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KARL DILCHER AND LADISLAV SKULA

Dedicated to Paulo Ribenboim

Abstract. It is shown that if the first case of Fermat's last theorem fails

for an odd prime /, then the sums of reciprocals modulo /, s(k, N) =

£ 1/7 (kl/N < j < (k + 1)//A0 are congruent to zero mod/ for all inte-

gers N and k with I < N < 46 and 0 < k < N - 1 . This is equivalent to

Bi_{(k/N) - B¡_x =0 (mod/), where B„ and B„(x) are the «th Bernoulli
number and polynomial, respectively. The work can be considered as a result

on Rummer's system of congruences.

1. Introduction

The first case of Fermat's last theorem (FLT I) for the prime / is a conjecture

stating that there are no integers x, y, and z with the property xl+yl + zl = 0

provided l\xyz.
Many criteria, going in various directions, concerning (FLT I) have been

established; see, e.g., Ribenboim's book [21]. One of these directions deals with
the Fermât quotients

Ql(p) =-j-•

In his famous paper [32], Wieferich showed that if (FLT I) fails for the prime
/, then q¡(2) = 0 (mod/). This result was extended to other primes p , most
recently to all primes p up to 89 by Granville and Monagan [12].

The aim of this article is to replace the notion of the Fermât quotient by

special sums s(k, N) defined by

l(k+l)l/N]

(1.1) s(k,N)=      Y     j'~2
j=[kl/N]+l

for integers N and k with 1 < 7Y < / - 1 and 0 < k < N - 1. According to
Fermat's little theorem we have

i(k+l)l/N]

(1.2) s(k,N)=     Y     -(mod/).
j=[kl/N]+l J
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364 KARL DILCHER AND LADISLAV SKULA

These sums are linked to the Fermât quotients by a theorem of Lerch [17,

equation (8)], which we state in the following equivalent form:

N-l

(1.3) Nqi(N)= Yks(k'n) (mod/).

The Fermât quotient q¡iN) is therefore a "linear combination" of the sums

sik, N). The results quoted above, together with the "logarithmic property"

of the Fermât quotients (see (2.1) below), show that if (FLT I) is false for the

prime /, then the left-hand side of (1.3) is zero (modulo /) for all N < I with

prime divisors of at most 89.
In this paper we shall prove the following somewhat surprising result:

Main Theorem. If the first case of Fermat's last theorem fails for the prime I,

then

(1.4) s(k,N) = 0(modl)

for all 1 < N < 46 and 0 < k < N - 1.

We note that in view of (1.2) and some basic properties of the Bernoulli

polynomials Bm(x) we can rewrite (1.4) as

(1.5) 5,_, 0Q-*,_,=() (mod/);

here, Bm is the mth Bernoulli number.

The proof of our main theorem is based on the main result in [25] (see Theo-

rem 4.6 below), which was formulated in a more abstract form. The hypotheses

of this result are verified through extensive calculations, thus leading to our

main theorem.
Closely related to the main theorem is the following result of Cikánek [7]:

There exists an integer L such that for every prime I > L for which (FLT I)7

fails, we have s(k, TV) = 0  (mod/) for all 2 < N < 94 and 0<k<N-l.
In §2 we quote some results on Fermât quotients. Section 3 contains some

earlier results related to the main theorem, and in §4 we quote results from the

literature necessary for our proofs. Section 5 contains the central part of the
proof of the main theorem. Section 6 deals with a sequence of determinants

and associated polynomials, which are central to this paper, and in §§7 and 8 we

give details of the computations. Based on the main theorem, we make some

probability considerations in §9. In §10, finally, we state some consequences of

our main theorem, partly based on further computations.
In view of the latest developments concerning Fermat's last theorem, we wish

to point out that the greater part of this paper is of independent interest. In fact,

our main theorem can be stated as a result on Kummer's system of congruences,

without reference to FLT I:

Theorem 1.2. // t and 1 - t are nontrivial solutions (i.e., ^ 0, ±1 (mod/))

of order greater than 16 of the system (K)¡ of congruences, then

s(k, N) = 0 (mod/)

for all 1 < N < 46 and 0 < k < N - 1.
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For references concerning (K)¡, see §4. Remarks on the proof of Theorem
1.2 can be found in §5.3.

2. Fermât quotient criteria

Throughout this paper, / denotes an odd prime. We also use the notation

(FLT I), for the first case of Fermat's last theorem for the prime /.

We recall that for integers a not divisible by /, the Fermât quotient q¡(a)

of / with base a is defined to be the integer

Qi(a) =-7-•

The following "logarithmic property" was first observed by Eisenstein [10, p.

41; Werke, p. 710]: If a and b are integers not divisible by /, then

(2.1) q,(ab) = q,(a) + q,(b)(modl).

Wieferich [32] was the first to use Fermât quotients in a criterion for
(FLT I); he proved the following celebrated result.

Theorem 2.1 (Wieferich, 1909). // (FLT I), is false, then q¡(2) = 0 (mod/).

This theorem was extended by Mirimanoff [18] and Vandiver [29].

Theorem 2.2 (Mirimanoff, 1910). // (FLT I), is false, then q¡(3) = 0   (mod/).

Theorem 2.3 (Vandiver, 1914). If (FLT I), is false, then q¡(5) = 0 (mod/) and

1 + I + Í + -+[775l"0(mod/)-

These results have since been further extended by several authors (see [21]).

More recently, the following result was proved in [12].

Theorem 2.4 (Granville and Monagan, 1988). If (FLT I); is false, then q¡(p) =
0  (mod /) for all primes p < 89.

Using their result together with a method proposed by Gunderson [14], Gran-

ville and Monagan [12] show that (FLT I), is true for all odd primes up to

7 x 1014 and a little beyond. Still using Theorem 2.4, but now by improving

Gunderson's method, Tanner and Wagstaff [28] got a new bound larger than

1.56 x 1017, and then Coppersmith [8] made significant changes in Gunderson's

method to get the following result:

Theorem 2.5 (Coppersmith, 1990). // (FLT I), is false, then

(2.2) /> 7.568 x 1017.

3. Related results

We assume throughout that N is an integer, 1 < N < I — 1. First we show

that the cases 1 < N < 6 of the main theorem are easy consequences of the

results quoted in the previous section. Indeed, we note that for all odd primes
/ we have

(3.1) s(0, l) = 0(mod/);
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this follows easily from the fact that the summands in (1.2) run through the

sequence 1, 2, ...,/- 1 (mod/). It is also easy to see from (1.2) that for
0 < k < N - 1 we have

(3.2) s(k,N) = -s(N-l-k,N)(modl);

we note that (3.1) is an immediate consequence of (3.2).

Taking into account these relations as well as Lerch's formula (1.3) and the

"logarithmic property" (2.1), we obtain from the theorems of Wieferich, Miri-

manoff, and Vandiver the following result.

Theorem 3.1. // (FLT I), is false, then s(k, N) = 0 (mod/) for 1 < N < 6
and 0<k<N -I.

Remarks, (a) This result was observed for N = 2,3,4, and 6 by Emma

Lehmer in 1938 [16] in her investigations of q¡(2) and q¡(3) modulo I2.

(b) Lerch's formula ( 1.3) for TV = 2 can be easily obtained from the following

formula observed by Eisenstein (1850) ([9, p. 21], or Math. Werke, p. 710):

(3.3) 24,(2) EEl-I + i-.-. + J^-J-T (mod/).

A further result in the direction of our main theorem is due to the second

author [25, Theorem 5.5].

Theorem 3.2 (Skula). // (FLT I); is false, then s(k, N) = 0 (mod/) for N e
{2,3,..., 10}U{12} and 0<k<N- 1.

In [25] a theory concerning the sums s(k, N) was developed; the Main The-

orem (4.14) there (see Theorem 4.6 below) was used to prove the above result.

The necessary calculations were done "by hand". In the present paper we use
the same theorem from [25], amended by a more recent result of Granville [13],

to prove our main theorem; here the calculations were done with computers.

Next we prove a representation of s(k, N) as sums of inverses modulo /

that differs from (1.2). For any integer n we denote by n(n) the least positive

residue n/l  (modN).

Proposition 3.3. For 1 < v < N we have

(3.4) s(n(v)-l,N) = -NY-imodl),

where the sum runs through all n, 1 </»</— 1, with n = v  (mod TV).

Proof, (i) Let L = {1, 2, ...,/- 1} and

A(v) = {n e L\n = v (modTV)},

B(v) = [j e Z\(n(v) - l)l/N < j < n(v)l/N}.

For n € A(v), let y/(n) denote the least positive residue of -n/N (mod/).

Clearly, \p is an injection from A(v) to L. We show that y is a bijection

from A(v) onto B(v). Put

J q for v < p,

\ q - 1    for v > p,
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where / = Nq + p, q and p are integers, 1 < p < N - 1 . Then for n e A(v)

we have n = v + hN, where 0 < h < w . Since

n = N(h + V-^f^-r,(v)<l)irnodl),

we have

Therefore,

Since

y/(n) = -nN'~2 = n(v)q -h + ^^    " (mod/).

