
OS/390

TSO/E
CLISTs

SC28-1973-04

���

OS/390

TSO/E
CLISTs

SC28-1973-04

���

Note
Before using this information and the product it supports, be sure to read the general information under “Appendix. Notices”
on page 181.

Fifth Edition, September 2000

This edition applies to Version 2 Release 10 of OS/390 (5647-A01) and to all subsequent releases and modifications
until otherwise indicated in new editions.

This is a maintenance revision of SC28-1973-03. Order publications through your IBM representative or the IBM
branch office serving your locality. Publications are not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America
FAX (United States and Canada): 1+845+432-9405
FAX (Other countries): Your International Access Code+1+845+432-9405
IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/s390/os390/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . ix

Tables . xi

About This Book . xiii
Who Should Use This Book . xiii
How This Book Is Organized . xiii
Where to Find More Information xiv

Summary of Changes . xv

Chapter 1. Introduction . 1
Features of the CLIST Language. 1
Categories of CLISTs . 1

CLISTs That Perform Routine Tasks 1
CLISTs That Are Structured Applications 2
CLISTs That Manage Applications Written in Other Languages 2

Chapter 2. Creating, Editing, and Executing CLISTs 3
CLIST Data Sets and Libraries 3
Creating and Editing CLIST Data Sets 3

CLIST Data Set Attributes . 4
Considerations for Copying CLIST Data Sets 4

Executing CLISTs . 5
Passing Parameters to CLISTs 6

Allocating CLIST Libraries for Implicit Execution 6
Specifying Alternative CLIST Libraries with the ALTLIB Command 7
Examples of the ALTLIB Command 8

Chapter 3. Writing CLISTs - Syntax and Conventions 9
Overview of CLIST Statements 9
Syntax Rules . 10

Delimiters . 10
Continuation Symbols . 10
Capitalization . 10
Formatting . 11
Length . 11
Labels . 11
Comments . 11
Characters Supported in CLISTs 12

TSO/E Commands and JCL Statements 12
TSO/E Commands . 12
JCL Statements . 12

Operators and Expressions . 13
Order of Evaluations . 14
Valid Numeric Ranges . 15

The Double-Byte Character Set (DBCS) 15
DBCS Delimiters . 15
DBCS Restrictions . 15

Chapter 4. Using Symbolic Variables 17
What is a Symbolic Variable? 17

Valid Names of Variables . 18

© Copyright IBM Corp. 1988, 2000 iii

Valid Values of Variables . 18
Defining Symbolic Variables and Assigning Values to Them 19

Using the SET Statement . 19
Using the READ Statement 19
Using the PROC Statement 20
Examples . 22

More Advanced Uses of Variables 22
Combining Symbolic Variables 23
Using a Variable to Preserve Leading Spaces in a CLIST 23
Nesting Symbolic Variables 24

Chapter 5. Using Control Variables. 27
Overview of using Control Variables 28
Getting the Current Date and Time 32

&SYSDATE, &SYSSDATE, and &SYSJDATE. 32
&SYS4DATE, &SYS4SDATE, and &SYS4JDATE 33
&SYSTIME and &SYSSTIME 33

Getting Terminal Characteristics 33
&SYSTERMID . 34
&SYSLTERM and &SYSWTERM 34

Getting Information about the User 34
&SYSUID . 34
&SYSPREF . 34
&SYSPROC . 35

Getting Information about the System 35
&SYSCLONE . 35
&SYSCPU and &SYSSRV. 36
&SYSDFP . 36
&SYSHSM . 36
&SYSISPF . 37
&SYSJES . 37
&SYSLRACF . 37
&SYSAPPCLU . 38
&SYSMVS . 38
&SYSNAME . 38
&SYSNODE . 39
&SYSOPSYS . 39
&SYSRACF . 39
&SYSPLEX . 40
&SYSSECLAB . 40
&SYSSMS . 40
&SYSSMFID. 40
&SYSSYMDEF . 41
&SYSTSOE . 41

Getting Information about the CLIST 41
&SYSENV . 42
&SYSSCAN . 42
&SYSICMD . 42
&SYSPCMD . 42
&SYSSCMD . 42
Relationship between &SYSPCMD and &SYSSCMD 42
&SYSNEST . 43

Setting Options of the CLIST CONTROL Statement 43
&SYSPROMPT. 43
&SYSSYMLIST. 43
&SYSCONLIST. 43

iv OS/390 V2R10.0 TSO/E CLISTs

&SYSLIST . 44
&SYSASIS . 44
&SYSMSG . 44
&SYSFLUSH . 44

Getting Information about User Input 45
&SYSDLM . 45
&SYSDVAL . 45

Trapping TSO/E Command Output 46
&SYSOUTTRAP . 46
&SYSOUTLINE. 46
Considerations for Using &SYSOUTTRAP and &SYSOUTLINE 47

Getting Return Codes and Reason Codes 47
&LASTCC. 47
&MAXCC . 48

Getting Results of the TSOEXEC Command 49
Getting Data Set Attributes . 49

The LISTDSI Statement . 49

Chapter 6. Using Built-in Functions 51
Determining the Data Type of an Expression - &DATATYPE 52
Forcing Arithmetic Evaluations - &EVAL 53
Determining an Expression’s Length in Bytes - &LENGTH 53

Suppressing Arithmetic Evaluations 53
Including Leading and Trailing Blanks and Leading Zeros 53

Determining an Expression’s Length in Characters - &SYSCLENGTH. 54
Preserving Double Ampersands - &NRSTR 54

Double Ampersands . 54
One Level of Symbolic Substitution 54
Records Containing JCL Statements 55

Defining Character Data - &STR 55
Using &STR with &SYSDATE or &SYSSDATE 56
Using &STR with Leading and Trailing Blanks 56
Using &STR with Strings that Match CLIST Statement Names 56
Using &STR When Supplying Input Using SYSIN JCL Statements 56

Defining a Substring - &SUBSTR 57
Defining a Substring - &SYSCSUBSTR 59
Converting Character Strings to Uppercase Characters - &SYSCAPS. 59
Converting Character Strings to Lowercase Characters - &SYSLC 59
Determining Data Set Availability - &SYSDSN 59
Locating One Character String Within Another - &SYSINDEX 60

Using &SYSINDEX with DBCS Strings 61
Limiting the Level of Symbolic Substitution - &SYSNSUB 62
Converting DBCS Data to EBCDIC - &SYSONEBYTE 63
Converting EBCDIC Data to DBCS - &SYSTWOBYTE 63

Chapter 7. Structuring CLISTs 65
Making Selections. 66

The IF-THEN-ELSE Sequence 66
Nesting IF-THEN-ELSE Sequences 67
The SELECT Statement . 68

Loops . 70
The DO-WHILE-END Sequence 70
The DO-UNTIL-END Sequence 71
The Iterative DO Sequence 71
Compound DO Sequences 72
Nesting Loops . 73

Contents v

Distinguishing END Statements from END Commands or Subcommands 74
Subprocedures . 75

Calling a Subprocedure. 75
Returning Information from a Subprocedure 76
Sharing Variables among Subprocedures 77
Restricting Variables to a Subprocedure. 78
Considerations for Using Other Statements in Subprocedures 78

Nesting CLISTs. 79
Protecting the Input Stack from Errors or Attention Interrupts 79
Global Variables . 80
Exiting from a Nested CLIST 80

GOTO Statements . 81

Chapter 8. Communicating with the Terminal User 83
Prompting the User for Input . 83

Prompting with the PROC Statement 83
Prompting with the WRITE and WRITENR Statements 84
Prompting with TSO/E Commands. 84

Writing Messages to the Terminal 86
Using the WRITE and WRITENR Statements. 87
Controlling the Display of Informational Messages 87

Receiving Responses from the Terminal 88
Using the READ Statement 88
Using the READDVAL Statement 91

Passing Control to the Terminal 92
Returning Control After a TERMIN or TERMING Statement 93
Entering Input After a TERMIN or TERMING Statement 93

Using ISPF Panels . 94
ISPF Restrictions . 94
Sample CLIST with ISPF Panels 94

Chapter 9. Performing File I/O 95
Characters Supported in I/O . 95
Opening a File . 95
Closing a File . 96
Reading a Record from a File 96
Writing a Record to a File . 97
Updating a File . 98
End-of-File Processing . 98
Special Considerations for Performing I/O 99

Chapter 10. Writing ATTN and ERROR Routines 101
Writing Attention Routines . 101

Cancelling Attention Routines 102
Protecting the Input Stack from Attention Interrupts 102
Sample CLIST with an Attention Routine 102
Subprocedures and Attention Routines. 104
CLIST Attention Facility . 104

Writing Error Routines . 105
Cancelling Error Routines 105
Protecting the Input Stack from Errors 106
Sample CLIST with an Error Routine 106
Subprocedures and Error Routines 106

Chapter 11. Testing and Debugging CLISTs 109
Using Diagnostic Options of the CONTROL Statement 109

vi OS/390 V2R10.0 TSO/E CLISTs

Messages in Diagnostic Output 110
How to Make Diagnostic Output Optional in a CLIST 111

Getting Help for CLIST Messages 111
Obtaining CLIST Error Codes 111

Chapter 12. Sample CLISTs 117
Including TSO/E Commands - The LISTER CLIST 118
Simplifying Routine Tasks - The DELETEDS CLIST 118
Creating Arithmetic Expressions from User-Supplied Input - The CALC CLIST 119
Using Front-End Prompting - The CALCFTND CLIST 119
Initializing and Invoking System Services - The SCRIPTDS CLIST 121
Invoking CLISTs to Perform Subtasks - The SCRIPTN CLIST 122
Including JCL Statements - The SUBMITDS CLIST 125
Analyzing Input Strings with &SUBSTR - The SUBMITFQ CLIST 125
Allowing Foreground and Background Execution of Programs - The

RUNPRICE CLIST . 126
Including Options - The TESTDYN CLIST 127
Simplifying System-Related Tasks - The COMPRESS CLIST 129
Simplifying Interfaces to Applications - The CASH CLIST 131
Using &SYSDVAL When Performing I/O - The PHONE CLIST 132
Allocating Data Sets to SYSPROC - The SPROC CLIST 133
Writing Full-Screen Applications Using ISPF Dialogs - The PROFILE CLIST 137
Allocating a Data Set with LISTDSI Information - The EXPAND CLIST 146

Chapter 13. Reference . 149
How to Read the CLIST Statement Syntax 149
ATTN Statement . 152
CLOSFILE Statement . 153
CONTROL Statement . 154
DATA-ENDDATA Sequence . 156
DATA PROMPT-ENDDATA Sequence 156
DO Statement . 157
END Statement . 158
ERROR Statement . 158
EXIT Statement . 159
GETFILE Statement . 160
GLOBAL Statement. 160
GOTO Statement . 161
IF-THEN-ELSE Sequence . 162
LISTDSI Statement . 162

