
Algorithm Engineering –

An Attempt at a Definition

Peter Sanders⋆

Universität Karlsruhe, 76128 Karlsruhe, Germany
E-mail: sanders@ira.uka.de

Abstract. This paper defines algorithm engineering as a general method-
ology for algorithmic research. The main process in this methodology is a
cycle consisting of algorithm design, analysis, implementation and exper-
imental evaluation that resembles Popper’s scientific method. Important
additional issues are realistic models, algorithm libraries, benchmarks
with real-world problem instances, and a strong coupling to applications.
Algorithm theory with its process of subsequent modelling, design, and
analysis is not a competing approach to algorithmics but an important
ingredient of algorithm engineering.

appl. engineering

realistic
models

design

implementation

libraries
algorithm−

perf.−
guarantees

applications

4

6

3
10

deduction

falsifiable

induction
hypotheses 75analysis experiments

algorithm
engineering real

Inputs 9

8

Fig. 1. Algorithm engineering as a cycle of design, analysis, implementation, and ex-
perimental evaluation driven by falsifiable hypotheses. The numbers refer to sections.

⋆ Partially supported by DFG grant SA 933/4-1



1 Introduction

Algorithms and data structures are at the heart of every computer application
and thus of decisive importance for permanently growing areas of engineering,
economy, science, and daily life. The subject of Algorithmics is the systematic
development of efficient algorithms and therefore has pivotal influence on the
effective development of reliable and resource-conserving technology. We only
mention a few spectacular examples.

Fast search in the huge data space of the internet (e.g. using Google) has
changed the way we handle knowledge. This was made possible with full-text
search algorithms that are harvesting matching information out of petabytes of
data within fractions of a second and by ranking algorithms that process graphs
with billions of nodes in order to filter relevant information out of heaps of result
data. Less visible yet similarly important are algorithms for the efficient distri-
bution and caching of frequently accessed data under massive load fluctuations
or even distributed denial of service attacks.

One of the most far-reaching results of the last years was the ability to read
the human genome. Algorithmics was decisive for the early success of this project
[1]. Rather than just processing the data coming our of the lab, algorithmic
considerations shaped the implementation of the applied shotgun sequencing
process.

The list of areas where sophisticated algorithms play a key role could be arbi-
trarily continued: computer graphics, image processing, geographic information
systems, cryptography, planning in production, logistics and transportation,. . .

How is algorithmic innovation transferred to applications? Traditionally, al-
gorithmics used the methodology of algorithm theory which stems from math-
ematics: algorithms are designed using simple models of problem and machine.
Main results are provable performance guarantees for all possible inputs. This
approach often leads to elegant, timeless solutions that can be adapted to many
applications. The hard performance guarantees lead to reliably high efficiency
even for types of inputs that were unknown at implementation time. From the
point of view of algorithm theory, taking up and implementing an algorithmic
idea is part of application development. Unfortunately, it can be universally
observed that this mode of transferring results is a slow process. With growing
requirements for innovative algorithms, this causes growing gaps between theory
and practice: Realistic hardware with its parallelism, memory hierarchies etc. is
diverging from traditional machine models. Applications grow more and more
complex. At the same time, algorithm theory develops more and more elaborate
algorithms that may contain important ideas but are usually not directly imple-
mentable. Furthermore, real-world inputs are often far away from the worst case
scenarios of the theoretical analysis. In extreme cases, promising algorithmic
approaches are neglected because a mathematical analysis would be difficult.

Since the early 1990s it therefore became more and more apparent that al-
gorithmics cannot restrict itself to theory. So, what else should algorithmicists
do? Experiments play a pivotal here. Algorithm engineering (AE) is therefore
sometimes equated with experimental algorithmics. However, in this paper we

2



argue that this view is too limited. First of all, to do experiments, you also have
to implement algorithms. This is often equally interesting and revealing as the
experiments themselves, needs its own set of techniques, and is an important in-
terface to software engineering. Furthermore, it makes little sense to view design
and analysis on the one hand and implementation and experimentation on the
other hand as separate activities. Rather, a feedback loop of design, analysis, im-
plementation, and experimentation that leads to new design ideas materializes
as the central process of algorithmics.

This cycle is quite similar to the cycle of theory building and experimental
validation in Popper’s scientific method [2]. We can learn several things from
this comparison. First, this cycle is driven by falsifiable hypotheses validated by
experiments – an experiment cannot prove a hypothesis but it can support it.
However, such support is only meaningful if there are conceivable outcomes of ex-
periments that prove the hypothesis wrong. Hypotheses can come from creative
ideas or result from inductive reasoning stemming from previous experiments.
Thus we see a fundamental difference to the deductive reasoning predominant
in algorithm theory. Experiments have to be reproducible, i.e., other researchers
have to be able to repeat an experiment to the extent that they draw the same
conclusions or uncover mistakes in the previous experimental setup.

There are further aspects of AE as a methodology for algorithmics, outside
the main cycle. Design, analysis and evaluation of algorithms are based on some
model of the problem and the underlying machine. Since gaps between theory
and practice often relate to these models, they are an important aspect of AE.
Since we aim at practicality, applications are an important aspect. However we
choose to view applications as being outside the methodology of AE since it
would otherwise become too open ended and because often one algorithm can
be used for quite diverse applications. Also, every new application will have its
own requirements and techniques some of which may be abstracted away for al-
gorithmic treatment. Still, in order to reduce gaps between theory and practice,
as many interactions as poissible between the application and the activities of
AE should be taken into account: Applications are the basis for realistic mod-
els, they influence the kind of analysis we do, they put constraints on useful
implementations, and they supply realistic inputs and other design parameters
for experiments. On the other hand, the results of analysis and experiments in-
fluence the way an algorithm is used (fast enough for real time or interactive
use?,. . . ) and implementations may be the basis for software used in applica-
tions. Indeed, we may view application engineering as a separate process living
in both AE and a concrete application domain where methods from both areas
are used to adapt an algorithm to a particular application. Applications engineer-
ing bridges remaining unavoidable gaps between experimental implementations
and production quality code. Note that there are important differences between
these two kinds of code: fast development, efficiency, and instrumentation for
experiments are very important for AE, while thorough testing, maintainability,
simplicity, and tuning for particular classes of inputs are more important for the
applications. Furthermore, the algorithm engineers may not even know all the

3



applications for which their algorithms will be used. Hence, algorithm libraries

of highly tested codes with clear simple user interfaces are an important link
between AE and applications.