/ v
¥(n) = j^n(v) - h - - (mod/).

jj(ri(v) - 1) < jjti(v) -™-jj< jfV(v) -h~ñ< N^v) '

we get \p(n) e B(v). The identities

N N

\jA(v)=[JB(v) = L
v=l v=l

now imply that y/ is a bijection from A(v) to B(v).

(ii) We have now

-TV      Y      ~^~N Y  ~=   Y  -k(mod/)
¿s      n ¿^   n      t-"   w(n)
n=l n€A(v) neA(v) T v   7

n=v (mod/V)

=   £   i =*(>/(«)-1,JV) (mod/).
xEB(v)

This completes the proof.   D

By means of the identity (3.4) and Lerch's formula (1.3) we can express the
Fermât quotient as follows.

Corollary 3.4. For 2 < N < I - 1 we have

q,(N)^-Y^-(modl).
n=l

This congruence was stated (without proof) by Sylvester [27] for the case

where 7Y is a prime different from /. In general, it is in fact due to Glaisher

[11].

4. Summary of known results

In this section we shall state the known results that will be used in the proof
of our main theorem. Concepts that are not needed will not be explained here;

the reader may wish to consult the original papers.
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1. One of the cornerstones in the study of the first case of Fermat's last theorem

is the "Kummer system of congruences" (K)¡ introduced by Kummer [15] in

his work on (FLT I). This system can be formulated as follows:

(K)i B2j(pi_2j(t) = 0 (mod/),        1 < j < -^-,

where By is the (2j)th Bernoulli number and cp¡(t) the Mirimanoff polynomial

(see, e.g., [21, p. 139 ff.]). In the same article [15], Kummer stated his famous

criterion:

Theorem 4.1 (Kummer, 1857). If x, y, and z are relatively prime integers, if

I does not divide xyz, and if xl + yl + zl = 0, then any integer -x with the

property xx = -y (mod /) is a solution of (K)¡. ( We may also add that —x is

a solution of tpi-i(t) = 0  (mod/)).

2. Pollaczek [20] also made important contributions in this area. He proved

the following for the integer r from Kummer's theorem 4.1 (see [12, §4]).

Theorem 4.2 (Pollaczek, 1917). Let i,j,andk be the orders (mod/) ofz, 1-
T, and t/(t - 1 ), respectively. Then none of the numbers if, ik, jk is less than

3(log/)/(loga), where a = (1 + v^)/2.

In his paper [20], Pollaczek used a special matrix A„(t) (in the notation of

[12]) of size 2<p(n) x cp(n), for integers n>2. The entries of A„(t) are powers

of t. Let p(n, t) denote the rank of An(t) for an integer /, considered over

the Galois field Z/lZ. Then p(n, t) < <p(n). In [12, §§8, 9] this matrix was
replaced by a new matrix A* (t), and the rank of A*(t) was calculated. From the

definition of A*(t) in [9] it can be deduced that if A*n(t) has full rank modulo

/, then A„(t) has full rank modulo /, or td - 1 = 0 (mod/) for certain /

(see also [25, (5.1.1)], where these numbers d are explicitly determined). In

summary, we have

Proposition 4.3. Let t be an integer, not divisible by I, with order greater than

16. Then p(n, t) = cp(n) for 2 < n < 18 and n = 20, 22. Furthermore,
p(l9, t) = <p(l9), with the possible exception of those t that have order 17 and

18, and p(2l, t) = <p(2l), with the possible exception of t with order 17, 19, or
20.

3. In order to formulate the main result from [25], which will be needed for our

goals, we have to introduce a special matrix DN(t) from [25, equation 4.13]:

Definition 4.4. Let N be an integer,   N > 3.   For integers p and v  with

gcd(/i, N) = gediy, N) = 1 , let r(p, v) denote the least positive residue

of v/p (modN); i.e., r(p, v) is the integer with 0 < r(p,v) < N and

pr(p ,v) = v  (mod TV). Then for a variable /, define the matrix D^(t) by

DN(t) = [tr(ll<v)-x +//v-1-^.")]

(1 < p, v < N/2, gcd(p, N) = gcd(i^, N) = 1). Note that DN(t) is a square
matrix of order cp(N)/2 ; here, <p denotes the Euler totient function.

We can now state the main theorem from [25], which will be the central

ingredient in the proof of our main theorem. It was originally stated and proved

for another system of congruences introduced in [24], equivalent in a certain

sense to the Kummer system (K)¡.
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Theorem 4.5 (Skula). Let N bean integer with N > 2 and (N-2)(N-l)/2 < I,
and let -x be a solution of the system (K)¡ and of the congruence <p¡_i(t) = 0
(mod/), x ^ 0  (mod/). Assume that the following conditions are satisfied:

(a) detDM(x) ^ 0  (mod/) for each integer M with M > 3 and M\N ;
(b) p(n, t) = cp(ri) for each integer n, 2 < n < N/2.

Then s(k ,N) = 0 (modi) for each 0<k<N-l.

Remark. Using a different method, Granville [13] proved this result with con-

dition (a) replaced by
(a')  detour) =á0 (mod/).

This will simplify our calculations for certain N in §§7 and 8.

5. Proof of the Main Theorem

1. Suppose that (FLT I); is false. Then there exist integers Xi, x2, x$ such

that

(5.1) x[ + x2 + x\ = 0   and   l\xix2xy.

By Coppersmith's result (Theorem 2.5) we may assume that / > 7.568 x 1017.

For 1 < i, j < 3 and i ^ j, let t/; be an integer with the property

(5.2) x¡Xij = -Xj (modi).

Then it is easy to see from (5.2) that

(5.3) XijXji= 1 (mod/),

(5.4) Tij + xik = l (modi)       (j¿k),

(5.5) xu ¿ 0 (mod/)   and   xu ¿ 1 (mod/).

Lemma 5.1. There exist different pairs a and b of integers i ^ j, 1 < /, j < 3,

such that the orders of xa and xb are greater than 16 and

(5.6) T6=l-Tfl(mod/).

Proof. With (5.3) and (5.4) we see that x2i, x2?,, and T31 can be written in

the form x, 1 - x, and x/(x - 1). Lemma 4.2 now implies that at least two of
them have orders not less than (3(log/)/(loga))1/2, which means orders greater

than 16, by (2.2). The same is true for the triple xi2, x^ , and t32 ; i.e., at least
two of them have order greater than 16. In summary, out of the three possible

values of the index /' there will always be one for which (5.4) holds, such that

the orders of xtj and xik are greater than 16. This proves the lemma.   D

2. By Kummer's criterion (Theorem 4.1) and the discussion in subsection

1, -xa and -t¿ are solutions of the system (K)¡ of congruences and of the

congruence <p¡-i(t) = 0  (mod/).

Hence, by Theorem 4.5 and the remark following it, the proof is complete if

we can verify conditions (a') and (b). Condition (b) is satisfied by Lemma 5.1
and Proposition 4.3, unless

¿¿ = l(mod/)   ford= 11 or 18 and TV = 39, ... ,42, or

td = 1 (mod/)   ford= 17, 18, 19 or 20 and N = 43, ... , 46.

For condition (a') we will try to show that either l\detDN(t) or l\ detDN(l-t)

for all t eZ. Hence, if there is a nonzero integer c such that

(5.8) u(t)detDN(t) + v(t)detDN(l - t) = c,
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where u and v are polynomials with integer coefficients, then the proof is

complete, with the possible exception of those / which divide c.

However, as N gets larger, the constant c becomes increasingly difficult or

impossible to factor. To deal with these cases, we note that it is apparent from

the proof of Theorem 4.5 (i.e., Theorem 4.14 in [25]) that what is really needed

is that the matrix D^(t), formed by stacking Dx(t) on top of D^(l -1), have

maximum rank modulo /, namely, rank cp(N)/2 (see also [13]). Thus, we can

choose one or more cp(N)/2 x <p(N)/2 submatrices of DN(t) different from
Df¡(t) and DN(l - t) and find a new constant c' (and, if necessary, a third

one, c") by combining a new pair of determinants according to (5.8). The

actual exceptional primes are then only the prime divisors of gcd(c, c') (or of

gcd(c, d, c")).
It turns out that the determinant of D^(t) has particularly nice, and for com-

putational purposes useful, properties. The next section, therefore, is devoted
to studying the polynomials detDN(t).

3. We now wish to show that Theorem 1.2 does not depend on the assumption

that (FLT I); is false. This result follows again from Theorem 4.5. Lemmas

5.1 and 4.2 are not needed because of the assumption that x and 1 - x have
orders greater than 16. An important computational tool throughout this paper

is the Wieferich test, which is normally stated as a criterion for (FLT I) (see
Theorem 2.1). However, Skula [23] proved the following version:

If there exists a solution x of the system (K)¡ suchthat cp¡_i(x) = Q (modi)

and x £ 0, 1   (mod/), then q¡(2) = 0  (mod/).
Hence we may continue to use the Wieferich test. In other places we deal

with certain exceptional primes by simply stating that they are smaller than the

Coppersmith bound (Theorem 2.5); these primes can also be dealt with using

the Wieferich test.
Finally, we have to explain the absence of the congruence ç>/_i(t) = 0

(mod /) in Theorem 1.2. This is due to the following result of Agoh [ 1, Theorem

1]:
If we omit one congruence from the system of congruences (K)¡ augmented

by <Pi-i(x) = 0  (mod/), then we obtain an equivalent system of congruences.

