,w

∑

(mi,mj)∈E

1− I[yi > yj] (9)

s.t. y = Xw (10)

Note that we can substitute y with Xw in the objective, to
yield an unconstrained optimization with respect to variable
w. This formulation also reduces the number of variables
from (N + K) to K, which is significant for the practical
problem on hand.

5.4 Stochastic Gradient Descent
We can leverage first-order optimization techniques to sol-

ve the newly formulated problem in Eq. 10. First, we ap-
proximate indicator using Sigmoid function, S(x) = 1

1+e−βx ,

where β is a scaling factor to control the approximation rate.
We then define

f(w) ≡
∑

(i,j)∈E

1− S(yi − yj) (11)

where yi = (Xw)i and (i, j) ∈ E is a shorthand notation for
(mi,mj) ∈ E. The gradient of f(w) is given by:

∇f(w) =
∑

(i,j)∈E

∇fij(w) (12)

∇fij(w) = β(1− S(yi − yj))S(yi − yj)(xj − xi) (13)

where∇fij(w) is the“stochastic gradient” [1] with respect to
the pair of relative preference relation (i, j). We randomly
loop around all the induced pair of relations and descend
f(w) along the direction opposing to the stochastic gradient.

6. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the pro-

posed RPR-SGD scheme. We first introduce the data set
and propose to use the Kendall’s tau correlation coefficient
as a performance metric. Interested readers can refer to [5]
for a demo of adding extra features, which shows the flexi-
bility of RPR-SGD.

6.1 Data Set
We collected real message trace from an instance of PIXS

over a 1-month period. Table 1 summarizes some basic

statistics. We then derive training and testing relative pref-
erence relations as follows: 1) Select all tagged messages
(a total of 900); 2) Sample an equal number of untagged
messages (about 900) and assign the “null” tags to them;
3) Randomly partition the candidate messages (about 1.8K)
into equal-sized training set (Mtrain) and testing set (Mtest);
4) Use graph induction to form GMtrain and GMtest which
yields more than 200K relative preference constraints.

Table 1: Basic Statistics of the Data Set
Item Value
of total messages 32533
of seen messages 7553
of tagged messages 924
of forwarded messages 167
of derived pairs (training) 231540
of derived pairs (testing) 229009

6.2 Evaluation Criterion
Kendall’s tau correlation coefficient [3] is a good measure

of ranking. The modified version for our problem is defined
as (and referred to as the Kendall’s score for short):

K =

∑
(i,j)∈Etest

I[ŷi > ŷj]−∑
(i,j)∈Etest

I[ŷj > ŷi]

|Etest| (14)

where ŷi is the predicted score of message i using the learned
weights w and Etest is the set of edges in GMtest . Kendall’s
tau correlation computes difference between satisfied and
unsatisfied pairs and divide it by the total number of rela-
tions. K is in the range [−1, 1] and the larger the better.
When ŷi’s are assigned randomly, K = 0.

6.3 Sample Features
To emphasize the easy-to-use nature of our RPR-SGD

framework, we restrict ourselves to readily-extractable mes-
sage features including: Whether or not the message con-
tains a link; Whether this message comes from the PIXS
user; Full message length (including original post and re-
post); Cleaned message length (i.e. without “@xxx”, etc);
Original message length; Message topics; User topics. Most
of the features are self-explanatory. We only elaborate the
last two features. To get topic types, we manually classify
the tags defined by the user into several topics, e.g. “tech”,
“news”, “nonsense”, etc. We use the TF-IDF [4] approach
to mine the topics by treating new messages as queries and
topics as documents. In this way, we invoke standard Infor-
mation Retrieval methods to determine the message topics.
Also note that different users tend to post different topics. In
this case, we want to analyze the topics of a user. The only
difference to mining the message topic is that we treat users
as terms in TF-IDF. We remark that only rudimentary topic
mining algorithm is being used here; Further optimization
is possible with more advanced topic-mining schemes.

6.4 Performance and Complexity
We have implemented SGD using Python without any

code level optimization. Table 2 shows the performance of
the resultant trained model under different training time and
sizes. In this evaluation, step size is chosen as α = 10−2.
We see that the value of K for the testing set becomes
larger than 0.7 after several dozens of thousand of iter-
ations, which means 85% pairs are in correct order (i.e.

37

K = (0.85|E|−0.15|E|)/|E|). This is a substantial improve-
ment over the unranked timeline. We have also implemented
normal Gradient Descent (GD) as a baseline, which costs
about 30sec for each iteration and requires 15 iterations to
result in K ≈ 0.75. This clearly shows the effectiveness of
SGD. It is important to note that SGD can be executed in
the backend constantly with new incoming data and users
can query the current best ranking at any time. In this way,
PIXS do not have to block a full training cycle while users
are served.