Figure 1 summarizes the resulting schema for AE as a methodology for al-
gorithmics. The following sections will describe the activities in more detail. We
give examples of challenges and results that are a more or less random sample
biased to results we know well. Throughout this paper, we will demonstrate the
methodology using the external minimum spanning tree (MST) algorithm from
[3] as an example. This example was chosen because it is at the same time simple
and illustrates the methodology in most of its aspects.

2 A Brief “History” of Algorithm Engineering

The methodology described here is not intended as a revolution but as a descrip-
tion of observed practices in algorithmic research being compiled into a consis-
tent methodology. Basically, all the activities in algorithm development described
here have probably been used as long as there are computers. However, in the
1970s and 1980s algorithm theory had become a subdiscipline of computer sci-
ence that was almost exclusively devoted to “paper and pencil” work. Except for
a few papers around D. Johnson, the other activities were mostly visible in ap-
plication papers, in operations research, or J. Bentley’s programming pearls col-
umn in Communications of the ACM. In the late 1980s, people within algorithm
theory began to notice increasing gaps between theory and practice leading to
important activities such as the Library of Efficient Data Types and Algorithms
(LEDA, since 1988) by K. Mehlhorn and S. Näher and the DIMACS implementa-
tion challenges (http://dimacs.rutgers.edu/Challenges/). It was not before
the end of the 1990s that several workshops series on experimental algorithmics
and algorithm engineering were started.1 There was a Dagstuhl workshop in
2000 [4], and several overview papers on the subject were published [5–9].

The term “algorithm engineering” already appears 1986 in the Foreword of
[10] and 1989 in the title of [11]. No discussion of the term is given. At the same
time T. Beth started an initiative to move the CS department of the University
of Karlsruhe more into the direction of an engineering discipline. For example,
a new compulsory graduate-level course on algorithms was called “Algorith-
mentechnik” which can be translated as “algorithm engineering”. Note that the
term “engineering” like in “mechanical engineering” means the application ori-
ented use of science whereas our current interpretation of algorithm engineering
has applications not as its sole objective but equally strives for general scientific
insight as in the natural sciences. However, in daily work the difference will not
matter much.

P. Italiano organized the “Workshop on Algorithm Engineering” in 1997
and also uses “algorithm engineering” as the title for the algorithms column

1 The Workshop on Algorithm Engineering (WAE) is not the engineering track of
ESA. The Alex workshop first held in Italy in 1998 is now the ALENEX workshop
held in conjuction with SODA. WEA, now SEA was first organized in 2002.

4



of EATCS in 2003 [12] with the following short abstract: “Algorithm Engineer-
ing is concerned with the design, analysis, implementation, tuning, debugging
and experimental evaluation of computer programs for solving algorithmic prob-
lems. It provides methodologies and tools for developing and engineering efficient
algorithmic codes and aims at integrating and reinforcing traditional theoretical
approaches for the design and analysis of algorithms and data structures.” Inde-
pendently but with the same basic meaning, the term was used in the influential
policy paper [5]. The present paper basically follows the same line of argumen-
tation attempting to work out the methodology in more detail and providing a
number of hopefully interesting examples.

3 Models

A big difficulty for defining models for problems and machines is that (appar-
ently) only complex models are adequate images of reality whereas only simple
models lead to simple, widely usable, portable, and analyzable algorithms. There-
fore, AE must simultaneously and carefully abstract from application problems
and refine theoretical models.

A successful example for a machine model is the external memory model (or
I/O model) [13–15] which is a careful refinement of the von Neumann model [16].
Instead of a uniform memory, there are two levels of memory. A fast memory of
limited size M and and a slow memory that is accessed in blocks of size B. While
only counting I/O steps in this model can become a highly theoretical game,
we get an abstraction useful for AE if we additionally take internal work into
account and if we are careful to use the right values for the parameters M and
B2. Algorithms good in the I/O model are often good in practice although the
model oversimplifies aspects like rotational delays, seek time, disk data density
depending on the track use, cache replacement strategies [17], flexible block
sizes, etc. Sometimes it would even be counterproductive to be too clever. For
example, a program carefully tuned to minimize rotational delays and seek time
might experience severe performance degradation as soon as another application
accesses the disk.

An practical modelling issue that will be important for our MST example
is the maximal reasonable size for the external memory. In the last decades,
the cost ratio between disk memory and RAM has remained at around 200.
This ratio is not likely to increase dramatically as long as RAM and hard disk
capacities improve at a similar pace. Hence, in a balanced system with similar
investments for both levels of memory, the ratio between input size and internal
memory size is not huge. In particular, the logarithm of this ratio is bounded by
a fairly small constant.

2 A common pitfall when applying the I/O model to disks is to look for a natural
physical block size. This can lead to values (e.g. the size of 512 byte for a decoding
unit) that are four orders of magnitude from the value that should be chosen – a
value where data transfer takes about as long as the average latency for a small
block.

5



The I/O model has been successfully generalized by adding parameters for the
number of disks D, number of processors P , or by looking at the cache-oblivious
case [18] where the parameters M and B are not known to the program.

An example for application modelling is the simulation of traffic flows. While
microscopic simulations that take the actual behavior of every car into account
are currently limited to fairly small subnetworks, it may soon become possible
to simulate an entire country by only looking at the paths taken by each car.

4 Design

As in algorithm theory, we are interested in efficient algorithms. However, in
AE, it is equally important to look for simplicity, implementability, and possi-
bilities for code reuse. Furthermore, efficiency means not just asymptotic worst
case efficiency, but we also have to look at the constant factors involved and
at the performance for real-world inputs. In particular, some theoretically ef-
ficient algorithms have similar best case and worse case behavior whereas the
algorithms used in practice perform much better on all but contrived examples.
An interesting example are maximum flow algorithms where the asymptotically
best algorithm [19] is much worse than theoretically inferior algorithms [20, 21].