In particular, we may omit the congruence in question. We thus have to

add the hypothesis x ^ -1 (mod/) (-1 is never a solution of ç>/_i(t) = 0

(mod/), but counts as "trivial solution" of (K)i).

6. The polynomials FN(t)

1. Theorem 4.5 and §5 indicate that the determinant of the matrix Dp/(t) plays
an essential role in the proof of our main theorem. We begin with a definition.

Definition 6.1. For an integer N > 3, put FN(t) = detDN(t), with DN(t) as
in Definition 4.4.

It is clear that Fu(t) is a polynomial in t with integer coefficients. We derive
now some further properties.

Proposition 6.2. (a) The polynomial FN(t) has leading coefficient 1 and degree

(N-2)cp(N)/2.
(b) FN(t) is a reciprocal polynomial.
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Proof, (a) The entries on the main diagonal of DN(t) are all equal to tN 2 + 1 ;

they have the highest degree of all the entries of D^(t). This implies (a),
(b) We have

{(N-2MN)/2Fn fl\   = atUN-2[tl-r(ß,V) + tl+r(ß,V)-N]iiv

= det[tN-x-r{ll'v) + tr^^-\tV = FN(t) .   G

Proposition 6.3. The polynomial F m (t) is divisible in Z[t] by the following poly-

nomials:
(a) (t-iyW-2;

(b) (t+iyW-2 if N is even,

(c) (t+lfWI2 if N is odd.

Proof, (a) We subtract the first row from the others. Then the (p, ^)-entry
has the form y/(t) = ffr.")-1 + ¿Ar-i-r^,«/) - f-i _ ftf-i-* (ß > i). This

polynomial is divisible by (/ - l)2 ; therefore (t - l)^N^-2\FN(t).

(b) If N is even, we consider again the polynomial tp(t) from (a). We may

suppose that r(p, v) = z > v . Then

y/(t) = f-X(tz-v - 1) - (*-»-»(**-» - 1) = (f~v - l)(?~x - tN-X~z) .

Since z and v are both odd, we have v -1 = N-l-z (mod 2), and therefore

(t + l)2\y/(t) ; hence (f + l)^^-2\FN(t).

(c) If N is odd, the sum of exponents of / in each entry of D^(t) is odd;

therefore t + 1 divides each entry, and the result follows.   D

Remark. We can see from Table 1 (next page) that the powers in Proposition
6.3 of the factors / - 1 and t+l are the exact powers for 3 < N < 46. Also,

Proposition 6.3 is closely related to Theorem 6.4 below.

2. For the next result we introduce the following notation. Let E denote the

group of even Dirichlet characters modulo N. For x € E, put

N-l

(6.1) Fx(t)=    Y    X(J)tJ-1.
j=i

U,N)=l

Define the matrix B = [x(v)]v tX , where 1 < v < N/2 with gcd(i/, N) = 1,

and x G E • Then B is a square matrix of order cp(N)/2, and it is easy to

see that det 5 ^ 0 (see, e.g., [5, p. 420, Problem 5]; as domain for each even
Dirichlet character modN consider the quotient group (Z/NZ)*/{-l, 1}).

Theorem 6.4. There holds

(6.2) FN(t) = H Fj({ty

Proof. Fix x € E and 1 < p < N/2 with gcd(p, N) = 1 . Then, since
r = r(p, u) runs through a reduced residue system modulo N as v does, we

have

N/2 N/2

£   (t^>»)-x + t"-x-'(»<»))x(v) = x(p)   Y   Cf_1 + tN-x~r)x(r)
i/ = l r=l

(v,N)=l (r,N)=l

= X(ri)Fx(t);
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Table 1. The polynomials F^(t)

cd nd degrees of noncylo-

tomic irreducible factors

cyclotomic factors

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

15

12

21

16

45

20

66

36

52

56

120

48

153

72

114

100

231

88

230

144

225

156

378

112

435

240

310

256

396

204

630

324

444

304

780

240

861

420

516

484

11

12

17

16

21

20

26

20

32

48

36

32

41

64

46

36

51

88

102

48

137

124

66

88

71

184

108

68

144

172

86

68

148

248

96

100

101

276

324

84

4

0

4

0

24

0

40

16

20

84

16

112

8

68

64

180

0

128

96

32

312

24

364

56

202

188

252

32

544

256

296

56

684

140

760

144

192

400

4

/

4

/

24

/
16, 16, 8

8, 8

8, 6, 6

48, 24, 12

16

84, 28

8

28, 16, 16, 8

64

180

/
64, 64

40, 40, 16

84, 4

16, 8, 8

144, 144, 24

24

208, 104, 52

48, 8

104, 64, 22, 12

112, 48, 28

80, 52, 40, 40, 22, 18

16, 16

192, 192, 64, 64, 32

192, 64

80, 64, 64, 32, 32, 32

24, 12, 12, 8

288, 144, 144, 72, 36

64, 40, 20, 16

456, 228, 76

64, 64, 16

80, 52, 40, 8, 6, 6

400

6 - DC2

- i)('4

iré-i)
i)

9-i)(í3-i)(í2-i)2(í + d
,2-i)(í4-i)

10 - i)(í2 - i)4(í-1)3

12 - i)(<8 - i)

12 - i)(í2 -1)5(<-1)4

8 + l)(r6- l)(<2- l)3
8-1)(í5-1)2(í3-1)3(í2+1)

+ l)3
16 - i)V - i)(í4 - i)(í2 -1)2

16 - l)(í2 - l)7(í- l)6

18 - i)(â - i)(í4 + i)(/2 - i)2

18 - i)(«2 - i)8(í- i)7

20 _ l)2(í12 _ 1)(í4 _ 1)3

7 - i)3(r6 - l)(«3 - l)4(í2 - l)2

+ l)3

12 + l)(í10- l)(í2- i)7

W¿ d'V 0'

U«2 - D»

2< _ 1)2(,12 _ l)2(í8 _ !)2

25 - l)2(í5 - 1)6(<4

14+l)(í12- 1)(<6- l)(í2- l)8

27 - 1)V- l)4(f3- l)(r2- l)8

+ 1)

28 _ l)3(r12 _ ,)(,« + j)^ _ t)4

l)2

28 - l)(í2- l)13(f- l)12

24 _ 1)(,20_ l)2(f12 _ 1)(/6_ ,)2

30 — lKf2 — l)l-*(í — 1>Í3

- l)4(í16 - l)2(í8 - l)(í4 - 1)

2 -l)6

11 - i)V -1)((6 - i)(í3 - i)9

2- l)2(í+l)6

18 + 1)((16 - l)(í6- l)2(í2- 1)"

12 - i)(r8 - i)(í7 - i)V -1)10

2-l)(í + l)'

36 - l)4(í12- 1)(/8 - 1)(/2- l)4

36 - 1)(/2 - l)17(í- l)16

20 + i)(f,s - i)(r2- i)!5

13 - i)6(tu - i)(/6 - i)2(«4 + i)

3- i)10(í2 - i)3(í+ i)6

40 .

6 _

40 _ ní,2 _ i\19í._ i%18

l)2(í'2■ i)V°
l)(í2-l)3

■ l)(/2-l)"(í-l)

l)(í8-l)3

14 - l)3(íl2 + l)(í8 + l)(í6

2 .

42

l)6

|19

1)

l)(t2 - l)2°(t-  l)1

4 - l)5(í12 + l)(í10- l)(í4- l)5

s_ i)V5-i)V-i)V-i)

+ í3 + l)3(í5 - l)2(í4- l)(í2- l)7

* + 1)(<22 - l)(t2 -1)19_
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here we used the fact that pr = v (mod A7) implies x(ß)l(r) — XÍV) ■ There-
fore,

DN(t)B = [X(p)Fx(t)]ll,x,

where 1 < p < N/2, gcd(p, N) = 1, and x £ E. Hence,

FN(t) det B = det S JJ Fx(t),
X€E

and the proof is complete. (See also [5, p. 421] and [31, Lemma 5.26(a)]).   D

Remarks. ( 1 ) Among the polynomials Fx(t) (for a given 7Y) there is at least one
with rational integer coefficients. Indeed, if x = Xo is the principal character,
then

N-l

FX0(t)= Y tJ~l-

1=1

Furthermore, if / is an even quadratic character, then Fx(t) has only coeffi-

cients ± 1. For instance, if N is an odd prime p = 1   (mod 4), then

where (j/p) is the Legendre symbol. Polynomials of this kind (with x not

necessarily an even character) are known as Fekete polynomials; see, e.g., [4].

We also note that the Fx(t) have other interesting properties which depend

on the structure of the character group modulo N. A detailed study is not

needed here.
(2) A summary of the properties of FN(t), 1 < N < 46, is given in Table

1. There, d stands for the degree of Fu(t),cd for the total degree of its

cyclotomic factors, and nd for the total degree of its noncyclotomic factors.

3.   The following result shows that Fm(í) is a divisor of FN(t) for certain pairs

(M,N).

Proposition 6.5. Let M, N > 3 be integers with the same prime divisors, and

suppose that M\N. Then FM(t)\F^(t) in Z[t].