CLIST Variables Set by LISTDSI 165
Return Codes . 168
Reason Codes . 168

NGLOBAL Statement . 170
OPENFILE Statement . 170
PROC Statement . 171
PUTFILE Statement . 172
READ Statement. 173
READDVAL Statement . 173
RETURN Statement . 174
SELECT Statement . 174

Simple SELECT . 174
Compound SELECT . 175

SET Statement . 176
SYSCALL Statement . 176
SYSREF Statement. 177

Contents vii

TERMIN and TERMING Statement 178
WRITE and WRITENR Statements 179
END Command . 180
EXEC Command. 180

Appendix. Notices . 181
Programming Interface Information 183
Trademarks. 183

Bibliography . 185
TSO/E Publications . 185
Related Publications . 185

Index . 187

viii OS/390 V2R10.0 TSO/E CLISTs

Figures

1. Sample CLIST Consisting of TSO/E Commands . 2
2. How a CLIST Executes a Compound DO Sequence 73
3. Nested CLISTs . 79
4. A CLIST Containing an Attention Routine - The ALLOCATE CLIST 103
5. An Attention Handling CLIST - The HOUSKPNG CLIST 104
6. The COPYDATA CLIST . 107
7. Sample CLIST with Diagnostic CONTROL Options 110
8. Diagnostic Output from Sample CLIST . 110
9. Error Messages in Diagnostic Output from Sample CLIST 111

10. The LISTER CLIST . 118
11. The DELETEDS CLIST . 118
12. The CALC CLIST . 119
13. The CALCFTND CLIST . 120
14. The SCRIPTDS CLIST . 121
15. The SCRIPTN CLIST. 123
16. The SCRIPTD CLIST. 123
17. The OUTPUT CLIST . 124
18. The SUBMITDS CLIST . 125
19. The SUBMITFQ CLIST . 126
20. The RUNPRICE CLIST . 127
21. The TESTDYN CLIST . 128
22. The COMPRESS CLIST . 130
23. The CASH CLIST . 132
24. The PHONE CLIST . 133
25. The SPROC CLIST . 135
26. The PROFILE CLIST . 138
27. The Terminal Characteristics Panel Definition (XYZABC10) 140
28. The LOG/LIST Characteristics Panel Definition (XYZABC20) 141
29. The PF Keys 1-12 Panel Definition (XYZABC30) 143
30. The PF Keys 13-24 Panel Definition (XYZABC40) 145
31. The EXPAND CLIST . 147

© Copyright IBM Corp. 1988, 2000 ix

x OS/390 V2R10.0 TSO/E CLISTs

Tables

1. CLIST Statement Categories . 9
2. Arithmetic, Comparative, and Logical Operators 13
3. Control Variable by Category . 29
4. Modifiable Control Variables (alphabetically) . 30
5. Non-modifiable Control Variables (alphabetically) 30
6. Built-in Functions . 51
7. TERMIN and TERMING Statement Comparison 92
8. CLIST Statement Error Codes (Decimal). 112
9. Sample CLISTs and Their Functions . 117

10. Purpose of, and Figures Containing, PROFILE CLIST and Supporting Panels 138
11. Variables Set by LISTDSI . 165
12. LISTDSI Return Codes . 168
13. LISTDSI Reason Codes . 169

© Copyright IBM Corp. 1988, 2000 xi

xii OS/390 V2R10.0 TSO/E CLISTs

About This Book

This book describes how to use the TSO/E CLIST language to write programs
called CLISTs. You can use CLISTs to perform a wide range of programming tasks
on TSO/E.

Who Should Use This Book
This book is intended for new and experienced CLIST programmers.

If you are a new user of the CLIST language, read each chapter and try coding the
examples.

If you are experienced with CLISTs, review the chapters and familiarize yourself
with the organization of this book. Then you’ll be able to refer to the appropriate
chapter when you have a question or want to refresh your memory.

To use the CLIST language effectively, you should be familiar with TSO/E
commands. Familiarity with the Interactive System Productivity Facility (ISPF) is
also helpful. For information about TSO/E commands, see OS/390 TSO/E
Command Reference.

How This Book Is Organized
v “Chapter 1. Introduction” on page 1 describes the types of functions CLISTs

perform.

v “Chapter 2. Creating, Editing, and Executing CLISTs” on page 3 describes how to
create and edit CLIST data sets, and how to execute CLISTs.

v “Chapter 3. Writing CLISTs - Syntax and Conventions” on page 9 describes the
rules for using CLIST statements, TSO/E commands, and JCL statements in
CLISTs.

v “Chapter 4. Using Symbolic Variables” on page 17 describes how to define
symbolic variables and assign values to them.

v “Chapter 5. Using Control Variables” on page 27 describes how to use CLIST
control variables to obtain current information about the processing environment.

v “Chapter 6. Using Built-in Functions” on page 51 describes how to use CLIST
string-handling functions to process numeric data and character strings.

v “Chapter 7. Structuring CLISTs” on page 65 describes how to use CLIST
statements to make decisions and loops, and how to use CLIST subprocedures
and nested CLISTs.

v “Chapter 8. Communicating with the Terminal User” on page 83 describes how to
write interactive CLISTs.

v “Chapter 9. Performing File I/O” on page 95 describes how to read and write
records to and from files.

v “Chapter 10. Writing ATTN and ERROR Routines” on page 101 describes how to
write routines that receive control when errors occur or when the user presses
the attention key while a CLIST is running.

v “Chapter 11. Testing and Debugging CLISTs” on page 109 describes how to find
and correct CLIST errors. This chapter includes a list of error codes and their
meanings.

v “Chapter 12. Sample CLISTs” on page 117 provides sample CLISTs that perform
a broad range of application tasks. Each CLIST comes with a description of the

© Copyright IBM Corp. 1988, 2000 xiii

concepts that it illustrates. Generally, the more advanced CLISTs expand upon
concepts introduced in the simpler examples.

v “Chapter 13. Reference” on page 149 contains complete syntax descriptions of all
of the CLIST statements.

Where to Find More Information
Please see OS/390 Information Roadmap for an overview of the documentation
associated with OS/390, including the documentation available for OS/390 TSO/E.

xiv OS/390 V2R10.0 TSO/E CLISTs

Summary of Changes

Summary of Changes
for SC28-1973-04
OS/390 Version 2 Release 10

This book contains information previously presented in OS/390 TSO/E CLISTs,
SC28-1973-03, which supports OS/390 TSO/E Version 2 Release 9 and
subsequent releases.

The following summarizes the changes to that information.

New Information

Information was added about CLIST variables set by LISTDSI as a result of APAR
OW39735. See Table 11 on page 165.

This book includes terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Summary of Changes
for SC28-1973-03
OS/390 Version 2 Release 9

This book contains information previously presented in OS/390 TSO/E CLISTs,
SC28-1973-02, which supports OS/390 TSO/E Version 2 Release 7 and
subsequent releases.

The following summarizes the changes to that information.

New Information

v Information was added about variable &SYSPROC as result of APAR OW40093.
See “&SYSPROC” on page 35.

v A bibliography of TSO/E and related books has been added to the back of the
book.

This book includes terminology, maintenance, and editorial changes. OS/390 TSO/E
VM/PC User’s Guide for OS/390 Host Services, SC28-1977, has been deleted from
the OS/390 TSO/E library.

Summary of Changes
for SC28-1973-02
OS/390 Version 2 Release 7

This revision reflects the deletion, addition or modification of information to support
miscellaneous maintenance items and APAR OW33831.

This book includes terminology, maintenance, and editorial changes.

© Copyright IBM Corp. 1988, 2000 xv

|
|
|

|
|
|

|

|

|
|

|
|
|

xvi OS/390 V2R10.0 TSO/E CLISTs

Chapter 1. Introduction

Features of the CLIST Language. 1
Categories of CLISTs . 1

CLISTs That Perform Routine Tasks 1
CLISTs That Are Structured Applications 2
CLISTs That Manage Applications Written in Other Languages 2

The CLIST language enables you to work more efficiently with TSO/E. You can
write programs, called CLISTs, that perform given tasks or groups of tasks. From
then on, you can simply invoke the CLISTs to do those tasks.

The term CLIST (pronounced “sea list”) is short for Command LIST, because the
most basic CLISTs are lists of TSO/E commands. When you invoke such a CLIST,
it issues the TSO/E commands in sequence.

Besides issuing TSO/E commands, CLISTs can perform more complex
programming tasks. The CLIST language includes the programming tools you need
to write extensive, structured applications. CLISTs can perform any number of
complex tasks, from displaying a series of full-screen panels to managing programs
written in other languages.

The CLIST language is an interpretive language. Like programs in other high-level
interpretive languages, CLISTs are easy to write and test. You don’t have to compile
and link-edit them. To test a CLIST, you execute it, correct any errors, and
re-execute it.

The CLIST language is one of two command languages available in TSO/E. For
information about the other command language, REXX, see OS/390 TSO/E REXX
User’s Guide, and OS/390 TSO/E REXX Reference.

Features of the CLIST Language
The CLIST language provides a wide range of programming functions. Its features
include:

v An extensive set of arithmetic and logical operators for processing numeric data

v String-handling functions for processing character data

v CLIST statements that let you structure your programs, perform I/O, define and
modify variables, and handle errors and attention interrupts

Categories of CLISTs
A CLIST can perform a wide range of tasks. Three general categories of CLISTs
are:
v CLISTs that perform routine tasks
v CLISTs that are structured applications
v CLISTs that manage applications written in other languages

CLISTs That Perform Routine Tasks
As a user of TSO/E, you probably perform certain tasks on a regular basis. These
tasks may involve entering TSO/E commands to check on the status of data sets,
to allocate data sets for particular programs, and to print files.

© Copyright IBM Corp. 1988, 2000 1

You can write CLISTs that significantly reduce the amount of time that you have to
spend on these routine tasks. By grouping together in a CLIST the instructions
required to complete a task, you reduce the time, number of keystrokes, and errors
involved in performing the task; thus, you increase your productivity. Such a CLIST
can consist of TSO/E commands only, or a combination of TSO/E commands, JCL
statements, or CLIST statements.

Figure 1 is an example of a CLIST that consists of TSO/E commands only.

The CLIST in Figure 1 issues TSO/E commands to allocate files for a program, call
the program, and free the files when the program is finished. Whenever you wanted
to perform these related tasks, you could simply execute the CLIST instead of
retyping the commands.