Table 2: Training with SGD
Item 1. 2. 3.

of rounds 200,000 400,000 1,000,000
wall clock time 32.63s 60.81s 159.57s
K (training) 0.8178 0.8349 0.8414
K (testing) 0.7598 0.7758 0.7865

6.5 Improved User Efficiency
We present the user feedback in Table 3 to show that

RPR-SGD improves user efficiency significantly. Here, the
time period is divided into weeks to absorb natural variance
due to workday vs. weekend or day vs. night. This deploy-
ment connects to multiple platforms including Twitter, Ren-
ren, SinaWeibo, TencentWeibo, SQLite, Gmail, and some
RSS feeds. “A” is the total number of messages fetched by
PIXS during the experiment period. “S” is the total number
of messages seen by the user. “V” is the number of valuable
messages to the user. As a rough estimation, we treat tags
that are superior to “null” in the preference graph as valu-
able ones. The last column “V/S” is the ratio between the
number of “Valuable” messages and total messages “Seen”.

Table 3: User Efficiency Evaluation
No. Period A S V V/S
1 Nov 13 - Nov 20 6578 1489 114 7.6561%
2 Nov 20 - Nov 27 9040 1544 138 8.9378%
3 Nov 27 - Dec 04 8472 846 184 21.749%
4 Dec 04 - Dec 11 8243 225 56 24.889%

During initial deployment, the ranking module was dis-
abled so that we could bootstrap the system with some user
data. We subsequently enabled ranking on Nov 26. Ta-
ble 3 shows that user efficiency is improved to about three
times even if we only consider the process that people filter
out useful information. Considering the multi-interfacing
nature of PIXS, users act much more efficiently in acquir-
ing and disseminating valuable information. Refer to [5] for
more details of this experiment.

6.6 Reaction to Noisy Features
In this experiment, we intentionally inject a noisy feature

and see how RPR-SGD reacts. We start with features dis-
cussed above without “noise”, and run enough steps of SGD
to yield K > 0.8. The absolute values of trained weights for
the remaining features are all less than 10. We then inject
a noise feature, which is a r.v. ∼ U [0, 1], and its weight is
initialized to 10. Table 4 shows the training result. Observe
that the Kendall’s score is close to 0 initially due to the large
initial weight we assigned to the noise feature. This corre-
sponds to essentially random ordering of messages. After

Table 4: Robustness Test
Init Round=200K Round=400K

Kendall 0.0772 0.5435 0.8060
w(noise) 10.0 1.3407 -0.0132

running more steps of SGD, the magnitude of the weight of
the noise feature gradually reduces and the Kendall’s score
improves accordingly.

7. CONCLUSIONS AND FUTURE WORKS
In this paper, we have described PIXS and demonstrated

its support of programmable intelligence which enables users
to better manage socialization across heterogeneous SNS.
PIXS can be used to establish a new multi-modal SNS which
can leverage the communication/ information-storage infras-
tructure provided by the existing SNS. Besides, it can also
help to“unlock”the content originated/ stored under the ex-
isting, compartmentalized platforms. Most importantly, the
overlaying SNS built by PIXS would allow users to grad-
ually regain control of their personal content and commu-
nication archives by automatically forwarding information
from those proprietary, closed platforms to other more open,
non-commercial systems, e.g. the decentralized online social
networking services supported by Diaspora [16]. The mid-
dleware can also provide an adaptation layer to web services
like ThinkUp [12] to enable more platforms.

Acknowledgements
This research is supported in part by the CUHK MobiTeC
fund.

8. REFERENCES
[1] L. Bottou. Online learning and stochastic

approximations. On-line learning in neural networks,
17:9, 1998.

[2] R. W. Floyd. Algorithm 97: Shortest path.
Communications of the ACM, 5(6):345, June 1962.

[3] M. G. Kendall. A new measure of rank correlation.
Biometrika, 30(1/2):81–93, 1938.

[4] H. C. Wu, R. W. P. Luk, K. F. Wong, and K. L. Kwok.
Interpreting tf-idf term weights as making relevance
decisions. ACM Transactions on Information Systems
(TOIS), 26(3):13, 2008.

[5] Pili Hu, 2012, SNSRouter – A Framework for
Intelligent Message Routing on Heterogeneous SNS,
https://github.com/hupili/sns-router/blob/

paper/doc/paper/snsrouter.pdf

[6] Weka, 2013, http://www.cs.waikato.ac.nz/ml/weka/

[7] Google Reader, http://www.google.com/reader/

[8] Yoono, http://www.yoono.com

[9] SocialOomph, https://www.socialoomph.com

[10] Hootsuite, http://hootsuite.com

[11] OpenSocial, http://opensocial.org

[12] ThinkUp, https://www.thinkup.com

[13] IFTTT, https://ifttt.com

[14] Yahoo Pipes, http://pipes.yahoo.com/pipes/

[15] Bottle, http://bottlepy.org/docs/dev/

[16] Diaspora, https://joindiaspora.com

38