Proof. We denote K := N/M, M := {j £ Z\l < j < M, (J_, M) = 1}, and
N_:= {i eZ\l < i < N, (i, N) = 1} . Then we can rewrite N = {j + kM\j e

M, 0 < k < K - 1} . Now we note that an even character x modulo M can

be extended to an even character xn modulo N by setting

XnU + kM) = x(j)       (jeM, 0<k<K-l).

Then by (6.1) we have

EXNit) = YxdW-1 = Y ¿ xU)tj+kM-1
i€N j€M k=0

= Yxuw-lY^=w)w^\-

The result now follows from (6.2).   D
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4. In view of the polynomials (6.1 ) we need some information on the structure

of Dirichlet characters. For details, see, e.g., [30, Chapter 7]. We write N in
its canonical representation

N = 2ap?p?---p?.

For the sake of simplicity we first assume that a = 0 or 1 ; this is sufficient for

our purposes. For j = I, ... , k define

cj:=<p(pa/) = (pj-l)paj'-x,

and let g¡ be the smallest primitive root modulo pJJ. Furthermore, let e;,

x < j <k ,he any (not necessarily primitive) Cjth root of unity. Then

(6.3) x(*) = {
<'e!?---e^   if(a,m) = l,

0 if (a, m) > 1,

where v\, v¡,,..., vk are defined by

(6.4) a = *¡" (modpa¿), ...,a = g? (modp?),

is a Dirichlet character modulo yV. Conversely, any Dirichlet character modulo

N is of the above form.
Now, for the character x m (6.3) to be even, we need *(-l) = 1. By (6.4),

a = -1 corresponds to

Vj = 2(P{!pl">>       j=l,...,k.

But then, with (6.3) we see that only an even number of the e,■, j = 1, ... , k ,
can be primitive Cjth roots of unity; the others have to be (cy/2)th roots of

unity.

5. Finally, suppose that N = 2a, a > 2. Let e = 1 or -1, and eo any

(2Q_2)th root of unity (not necessarily primitive). Then the function

(6.5) X(a)
it

"ey    if(a,N) = l,

if(a,N)> 1,

where v and uQ are (uniquely) defined by

(6.6) a = (-l)"5"» (mod2a),

is a Dirichlet character modulo N = 2a. Conversely, any Dirichlet character

modulo 2a   (a > 2) is of the above form.

Again, for the character x m (6.5) to be even, we need x(-l) = 1 . By (6.6),

a = -1 corresponds to v = 1, u0 = 0, and by (6.5) we have #(-1) = e = I.

Hence the even characters modulo N = 2a   (a > 2) are given by

f f"1 if (a, N) = 1,

if(a,N)> 1,

with eo and u0 as before.
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7. The computations, Part I. (N = 11, 13, 14, 15, 16, 18 ,
20,21,24,28, 30,36,40)

1. The possible exceptional primes / can be calculated in two ways:
(i) by finding the constants c in equation (5.8);

(ii) by using the polynomial factorization in Theorem 6.4 and evaluating

resultants, and using, if necessary, other submatrices of DN(t).

In this section we shall deal with those cases for which method (i) is practi-

cable. First we note that if we have

(7.1) Uij(t)Fi(t) + vu(t)Gj(t) = cu,        l<i<m,   l<j<n,

with u¡j, v¡j & Z[t] and c¡j e Z, then there are polynomials u, v e Z[t] such

that
m n m    n

(7.2) u(t)l[Fi(t) + v(t)l[GJ(t) = l[Y[cu.
i=l j=l (=1 ;=1

Indeed, if
u(t)F(t) + Vj(t)Gj(t) = Cj,       .7 = 1,2,

then by multiplying these two equations together we get

(u2F + uv2G2 + uviGi)F + (viV2)GiG2 = c{c2.

The assertion (7.2) is now obtained by induction.

By (7.2) it suffices to consider pairs of factors of the polynomials F^(t),

FN(l - t). Also, by Lemma 5.1, cyclotomic factors of order < 16 can be

disregarded.

2. As an example, we describe in detail the calculations for the case N = 14.

We have
(l+tx2    t2 + txo    r4 + i8\

DM(t)=     t4 + t*     l+tx2    t2 + txo     ,

Ví2 + í10 í4 + ?8   i + í12/

and

Fi4(t) = det DH(t)

= l-2t6- 3txo + 4txl + 3/16 - 6/18 + 3?20 + 4Z24 - 3i26 - 2/30 + i36

= (t - l)\t + 1)4(1 + t + t2)(l - t + t2)(l + t*)fi(t)f2(t),

where

f(t) =\+t2 + 2tA + 2t6 + ts ,        f2(t) = 1 + 2t2 + 2i4 + i6 + t*.

We note that the cyclotomic factors of Fi4(t) all have order < 16, so they can

be ignored in what follows. We compute now gj(t) := f(l - t) :

gi(t) = 1 -30t + llt2- 104/3 + 102/4 - 68/5 + 30i6 - 8i7 + /8,

g2(t) = 1 - 26t + 51t2 - 84/3 + 87/4 - 62/5 + 29t6 - St7 + i8.

Using an algorithm for finding the g.c.d. of f(t) and ^i(/) (e.g., the routine

"gcdex" on MAPLE), we now determine polynomials Uu , Vn 6 Z[t] such that

Ull(t)fi(t) + Vu(t)gi(t) = Cu.
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We get

un(t) = -205242 + 1215982? - 2545873í2 + 3059783?3 - 2336540í4

+ 1139405Í5 - 328485Í6 + 43798/7,

un (0 = 42838 + 9854/ + 809?2 - 70943r3 - 33840í4 - 88257r5

- 21899/6 - 43798/7,

and

cu =94582 = 2 x 192 x 131.

Similarly, we find ui2, Vi2, u22, v22, and

cn = 688383001 = 43 x 181 x 241 x 367,        c22 = 58519 = 139 x 421.

Now, the exceptional primes are the factors of the c,y, namely, 2, 19, 43, 131,

139, 181, 241, 367, 421. But (FLT I) is certainly true for these prime expo-
nents (e.g., since they are all below the bound (2.2)). This concludes the proof
of the main theorem for N = 14.

3. We dealt with the other cases for N (namely, 11, 13, 15, 16, 18,20,21,
24, 28, 30, 36, 40) in exactly the same way. The symbolic manipulation pack-

age MAPLE was used to evaluate the determinants, to do the polynomial cal-

culations, and to factor the numbers c¡j. Most prime factors are less than the
bound (2.2). Those larger than that bound are listed in Table 2; for these primes
/ we checked that the Fermât quotient q¡(2) ^ 0 (mod/). This completes the

proof of our main theorem for the N under consideration in this section, with

the exception of TV = 40.

Table 2. Exceptional primes

N exceptional primes

13

17

19

21

22

25

26

1938181974650674321837
19191612013754634535261
1997528240063703162013213

5183067295728321937749072289499100236729

186753445089142195483237
40044374254508727298193233551591581900063398423321

1591527325421298297187
279467626079514592617511
52444347498467623057551343
29190929127722102286697462699
55281209602509156697788324469

138201523840689613021
496211772675056448667976526203221

3382717282842812911
11264419067017355423982481
47169095692986175634770467431853731

1558482696940606437939347755803338623072153
5529415957782663330858444568572985814525443
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Table 2 (continued)

377

27

28

29

32

35

38

41

43

45

46

8369570580199826563
447188548098899056249
2243639403438608190839800687778260106659

7165864476521984353

1407041578912351747
161116934598291994141
7233792339589498171710947993
16474862057340134605674539552845938468575009603
pl94, p238

8857981054094232409
172638455754479209193
282845710352878213354031
204567046234917427903951873
1255908649935437621237569409
3603903670030124084210450753

398676446216314985455123
64618453953282251628471635368241821
1102348262107796100707505045701952373
11674513443951972931250312022805887230114781826869045784609

112212614137195861183
1682893332363994051509013274889429169
pll3, p339

170968182972200382919081

74139191281466608291
204571727151308695753
2634070735318559967109
1278405528360764121347
293799614546642512895796736189899139
81382952490730746402310717889745964057
11681277008957350992192583814684956295599117

p202

573133270034835821071
11481509342383088945915281
8176155859804804748228991842790607168693
6513431778778821460015784739812883452701
473160280496208747290815444003838119003839559258257749328115574828929

33029556661758142729
830745790997622094332763631

4. For N = 40 we have to exclude the cases listed in equation (5.7). This

is done by taking the resultants of txl - 1 and ?18 - 1 with the noncyclo-

tomic polynomial factors of F40(l -t) and with the cyclotomic factors of order

> 16. These resultants are easy to factor, and all prime factors are less than
Coppersmith's bound (2.2). This takes care of condition (a') of Theorem 4.5.

To deal with condition (b), we assume that / has order 17 or 18. The case that
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1 -1 has also order 17 or 18 will be excluded by taking the resultants of txl - 1
and (1 - t)xl - 1, of txl - 1 and (1 - i)18 - 1, and of f18 - 1 and (1 - i)18 - 1

(or by finding the corresponding numbers c in (5.8)). Only with respect to the

prime divisors of these numbers are the orders of both t and 1 - t possibly
less than 19; but these primes are easy to determine and to exclude, using the

Wieferich test. This completes the proof for 7Y = 40.