If tasks require specific input from a user, you can obtain the input in a CLIST by
using CLIST statements or TSO/E commands to prompt the user for the input.

CLISTs That Are Structured Applications
The CLIST language includes the basic tools you need to write complete, structured
applications. Any CLIST can invoke another CLIST, which is referred to as a nested
CLIST. CLISTs can also contain separate routines called subprocedures. Nested
CLISTs and subprocedures let you separate your CLISTs into logical units and put
common functions in a single location. Specific CLIST statements let you:
v Define common data for subprocedures and nested CLISTs
v Restrict data to certain subprocedures and CLISTs
v Pass specific data to a subprocedure or nested CLIST

For interactive applications, CLISTs can issue commands of the Interactive System
Productivity Facility (ISPF) to display full-screen panels. Conversely, ISPF panels
can invoke CLISTs, based on input that a user types on the panel. When the user
changes a value on a panel, the change applies to the value in the CLIST that
displayed the panel. With ISPF, CLISTs can manage extensive panel-driven dialogs.

CLISTs That Manage Applications Written in Other Languages
You might have access to applications that are written in other programming
languages. However, the interfaces to these applications might not be easy to use
or remember. Rather than write new applications, you can write CLISTs that provide
easy-to-use interfaces between the user and such applications.

A CLIST can send messages to, and receive messages from, the terminal to
determine what the user wants to do. Then, based on this information, the CLIST
can set up the environment and issue the commands required to invoke the
program that performs the requested tasks.

allocate file(ABC) dataset(name1)
allocate file(DEF) dataset(name2)
call (prog1)
free file(ABC DEF)

Figure 1. Sample CLIST Consisting of TSO/E Commands

Categories of CLISTs

2 OS/390 V2R10.0 TSO/E CLISTs

Chapter 2. Creating, Editing, and Executing CLISTs

CLIST Data Sets and Libraries 3
Creating and Editing CLIST Data Sets 3

CLIST Data Set Attributes . 4
Considerations for Copying CLIST Data Sets 4

Executing CLISTs . 5
Passing Parameters to CLISTs 6

Allocating CLIST Libraries for Implicit Execution 6
Specifying Alternative CLIST Libraries with the ALTLIB Command 7

Using the ALTLIB Command 7
Using ALTLIB with ISPF . 7
Stacking ALTLIB Requests 8

Examples of the ALTLIB Command 8

CLIST Data Sets and Libraries
CLISTs reside in either sequential or partitioned data sets (PDSs). A sequential
CLIST data set consists of only one CLIST, while a PDS can contain one or more
CLISTs. In a PDS, each CLIST is a member and has a unique member name.
When a PDS consists entirely of CLISTs, it is called a CLIST library.

CLIST libraries make CLISTs easy to maintain and execute. Your installation can
keep commonly used CLISTs in a system CLIST library, and you can keep your
own CLISTs in a private CLIST library. If you allocate a CLIST library to the file
SYSPROC, or specify the library on the ALTLIB command, you can execute the
CLISTs implicitly by simply typing their member names.

Implicit execution frees you from having to code the name of the CLIST library on
an EXEC command. Besides saving keystrokes, implicit execution lets you keep
different versions of a CLIST in different libraries and control which version
executes at a given time. For more information, see “Allocating CLIST Libraries for
Implicit Execution” on page 6.

CLISTs invoked implicitly, and command processors invoked from CLISTs, should
not have names equal to reserved CLIST words. If name conflicts can not be
avoided, consider using the &STR built-in function to solve the problem. See
“Defining Character Data - &STR” on page 55. For example, in the case of the
SELECT subcommand of the RACFRW command, you could specify the
subcommand name as follows, to avoid confusion with the CLIST SELECT
statement:
&STR(SELECT) VIOLATIONS

Creating and Editing CLIST Data Sets
Before coding your first CLIST, you must create a CLIST data set. There are two
ways to create and edit a CLIST data set:

1. Using options 3 (UTILITIES) and 2 (EDIT) of ISPF/PDF:

a. Create a data set using the allocate panel in ISPF (usually option 3.2 on the
primary menu).

v To simplify execution, specify CLIST as the data set type.

© Copyright IBM Corp. 1988, 2000 3

v To create a data set with the same attributes as another, such as a
system CLIST library, use option 3.2 to view the attributes of the existing
data set and then allocate the new data set.

b. Code your CLIST in the full-screen environment using the ISPF/PDF editor
(usually option 2).

c. Modify the CLIST by making corrections directly to the data on the screen.

For more information about creating and editing data sets under ISPF/PDF, see
OS/390 TSO/E Primer.

2. Using the TSO/E EDIT command and its subcommands (this method includes
option 6 of ISPF/PDF.):

a. Include the CLIST keyword on the EDIT command.

b. Enter and save your CLIST statements, TSO/E commands, and TSO/E
subcommands.

c. Use subcommands of EDIT to modify the CLIST.

CLISTs created with the EDIT command cannot contain characters of the
double-byte character set (DBCS).

More information about creating and editing data sets under TSO/E can be
found in OS/390 TSO/E Command Reference.

CLIST Data Set Attributes
If a CLIST data set is created by one of the previously described methods, and the
CLIST keyword is specified on the EDIT command, the data set will be assigned
the following default attributes (provided that your installation has not changed the
default values):

v A variable-length record format

If you specify a LINE value on the EDIT command, the data set will be of a
fixed-length record format in the specified length.

v A logical record size of 255 characters

v A block size of 3120 bytes

v Line numbers are contained in the last eight bytes of all fixed-length records and
in the first eight bytes of all variable-length records

v All input data and modified data are converted to uppercase characters.

Your installation may have changed these default attributes and may have
established CLIST data set conventions to ease data set tasks.

If you concatenate CLIST data sets, specify the same RECFM and LRECL values
for these data sets.

For a complete description of edited data sets see, the EDIT command in OS/390
TSO/E Command Reference. For a discussion of the formats and characteristics of
the RECFM subparameter of the DCB parameter, see OS/390 MVS JCL Reference.
If you want to obtain information about a data set for use in CLIST variables, see
“LISTDSI Statement” on page 162.

Considerations for Copying CLIST Data Sets
When creating and editing CLISTs, you might copy an existing CLIST data set into
a new data set. If you do so under ISPF/PDF, be aware of the record formats of the
data sets. Variable-blocked data sets might contain line numbers in columns 1-8

Creating and Editing CLIST Data Sets

4 OS/390 V2R10.0 TSO/E CLISTs

that do not normally appear when you edit the data sets. If you copy a
variable-blocked data set into a fixed-blocked data set, the line numbers are copied
as part of the data. This data must then be removed. To find out if a data set
contains line numbers, use the ISPF EDIT command PROFILE.

If you copy a fixed-blocked data set with line numbers into a variable-blocked data
set, the system copies sequence numbers from columns 73-80 into the
variable-blocked data set. This data must also be removed. For information about
how to remove the sequence numbers from a variable-blocked data set, see
OS/390 ISPF Edit and Edit Macros.

Executing CLISTs
To execute a CLIST, use the EXEC command. From an ISPF command line, type
TSO in front of the command. In TSO/E EDIT or TEST mode, use the EXEC
subcommand as you would use the EXEC command. (CLISTs executed under EDIT
or TEST can issue only EDIT or TEST subcommands and CLIST statements, but
you can use the END subcommand in a CLIST to end EDIT or TEST mode and
allow the CLIST to issue TSO/E commands.)

The EXEC command (or subcommand) has two forms:

1. Explicit form: Enter “exec” or “ex” followed by the data set name and the
optional CLIST operand. By default, the EXEC command assumes that the data
set type is CLIST and automatically suffixes all specified names with .CLIST,
unless the name is in quotes. For example:

v If a CLIST, LISTPGM, is a member of a PDS named
PREFIX.CLISTLIB.CLIST, enter:
{exec} clistlib(listpgm) [CLIST]
{ex }

v If a CLIST, LISTPGM, is a member of a PDS named PREFIX.CLIST, enter:
{exec} (listpgm) [CLIST]
{ex }

v If the CLIST is in a sequential data set named PREFIX.LISTPGM.CLIST,
enter:
{exec} (listpgm) [CLIST]
{ex }

v If the CLIST is in a sequential data set named PREFIX.LISTPGM, enter:
{exec} 'prefix.listpgm' [CLIST]
{ex }

If the EXEC command is used to execute a CLIST in a sequential data set, but
the data set is found to be a partitioned one, it will assume a member
TEMPNAME. The system will notify you if this member is not found, otherwise it
will execute it.

2. Implicit form: Enter only the name of the CLIST, optionally preceded by a
percent sign (%). The CLIST must be a member of a PDS allocated to the file
SYSPROC, or an alternative library specified with the ALTLIB command. The
two implicit forms are as follows:

a. Enter only the member name, for example:
listpgm

When you use this form, TSO/E first searches command libraries to ensure
that the name you entered is not a TSO/E command, then searches CLIST
libraries:

Creating and Editing CLIST Data Sets

Chapter 2. Creating, Editing, and Executing CLISTs 5

v Specified with the ALTLIB command or
v Allocated to the SYSPROC file

b. Enter the member name prefixed with a percent sign (%), for example:
%listpgm

When you use this form, called the extended implicit form, TSO/E searches
only the ALTLIB or SYSPROC libraries for the name, thus reducing the
amount of search time.

For information about preparing a CLIST for implicit execution, see “Allocating
CLIST Libraries for Implicit Execution”.

You can execute a CLIST in either the foreground (from your terminal) or in the
background (submit it as a batch job). You can also execute a CLIST from another
CLIST (using the EXEC command) or from a program. To invoke a CLIST from a
program, use the TSO/E service facility described in OS/390 TSO/E Programming
Services.

Passing Parameters to CLISTs
You can pass parameters to a CLIST when you execute it. Parameters are variable
input that may change from one execution to the next. To receive parameters, a
CLIST must begin with a PROC statement that assigns the parameters to variables.
“Using the PROC Statement” on page 20 explains how to code a PROC statement
to receive parameters.

To pass parameters to a CLIST, include them on the EXEC command or
subcommand as follows:

v For the explicit form, pass parameters in single quotes:
EX clistname 'parm1 parm2'

v For the implicit or extended implicit form, omit the quotes:
%clistname parm1 parm2

For more information about the types of parameters you can pass, and how to use
them in a CLIST, see “Using the PROC Statement” on page 20.

For a complete syntactical definition of the EXEC command, including special
considerations for passing parameters that contain single quotes, see “Chapter 13.
Reference” on page 149.

Allocating CLIST Libraries for Implicit Execution
After you have written CLISTs and executed them to make sure they run correctly,
you can allocate them to special files to make them easier to execute.