We now present a similar, yet simpler example. Consider an undirected con-
nected graph G with n nodes and m edges. Edges have nonnegative weights. An
MST of G is a subset of edges with minimum total weight that forms a spanning
tree of G. The MST problem can be solved in O(sort(m)) expected I/O steps
[22] where sort(N) = O(N/B logM/B N/B) denotes the number of I/O steps
required for external sorting [13]. There is also a deterministic algorithm that
requires O(sort(m) ⌈log log(nB/m)⌉) I/Os [23].

However, before [3] there was no actual implementation of an external MST
algorithm (or for any other nontrivial external graph problem). The reason was
that previous algorithms were complicated to implement and have large constant
factors that have never been exposed in the analysis. We therefore designed a
new algorithm.

The base case of our algorithm is a simple semiexternal variant of Kruskal’s
algorithm [22] (A semiexternal graph algorithm is allowed O(n) words of fast
memory): The edges are sorted (externally) by weight and scanned in sorted or-
der. An edge is accepted into the MST if it connects two components of the forest
defined by the previously found MST edges. This decision is supported by an
internal memory union-find data structure. Even this simple algorithm is a good
example for algorithm reuse since it can call highly tuned external sorting codes
such as the routine in the external implementation of the STL, STXXL [24]. The
pipelining facility of the STXXL saves up to 2/5 of the I/Os by directly feed-
ing the sorted output into the final scan. For semiexternal algorithms, constant
factors are particularly important for the space consumption in fast memory.
Therefore, we developed a variant of the union-find data structure with path
compression and union-by-rank [25] that needs only ⌈log(n + 1 + log n)⌉ ≈ log n
bits for each node. The trick is that root nodes of the data structure need rank

6



information while only non-root nodes need parent information. Since ranks are
at most log n, the values n..n + log n can be reserved for rank information.

If n > M , all known external MST algorithms rely on a method for reduc-
ing the number of nodes. Our algorithmically most interesting contribution is
Sibeyn’s algorithm for node reduction based on the technique of time forward

processing. The most abstract form of Sibeyn’s algorithm is very simple. In each
iteration, we remove a random node u from the graph. We find the lightest edge
{u, v} incident to u. By the well known cut-property that underlies most MST
algorithms, {u, v} must be an MST edge. So, we output {u, v}, remove it from
E, and contract it, i.e., all other edges {u, w} incident to u are replaced by edges
{v, w}. If we store the original identity of each edge, we can reconstruct the MST
from the edges that are output.

We transform the algorithm into a sweeping algorithm by renumbering the
nodes using a random permutation π and then removing the nodes in the order
n..M . When this is finished, the remaining problem can be solved using the
semiexternal algorithm.

There is a very simple external realization of Sibeyn’s algorithm based on
priority queues of edges. Edges are stored in the form ((u, v), c, eold) where (u, v)
is the edge in the current graph, c is the edge weight, and eold identifies the edge
in the original graph. The queue normalizes edges (u, v) in such a way that u ≥ v.
We define a priority order ((u, v), c, eold) < ((u′, v′), c′, e′

old
) iff u > u′ or u = u′

and c < c′. With these conventions in place, the algorithm can be described using
the simple pseudocode in Figure 2. This algorithm is not only conceptually simple
but also easy to implement because it can again reuse software by relying on the
external priority queue in STXXL [24]. Note that while a sophisticated external
priority queue needs thousands of lines of code, the actual implementation of
Figure 2 is not much longer than the pseudo code.

ExternalPriorityQueue: Q

foreach (e = (u, v), c) ∈ E do Q.insert(((π(u), π(v)), c, e)) –– rename
currentNode := −1 –– node currently being removed
i := n –– number of remaining nodes
while i > n′ do

((u, v), c, eold) := Q.deleteMin()
if u 6=currentNode then –– lightest edge out of a new node

currentNode := u –– node u is removed
i--

relinkTo := v

output eold –– MST edge
elsif v 6= relinkTo then Q.insert((v, relinkTo), c, eold) –– relink non-self-loops

Fig. 2. An external implementation of Sibeyn’s algorithm using a priority queue.

7



5 Analysis

Even simple and proven practical algorithms are often difficult to analyze and
this is one of the main reasons for gaps between theory and practice. Thus,
the analysis of such algorithms is an important aspect of AE. For example,
randomized algorithms are often simpler and faster than their best deterministic
competitors but even simple randomized algorithms are often difficult to analyze.

Many complex optimization problems are attacked using meta heuristics like
(randomized) local search or evolutionary algorithms. Algorithms of this type
are simple and easily adaptable to the problem at hand. However, only very few
such algorithms have been successfully analyzed (e.g. [26]) although performance
guarantees would be of great theoretical and practical value.

An important open problem is partitioning of graphs into approximately
equal sized blocks such that few edges are cut. This problem has many applica-
tions, e.g., in scientific computing. Currently available algorithms with perfor-
mance guarantees are too slow for practical use. Practical methods first contract
the graph while preserving its basic structure until only few nodes are left, com-
pute an initial solution on this coarse representation, and then improve by local
search. These algorithms, e.g., [27] are very fast and yield good solutions in many
situations yet no performance guarantees are known.

An even more famous example for local search is the simplex algorithm for
linear programming. Simple variants of the simplex algorithm need exponential
time for specially constructed inputs. However, in practice, a linear number
of iterations suffices. So far, only subexponential expected runtime bounds are
known – for inpracticable variants. However, Spielmann and Teng were able to
show that even small random perturbations of the coefficients of a linear program
suffice to make the expected run time of the simplex algorithm polynomial [28].
This concept of smoothed analysis is a generalization of average case analysis and
an interesting tool of AE also outside the simplex algorithm. Beier and Vöcking
were able to show polynomial smoothed complexity for an important family
of NP-hard problems [29]. For example, this result explains why the knapsack
problem can be efficiently solved in practice and has also helped to improve the
best knapsack solvers. There are interesting interrelations between smoothed
complexity, approximation algorithms, and pseudopolynomial algorithms that is
also an interesting approach to practical solutions of NP-hard problems.