5. One other detail remains to be discussed. The prime factors obtained
in most factorization algorithms are only "probable primes". Although they
are extremely likely to be primes, we need to address the possibility that they
are composite. The following proposition shows that this eventuality poses

no probelm if instead of the "straight" Wieferich test (i.e., testing for q¡ ^ 0
(mod/)) we check whether gcd(/, q¡(2)) = 1, for a "probable prime" /.

Proposition 7.1. Let n be a pseudoprime to base 2 (i.e., a composite number such
that 2n~x = 1 (mod«)) and p a prime divisor of n . If qn(2) ^ 0 (mod/?),

then also qp(2) =é 0  (mod/?).

Proof. Write n = mpk, where p\m, k > 1. By Fermat's (little) theorem we

have
2Pk = 2/»*"'+^) = 2p*"'(l + bpk)

for some integer b . Then

2«-i _ 2«p*-i = 2mpk~l-x(l + bpk)m .

Since n is a pseudoprime to base 2, the left-hand side of this last equation is

= 1 (mod«) and therefore also modulo p . The second term on the right-hand

side is also = 1   (mod/?) ; hence,

(7.3) 2mpk~l-x = l+ap

for some a e Z. Now we rewrite

(7.4) 2"~x =2mpk~x = 2p~x(2mpkl~x)p .

To obtain a contradiction, suppose that qp(2) = 0 (mod/?) ; i.e., 2P~X = l+cp2

for some c eZ. Then with (7.3) and (7.4) we get

2"~x = (1 + cp2)(l + ap)p = l+dp2

for some d eZ. This contradicts the hypothesis, and the proof is complete.   D

Remark. In computing 2/_1 (mod/2) for the Wieferich test, straightforward

exponentiation should be avoided because of the large size of the primes /.

(MAPLE, e.g., has a "smart" modular exponentiation routine.)

8. The computations, Part II. (N = 17, 19, 22, 23, 25, 26,
27, 29, 31-35, 37, 38, 39, 41-46)

1. From the discussion in §5.2 it is clear that we have to show that the matrix

Dtf(t) has maximal rank (mod/). To do this, it suffices to exhibit two sub-

matrices of Dn(t) such that the resultant of their determinants is not divisible

by /. If this resultant is easy to factor, then the prime factors are considered

exceptional primes and can be eliminated by applying the Wieferich test. The
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computations are done in three main steps:
(a) Because of the convenient factorization (6.2), we first choose the two

submatrices DN(t) and DN(l - t).
(b) If any resultants from (a) remain unfactored, we combine Dn(t) with

the "next easiest" submatrix of DN(t) obtained by taking DN(t) and replacing
its first row by the first row of D^( 1 - t). Only the prime factors of the gcd of

the resultants from (a) and (b) remain exceptional primes.
(c) If this gcd cannot be factored, we combine D^(t) with some other

cp(N)/2 x cp(N)/2 submatrix of DN(t), and take the gcd of this resultant with

the unfactored numbers from (b). In some cases, this step may have to be

repeated with a different submatrix if the gcd is still too large.
The details follow in the remainder of this section.

2. It is clear from Proposition 6.3 or from (6.1) (using basic properties of

Dirichlet characters) that the polynomials Fx(t) have some cyclotomic factors.
We clear the Fx(t) of all cyclotomic polynomials of orders < 16 and rewrite

(6.2) as

t(N)/2

(8.1) FN(t) = FN(t)  J]  fN,j(t) = FN(t)F¿(t),
j=x

where the fiïj(t) are the corresponding Fx(t) cleared of cyclotomic factors of

order < 16, and Fft(t) is the product of all these factors. Then by the dis-
cussion at the beginning of §7 it suffices to determine the constants c obtained

from

(8.2) u(t)F¿(t) + v(t)F¿(\-t) = c.

3. By [12, Lemma 20] the constant c in (8.2) divides the resultant of F^(t)

and F^(l - t). By (8.1) and multiplicativity of the resultant we have

p(N)/29(N)/2

(8.3)   ^(^(0,^(1-0)= n n R>ifN,i(t),gNj(t)),
¡=1   j=l

where gN,j(t) '•— fwj(i - t). Since the fs and g's do not, in general, have
integer coefficients (but have coefficients in the (q>(N)/2)th cyclotomic field; see

subsection 6 below), we take the norm on both sides of (8.3) and obtain

(8.4) N[Rt(F¿(t),F¿(l-t))] = HHN[Rt(fN,i(t),gNj(t))],

where the double product is as in (8.3), and the norm is understood as the norm

in the (cp(N)/2)th cyclotomic field. We note that the left-hand side of (8.4) is
the (cp(cp(N)/2))th power of the left-hand side of (8.3), since the latter is already

a rational integer; however, this is of no further consequence. The factors on

the right-hand side of (8.4) are now rational integers, and it is clear that each

prime factor of c in (8.2) is a prime factor of some term

(8.5) N[Rt(fN,i(t),gNJ(t))].

Hence, it suffices to compute these terms and their factors.

4. Next we note that different terms (8.5) may have identical values. Since

Rt(f(t) > g(t)) and Rt(g(t), f(t)) differ at most in sign, it suffices to consider

the cases 1 < i < cp(N)/2 and i < j < cp(N)/2. Furthermore, the resultant is
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an algebraic integer in the (<p(N))th cyclotomic field (or in a cyclotomic field

of smaller order), as is clear from §§6.3, 6.4. Then the norm, as product of this

algebraic integer and its conjugates, will usually coincide with other terms (8.5).

Details of this will be given in the discussions of the individual cases.

5. A special case occurs when in §5.1 we have x = 2 (mod/) ; in this case

the set {Ty|l </,/'< 3, i ^ j} consists of only three distinct (mod/) el-

ements, namely {2, -1, 1/2} . Although this case is included in all previous
discussions, it will sometimes be useful to treat it separately. It is responsible

for some of the smaller factors of the constant c and can therefore be used in

the necessary factorization (see Step 15 in the next subsection).

6. For the actual computations, we distinguish between three different cases:
(i) N = pa or N = 2pa , a > 1, /? > 3. This covers N = 17, 19, 22, 23,

25,26,27,29, 31, 34, 37, 38,41,43,46.
(ii) N = 2a, a>2. This covers 7Y = 32.

(iii) The remaining cases N = 33, 35, 39, 42, 44, and 45 .
We begin with case (i); fix such an N. By §6.4 we have

,«„ , x     Í fi2i/    ifia,m) = l,
8.6 X(a) = { n      ., '

t0      if (a, m) > 1,

where e is a dfh root of unity (not necessarily primitive), d := (p - l)pa~x,

and v is given by

a = g" (modpa),

with g a primitive root (say, the smallest one) modulo pa . The definition of

v can be rewritten in index notation (see, e.g., [30]) as

v = inds a (mod/?Q),

so that with (6.1) and (8.6) we obtain

N-l

(8.7) Ex(t)=    Y    e2iBd'J(modp°hj-1.

7=1
U,N)=l

Now, as e runs through all dth roots of unity (d of them), x runs twice

through all even characters modulo N. A convenient way of creating the rele-

vant dth roots of unity is to fix one primitive dth root of unity e and to take

e2, e4, ... , ed = 1 . This also gives us a way of numbering the even characters

and thus the polynomials (8.7). We denote now

N-l

(8.8) Fk(t):=    Y    e2kmd*j{modp")tJ-x,        k = l,2,...,d,

7=1
(7,iV) = l

where e is a fixed primitive dth root of unity. (Note that this is different

from Fff(t), as defined in Definition 6.1.) For the computations it is important

to note that one can avoid complex arithmetic (and the explicit use of, say,

g _ e2n¡/dj Dy doing aii computations symbolically and reducing modulo <j>d(e)

the polynomials in e that arise, where <pd is the dth cyclotomic polynomial.
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We are now ready to summarize the algorithm used.

1. Given N of the form pa or 2pa , determine the smallest primitive root
g  (modpa), d = (p- l)pa~x, and </>d(e).

2. Compute the polynomials Fk(t) according to (8.8), k = 1, 2, ... , d/2.
3. Reduce these polynomials modulo 4>di£) ■

4. Divide the polynomials by all cyclotomic factors (in t) of order < 16;

let fk(t), k = 1,... , d/2, be the polynomials thus cleared of small
cyclotomic factors.

5. Determine gk(t), k = I, ... , d/2.
6. For j = 1, ... , d/2 and k = j, ... , d/2, compute the resultants

Rt(fj(t), gkit))', before this is done, it should be determined which
sets of pairs (j, k) would give identical norms of the corresponding

resultants (see §§8.3 and 8.6). Denote rJ<k(e) := Rt(fj(t), gk(t))\ they
are polynomials in e .

7. Reduce the rjk(e) modulo <f>d(e) to obtain rfj¿(e) ; these are polyno-
mials in e of degree at most <p(d) - 1.

8. Find the norms of the rjj¿(e). This is best done by computing the

resultants R£(r~k~(e), chd(e)).

9. Try to factor these last numbers; the prime factors are the exceptional

primes, or possible factors of the constant c in (5.8).