When CLISTs are members of a partitioned data set (PDS) allocated to a special
file, users and applications can execute the CLISTs implicitly by simply invoking the
member names. How you can allocate CLIST libraries for implicit execution
depends on the feature of TSO/E installed on your system.

The ALTLIB command gives you more flexibility in specifying CLIST libraries for
implicit execution. With ALTLIB, a user or ISPF application can easily activate and
deactivate CLIST libraries for implicit execution as the need arises. This flexibility
can result in less search time when fewer CLISTs are activated for implicit
execution at the same time.

Executing CLISTs

6 OS/390 V2R10.0 TSO/E CLISTs

In addition to CLISTs, the ALTLIB command lets you specify libraries of REXX
execs for implicit execution. For information about using ALTLIB with REXX execs,
see OS/390 TSO/E REXX User’s Guide.

Specifying Alternative CLIST Libraries with the ALTLIB Command
The ALTLIB command lets you specify alternative libraries to contain implicitly
executable CLISTs. You can specify alternative libraries on the user, application,
and system levels.

v The user level includes CLIST libraries allocated to the file SYSUPROC. During
implicit execution, these libraries are searched first.

v The application level includes CLIST libraries specified on the ALTLIB command
by data set or file name. During implicit execution, these libraries are searched
after user libraries.

v The system level includes CLIST libraries allocated to file SYSPROC. During
implicit execution, these libraries are searched after user or application libraries.

Using the ALTLIB Command
The ALTLIB command offers several functions, which you specify using the
following operands:

ACTIVATE
allows implicit execution of CLISTs in a library or libraries on the specified
level(s), in the order specified.

DEACTIVATE
excludes the specified level(s) from the search order.

DISPLAY
displays the current order in which CLIST libraries are searched for implicit
execution.

RESET
resets searching to the system level only, for CLISTs and REXX execs.

For complete information about the syntax of the ALTLIB command, see OS/390
TSO/E Command Reference.

Notes:

1. With ALTLIB, data sets concatenated to each of the levels can have differing
characteristics (logical record length and record format), but the data sets within
the same level must have the same characteristics.

2. At the application and system levels, ALTLIB uses the virtual lookaside facility
(VLF) to provide potential increases in library search speed.

Using ALTLIB with ISPF
ALTLIB works the same in line mode TSO/E and in ISPF. However, if you use
ALTLIB under line mode TSO/E and start ISPF, the alternative libraries you
specified under line mode TSO/E are unavailable until ISPF ends.

Application-level libraries that you define while running an ISPF application are in
effect only while that application has control. When the application completes, the
original application-level libraries are automatically reactivated.

Under ISPF, you can pass the alternative library definitions from application to
application by using ISPEXEC SELECT with the PASSLIB operand. For example, to
pass ALTLIB definitions to a new ISPF application (ABC), code:
ISPEXEC SELECT NEWAPPL(ABC) PASSLIB

Allocating CLIST Libraries for Implicit Execution

Chapter 2. Creating, Editing, and Executing CLISTs 7

The PASSLIB operand passes the ALTLIB definitions to the invoked application.
When the invoked application completes and the invoking application regains
control, the ALTLIB definitions that were passed take effect again, regardless of
whether the invoked application changed them. If you omit the PASSLIB operand,
ALTLIB definitions are not passed to the invoked application.

For more information about writing ISPF applications, see OS/390 ISPF Services
Guide.

Stacking ALTLIB Requests
On the application level, you can stack up to eight activate requests with the top, or
current, request active.

Examples of the ALTLIB Command
In the following example, an application issues the ALTLIB command to allow
implicit execution of CLISTs in the data set NEW.CLIB, to be searched ahead of
SYSPROC:
ALTLIB ACTIVATE APPLICATION(CLIST) DATASET(new.clib)

The application could also allow searching for any private CLISTs that the user has
allocated to the file SYSUPROC, with the following command:
ALTLIB ACTIVATE USER(CLIST)

To display the active libraries in their current search order, use the DISPLAY
operand as follows:
ALTLIB DISPLAY

To deactivate searching for a certain level, use the DEACTIVATE operand; for
example, to deactivate searching for CLISTs on the system level (those allocated to
SYSPROC), issue:
ALTLIB DEACTIVATE SYSTEM(CLIST)

And, to reset CLIST and REXX exec searching back to the system level, issue:
ALTLIB RESET

For more information about the search order EXEC uses for CLISTs and REXX
execs, see OS/390 TSO/E Command Reference.

Allocating CLIST Libraries for Implicit Execution

8 OS/390 V2R10.0 TSO/E CLISTs

Chapter 3. Writing CLISTs - Syntax and Conventions

Overview of CLIST Statements 9
Syntax Rules . 10

Delimiters . 10
Continuation Symbols . 10
Capitalization . 10
Formatting . 11
Length . 11
Labels . 11
Comments . 11
Characters Supported in CLISTs 12

TSO/E Commands and JCL Statements 12
TSO/E Commands . 12
JCL Statements . 12

Operators and Expressions . 13
Order of Evaluations . 14
Valid Numeric Ranges . 15

The Double-Byte Character Set (DBCS) 15
DBCS Delimiters . 15
DBCS Restrictions . 15

This chapter provides an overview of CLIST statements and describes how to use
the following:
v Syntax rules of the CLIST language
v TSO/E commands and JCL statements in CLISTs
v CLIST operators and expressions
v The double-byte character set (DBCS) in CLISTs

When you are familiar with the contents of this chapter, read the following chapters
for information about how to use variables and terminal input in CLISTs.

Overview of CLIST Statements
CLIST statements set controls, assign values to variables, monitor the conditions
under which CLISTs execute, and perform I/O. CLIST statements execute in both
the command and subcommand environment (under the TSO/E EXEC command
and the EXEC subcommand of TSO/E EDIT). They fall into the categories shown in
Table 1 on page 10.

© Copyright IBM Corp. 1988, 2000 9

Table 1. CLIST Statement Categories

Control Assignment Conditional I/O

ATTN
CONTROL
DATA-ENDDATA
DATA-PROMPT
ERROR
EXIT
GLOBAL
GOTO
NGLOBAL
PROC
RETURN
SYSCALL
SYSREF
TERMIN
WRITE
WRITENR

READ
READDVAL
SET
LISTDSI

DO
IF-THEN-ELSE
SELECT

CLOSFILE
GETFILE
OPENFILE
PUTFILE

Subsequent topics in this book describe all of the statements in detail.

Note: In addition to these CLIST statements,IBM provides an installation exit that
lets your installation add its own CLIST statements. For information about
this exit, see OS/390 TSO/E Customization .

Syntax Rules
This section describes the syntax rules for CLIST statements relative to those for
TSO/E commands.

Delimiters
Most CLIST statements have operands. Operands are variables or data that provide
information to be used in processing the statement. Include one or more blanks
between a CLIST statement and its first operand. Also, separate operands from
each other by one or more blanks, a comma, or tabs.

Continuation Symbols
Line continuation symbols are the same as for TSO/E commands. If used, the
continuation symbol must be the last non-blank character on the line. A hyphen (-)
indicates that leading blanks in the next line are not ignored. A plus sign (+)
indicates that leading blanks in the next line are ignored. For example, the following
command executes successfully:
alloc da(jcl.cntl) shr-

reuse file(input)

However, if you substitute a plus sign for the hyphen in this example, the command
fails because, when the lines are joined logically, there is no blank between the end
of the shr keyword and the beginning of the reuse keyword. You would have to
insert a blank before the plus sign for correct execution.

Capitalization
All CLIST statement names must be capitalized. If you use lowercase letters for
CLIST statement names, the CLIST fails. Capitalization of CLIST variable names

Overview of CLIST Statements

10 OS/390 V2R10.0 TSO/E CLISTs

and built-in function names is optional. Capitalization of TSO/E commands and
subcommands in a CLIST is also optional.

Formatting
You can use blank lines in a CLIST as a formatting aid, to separate parts of the
CLIST and make the CLIST easier to read. Blank lines do not affect CLIST
processing, except that a blank line after a continuation symbol ends continuation,
unless the blank line is also continued.

Length
The maximum length of a CLIST statement is 32756 bytes.

Labels
You can prefix CLIST statements and TSO/E commands with a label. Other
statements can use the label to pass control to the statement or command. Labels
can consist of 1-31 alphameric characters (A-Z, 0-9, #, $, @, _)beginning with an
alphabetic character (A-Z). The label can appear on the same line as the statement
or command, or on the preceding line. A colon must immediately follow the label
name. For example,

label: IF A= ...

or

label: +
IF A= ...

Comments
You can include a comment:
v On a line by itself
v Before, in the middle of, or after a CLIST statement or TSO/E command.

You define a comment by coding a slash-asterisk (comment delimiter) followed by
the descriptive text. If you include the comment before or in the middle of a CLIST
statement or TSO/E command, you must end the comment with a closing comment
delimiter (asterisk-slash). The following example shows a comment included before
a CLIST statement:
/*get return code */ SET RC = &LASTCC

If you include a comment after a CLIST statement or TSO/E command, or on a line
by itself, the closing comment delimiter is not needed, as shown in the following
example:
alloc file(in) da(accounts.data) shr /* Input data set

If a comment appears after a CLIST statement or TSO/E command that continues
on the following line, the comment must end with a closing comment delimiter and
the continuation character must appear after the comment delimiter, as shown in
the following example:
IF &LASTCC ¬= 0 THEN /* error occurred */ +
DO ...

CLISTs can begin with a comment, but the first line of a CLIST must not be a
comment containing the acronym REXX; if the first line contains “REXX” in any

Syntax Rules

Chapter 3. Writing CLISTs - Syntax and Conventions 11

position, the EXEC command attempts to process the CLIST as a REXX exec. Note
that comments can be in both uppercase and lowercase letters. Comments are
unaffected by CLIST processing.

Characters Supported in CLISTs
CLIST statements can process all data characters represented by hexadecimal
codes 40 through FF. It should be noted that CLISTs translate lowercase letters to
uppercase letters, unless controlled by NOCAPS or ASIS, and translate lowercase
numbers (B0-B9) to standard numbers (F0-F9). CLISTs also support the following
control characters:

Hexadecimal code Control character

05 HT (horizontal tab)

0E Shift Out (starting delimiter for DBCS data)

0F Shift In (ending delimiter for DBCS data)

14 RES (restore)

16 BS (backscore)

17 IL (idle)

24 BYP (bypass)

25 LF (line feed).

All other hexadecimal codes from 00 to 3F are reserved for internal processing and
can cause errors if they appear in CLIST data. The use of I/O statements to
process data sets containing these codes is not supported. For example, OBJ and
LOAD type data sets contain unsupported characters and must not be used for
CLIST I/O.