Our randomized MST edge reduction algorithm is actually quite easy to
analyze.

Theorem 1. The expected number of edges inspected by the abstract algorithm

until the number of nodes is reduced to n′ is bounded by 2m ln n
n′

.

Proof. In the iteration when i nodes are left (note that i = n in the first it-
eration), the expected degree of a random node is at most 2m/i. Hence, the
expected number of edges, Xi, inspected in iteration i is at most 2m/i. By the

8



linearity of expectation, the total expected number of edges processed is

∑

n′<i≤n

E [Xi] ≤
∑

n′<i≤n

2m

i
= 2m

∑

n′<i≤n

1

i
= 2m





∑

1≤i≤n

1

i
−

∑

1≤i≤n′

1

i





= 2m(Hn − Hn′) ≤ 2m(lnn − lnn′) = 2m ln
n

n′

where Hn = lnn+0.577 · · ·+O(1/n) is the n-th harmonic number.

Plugging in the complexity of the priority queue used [30] we obtain an I/O com-
plexity of O(sort(m) ⌈log(n/M)⌉). This is actually asymptotically worse than the
previous theoretical algorithms by a factor up to log(n/M). However, recall from
Section 4 that log(n/M) is a constant in balanced machines. A close analysis
of the constant factors involved [3] in the theoretical algorithms reveals that all
things considered, Sibeyn’s algorithm needs a factor at least four less I/Os in
realistic situations. Hence, our MST example exemplifies that closer looks at
constant factors are an important aspect of algorithm analysis in AE and that
constant factors can beat asymptotic behavior.

Sibeyn’s algorithm is also a good example for the importance of looking at
non-worst case instances. It turns out that for planar graphs the factor log(n/M)
is not needed since planar graphs remain planar under edge contraction and thus
we always have constant average degree if we a careful enough to collapse parallel
edges.

An MST algorithm can also be used to find connected components [31]. Since
edges have no weights now, we are free to choose any edge. Choosing the edge
leading to the node with smallest index actually looks like a good idea since
this measure delays reconsidering the relinked edges. It looks like this should
reduce the “suboptimality” of the algorithm to log log(n/M). However, a full
analysis remains an open problem3. This is an example for a simple randomized
algorithm that is difficult to analyze because there are subtle dependencies to
be taken into account.

6 Implementation

Implementation only appears to be the most clearly prescribed and boring activ-
ity in the cycle of AE. One reason is that there are huge semantic gaps between
abstractly formulated algorithms, imperative programming languages, and real
hardware. A typical example for this semantic gap is the implementation of
an O(nm logn) matching algorithm in [32]. Its abstract description requires a
sophisticated data structure whose efficient implementation only succeeded in
[32].

An extreme example for the semantic gap are geometric algorithms which are
often designed assuming exact arithmetics with real numbers and without con-
sidering degenerate cases. The robustness of geometric algorithms has therefore
become an important branch of AE [33–35].

3 In [31] there is no proof of the stated bounds.

9



Even the implementation of relatively simple basic algorithms can be chal-
lenging. You often have to compare several candidates based on small constant
factors in their execution time. Since even small implementation details can make
a big difference, the only reliable way is to highly tune all competitors and run
them on several architectures. It can even be advisable to compare the generated
machine code (e.g. [30, 36],[37]).

Often only implementations give convincing evidence of the correctness and
result quality of an algorithm. For example, an algorithm for planar embedding
[38] was the standard reference for 20 years although this paper only contains
a vague description how an algorithm for planarity testing can be generalized.
Several attempts at a more detailed description contained errors (e.g. [39]). This
was only noticed during the first correct implementation [40]. Similarly, for a
long time nobody suceeded in implementing the famous algorithm for comput-
ing three-connected components from [41]. Only an implementation in 2000 [42]
uncovered and corrected an error. For the related problem of computing a maxi-
mal planar subgraph there was a series of publications in prominent conferences
uncovering errors in the previous paper and introducing new ones – until it
turned out that the proposed underlying data structure is inadequate for the
problem [43].

An important consequence for planning AE projects is that important imple-
mentations cannot usually be done as bachelor or master theses but require the
very best students or long term attendance by full time researchers or scientific
programmers.

Our MST code was implemented as a Bachelor thesis [44], however by one
of the best programmers I have seen and reusing tens of thousands of lines of
code from the STXXL that were the basis for a PhD thesis [45]. A particular
challenge was the exploitation of parallel disks since it turned out that the code
was compute bound. We obtained a considerable speedup by implementing a
special purpose bucket priority queue that exploits the properties the problem:
We only sort by the node ID of the larger endpoint. The minimum weight incident
edge is found by extracting all incident edges. This is no actual overhead since
those edges will later be relinked anyway.

7 Experiments

Meaningful experiments are the key to closing the cycle of the AE process.
For example, experiments on crossing minimization in [46] showed that previous
theoretical results were too optimistic so that new algorithms became interesting.

Experiments can also have a direct influence on the analysis. For example, re-
constructing a curve from a set of measured points is a fundamental variant of an
important family of image processing problems. In [47] an apparently expensive
method based on the travelling salesman problem is investigated. Experiments
indicated that “reasonable” inputs lead to easy instances of the travelling sales-
man problem. This observation was later formalized and proven. A quite different
example of the same effect is the astonishing observation that arbitrary access

10



patterns to data blocks on disk arrays can be almost perfectly balanced when
two redundant copies of each block are placed on random disks [48].

Compared to the natural sciences, AE is in the privileged situation that it
can perform many experiments with relatively little effort. However, the other
side of the coin is highly nontrivial planning, evaluation, archiving, postprocess-
ing, and interpretation of results. The starting point should always be falsifiable
hypotheses on the behavior of the investigated algorithms which stem from the
design, analysis, implementation, or from previous experiments. The result is a
confirmation, falsification, or refinement of the hypothesis. The results comple-
ment the analytic performance guarantees, lead to a better understanding of the
algorithms, and provide ideas for improved algorithms, more accurate analysis,
or more efficient implementation.