10. If Step 9 is successful, apply the Wieferich test to all prime factors
exceeding Coppersmith's bound. This completes only the cases N = 17

and N = 26.
11. In all other cases, compute the noncyclotomic factors with rational in-

teger coefficients of F\(t) by multiplying together appropriate factors

Fk(t) (in (8.8)) and reducing modulo c¡>¿(e). Include cyclotomic factors

of order > 16, and denote them by y/i(t), ... , y/s(t). (Their degrees

are listed in Table 1.)
12. Set up the matrix obtained from D^(t) by replacing its first row by

the first row of D^(l - t) ; evaluate its determinant and remove small

cyclotomic factors.
13. Evaluate the resultants px, ... , ps of the polynomial in Step 12 with

the polynomials y/i(t), ... , ips(t).

14. Find gcd(p¡, rjk(e)) for all appropriate triples (i, j, k). It turns out

that most of these numbers, except at most s of them, are very small.

15. Try to factor the numbers obtained in Step 14. (After dividing by an

appropriate y/¡(2), i = I, ... , s, most are squares.)

16. If Step 15 is successful, enter the primes exceeding Coppersmith's bound

into Table 2 and apply the Wieferich test. This completes the cases

N = 19, 22, 25, 27, 29, 38. For N = 43, go to Step 20. (Although
the cases N = 17 and N = 26 were already settled in Step 10, we

carried out Steps 11-16 for these cases as well; this reduced the number

of exceptional primes in Table 2).

17. If Step 15 is not successful for N, choose another tp(N)/2 x cp(N)/2

submatrix of Dn(í) and compute its determinant. To label these, de-

note by Dn(üi , a2, ... , aV(N)/2) the matrix whose jth row is the jth

row of Dpj(t) if a¡ = 1 and is the yth row of D^(l - t) if a¡ = 2.
Remove small cyclotomic factors.
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18. As in Step 13, evaluate the resultants p\, ... , p* of the determinant

in Step 17 with the polynomials ipi(t), ... , y/s(t) of Step 11.
19. Take the gcd of the resultants p* with the numbers obtained in Step 14.

We are done if the gcd is 1 or a small prime. We first tried the matrix
Dn(1 ,2,1,2,...) in Steps 17-19; this was successful in the cases

N = 23, 31, 37, and 41. In the remaining cases we had to try again with

different matrices. Successful choices were D^(2, 1,2, 1,2, 1,2,2)
and £>46(1,2,2, 1, 1, 1,2,2,2,2,1).

20. For 7Y = 41, 43, and 46 we have to take equation (5.7) into account; see

also §7.4. This leads to 1,6, and 2 new exceptional primes exceeding

the bound (2.2), respectively. They are also entered in Table 2, and the

Wieferich test is applied.

7. One may ask why the above method was not used also for the cases covered

by §7. The reason lies in the fact that the resultant in (8.3) is often vastly larger

than the constant c in (8.2). For the same reason, in some cases in this section

a mixed approach was chosen. It can be described as follows:

1. To avoid the evaluation of the determinant det DN(t) and the factoring

of the polynomial F^(t), equations (6.2) and (6.1) (or, in practice,

(8.8)) were used to obtain Fn(t) and, by combining appropriate factors

Fx(t), the irreducible (over Q) factors were found.

2. As far as practicable, the MAPLE routine "gcdex" was used to find the

constants Cy , as in §7.
3. Now the method described in the previous subsection was employed to

find the terms (8.5).
4. By taking the gcd's of pairs of numbers c,;- and numbers of the type

(8.5), factors of the c,; are sometimes found, which may lead to a

complete or almost complete factorization.

This approach will be illustrated in the next subsection.

8. As an example, we treat the case N = 22 in some greater detail. First we

note that d = 10, 4>d(e) = £4 - e3 + £2 - e + 1, and g = 2 (see also Table 3).
We can now compute from (8.8) the polynomials Fk(t), k = I, ... , 5. For

example,

Fi (t) = 1 + £8Í2 + fi4/4 + E2t6 + £6?8 + E6tX2 + £2Í14 + £4Í16 + £8>18 + t20 .

Since £ satisfies (fid(e) = 0, we reduce modulo 4>d(e) and obtain

Fi (i) = l- e3'2 + (-1 + £ - £2 + £ V + e2t6 - et* - et12 + e2tX4

+ (-l+e-e2 + ei)tx6-eitx* + t20;

similarly for F2(t), ... , F¡(t). Here F5(t) has only rational integer coefficients,

as expected. Now we factor the Fk(t), and get

Fi(t) = (t- l)2(t + l)2{ 1 + (2 - £3)i2 + (2 + £ - £2 - £3)í4

+ (2 + 2fi - £2 - £3)?6 + (2 + 2fi - £2 - £3)/8

+ (2 + 2£ - £2 - £3)í10 + (2 + £ - £2 - £3)i12

+ (2-£3)i14 + ?16};
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Table 3. Distinct resultants

N («) g distinct resultants

17

19

22

23

25

26

27

29

31

32

34

37

38

41

43

46

16

18

10

22

20

12

18

28

30

16

16

36

18

40

42

22

£8+l

e6 - e3 + 1

e4 - £3 + e1 - e + 1

e10 -e9 +-e+ 1

£8 - e6 + s4 - e2 + 1

e4 - e2 + 1

«6 - e3 + 1
£12_gl0 +-£2 + 1

+£+ 1

£8+l

£8+l

£12-£6+l

£6 - £3 + 1

£16_£12+£8_£4+ j

£12 +£" - £9 -£8 +£6

- £4 - £3 + £ + 1

„10 . £+1

(1,1)(1,2)(1,3)2(1,4)(1,5)2(1,6)(1,7)2

(1, 8)(2,2)2(2,4)2(2, 6)4(2, 8)2(4, 4)4

(4,8)4(8,8)4

(1,1)(1,2)(1,3)(1,4)(1,6)(1,8)2(1,9)

(3, 3)3(3, 6)6(3, 9)3(9, 9)6(1, 1)(1, 2)(1, 4)2

(1,5)(5,5)4

(1,1)(1,2)(1,3)(1,5)(1,7)(1,10)2(1,11)
(11, ll)10

(1,1)---(1,6)(1,8)(1,9)2(1,10)(2,2)(2,4)

(2, 5)(2, 8)2(2, 10)(5, 5)4(5, 10)4(10, 10)4

(1, 1) - - • (1, 4)(1, 5)2(2,2)(2,3)(2,4)2(3,3)2
-as for N = 19-

(1,1)---(1,4)(1,6)---(1,10)(1,12)(1,13)2

(1, 14)(2,2)(2,4)(2,6)(2,7)(2, 12)2(2, 14)

(7, 7)6(7, 14)6(14, 14)6

(1,1)---(1,3)(1,4)2(1,5)---(1,7)(1,9)

(1,10)(1,11)2(1,12)(1,14)2(1,15)(3,3)2

(3, 5)(3, 6)2(3, 12)4(3, 15)2(5, 5)4(5, 10)8

(5, 15)4(15, 15)8
- as for N = 17-

- as for N = 17 -

(1,1)---(1,10)(1,12)(1,14)(1,15)(1,16)

(1,17)2(1,18)(2,2)(2,3)(2,4)(2,6)(2,8)

(2,9)(2, 12)(2,15)(2,16)2(2,18)(3,3)3

(3, 6)3(3, 9)3(3, 12)3(3, 15)3(3, 18)3(6, 6)3

(6, 12)6(6, 18)3(9, 9)6(9, 18)6(18, 18)6
-asfor/V= 19-

(1,1)---(1,6)(1,8)(1,9)2(1,10)(1,11)2

(1, 12) - - - (1, 16)(1, 18)(1, 19)2(1,20)(2,2)2

(2, 4)2(2, 5)(2, 6)2(2, 8)2(2, 10)2(2, 16)2

(2, 18)4(2, 20)2(4, 4)2(4, 5)(4, 8)2(4, 10)2

(4, 16)4(4, 20)2(5, 5)4(5, 10)4(5, 15)8(5, 20)4

(10, 10)8(10,20)8(20,20)8

(1,1)---(1,7)(1,8)2(1,9)(1,10)(1,12)

(1, 13)2(1, 14)(1, 15)(1, 18)(1,20)(1,21)

(3, 3)2(3, 6)2(3, 7)(3, 9)2(3, 18)4(3, 21)2

(7, 7)6(7, 14)12(7, 21)6(21, 21)12

- as for N = 23 -

similarly for F2(t), F3(t), F4(t). Let fk(t), k = 1, ... , 4, be the respective
terms in braces. We also get

F5(t) = (l + t + t2 + t3 + t4)(l - / + t2 - Í3 + t4)(l + í4)(l - í4 + Í8).

The four factors are cyclotomic polynomials of order 5, 10, 8, and 24, respec-

tively. The first three factors may be disregarded (since the orders are < 16) ;

we set

/5(i) = l-/4 + /8.
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Next we determine gk(t) = fk(l - t), k = l, ... , 5 . For example,

gi(t) = (16 + 8e - 5e2 - 7fi3) + (-128 - 64fi + 40fi2 + 56fi3)/

H-h (122-e3)r14 - 16í15 + ?16.

Before computing the various terms of type (8.5), we determine which sets of
pairs (j, k) would give identical values. We introduce the following notation:

[;, k] := Rt(fj(t), gk(t)),        N(j, k) := N([j, k]).