Note: Some characters supported in CLIST, such as { (X'C0') and } (X'D0'), cannot
be written to the terminal because of TSO/E output processing. To write such
characters to a terminal, create TSO/VTAM translate tables and invoke the
tables with the TSO/E TERMINAL command. For more information about
creating translate tables, see OS/390 TSO/E Customization. For CLISTs
executed under the TSO/E Session Manager, these restrictions do not apply.

TSO/E Commands and JCL Statements
You can include TSO/E commands and subcommands, and JCL statements in a
CLIST as needed.

TSO/E Commands
You can include TSO/E commands and subcommands (and user-written commands
and subcommands) in a CLIST at any point where the specific functions (for
example, allocate, free, and so on) are required. For certain applications, a CLIST
might consist entirely of commands and subcommands. You can also substitute
CLIST variables as operands in commands and subcommands, or as commands
themselves. For more information about CLIST variables, see “Chapter 4. Using
Symbolic Variables” on page 17.

JCL Statements
From a CLIST, you might want to submit a jobstream for execution. In the CLIST,
you can include the required JCL statements (EXEC, DD, and so on). However,

Syntax Rules

12 OS/390 V2R10.0 TSO/E CLISTs

when you include the following JCL statements in a CLIST, you must use a
particular CLIST function to prevent the CLIST from modifying the statements and
causing subsequent JCL errors.

1. Statements following the SYSIN statement - use the &STR built-in function to
preserve leading blanks and statements that have the same names as CLIST
statements.

2. A statement containing a single ampersand (&) or a double ampersand (&&) -
use the &SYSNSUB or &NRSTR built-in functions.

3. JCL comments - use the &STR built-in function. Because CLIST processing
detects the JCL comment as a comment for the CLIST, you must set a variable
equal to &STR(/*) and use this variable in place of the JCL comment.

4. JCL imbedded in a CLIST can use the SUBMIT * form of the SUBMIT
command; however, all JCL is converted to uppercase. If JCL conversion to
uppercase is inappropriate or undesirable, use the SUBMIT (dataset_name)
form of the SUBMIT command. For a description of the SUBMIT command, see
OS/390 TSO/E Command Reference.

Examples of using these built-in functions with JCL are provided in “Chapter 6.
Using Built-in Functions” on page 51 and in Figure 18 on page 125.

Operators and Expressions
Operators cause a CLIST to perform evaluations on data; the data can be numeric
or character, or can be a variable or a built-in function. Operators fall into three
categories: arithmetic, comparative, and logical, as shown in Table 2.

v Arithmetic operators perform integer arithmeticon numeric operands. The
operators connect integers, variables, orbuilt-in functions to form expressions,
such as 4-2.

v Comparative operators perform comparisonsbetween two expressions, to
formcomparative expressions, such as 4-2=3. The “=” is a comparative operator.

The comparison produces a true or false condition. Comparative expressions are
often used to determine conditional branching within a CLIST.

v Logical operators perform a logical comparison between the results of two
comparative expressions, to form logical expressions, such as &A=4 AND
&B=&C.The ‘AND’ is a logical operator.

Logical expressions produce true or false conditions. Logical expressions are
often used to determine conditional branching within a CLIST.

In Table 2, if more than one accepted value exists for an operator, the values are
separated by commas.

Table 2. Arithmetic, Comparative, and Logical Operators

For the function: Enter:

Arithmetic Addition
Subtraction
Multiplication
Division
Exponentiation
Remainder
Prioritization the order of
evaluation

+
−
*
/
** (See note 1)
//
() (See note 2)

TSO/E Commands and JCL Statements

Chapter 3. Writing CLISTs - Syntax and Conventions 13

Table 2. Arithmetic, Comparative, and Logical Operators (continued)

For the function: Enter:

Comparative Equal
Not equal
Less than
Greater than
Less than or equal
Not greater than
Not less than

=,EQ
¬=,NE
<,LT
>,GT
<=,LE
>=,GE
¬>,NG
¬<,NL

Logical And
Or

AND,&&
OR,|

Notes:

1. Negative exponents are handled as exponents of zero, thus the result is always set to
1.

2. Put parentheses around operations to give them priority in the order of evaluation.

CLISTs try to perform evaluation wherever an operator is found, including the equal
sign (=) in assignment statements. If you want CLISTs to treat operators as
character data instead, use the &STR built-in function. For more information, see
“Defining Character Data - &STR” on page 55.

Order of Evaluations
A CLIST evaluates operations in the following default order. (Wherever more than
one operation is listed below, the CLIST performs the operations sequentially, left to
right in the order in which they appear on the CLIST statement.)
1. Exponentiation remainder
2. Multiplication, division
3. Addition, subtraction
4. Comparative operators
5. Logical AND
6. Logical OR

You can override the default order by placing parentheses around the operations
you want executed first. For example, without any parentheses, the following
example performs multiplication, division, then addition. The statement sets X to the
value 24.
SET X = 4+5*8/2

By placing parentheses around 4+5, you indicate to the CLIST that it should
perform addition first and then proceed with the default order (multiplication, then
division). The following statement sets X to the value 36.
SET X = (4+5)*8/2

You can place parentheses around expressions that are themselves enclosed in
parentheses. This process is called nesting parenthesized expressions. The CLIST
evaluates the deepest level of nesting first and proceeds outward until all nesting
has been evaluated. In the following example, X is set to the value 7.
SET X=((1+4)*2+4)/2

Operators and Expressions

14 OS/390 V2R10.0 TSO/E CLISTs

The parentheses around 1+4 indicate that the CLIST should add these numbers
before performing multiplication. The parentheses around the compound expression
to the left of the division operator indicate that the CLIST should evaluate the
compound expression before performing division.

In the preceding example, if you omit the outer-level parentheses, the CLIST
performs division as the third operation (4/2) and sets X to the value 12:
SET X=(1+4)*2+4/2

Valid Numeric Ranges
The values of numeric variables must be integers in the range from -2,147,483,647
(-231+1) to +2,147,483,647 (+231-1).

A CLIST terminates and issues an error message in the following situations:

v You explicitly code a value outside the valid range.

v The evaluation of an expression produces an intermediate or final value outside
the valid range.

The Double-Byte Character Set (DBCS)
The CLIST language allows data to contain characters of the double-byte character
set. The double-byte character set (DBCS) is used in national languages such as
Japanese and Korean which have more than 256 characters, the maximum number
that can be represented with one byte of data. As the name implies, double-byte
characters are each composed of two bytes, allowing a vastly increased number of
characters.

DBCS Delimiters
The CLIST language uses the hexadecimal codes X'0E' and X'0F' to
distinguishdouble-byte characters from EBCDIC characters. The hexadecimal code
X'0E' indicates the beginning of a string of DBCS characters, and the code X'0F'
indicates the end of a DBCS string. Properly delimited DBCS character strings can
be passed as character data in CLIST variables, in comments, and in the operands
of CLIST statements.

This book commonly refers to the beginning and ending DBCS delimiters asshift-out
and shift-in characters, respectively. In examples, this book uses the convention
<d1d2> to represent DBCS strings enclosed in their shift-out and shift-in characters,
where d1 and d2 each represent a DBCS character, < represents X'0E', and >
represents X'0F'.

When DBCS strings are joined by continuation symbols, their contiguous shift-in
and shift-out characters are removed to create a single DBCS string. For example:
SET A = ABC<d1d2> +
<d3d4>DEF /* result: &A = ABC<d1d2d3d4>DEF

DBCS Restrictions
The following restrictions apply to DBCS data in CLISTs:

v DBCS data cannot appear in any names, including the names of variables,
functions, statements, data sets, or labels.

v DBCS data cannot be used in variables or operands where numeric data is
expected, nor in any arithmetic operations.

This book lists further DBCS considerations and restrictions wherever they apply.

Operators and Expressions

Chapter 3. Writing CLISTs - Syntax and Conventions 15

Two CLIST built-in functions, &SYSONEBYTE and &SYSTWOBYTE, convert data
between the DBCS and EBCDIC character sets. These functions are described in
“Chapter 6. Using Built-in Functions” on page 51.

Double-Byte Character Set (DBCS)

16 OS/390 V2R10.0 TSO/E CLISTs

Chapter 4. Using Symbolic Variables

What is a Symbolic Variable? 17
Valid Names of Variables . 18
Valid Values of Variables . 18

Defining Symbolic Variables and Assigning Values to Them 19
Using the SET Statement . 19
Using the READ Statement 19
Using the PROC Statement 20

Passing Parameters to a PROC Statement 20
Using PROC with Positional Parameters 20
Using PROC with Keyword Parameters 20
Keywords with Values . 20
Keywords without Values 21
Using PROC with both Positional and Keyword Parameters 21

Examples . 22
More Advanced Uses of Variables 22

Combining Symbolic Variables 23
Using a Variable to Preserve Leading Spaces in a CLIST 23
Nesting Symbolic Variables 24

Combining Nested Variables with Character Strings 24
Substitution of Nested Variables 25
Combining Variables Containing DBCS Data 25

The CLIST language includes several types of variables. This chapter describes
how to use symbolic CLIST variables. Later chapters discuss other types of
variables, including control variables and variables set by CLIST built-in functions.

What is a Symbolic Variable?
A symbolic variable is a string of characters that you define as a symbol. Because
the variable is a symbol, you can assign different values to it at different times. By
assigning different values, you can do the same processing with different data.

For example, you could use the SET statement to assign different values to a
symbolic variable named PAY_RAISE:
SET PAY_RAISE = 20 /* Set the value of PAY_RAISE equal to 20

or
SET PAY_RAISE = 30 /* Set the value of PAY_RAISE equal to 30

You could use those different values of PAY_RAISE in the following equation, to
calculate your total annual raise based on various weekly raises:
SET ANNUAL_RAISE = &PAY_RAISE * 52

In CLISTs, the ampersand (&) means “the value of.” In the example above, the
CLIST multiplies the value of PAY_RAISE (20 or 30) by 52 and assigns the
resulting value to another variable, ANNUAL_RAISE. (In a SET statement, the
ampersand is required on variables to the right of the equal sign, and is optional on
variables to the left of the equal sign.)

When you execute a CLIST, it scans each line and replaces the symbolic variables
with their actual values. This process is called symbolic substitution.

© Copyright IBM Corp. 1988, 2000 17

In a CLIST, you can use symbolic variables to include variable data on TSO/E
commands and subcommands, on JCL statements, and on many of the CLIST
statements.