Successful experimentation involves a lot of software engineering. Modular
implementations allow flexible experiments. Clever use of tools simplifies the
evaluation. Careful documentation and version management help with repro-
ducibility – a central requirement of scientific experiments, that is challenging
due to the frequent new versions of software and hardware.

Experiments with external memory algorithms are challenging because they
require huge inputs and execution times measuring in hours. In particular, when
you compare against a bad algorithm, running times can easily reach months.
Perhaps this is the reason why [3] was the first actual implementations of an ex-
ternal graph algorithm. Many previous implementations of external algorithms
relied on artificially restricted main memory sizes to achieve small running times.
We believed that this is inacceptable for results intended to convince practition-
ers to use external algorithms. Our solution was to use carefully configured yet
relatively cheap machines that can be dedicated to the experiments for weeks,
high performance implementations, and careful planning of experiments.

Our starting point for designing experiments was the study by Moret and
Shapiro [49]. We have adopted the instance families for random graphs with
random edge weights and random geometric graphs where random points in
the unit square are connected to their d closest neighbors. In order to obtain a
simple family of planar graphs, we have added grid graphs with random edge
weights where the nodes are arranged in a grid and are connected to their (up to)
four direct neighbors. We have not considered the remaining instance families
in [49] because they define rather dense graphs that would be easy to handle
semiexternally or they are specifically designed to fool particular algorithms or
heuristics. We have chosen the parameters of the graphs so that m is between
2n and 8n. Considerably denser graphs would be either solvable semiexternally
or too big for our machine.

The experiments have been performed on a low cost PC-server (around 3 000
Euro in July 2002) with two 2 GHz Intel Xeon processors, 1 GByte RAM and
4 × 80 GByte disks (IBM 120GXP) that are connected to the machine in a
bottleneck-free way (see [50] for more details on the hardware). This machine
runs Linux 2.4.20 using the XFS file system. Swapping was disabled. All pro-
grams were compiled with g++ version 3.2 and optimization level -O6. The total

11



1

2

3

4

5

6

5 10 20 40 80 160 320 640 1280 2560

t /
 m

 [µ
s]

m / 1 000 000

Kruskal
Prim

random
geometric

grid

1

2

3

4

5

6

5 10 20 40 80 160 320 640 1280 2560

t /
 m

 [µ
s]

m / 1 000 000

Kruskal
Prim

random
geometric

1

2

3

4

5

6

5 10 20 40 80 160 320 640 1280 2560

t /
 m

 [µ
s]

m / 1 000 000

Kruskal
Prim

random
geometric

Fig. 3. Execution time per edge for m ≈ 2 · n (top),m ≈ 4 · n (center), m ≈ 8 · n

(bottom).

12



computer time spent on the experiments was about 25 days producing a total
I/O volume of several dozen Terabytes.

Figure 3 summarizes the results using bucket priority queues. The internal
implementations were provided by Irit Katriel [51]. The curves only show the
internal results for random graphs — at least Kruskal’s algorithm shows very
similar behavior for the other graph classes. Our implementation can handle up
to 20 million edges. Kruskal’s algorithm is best for very sparse graphs (m ≤ 4n)
whereas the Jarńık-Prim algorithm (with a fast implementation of pairing heaps)
is fastest for denser graphs but requires more memory. For n ≤ 160 000 000, we
can run the semiexternal algorithm and get execution times within a factor of
two of the internal algorithm. The curves are almost flat and very similar for
all three graph families. This is not astonishing since Kruskal’s algorithm is not
very dependent on the structure of the graph. Beyond 160 000 000 nodes, the full
external algorithm is needed. This immediately costs us another factor of two in
execution time: We have additional costs for random renaming, node reduction,
and increasing the size of an edge from 12 bytes to 20 bytes (for renamed nodes).
For random graphs, the execution time keeps growing with n/M as predicted by
the upper bound from Theorem 1.

The behavior for grid graphs is much better than predicted by Theorem 1
because planar graphs remain sparse under edge contraction. It is interesting that
similar effects can be observed for geometric graphs. This is an indication that it
is worth removing parallel edges for many nonplanar graphs. Interestingly, the
time per edge decreases with m for grid graphs and geometric graphs. The reason
is that the time for the semiexternal base case does not increase proportionally
to the number of input edges. For example, 5.6 · 108 edges of a grid graph with
640 · 106 nodes survive the node reduction, vs. 6.3 · 108 edges of a grid graph
with twice the number of edges.

Another observation is that for m = 2560 · 106 and random or geometric
graphs we get the worst time per edge for m ≈ 4n. For m ≈ 8n, we do not need
to run the node reduction very long. For m ≈ 2n we process less edges than
predicted by Theorem 1 even for random graphs simply because one MST edge
is removed for each node.

8 Algorithm Libraries

Algorithm libraries are made by assembling implementations of a number of algo-
rithms using the methods of software engineering. The result should be efficient,
easy to use, well documented, and portable. Algorithm libraries accelerate the
transfer of know-how into applications. Within algorithmics, libraries simplify
comparisons of algorithms and the construction of software that builds on them.
The software engineering involved is particularly challenging, since the applica-
tions to be supported are unknown at library implementation time and because
the separation of interface and (often highly complicated) implementation is
very important. Compared to applications-specific reimplementation, using a li-
brary should save development time without leading to inferior performance.

13



Compared to simple, easy to implement algorithms, libraries should improve
performance. In particular for basic data structures with their fine-grained cou-
pling between applications and library this can be very difficult. To summarize,
the triangle between generality, efficiency, and ease of use leads to challenging
tradeoffs because often optimizing one of these aspects will deteriorate the oth-
ers. It is also worth mentioning that correctness of algorithm libraries is even
more important than for other software because it is extremely difficult for a
user to debug library code that has not been written by his team. Sometimes it
is not even sufficient for a library to be correct as long as the user does not trust

it sufficiently to first look for bugs outside the library. This is one reason why
result checking, certifying algorithms, or even formal verification are an impor-
tant aspect of algorithm libraries. All these difficulties imply that implementing
algorithms for use in a library is several times more difficult / expensive / time
consuming / frustrating /· · · than implementations for experimental evaluation.
On the other hand, a good library implementation might be used orders of mag-
nitude more frequently. Thus, in AE there is a natural mechanism leading to
many exploratory implementations and a few selected library codes that build
on previous experimental experience.