From the fact that £2, £4, £6, and £8 are all primitive 5th roots of unity, while
£10 = 1, we find with (8.8) and the definition of the norm in the cyclotomic

field of order 5 that

/V(l,l) = [l,l][2,2][3,3][4,4],

and therefore

N(l, l) = N(2,2) = N(3,3) = N(4,4).

Similarly, we have N(l, 2) = [1, 2][2, 4][3, 1][4, 3], which implies N(l,2) =
N(l,3) = N(2,4) = N(3,4); N(l, 4) = [1, 4][2, 3][3, 2][4, 1], hence
N(l, 4) = N(2, 3), and we expect this number to be a square; N(l, 5) =

[1, 5][2, 5][3, 5][4, 5], hence N(l,5) = 7V(2, 5) = N(3, 5) = 7V(4,5).
Finally, N(5, 5) = [5, 5]4 ; i.e., N(5, 5) is a fourth power. This covers all
N(j, k) with 1 < j < k < 5 , so we have to compute only a set of representa-

tives, say N(l, I), N(l, 2), N(l, 4), N(l, 5), and N(5, 5). This is denoted
in Table 3 as (1, 1)(1, 2)(1, 4)2(1, 5)(5, 5)4 ; here, (i, j)k means that N(i,j)
is a A:th power of an integer.

The   resultants    [j, k]   were   computed   using   MAPLE.   For   example,

Rt(fi(t), gi(t)) is a polynomial in e of degree 87, namely,

r,,,(£) = 923093284287916500122098117549805625

+-523398183742251345117184e87.

Reduced modulo 4>s(e), this is

7T7T(£)= 187861240755070540672588378908420225

+-455396484434167522733374972091035660e3 .

Finally, to find the norm, we compute Re(r]~k(e), <frs(e)). This is a number of
143 digits. The numbers N(l, 2), 7V(1, 4), and N(l, 5) have 140, 139, and 70
digits, respectively. A/(5, 5) was not computed, but rather R,(f(t), g$(t)) =

N(5, 5)1/4 . In a first attempt at factoring, using the MAPLE routine "ifactor"

with the "easy" option, we obtained

N(l, 1) = 56 x 612 x 1912 x 556812 x C,2i,

/V(l,2) = 56xC,36,

/V(l,4)'/2 = 26x53xC66,

N(l, 5) = 54 x 37441 x 241561 x P62,

N(5, 5)1/4 = 28 x 34 x 52 x 72 x 241 ,
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where C„ , resp. P„ , denotes a composite number, resp. a prime, of n digits.

Using the method described in subsection 7, we have further factored Cm ,
yielding a composite C-n . The cofactor C^i can be discarded since it is a factor
of the resultant in (8.3) but not of the essential constant c in (8.2). Then the

elliptic curve method was used to attempt factoring C^, C7i, and C^. After

using several curves, the first two numbers were completely factored, while only

a prime factor Pu of C136 was found, leaving the composite cofactor C125

still unfactored. Hence, we continue with Step 11 of subsection 6.

The polynomial F22(t) has only one noncyclotomic factor in Z[t], namely,

the product y/i(t) = Fi(t) ■ ■ ■ F4(t). There is also a cyclotomic factor of order
24. Hence,

y/i (0 = 1 + It2 + 28i4 + 84i6 + • • • + 84i58 + 28i60 + 7f62 + tM,

y,2(t) = 024(í) = /» -1* + 1.

The determinant in Step 12 is a polynomial of degree 100. We clear it of the

factors (t2 - l)6 and obtain

2 - 20t + 200t2 - 1240i3 +-1260/85 + 196i86 - 20i87 + i88.

The resultant pi (Step 13) has 228 digits, while p2 = 28 x 36 x 54 x 72 x 118 x
73x241x2521x963121. We now evaluate gcd(/?,, N(i, j)), j = 1, 2, 4, 5 .
For 7 = 2,4, and 5 this is very small. For j = 1 it turns out that the gcd is

divisible by

y/\(2) = 138 201 523 840 689 613 021

and that the quotient is a square. The square root is then easy to factor:

(gcd(pi,N(l,l))

V V>(2)
= 53 x 61 x 191 x 55681 x 2292221 x 127238511434 x P33,

where P33 is a prime of 33 digits. ^i(2) is also a prime. This completes the
proof of the main theorem for N = 22 , with the possible exception of these two

primes which are entered in Table 2 and eliminated by applying the Wieferich

test.

9. Case (ii) of subsection 6, i.e., the case N = 32, is very similar to Case (i);

only the remarks in §6.4 have to be taken into account when setting up the poly-

nomials corresponding to (8.7). The mixed approach discussed in subsection 7

was used; the norms of the resultants were used to factor the numbers obtained

by the method of §7.

10. Now we consider the case (iii) of the beginning of subsection 6, i.e., N =

33, 35, 39, 42, 44, and 45. There are no entries in Table 3 for these N since
the polynomials Fx(t) cannot be numbered as in (8.8).

If N = 33, we have pi = 3, p2 = Il, Ci = 2, c2 = 10, £1 is a "second
root of unity" (±1), and e2 is a 10th root of unity. It follows from §6.3 that

(i) if £1 = 1, then £2 must be a 5th root of unity;

(ii) if £1 = -1 , then £2 must be a primitive 10th root of unity.

Similarly, for N = 35 we have Ci = 4, c2 = 6, £1 is a 4th root of unity,

and £2 is a 6th root of unity. Then

1/*
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(i) if £i = 1 or -1, then £2 must be a 3rd root of unity;

(ii) if £i = i or — i, then £2 must be a primitive 6th root of unity.

The remaining cases are set up in a similar manner. In practice, the poly-

nomials Fx(t) in all these cases are computed similarly to (8.7), but taking

the above remarks and (6.3) into account. From these one can proceed almost

exactly as before.

The cases N = 33, 35, and 45 are completed in Step 16. For 7Y = 39, 42,
and 44 we have to continue to Step 19, using the matrices £39 ( 1, 1, 1,2,2,2,
1,1,1,2; 1,1), Z>«(2, 1, l,2,2,2),and £»44(1,2, 1,2, 1,2,1,2,1,1),
respectively. Step 20 for N = 39, 42, 44, and 45 yields only small additional
exceptional primes, i.e., primes below Coppersmith's bound (2.2).

9. Probability considerations

1. The main result in [12] (see Theorem 2.4 above) is an extremely restrictive
condition on a prime / for which (FLT I), fails. This fact was translated into

a probability statement in [12, §11]. Similarly, we will use our main theorem

to derive an improved (heuristic) probability result for (FLT I) to fail.
We assume in this section that / > 7.568 x 1017 (see (2.2)), and that 1 < N <

46 . Our main assumption is that the values of the s(k, N), 0 < k < N - 1,

are randomly distributed (mod/), subject to the three conditions (3.2), (1.3),

and (2.1). For example, (3.2) implies with N = 1 and k = 0 that s(0, 1) = 0
(mod/). With N = 2 and k = 0 we have 5(0, 2) ee -s(l, 2)  (modi).

2. We will calculate the probability ß(N) of the statement "s(k, N) = 0
(mod/) for each 0 < k < N - 1 provided that s(k, M) = 0 (mod/) for each
integer M, 1 < M < N, M\N, and for each 0 < k < M - 1".

Since there are / residue classes (mod/), we have

(9.1) ß(N) = rb(NK

where b(N) is a nonnegative integer. By the remarks at the end of the previous

subsection, we clearly have b(l) = 0 and b(2) = 1 . If TV is an odd prime,

N = p, then conditions (1.3) and (2.1) pose no further restrictions. Hence,

(9.2) b(p) = l{p-\) = lfip)

for an odd prime /?.
If N is composite, then the situation is a little more complicated. According

to condition (3.2) we need to consider only the sums s(k, N) for 0 < k <

(N - l)/2. Let ko = 0, and 1 < ki < k2 < ■ ■■ < km < N be integers with
gcd(ki ,N)>1 (then m = N - 1 - tp(N)).

If N is even, then we have the following homogeneous system of linear

congruences with unknowns s(k, N):

Y s(k ,N) = 0 (mod/),        0 < 1 < y - ?tp. _ 1 ;
k=k¡

N/2-1

Y (N-2k- l)s(k,N) = 0(modl)
k=0
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(9.3) b(N) = <

and similarly when n is odd. The first system (N even) has j<p(N) - 1 free

unknowns, and the other one (N odd) has j(p(N) - 2 free unknowns. This,
together with (9.2), gives b(l) = 0, b(2) = 1, and for N > 2

\(p(N) if N is prime,

\cp(N)-l   if TV" is even,

\cp(N) - 2   if N is odd, composite.

3. Let p(N) denote the probability of the assertion "i(A:, M) = 0 (mod/) for

all 1 < M < N and for all 0 < k < M - 1". Then we have with (9.1),

N N

(9.4) p(N) = I] ß(M) = 1-rW ,        y(N) = Y b(M).
M=l M=l

With (9.3) we now compute y(46) = 284.
Let B be an integer larger than all exceptional primes for 1 < N < 46. Then

the probability that (FLT I); fails for at least one / > B is

V-2U<Sl
-284^ = ^B-283

1>B 283

Here we can clearly take B = 7.568 x 1017 (Coppersmith's bound), and we

obtain a probability of less than 0.7 x io-5062 for (FLT I), to fail for a prime
/. This probability is essentially lower than what one can obtain by means of

Fermât quotients. For instance, Granville and Monagan's result (Theorem 2.4)

gives the term /~24 .