Valid Names of Variables
You can define symbolic variables with meaningful names. Meaningful variable
names, like PAY_RAISE, describe the contents of the variable and make CLISTs
easy to read and maintain. Note that an ampersand (&) is not part of a variable
name; it simply tells the CLIST to use the value of the variable. Follow these rules
when naming a symbolic variable:

1. The first character must be one of the following: A-Z, (a-z), _, #, $, @.

Note: The system recognizes the following hexadecimal codes for these
characters: _ (X'6D'), # (X'7B'), $ (X'5B'), @ (X'7C'). In countries other
than the U.S., these characters on a keyboard might generate different
hexadecimal codes and cause an error. For example, in some countries
the $ character might generate a X'4A'.

2. The remaining characters can be any of the above, and 0 through 9.

3. The variable name can be up to 252 characters in length (not counting the
ampersand).

4. Variable names must not match the character equivalents of CLIST operators,
such as “EQ” and “NE” (see Table 2 on page 13 for a list).

5. Special rules apply to the PROC statement. On PROC statements:
v All variables must begin with A-Z, and be in uppercase only.
v Names of keyword variables cannot contain the underscore (_), or be longer

than 31 characters. For more information, see “Using the PROC Statement”
on page 20.

6. If variables are used on ISPF panels, they cannot exceed eight characters in
length.

7. Do not use the names of statements or their keywords as variable names. This
may cause unexpected results if used in a conditional statement, as in the
following sequence:
SET WHILE = &STR(ABC)
DO UNTIL &WHILE = &STR(ABC) WHILE (&COUNT<5)

SET &COUNT = &COUNT + 1
END

The results are also unpredictable if a keyword is used within a string, as in the
following:
SET COUNT = 0
SET VAR = ABC
DO UNTIL &VAR = &SUBSTR(3:3,WHILE) WHILE &COUNT < 5
SET COUNT = &COUNT + 1
END

Valid Values of Variables
The values of CLIST variables can generally include any characters you can enter
on a keyboard. See “Characters Supported in CLISTs” on page 12 for information
on special characters.

Values of symbolic variables can be up to 32756 bytes long, minus the length of the
CLIST statement that assigns the value. For example, if the assignment statement
is six bytes long (SET A=), the value can contain 32750 bytes.

What is a Symbolic Variable?

18 OS/390 V2R10.0 TSO/E CLISTs

Defining Symbolic Variables and Assigning Values to Them
There are several ways to define symbolic variables and assign values to them in a
CLIST. Here are some basic methods:
v Use the SET statement to define variables and give them specific values.
v Use the READ statement to define variables and get their values from a user.
v Use the PROC statement to define variables and get their values from

parameters passed to the CLIST.

The previous statements define variables explicitly. You can also define a variable
implicitly by referring to it in a CLIST statement before you explicitly define it. The
CLIST assigns a null value to such a variable.

Using the SET Statement
You can use the SET statement to define a symbolic variable and assign a value to
it. For example, to assign the character string JOHN to the variable NAME, code:
SET NAME=JOHN

The variable NAME contains the value JOHN.

You can also use the SET statement to assign an initial value to a variable, then
increase or decrease the value as necessary. For example, to control a loop you
can initialize a counter:
SET COUNTER = 1

For each execution of the loop, you can increment the counter:
SET COUNTER = &COUNTER + 1

In the SET statement, the ampersand is required when a variable appears in the
expression on the right side of the equal sign, but is optional when a variable
appears on the left-hand side of the equal sign.

In addition to symbolic variables, you can also use CLIST control variables and
built-in functions in SET statements. For information about control variables and
built-in functions, see “Chapter 5. Using Control Variables” on page 27 and
“Chapter 6. Using Built-in Functions” on page 51.

Using the READ Statement
You can use the READ statement to define a variable and give it a value provided
by the CLIST user. To prompt the user for input, issue a WRITE statement before
the READ statement, for example:
WRITE What is your name?
READ &NAME;

The user sees the question “What is your name?” displayed on the terminal. The
user’s typed response, for example, JOHN, becomes the value of the variable
NAME. Your CLIST can then use this value in subsequent statements, such as:
WRITE HELLO &NAME! /* (result: HELLO JOHN!)

For more information about the READ and WRITE statements, see “Chapter 8.
Communicating with the Terminal User” on page 83.

Defining Symbolic Variables

Chapter 4. Using Symbolic Variables 19

Using the PROC Statement
The PROC statement lets you pass parameters to a CLIST at invocation. The
PROC statement defines symbolic variables and assigns the parameters to the
variables. To do so, the PROC statement must be the first functional line of the
CLIST (only comments or blank lines can precede the PROC statement).

Passing Parameters to a PROC Statement
When invoking a CLIST explicitly, pass parameters in single quotes, for example:
EX clistname 'parm1 parm2(value)'

When invoking the CLIST implicitly, omit the quotes:
%clistname parm1 parm2(value)

To pass parameters that contain single quotes, you must follow special rules that
are discussed in OS/390 TSO/E Command Reference.

The PROC statement accepts two types of parameters: positional parameters and
keyword parameters. Parameter values in lowercase are changed to uppercase.

Using PROC with Positional Parameters
You can use the PROC statement to assign parameters to variables by position.
First, type a number on the PROC statement telling how many positional
parameters to expect (type 0 if none). Then specify the variables that you want to
use. For example, in the following PROC statement, the number 1 tells the CLIST
to assign the first parameter it receives to the variable NAME.
PROC 1 NAME

Thus, if you invoke the CLIST with the parameter JOE:
EX clistname 'JOE'

the variable NAME contains the value JOE.

Suppose you wanted the PROC statement to assign a second parameter to the
variable ADDRESS. You could write the statement as follows:
PROC 2 NAME ADDRESS

The invoker must know the correct order in which to pass positional parameters,
and must pass as many as you specify by number on the PROC statement. If the
invoker doesn’t pass a positional parameter as expected, the CLIST prompts for it.
Positional parameters can have up to 252 characters (A-Z, 0-9, #, $, @, _).

Using PROC with Keyword Parameters
When input parameters are optional or can have default values, use the PROC
statement to assign the parameters to variables by name rather than by position.
Such parameters (keyword parameters) must match a variable name that you
specify on the PROC statement. See item 5 on page 18 for special rules on naming
variables specified on the PROC statement. The PROC statement can accept
keyword parameters with or without values.

Keyword parameters and their matching variables have up to 31 alphameric
characters (A-Z, 0-9, #, $, @). Keyword parameter values have the same length
restriction as symbolic variable values: 32768 bytes.

Keywords with Values
If a CLIST has a value that applies to most but not all uses of the CLIST, you can
provide a default value and allow invokers to override it with a keyword parameter.

Defining Symbolic Variables

20 OS/390 V2R10.0 TSO/E CLISTs

In the following example, the 0 tells the CLIST to expect no positional parameters.
(If there are no positional parameters, a zero is required.) The notation STATE(NY)
gives the variable STATE the default value of NY.
PROC 0 STATE(NY)

The invoker can override the default value by passing the keyword parameter with
another value, for example:
EX clistname 'STATE(NJ)'

or
%clistname STATE(NJ)

Then the variable STATE takes the value NJ.

If you want a variable to have no default value but allow invokers to specify a value,
use empty parentheses. The following PROC statement lets invokers pass keyword
parameters such as STATE(NY) or STATE(NJ).
PROC 0 STATE()

In the example above, if an invoker passes the keyword parameter STATE without a
value, the CLIST prompts for the value. If a invoker does not pass the keyword
STATE at all, the variable STATE takes a null value.

Keywords without Values
You can use keyword parameters without values to let invokers specify a CLIST
option. For example, to let an invoker tell a CLIST to print its results, you could
code the following:
PROC 0 PRINT

Then, if the invoker passes the keyword parameter PRINT:
EX clistname 'PRINT'

the variable PRINT takes the value PRINT. If the invoker does not pass the
parameter PRINT, the variable PRINT takes a null value. Your CLIST can test the
value to see if the invoker wants the print option. You can code this test using an
IF-THEN-ELSE sequence:
PROC 0 PRINT
IF &PRINT = PRINT THEN (print results) /* If the value of PRINT = print ...*/
ELSE ...

(For more information about the IF-THEN-ELSE sequence, see “The
IF-THEN-ELSE Sequence” on page 66.)

Using PROC with both Positional and Keyword Parameters
The following PROC statement receives both positional and keyword parameters:
PROC 2 NAME ADDRESS STATE(NY) ZIP() PRINT

The number 2 indicates that the invoker must pass positional parameters for the
first two variables, NAME and ADDRESS. Invokers can also pass keyword
parameters with values for the variables STATE (the default value is NY) and ZIP
(which has no default). In addition, invokers can pass the keyword parameter
PRINT without a value, to specify a print option.

Defining Symbolic Variables

Chapter 4. Using Symbolic Variables 21

Examples
The following CLIST addresses a memo based on PROC variables, displaying the
address at the terminal. You could also use I/O statements (described in “Chapter 9.
Performing File I/O” on page 95) to write the address to a data set.
/********************************
/* Memo-addressing CLIST
/********************************
PROC 2 NAME ADDRESS STATE(NY) ZIP()
WRITE TO: &NAME
WRITE AT: &ADDRESS
WRITE &STATE &ZIP

Assume that the CLIST resides in the member MEMO of a partitioned data set
called PROC.CLIST. If you invoked it as follows:
ex proc(memo) 'Perry_Gordon 22_Oak_St._Pokville ZIP(10101)'

You would see the following output at your terminal:

TO: PERRY_GORDON
AT: 22_OAK_ST._POKVILLE

NY 10101

If you invoked it without parameters, for example,
ex proc(memo)

the CLIST would prompt you for a name and address. The state would default to
NY, and there would be no zip code.

The following CLIST issues the LISTDS command using the PROC, READ, and
SET statements to define variables and assign values to them.
/***/
/* This CLIST issues the LISTDS command, using a data set name and */
/* any options requested by the user. If the user enters OPTIONS */
/* as a parameter, READ and WRITE statements prompt for the options. */
/* The CLIST gets a LISTDS return code from the &LASTCC control */
/* variable, and writes the return code to the screen. */
/***/
PROC 1 DATASET OPTIONS /* Get a data set name */
IF &OPTIONS = OPTIONS THEN /* If the user wants options, */ +

DO /* prompt for input */
WRITE Type LISTDS options (MEMBER, HISTORY, or STATUS)
READ OPT

END
LISTDS &DATASET &OPT /* List data set with any options */
SET RETURN_CODE = &LASTCC /* Get return code from LISTDS */
WRITE RETURN CODE WAS &RETURN_CODE

More Advanced Uses of Variables
The previous sections of this chapter discussed several basic ways to define and
assign values to symbolic variables, using the SET, READ, and PROC statements.
Other chapters describe how to use symbolic variables in more advanced
applications with other CLIST statements:

v The GLOBAL, NGLOBAL, SYSCALL, and SYSREF statements let you define
variables for use in nested CLISTs and CLIST subprocedures. See “Chapter 7.
Structuring CLISTs” on page 65 for information about using variables with these
statements.