Let us now look at a few successful examples of algorithm libraries. The Li-
brary of Efficient Data Types and Algorithms LEDA [21] has played an impor-
tant part in the development of AE. LEDA has an easy to use object-oriented
C++ interfaces. Besides basic algorithms and data structures, LEDA offers a
variety of graph algorithms and geometric algorithms.

Programming languages come with a run-time library that usually offers
a few algorithmic ingredients like sorting and various collection data structures
(lists, queues, sets, . . . ). For example, the C++ standard template library (STL)
has a very flexible interface based on templates. Since so many things are re-
solved at compile time, programs that use the STL are often equally efficient as
hand-written C-style code even with the very fine-grained interfaces of collection
classes. This is one of the reasons why our group is looking at implementations of
the STL for advanced models of computation like external computing (STXXL
[24]) or multicore parallelism (MCSTL, GNU C++ standard library [52]). We
should also mention disadvantages of template based libraries: The more flexible
their offered functionality, the more cumbersome it is to use (the upcoming new
C++ standard might slightly improve the situation). Perhaps the worst aspect
is coping with extra long error messages and debugging code with thousands of
tiny inlined functions. Writing the library can be frustrating for an algorithmicist
since the code tends to consist mostly of trivial but lengthy declarations while
the algorithm itself is shredded into many isolated fragments.

The Boost C++ libraries (www.boost.org) are an interesting concept since
they offer a forum for library designers that ensures certain quality standards
and offers the possibility of a library to become part of the C++ standard.

The Computational Geometry Algorithms Library (CGAL) www.cgal.org

that is a joined effort of several AE groups is perhaps one of the most sophis-
ticated examples of C++ template programming. In particular, it offers many

14



robust implementations of geometric algorithms that are also efficient. This is
achieved for example by using floating point interval arithmetics most of the
time and switching to exact arithmetics only when a (near)-degenerate situation
is detected. The mechanisms of template programming make it possible to hide
much of these complicated mechanisms behind special number types that can
be used in a similar way as floating point numbers.

As already mentioned, our external MST algorithm successfully uses the
STXXL thus importing much of its code from a library. This is particularly true
for the priority queue based implementation that has acceptable performance
when using a single disk.

9 Instances

Collections of realistic problem instances for benchmarking have proven crucial
for improving algorithms. There are interesting collections for a number of NP-
hard problems like the travelling salesman problem 4, the Steiner tree problem,
satisfiability, set covering, or graph partitioning. In particular for the first three
problems the benchmarks have helped enable astonishing breakthroughs. Us-
ing deep mathematical insights into the structure of the problems one can now
compute optimal solutions even for large, realistic instances of the travelling
salesman problem [53] and of the Steiner tree problem [54]. It is a bit odd that
similar benchmarks for problems that are polynomially solvable are sometimes
more difficult to obtain. For route planning in road networks, realistic inputs
have become available in 2005 [55] enabling a revolution with speedups of up to
six orders of magnitude over Dijkstra’s algorithm and a perspective for many ap-
plications [56]. In string algorithms and data compression, real-world data is also
no problem. But for many typical graph problems like flows, random inputs are
still common practice. We suspect that this often leads to unrealistic results in
experimental studies. Naively generated random instances are likely to be either
much easier or more difficult than realistic inputs. With more care and compe-
tition, such as for the DIMACS implementation challenges, generators emerge
that drive naive algorithms into bad performance. While this process can lead to
robust solutions, it may overemphasize difficult inputs. Another area with lack
of realistic input collections are data structures. Apart from some specialized
scenarios like IP address lookup, few inputs are available for hash tables, search
trees, or priority queues.

Our MST example lives on the dark side of the world of problem instance
collections. This is a (moderate) risk for evaluating Sibeyn’s algorithm since it
is not clear how the density of the graph behaves in practice and whether nodes
with very high degree might emerge during the computation. But even simple
internal algorithms have such input dependencies: Kruksal’s algorithm is much
faster if we can use bucket sorting and the Jarńık–Prim algorithm suffers when
a lot of decrease-key operations are needed. Some literature/web search revealed

4 http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

15



that there is no lack of actual applications of the MST problem. Interestingly,
clustering by removing MST edges seems to be more important than the classical
network design motivation. However, it was difficult to find applications where
a) huge inputs look important, b) the inputs are sparse (otherwise semiexternal
algorithms are fine), and, c) generating the input is faster than finding the MST.
Later, our code turned out to be a useful tool for implementing external breadth-
first-search and shortest path computations [57].

10 Applications

We could discuss many important applications where algorithms play a major
role and a lot of interesting work remains to be done. Since this would go beyond
the scope of this paper, we only want to mention a few: Bioinformatics (e.g. se-
quencing, folding, docking, phylogenetic trees, DNA chip evaluations, reaction
networks); information retrieval (indexing, ranking); algorithmic game theory;
traffic information, simulation and planning for cars, busses, trains, and air traf-
fic; geographic information systems; communication networks; machine learning;
real time scheduling.

An example for application engineering is recently started work on MSTs
for image segmentation where satellite images define huge grid graphs. Here,
aggressive exploitation of the special structure of the problems leads away from
Sibeyn’s algorithm. We exploit the simple 2D structure of the inputs and their
small integer edge weights and also use parallelism. Furthermore, processing the
edges in sorted order allows identifying the segments in a single pass. All this
led a to a highly specialized parallel variant of Kruskal’s algorithm.

The effort for implementing algorithms for a particular application usually
lies somewhere between the effort for experimental evaluation and for algorithm
libraries depending on the context.