10. Concluding remarks

1. The criterion (1.5) can be rewritten in terms of generalized Bernoulli num-
bers. Indeed, let Bx „ be the «th generalized Bernoulli number belonging to

the residue class character x modulo N. Then the well-known connection with
the ordinary Bernoulli polynomials gives

(10.1) BxJ_i=N'-2Yx(k)B,_i(^).
k=0

Since J2k=o Xik) = 0, we have

N-l

Bx,i-i
fc=0

N-l , ,,      N X

N1'2 Y Xik) J£._, (^J - £,->} = 0 (mod/)

by (1.5). Hence we have

Corollary 10.1. // (FLT I), fails, then we have Bxj_x = 0   (mod/) for all
nontrivial Dirichlet characters x modulo N, 3 < N < 46.

Remarks. ( 1 ) Since Bxn = 0 for odd characters x and even numbers n,

Corollary 10.1 is meaningful only for even characters x ■
(2) Corollary 10.1 is in fact true for the wider class of generalized Bernoulli

numbers belonging to a periodic arithmetic function / with period N and
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satisfying /( 1 ) H-\-f(N) = 0. These numbers can be defined by ( 10.1 ), with
/ in place of x •

2. Eisenstein's formula (3.3) and the Wieferich criterion (Theorem 2.1) imply
that if (FLT I)¡ is false, then the alternating sum on the right-hand side of

(3.3) is congruent to zero (mod/). The following corollary can be considered

as a generalization; it follows immediately from Proposition 3.3 and the main

theorem.

Corollary 10.2. // (FLT I), fails, then

Y ^ = 0 (mod/)
n=l

for all periodic arithmetic functions f with period N,  1 < N < 46.

3. In view of the criteria of Wieferich and others (see §2), the Fermât quotients
q¡(a) (with l\a) have been studied quite extensively, mainly in connection with

the congruence q¡(a) = 0 (mod/). In the remainder of this section we will

discuss some computations done with the sums s(k, N), in relation to Fermât

quotients.
First we consider the case a = 2. An odd prime / with the property q¡(2) = 0

(mod/) is called a Wieferich prime. At present, only two such primes are
known: /= 1093 and / = 3511.

Lerch's congruence (1.3) shows a close relationship between the Fermât quo-

tients and the sums s(k, N). We can use this to prove the following

Proposition 10.3. Let I be an odd prime. Then the following are equivalent:

(a) / is a Wieferich prime;
(b) 5(0, 2) = 0 (mod/);
(c) 5(0, 4) = 0 (mod/);
(d) j(l,4) = 0(mod/);
(e) 5(1, 6) = 0 (mod/).

Proof. From (1.3) we get, with N = 2 ,

(10.2) s(l, 2) = 2q,(2) (modi),

and (3.2) gives

(10.3) 5(0, 2) = -2(7/(2) (mod/).

Now we consider N = 4. First, by definition of the s(k, N) we have 5(0, 2) =

5(0, 4) +5(1, 4), and therefore, with (10.3),

(10.4) 5(0, 4)+5(1, 4) = -2(7/(2) (mod/).

Furthermore, by (3.2) we have 5(2, 4) = -5(1, 4) (mod/) and 5(3, 4) =.-5(0, 4)
(mod/) ; hence (1.3) with N = 4 gives

(10.5) 35(0, 4) + 5(1, 4) = -4(7/(4) = -8q,(2) (mod/),

where we have used the logarithmic property (2.1). By subtracting (10.4) from

(10.5) we obtain

(10.6) 5(0, 4) =.-3tf/(2) (mod/),
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and with (10.4) we get

(10.7) 5(1, 4) = 0/(2) (mod/).

Next we consider N = 6. The congruences (1.3) and (3.2) give

(10.8) 55(0, 6) + 35(1, 6) + 5(2, 6) = -6(7/(6) = -6(7/(2) - 60/(3) (mod/).

We rewrite (10.3) as

(10.9) 5(0, 6) + 5(1, 6) +5(2, 6) = -2^/(2) (mod/),

subtract (10.9) from (10.8), and divide by 2, to get

(10.10) 25(0, 6)+ 5(1, 6) = -2(7,(2)-30/(3) (mod/).

Now (1.3) and (3.2) with N = 3 give

(10.11) 25(0, 3) = -30/(3) (mod/),

which can be rewritten as 25(0, 6) + 25(1, 6) = -30/(3) (mod/). Subtracting
(10.10) from this, we finally obtain

(10.12) 5(1, 6) = 20/(2) (mod/).

This completes the proof, with (10.3), (10.6), and (10.7).   D

Remark. With (10.11) we see that Proposition 10.3 has an obvious analogue

connecting the "Mirimanoff primes" (see Theorem 2.2) with 5(0, 3).
For a Wieferich prime / we also have

0/(8) = 0/( 16) = 0/(32) = 0 (mod/).

In [24] it was mentioned that for the two known Wieferich primes we have

s(k, 8)ii0(mod/),        0<A:<3.

By computer calculations we found that the same is true also for TV = 16

(0 < k < 1) and N = 32 (0 < k < 15). In fact, we found that among the
sums s(k, N), 2 < N < 46, 0 < k < (N - l)/2, only the cases mentioned
in Proposition 10.3 are congruent to zero (mod 1093), while for / = 3511 we

have in addition 5(9, 33) = 0  (mod 3511).

4. Apart from the two Wieferich primes, we investigated the known pairs

(N, I) for which q,(N) = 0 (mod/) with 3 < N < 46 and N < I. A table of
such pairs, where N is prime, is given in [22] (p. 276; also with references to

the sources). A similar table for composite N can be found in [6] and in the

recent update [19].
According to these tables we have 0/(3) = 0 (mod/) for / = 11 and / =

1006003; therefore, by (10.11), 5(0, 3) = 0 (mod/) for these two primes.
However, no other sums s(k, N) (0 < k < (N - l)/2, N < 46) were found

to be congruent to zero (mod/) for any pair (N, I) from the tables, although

0/(/V) = O   (mod/).

5. The sums s(k, N), 2 < N < 46, 0 < k < (N - l)/2, were computed
for all odd primes / < 2000   (N < I). For each such N, with the exception
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of N = 5, there exist 0 < k < (N - l)/2 and a prime / < 2000, N <
l, such that s(k, N) = 0 (mod/). On the other hand, we found only three

instances where for the same / and TV two sums are 0 (mod/). These are:

5(3,40) =5(9,40) = 0 (mod 131); 5(0,24) =5(4,24) = 0 (mod 137); and
5(1, 17) = 5(5, 17) (mod 1381).

6. We call a prime / > 7 a Vandiver prime (see Theorem 2.3) if 5(0, 5) = 0
(mod/) or 5(1, 5) = 0 (mod/), i.e., if

[//5] . [2//5]

5^ = 0 (mod/)   or       Y    - = 0(mod/).
7=1 J ;=[//5]+i J

We also note that according to the main result in [26], we have for / > 5

2 1
-5(1, 5) s jFi_m (modi),

where F„ is the «th Fibonacci number (Fo = 0, F{ = 1, Fn+2 = Fn+i + F„

for n > 0) and (5//) is the Legendre symbol.

P. L. Montgomery [19] reports no solution of i*/-^//) = 0 (mod/2) with

/ < 232. We inspected 5(0, 5) (mod/) and 5(1, 5) (mod/) with / < 200000;
no solution of 5(1, 5) = 0 (mod/) was found. The values (mod/) appear to
be randomly distributed. A curious case occurs at / = 24179, where 5(0, 5) =

1 (mod/). (In this case, 5(1, 5) = 11776 (mod/).)

7. Next we derive a result, similar to our main theorem, which involves a

substantially shorter interval of summation.

Proposition 10.4. If (FLT I), fails, then

1//45]       .

(10.13) Y    - = 0(mod/).
7=[//46]+l J

Proof. By the main theorem we have 5(0, 45) = 5(0, 46) = 0 (mod/) if
(FLT I), fails. The sum (10.13) is the difference of these two sums and is

therefore congruent to zero (mod /) as well.

We computed the sums (10.13) for all primes / < 2 x 106 ; note that even

the largest primes in this range have less than 1000 terms in the corresponding

sums. Also, the sum cannot be zero unless it has at least three terms; i.e.,

[//45] - [//46] > 3 . This is certainly true when //45 - //46 > 2, i.e., / > 4140.
Hence it is sufficient to begin with the following prime, / = 4153. No zero sum

was found.   □

8. Finally in this section, we remark that the numbers B¡_i(k/N) - B¡B¡_i

in (1.5) have recently been subject to some investigation; see [2] and [3]. In

[3], for example, a von Staudt-Clausen type result is derived. It should be

noted, however, that these results concern the denominators of the numbers in

question, while (1.5) is a condition concerning the numerators.

On the other hand, some remarkable congruence results for the left-hand side

of (1.5), involving linear recurrence sequences, were discovered very recently;

see [33].
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