Defining Symbolic Variables

22 OS/390 V2R10.0 TSO/E CLISTs

v The I/O statements OPENFILE, CLOSEFILE, GETFILE, and PUTFILE use
symbolic variables to send and receive input between files. See “Chapter 9.
Performing File I/O” on page 95 for information about using variables with these
statements.

v The LISTDSI statement uses a special set of CLIST variables for retrieving
information about data set attributes. See “Chapter 5. Using Control Variables” on
page 27 for information about this statement and its variables.

Combining Symbolic Variables
You can combine one symbolic variable with another symbolic variable to form a
compound variable.

Suppose a CLIST invokes programs that reside in nine data sets named
PROGRAM1 through PROGRAM9. By combining &PROGRAM and &I; you can use
the iterative DO loop structure to invoke PROGRAM1 through PROGRAM9 as
follows:
SET PROGRAM = PROGRAM
DO &I = 1 to 9
call mylib(&PROGRAM&I)
END

(For more information about using an iterative DO loop, see “The Iterative DO
Sequence” on page 71.) By increasing the value of I from one to nine in a loop, a
CLIST could invoke the following set of programs without having to modify the
CALL command.
PROGRAM1
PROGRAM2...
PROGRAM9

You can also combine symbolic variables and character strings. When the variable
precedes the character string, place a period after the symbolic variable to
distinguish it from the character string:
&PROGRAM.A

No period is required when the character string precedes the symbolic variable
because the ampersand distinguishes the variable from the string:
A&PROGRAM

Using a Variable to Preserve Leading Spaces in a CLIST
When TSO/E processes a job in a CLIST, statements following the DD * statement
are left adjusted to column 1, thereby removing leading spaces. (This is unique to
CLIST processing and is not a batch concern.) If you need to preserve the blanks,
set a variable to a single blank or a string of blanks to provide as many blanks as
required, that is &STR() and precede all statements following the DD * with that
variable. The following example shows how to include the variable within your
CLIST.
PROC01
CONTROL
SET &A = STR()
SUBMIT * END(XX)
//JOBCARD
//OTHER
//JCL
//CARDS
// DD *

More Advanced Uses of Variables

Chapter 4. Using Symbolic Variables 23

&A COPY ...
&A ...
&A ...
&A ...

Nesting Symbolic Variables
In some situations, you might want to store the name of a variable in another
variable. For example, if you had to process two variables in the same way, you
could assign their names to a third variable.

When you store the name of a variable in another variable, you are “nesting”
variables.

To nest one variable in another variable, use an assignment statement with double
ampersands. For example, to nest the variable &CAT in the variable &MAMMAL,
code:
SET MAMMAL = &&CAT /* result: &MAMMAL contains &CAT */

The double ampersands (&&) prevent the CLIST from performing symbolic
substitution on the variable string &CAT. In the assignment statement, the CLIST
removes only the first ampersand, setting &MAMMAL to the value &CAT.

It is most useful to nest variables when you have to process many variables that
have similar names. For example, if you have to set &VARIABLE to different
variables such as &LINE1, &LINE2, during processing, you could code many SET
statements, or code the following sequence:
SET NUMBER=0
SET VARIABLE=&&LINE&NUMBER /* Initialize &VARIABLE to &LINE0 */
DO WHILE &NUMBER<8 /* Process from &LINE1-&LINE8 */
SET NUMBER = &NUMBER+1 /* Increase &NUMBER to create next

/* variable name */
SET VARIABLE=&&LINE&NUMBER /* Set &VARIABLE to next variable

/* name */
(processing)
END

For more examples of using nested variables, see “&SYSOUTLINE” on page 46,
and “Allocating Data Sets to SYSPROC - The SPROC CLIST” on page 133.

If you nest variables whose values contain double ampersands, the outermost
variable contains the name of the innermost variable. For example, after the
following statements execute, VARIABLE contains &LINE1 and DATA contains the
value 430.
SET LINE1=430
SET NUMBER=1
SET VARIABLE=&&LINE&NUMBER
SET DATA=&VARIABLE

Combining Nested Variables with Character Strings
As previously stated, you can combine a preceding variable with a character string
by placing a period between them (&PROGRAM.A). If the preceding variable is
nested, place an additional period after the variable for each level of nesting. For
example,
SET &BUDGET = June
SET &PROGRAM = &budget
call mylib(&PROGRAM.A) /* result: call mylib(JuneA)

If the character string precedes the variable, no period is required:

More Advanced Uses of Variables

24 OS/390 V2R10.0 TSO/E CLISTs

SET &BUDGET = June
SET &PROGRAM = &budget
call mylib(A&PROGRAM) /* result: call mylib(AJune)

Substitution of Nested Variables
If a CLIST encounters nested symbolic variables in a line, it normally scans the line
(performs symbolic substitution) multiple times until all symbolic variables are
resolved. For example:
SET A = 50
SET B = &&C /* result: &B contains &C
SET C = &A+50 /* result: &C contains 100
SET D = &&A /* result: &D contains &A
SET X = (&D+&B)/&D /* result: &X contains 3

To resolve the fifth expression the CLIST uses the values assigned to the symbolic
variables A-D and assigns the value 3 to X.

You can limit the number of times the CLIST scans a line of nested variables, using
the &SYSNSUB built-in function. For example, you could specify that the CLIST
scan the fifth expression in the preceding example only once, so the variables were
resolved to only one level of symbolic substitution. As a result, the CLIST would
resolve &X from (&D+&B)/&D to (&A+&C)/&A, and go no further. See “Chapter 6.
Using Built-in Functions” on page 51 for a description and examples of &SYSNSUB.

Combining Variables Containing DBCS Data
When variables containing data of the double-byte character set (DBCS) are
combined with other DBCS data, contiguous DBCS delimiters are removed to
create a single DBCS string. For example:
SET A = <d1d2>
SET B = <d3d4>&A<d5d6> /* result: &B = <d3d4d1d2d5d6>

More Advanced Uses of Variables

Chapter 4. Using Symbolic Variables 25

More Advanced Uses of Variables

26 OS/390 V2R10.0 TSO/E CLISTs

Chapter 5. Using Control Variables

Overview of using Control Variables 28
Getting the Current Date and Time 32

&SYSDATE, &SYSSDATE, and &SYSJDATE. 32
&SYS4DATE, &SYS4SDATE, and &SYS4JDATE 33
&SYSTIME and &SYSSTIME 33

Getting Terminal Characteristics 33
&SYSTERMID . 34
&SYSLTERM and &SYSWTERM 34

Getting Information about the User 34
&SYSUID . 34
&SYSPREF . 34
&SYSPROC . 35

Getting Information about the System 35
&SYSCLONE . 35
&SYSCPU and &SYSSRV. 36
&SYSDFP . 36
&SYSHSM . 36
&SYSISPF . 37
&SYSJES . 37
&SYSLRACF . 37
&SYSAPPCLU . 38
&SYSMVS . 38
&SYSNAME . 38
&SYSNODE . 39
&SYSOPSYS . 39
&SYSRACF . 39
&SYSPLEX . 40
&SYSSECLAB . 40
&SYSSMS . 40
&SYSSMFID. 40
&SYSSYMDEF . 41
&SYSTSOE . 41

Getting Information about the CLIST 41
&SYSENV . 42
&SYSSCAN . 42
&SYSICMD . 42
&SYSPCMD . 42
&SYSSCMD . 42
Relationship between &SYSPCMD and &SYSSCMD 42
&SYSNEST . 43

Setting Options of the CLIST CONTROL Statement 43
&SYSPROMPT. 43
&SYSSYMLIST. 43
&SYSCONLIST. 43
&SYSLIST . 44
&SYSASIS . 44
&SYSMSG . 44
&SYSFLUSH . 44

Getting Information about User Input 45
&SYSDLM . 45
&SYSDVAL . 45

Trapping TSO/E Command Output 46
&SYSOUTTRAP . 46

© Copyright IBM Corp. 1988, 2000 27

&SYSOUTLINE. 46
Considerations for Using &SYSOUTTRAP and &SYSOUTLINE 47

Getting Return Codes and Reason Codes 47
&LASTCC. 47
&MAXCC . 48

Getting Results of the TSOEXEC Command 49
Getting Data Set Attributes . 49

The LISTDSI Statement . 49

The CLIST language includes a set of control variables. Control variables provide
information about MVS, TSO/E, and the current session, such as levels of software
available, the time of day, and the date. Your CLISTs can use the control variables
to obtain such current information.

You code a control variable as you would a symbolic variable. For example, to get
the time of day, your CLIST could use the control variable &SYSTIME as follows:
WRITE It's &SYSTIME

If your CLIST was executing at 2:32:58 PM, the result would be:
It's 14:32:58

You do not have to define control variables. Control variables have constant names;
you simply refer to the variable name to obtain information.

Control variables to which you can assign values are called modifiable control
variables. The variable &SYSOUTTRAP is an example of a modifiable control
variable. &SYSOUTTRAP tells how many lines of TSO/E command output should
be saved in a CLIST. If you want to save 100 lines of output from each TSO/E
command in your CLIST, you can set &SYSOUTTRAP to 100, as follows:
SET &SYSOUTTRAP = 100

Your CLIST would then be able to retrieve and process up to 100 lines of output
from each command in the CLIST. If you did not want to save output from some
commands, you would reset &SYSOUTTRAP to zero before issuing those
commands.

Overview of using Control Variables
Table 3 on page 29 lists the control variables in related categories, and indicates
what page they are on, whether they are modifiable, and whether they are
retrievable by the variable access routine, IKJCT441. For more information about
IKJCT441, refer to OS/390 TSO/E Programming Services.

Table 4 on page 30 briefly describes the modifiable control variables, and Table 5 on
page 30 briefly describes the control variables you cannot modify.