An important goal for AE should be to help shaping the applications (as in
the example for genome sequencing mentioned in the introduction) rather than
act as an ancillary science for other disciplines like physics, biology, mechanical
engineering,. . .

11 Conclusions

We hope to have demonstrated that AE is a “round” methodology for the devel-
opment of efficient algorithms which simplifies their practical use. We want to
stress, however, that it is not our intention to abolish algorithm theory. The say-
ing that there is nothing as practical as good theory remains true for algorithmics
because an algorithm with proven performance guarantees has a degree of gener-
ality, reliability, and predictability that cannot be obtained with any number of
experiments. However, this does not contradict the proposed methodology since
it views algorithm theory as a subset of AE, making it even more rich by asking
additional interesting kinds of questions (e.g. simplicity of algorithms, care for
constant factors, smoothed analysis,. . . ). We also have no intention of criticizing

16



some highly interesting research in algorithm theory that is less motivated from
applications than by fundamental questions of theoretical computer science such
as computability or complexity theory. However, we do want to criticize those
papers that begin with a vague claim of relevance to some fashionable applica-
tion area before diving deep into theoretical constructions that look completely
irrelevant for the claimed application. Often this is not intentionally misleading
but more like a game of “Chinese whispers” where a research area starts as a
sensible abstraction of an application area but then develops a life of itself, mu-
tating into a mathematical game with its own rules. Even this can be interesting
but researchers should constantly ask themselves why they are working on an
area, whether there are perhaps other areas where they can have larger impact
on the world, and how false claims for practicality can damage the reputation
of algorithmics in practical computer science.

Acknowledgements

I would like to thank the coinitiators of the DFG SPP 1307, Kurt Mehlhorn,
Rolf Möhring, Burkhard Monien, and Petra Mutzel for their advice and fruitful
discussions that led to the definition presented here. I would like to thank Jop
Sibeyn for his elegant MST algorithm and many other insights, Roman Demen-
tiev for his excellent work on STXXL, and Dominik Schultes for the very good
implementation of Sibeyn’s algorithm. Discussions with many other colleagues,
in particular with Rudolf Fleischer have helped to shape my view of algorithm
engineering.

References

1. Venter, J.C., Adams, M.D., et al., E.W.M.: The sequence of the human genome.
Science 291 (2001) 1304–1351

2. Popper, K.R.: Logik der Forschung. Springer (1934) English Translation: The

Logic of Scientific Discovery , Hutchinson, 1959.
3. Dementiev, R., Sanders, P., Schultes, D., Sibeyn, J.: Engineering an external

memory minimum spanning tree algorithm. In: IFIP TCS, Toulouse (2004)
4. Fleischer, R., Moret, B., Schmidt, E.M., eds.: Experimental Algorithmics From Al-

gorithm Design to Robust and Efficient Software. Volume 2547 of LNCS. Springer
(2002)

5. Aho, A.V., Johnson, D.S., Karp, R.M., Kosaraju, S.R., McGeoch, C.C., Papadim-
itriou, C.H., Pevzner, P.: Emerging opportunities for theoretical computer science.
SIGACT News 28 (1997) 65–74

6. Moret, B.M.E.: Towards a discipline of experimental algorithmics. In: 5th DIMACS
Challenge. DIMACS Monograph Series (2000) to appear.

7. McGeoch, C.C., Precup, D., Cohen, P.R.: How to find big-oh in your data set (and
how not to). In: Advances in Intelligent Data Analysis. Number 1280 in LNCS
(1997) 41–52

8. McGeoch, C., Moret, B.M.E.: How to present a paper on experimental work with
algorithms. SIGACT News 30 (1999) 85–90

17



9. Johnson, D.S.: A theoretician’s guide to the experimental analysis of algorithms.
In Goldwasser, M., Johnson, D.S., McGeoch, C.C., eds.: Proceedings of the 5th and
6th DIMACS Implementation Challenges, American Mathematical Society (2002)

10. Beth, T., Clausen, M., eds.: Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes, 4th International Conference, AAECC-4, Karlsruhe, FRG,
September 23-26, 1986, Proceedings. In Beth, T., Clausen, M., eds.: AAECC.
Volume 307 of Lecture Notes in Computer Science., Springer (1988)

11. T. Beth, D.G.: Algorithm engineering for public key algorithms. IEEE Journal on
Selected Areas in Communications 7 (1989) 458–466

12. Demetrescu, C., Finocchi, I., F., G., Italiano: Algorithm engineering. Bulletin of
the EATCS 79 (2003) 48–63

13. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting and related
problems. Communications of the ACM 31 (1988) 1116–1127

14. Vitter, J.S., Shriver, E.A.M.: Algorithms for parallel memory, I: Two level memo-
ries. Algorithmica 12 (1994) 110–147

15. Meyer, U., Sanders, P., Sibeyn, J., eds.: Algorithms for Memory Hierarchies. Vol-
ume 2625 of LNCS Tutorial. Springer (2003)

16. Neumann, J.v.: First draft of a report on the EDVAC. Technical report, University
of Pennsylvania (1945)

17. Mehlhorn, K., Sanders, P.: Scanning multiple sequences via cache memory. Algo-
rithmica 35 (2003) 75–93

18. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algo-
rithms. In: 40th Symposium on Foundations of Computer Science. (1999) 285–298

19. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. Journal of the
ACM 45 (1998) 1–15

20. Cherkassky, B.V., Goldberg, A.V.: On implementing push-relabel method for the
maximum flow problem. In: IPCO: 4th Integer Programming and Combinatorial
Optimization Conference. (1995)

21. Mehlhorn, K., Näher, S.: The LEDA Platform of Combinatorial and Geometric
Computing. Cambridge University Press (1999)

22. Abello, J., Buchsbaum, A., Westbrook, J.: A functional approach to external graph
algorithms. Algorithmica 32 (2002) 437–458

23. Arge, L., Brodal, G., Toma, L.: On external memory MST, SSSP and multi-way
planar graph separation. In: 7th Scandinavian Workshop on Algorithm Theory.
Volume 1851 of LNCS., Springer (2000) 433–447

24. Dementiev, R., Kettner, L., Sanders, P.: STXXL: Standard Template Library for
XXL data sets. Software Practice & Experience 38 (2008) 589–637

25. Tarjan, R.E.: Efficiency of a good but not linear set merging algorithm. Journal
of the ACM 22 (1975) 215–225

26. Wegener, I.: Simulated annealing beats metropolis in combinatorial optimization.
In: 32nd International Colloquium on Automata, Languages and Programming.
(2005) 589–601

27. G. Karypis, V.K.: Multilevel k-way partitioning scheme for irregular graph. J.
Parallel Distrib. Comput. 48 (1998)

28. Spielman, D., Teng, S.H.: Smoothed analysis of algorithms: why the simplex al-
gorithm usually takes polynomial time. In: 33rd ACM Symposium on Theory of
Computing. (2001) 296–305

29. Beier, R., Vöcking, B.: Typical properties of winners and losers in discrete opti-
mization. In: 36th ACM Symposium on the Theory of Computing. (2004) 343–352

30. Sanders, P.: Fast priority queues for cached memory. ACM Journal of Experimental
Algorithmics 5 (2000)

18



31. Sibeyn, J.F.: External connected components. In: 9th Scandinavian Workshop on
Algorithms Theory. Number 3111 in LNCS, Springer (2004) 468–479

32. Mehlhorn, K., Schäfer, G.: Implementation of weighted matchings in general
graphs: The power of data structure. ACM Journal of Experimental Algorithmics
7 (2002)

33. Burnikel, C., Könemann, J., Mehlhorn, K., Näher, S., Schirra, S., Uhrig, C.: Exact
geometric computation in leda. In: SCG ’95: 11th annual symposium on Compu-
tational geometry, New York, NY, USA, ACM (1995) 418–419

34. Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Kettner, L., Mehlhorn, K.,
Reichel, J., Schmitt, S., Schömer, E., Wolpert, N.: EXACUS—efficient and exact
algorithms for curves and surfaces. In: 13th ESA. Volume 3669 of LNCS. (2005)
155–166

35. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with
transit nodes. Science 316 (2007) 566

36. Sanders, P., Winkel, S.: Super scalar sample sort. In: 12th European Symposium
on Algorithms. Volume 3221 of LNCS., Springer (2004) 784–796

37. Brodal, G.S., Fagerberg, R., Vinther, K.: Engineering a cache-oblivious sorting
algorithm. In: 6th Workshop on Algorithm Engineering and Experiments. (2004)

38. Hopcroft, J., Tarjan, R.E.: Efficient planarity testing. J. of the ACM 21 (1974)
549–568

39. Mehlhorn, K.: Data Structures and Algorithms, Vol. I — Sorting and Search-
ing. EATCS Monographs on Theoretical CS. Springer-Verlag, Berlin/Heidelberg,
Germany (1984)

40. Mehlhorn, K., Mutzel, P.: On the embedding phase of the Hopcroft and Tarjan
planarity testing algorithm. Algorithmica 16 (1996) 233–242

41. J. E. Hopcroft, R.E.T.: Dividing a graph into triconnected components. SIAM J.
Comput. 2 (1973) 135–158

42. Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR trees. In Marks,
J., ed.: Graph Drawing. Volume 1984 of LNCS., Springer-Verlag (2001) 77–90

43. Jünger, M., Leipert, S., Mutzel, P.: A note on computing a maximal planar sub-
graph using PQ-trees. IEEE Transactions on Computer-Aided Design 17 (1998)
609–612

44. Schultes, D.: External memory minimum spanning trees. Bachelor thesis,
Max-Planck-Institut f. Informatik and Saarland University, http://algo2.iti.

uni-karlsruhe.de/schultes/emmst/ (2003)
45. Dementiev, R.: Algorithm Engineering for Large Data Sets. PhD thesis, Saarland

University (2006)
46. Jünger, M., Mutzel, P.: 2-layer straightline crossing minimization: Performance

of exact and heuristic algorithms. Journal of Graph Algorithms and Applications
(JGAA) 1 (1997) 1–25

47. Althaus, E., Mehlhorn, K.: Traveling salesman-based curve reconstruction in poly-
nomial time. SIAM Journal on Computing 31 (2002) 27–66

48. Sanders, P., Egner, S., Korst, J.: Fast concurrent access to parallel disks. In: 11th
ACM-SIAM Symposium on Discrete Algorithms. (2000) 849–858

49. Moret, B.M.E., Shapiro, H.D.: An empirical assessment of algorithms for con-
structing a minimum spanning tree. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science 15 (1994) 99–117

50. Dementiev, R., Sanders, P.: Asynchronous parallel disk sorting. In: 15th ACM
Symposium on Parallelism in Algorithms and Architectures, San Diego (2003)
138–148

19



51. Katriel, I., Sanders, P., Träff, J.L.: A practical minimum spanning tree algorithm
using the cycle property. In: 11th European Symposium on Algorithms (ESA).
Number 2832 in LNCS, Springer (2003) 679–690

52. Singler, J., Sanders, P., Putze, F.: MCSTL: The multi-core standard template li-
brary. In: 13th International Euro-Par Conference. Volume 4641 of LNCS., Springer
(2007) 682–694

53. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Implementing the Dantzig-
Fulkerson-Johnson algorithm for large traveling salesman problems. Math. Pro-
gramming 97 (2003) 91–153

54. Polzin, T., Daneshmand, S.V.: Extending reduction techniques for the Steiner tree
problem. In: 10th Eur. Symp. on Algorithms. Volume 2461 of LNCS., Springer
(2002) 795–807

55. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries.
In: 13th European Symposium on Algorithms (ESA). Volume 3669 of LNCS.,
Springer (2005) 568–597

56. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route plan-
ning algorithms. submitted for publication, http://i11www.ira.uka.de/extra/
publications/dssw-erpa-09.pdf (2008)

57. Ajwani, D., Dementiev, R., Meyer, U.: A computational study of external-memory
BFS algorithms. In: ACM-SIAM Symposium on Discrete Algorithms. (2007) 601–
610

20