1. Lets you test or modify the CLIST CONTROL statement values.

28 OS/390 V2R10.0 TSO/E CLISTs

Table 3. Control Variable by Category

Category Variable Modifiable Retrievable by
IKJCT441

Page

Current date and time &SYSDATE
&SYSJDATE
&SYSSDATE
&SYS4DATE
&SYS4JDATE
&SYS4SDATE
&SYSTIME
&SYSSTIME

No
No
No
No
No
No
No
No

No
No
No
No
No
No
No
No

32
32
32
33
33
33
33
33

Terminal-related &SYSLTERM
&SYSWTERM

No
No

No
No

34
34

User-related &SYSUID
&SYSPREF
&SYSPROC

No
No
No

No
No
No

34
34
35

System-related &SYSAPPCLU
&SYSCLONE
&SYSCPU
&SYSDFP
&SYSHSM
&SYSISPF
&SYSJES
&SYSLRACF
&SYSMVS
&SYSNAME
&SYSNODE
&SYSOPSYS
&SYSRACF
&SYSPLEX
&SYSSECLAB
&SYSSMFID
&SYSSMS
&SYSSRV
&SYSSYMDEF
&SYSTERMID
&SYSTSOE

No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

38
35
36
36
36
37
37
37
38
38
39
39
39
40
40
40
40
36
41
34
41

CLIST-related &SYSSCAN
&SYSENV
&SYSICMD
&SYSPCMD
&SYSSCMD
&SYSNEST

Yes
No
No
No
No
No

Yes
No
No
No
No
No

42
42
42
42
42
43

CLIST-related 1 &SYSPROMPT
&SYSSYMLIST
&SYSCONLIST
&SYSLIST
&SYSASIS
&SYSMSG
&SYSFLUSH

Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes

43
43
43
44
44
44
44

Input-related &SYSDLM
&SYSDVAL

No
Yes

Yes
Yes

45
45

Output-related &SYSOUTTRAP
&SYSOUTLINE

Yes
Yes

Yes
Yes

46
46

Overview of using Control Variables

Chapter 5. Using Control Variables 29

Table 3. Control Variable by Category (continued)

Category Variable Modifiable Retrievable by
IKJCT441

Page

Return codes &LASTCC
&MAXCC
&SYSABNCD
&SYSABNRC
&SYSCMDRC

Yes
Yes
Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes

47
48
49
49
49

Table 4. Modifiable Control Variables (alphabetically)

Modifiable
Variable

Contents

&LASTCC Contains the return code from the last operation (TSO/E command,
subcommand, or CLIST statement).

&MAXCC Contains the highest return code issued up to this point in the CLIST or
the highest passed back from a nested CLIST.

&SYSABNCD Contains the ABEND code returned by the command most recently
invoked by the TSOEXEC command.

&SYSABNRC Contains the ABEND reason code returned by the command most
recently invoked by the TSOEXEC command.

&SYSASIS ON specifies CONTROL NOCAPS/ASIS. OFF specifies CONTROL
CAPS.

&SYSCMDRC Contains the command return code returned by the command most
recently invoked by the TSOEXEC command.

&SYSCONLIST ON specifies CONTROL CONLIST. OFF specifies CONTROL
NOCONLIST.

&SYSDVAL (1) Contains the input line supplied by the user when the user returned
control to the CLIST after a TERMIN or TERMING statement. (2)
Contains the input line supplied by the user after a READ statement
without operands. (3) Contains the value after the execution of a SET
SYSDVAL=.

&SYSFLUSH ON specifies CONTROL FLUSH. OFF specifies CONTROL NOFLUSH.

&SYSLIST ON specifies CONTROL LIST. OFF specifies CONTROL NOLIST.

&SYSMSG ON specifies CONTROL MSG. OFF specifies CONTROL NOMSG.

&SYSOUTLINE Contains the number of lines of command output produced by a TSO/E
command; points to the CLIST variables containing the output.

&SYSOUTTRAP Contains the maximum number of lines of TSO/E command output to be
saved.

&SYSPROMPT ON specifies CONTROL PROMPT. OFF specifies CONTROL
NOPROMPT.

&SYSSCAN Contains the maximum number of times a CLIST can rescan a line to
evaluate variables. The default is 16 times. The maximum value is
+2,147,483,647. The minimum is 0.

&SYSSYMLIST ON specifies CONTROL SYMLIST. OFF specifies CONTROL
NOSYMLIST.

Table 5. Non-modifiable Control Variables (alphabetically)

Non-modifiable
Variable

Contents

&SYSAPPCLU Contains the APPC/MVS logical unit (LU) name.

Overview of using Control Variables

30 OS/390 V2R10.0 TSO/E CLISTs

Table 5. Non-modifiable Control Variables (alphabetically) (continued)

Non-modifiable
Variable

Contents

&SYS4DATE Contains the current date in the form: month/day/year, where year is
presented as four-digit number.

&SYS4JDATE Contains the Julian date in the form: year.days, where year is presented
as four-digit number.

&SYS4SDATE Contains the date in the form: year/month/day, where year is presented
as four-digit number.

&SYSCLONE Contains the MVS system symbol representing its system name.

&SYSCPU Contains the number seconds of CPU time used during the session in
the form: seconds.hundredths_of_seconds

&SYSDATE Contains the current date in the form: month/day/year

&SYSDFP Contains the level of MVS/Data Facility Product (MVS/DFP) installed.

&SYSDLM Contains the input line supplied by the user to return control to the
CLIST after a TERMIN or TERMING statement.

&SYSENV Indicates whether the CLIST is executing in the foreground or
background environment.

&SYSHSM Indicates the level of Data Facility Hierarchical Storage Manager
(DFHSM) available to the CLIST; or, if DFSMS/MVS is installed rather
than DFHSM, the level of DFSMShsm.

&SYSICMD Contains the name by which the invoker implicitly invoked this CLIST.
(This value is null if the invoker explicitly invoked the CLIST.)

&SYSISPF Indicates whether ISPF dialog management services are available to the
CLIST.

&SYSJDATE Contains the Julian date in the form: year.days

&SYSJES Contains the name and the level of the JES installed.

&SYSLRACF Indicates the level of RACF available to the CLIST. (See &SYSRACF
below)

&SYSLTERM Contains the number of lines available for applications on your terminal
screen.

&SYSMVS Contains the level of the base control program (BCP) component of
OS/390.

&SYSNAME Contains the system’s name your CLIST is running on, as specified on
the SYSNAME statement in SYS1.PARMLIB member IEASYSxx.

&SYSNEST Indicates whether the currently executing CLIST was invoked by another
CLIST.

&SYSNODE Contains the network node name of your installation’s JES.

&SYSOPSYS Contains the OS/390 name, version, release, modification level, and
FMID.

&SYSPCMD Contains the name (or abbreviation of the name) of the most recently
executed TSO/E command in this CLIST.

&SYSPLEX Contains the MVS sysplex name as found in the COUPLExx or LOADxx
member of SYS1.PARMLIB.

&SYSPREF Contains the prefix that TSO/E uses to fully qualify data set names.

&SYSPROC Contains the name of the logon procedure used when the TSO/E user
logged on.

&SYSRACF Indicates whether RACF is installed and available to the CLIST.

Overview of using Control Variables

Chapter 5. Using Control Variables 31

Table 5. Non-modifiable Control Variables (alphabetically) (continued)

Non-modifiable
Variable

Contents

&SYSSCMD Contains the name of the most recently executed subcommand.

&SYSSDATE Contains the date in the form: year/month/day

&SYSSECLAB Contains the security label (SECLABEL) name of the TSO/E session.

&SYSSMFID Identifies the system on which System Management Facilities (SMF) is
active.

&SYSSMS Indicates whether DFSMS/MVS is available to your CLIST.

&SYSSRV Contains the number of System Resource Manager (SRM) service units
used during the session.

&SYSSYMDEF Contains the symbolic name of the MVS system.

&SYSTERMID Contains the terminal ID of the terminal where the CLIST has been
started.

&SYSSTIME Contains the time of day in the form: hours:minutes

&SYSTIME Contains the time of day in the form: hours:minutes:seconds

&SYSTSOE Indicates the level of TSO/E installed in the form:
version release modification_number

&SYSUID Contains the user ID under which the current session is logged.

&SYSWTERM Contains the width of the screen.

Getting the Current Date and Time
The following control variables provide information related to the current date and
time. You cannot modify any of them with an assignment statement.

&SYSDATE, &SYSSDATE, and &SYSJDATE
Three variables provide the current date. Note that these variables return the
current year as a two-digit number. In support of dates equal or greater than 2000,
another set of variables is provided that returns the current year as four-digit
number.

&SYSDATE provides the date in the American standard form: month/day/year. If
executed on October 13, 1987, the following statement displays the message
“Today is 10/13/87”:
WRITE Today is &SYSDATE

&SYSSDATE provides the date in a form that can be sorted: year/month/day. If
executed on October 13, 1987, the following statement displays the message
“Today is 87/10/13”:
WRITE Today is &SYSSDATE

&SYSJDATE provides the date in the Julian form: year.days. If executed on
October 13, 1987, the following statement displays the message “Today is 87.286”:
WRITE Today is &SYSJDATE

&SYSDATE and &SYSSDATE provide data that contain slashes. As a result, when
they appear in expressions on comparative and assignment statements, enclose
them in &STR built-in functions. For example, in the following example &SYSDATE

Overview of using Control Variables

32 OS/390 V2R10.0 TSO/E CLISTs

appears in a statement containing comparative expressions; therefore, enclose it in
a &STR built-in function. However, the use of &STR is unnecessary on the WRITE
statement.
IF &STR(&SYSDATE) = &STR(10/13/87) THEN +
WRITE On &SYSDATE, the system was down for &TMIN minutes.

&SYS4DATE, &SYS4SDATE, and &SYS4JDATE
Three variables provide the current date in a format that presents years as four-digit
numbers. As opposed to the variables that present the current year as two-digit
numbers, these variables are capable to handle years beyond 1999.

&SYS4DATE provides the date in the American standard form: month/day/year. If
executed on August 29, 1995, the following statement displays the message “Today
is 08/29/1995”:
WRITE Today is &SYS4DATE

&SYS4SDATE provides the date in a form that can be sorted: year/month/day. If
executed on August 29, 1995, the following statement displays the message “Today
is 1995/08/29”:
WRITE Today is &SYS4SDATE

&SYS4JDATE provides the date in the Julian form: year.days. If executed on
August 29, 1995, the following statement displays the message “Today is
1995.241”:
WRITE Today is &SYS4JDATE

&SYS4DATE and &SYS4SDATE provide data that contain slashes. As a result,
when they appear in expressions on comparative and assignment statements,
enclose them in &STR built-in functions. For example, in the following example
&SYS4DATE appears in a statement containing comparative expressions; therefore,
enclose it in a &STR built-in function. However, the use of &STR is unnecessary on
the WRITE statement.
IF &STR(&SYS4DATE) = &STR(08/29/1995) THEN +
WRITE On &SYS4DATE, the system was down for &TMIN minutes.

&SYSTIME and &SYSSTIME
Two variables provide the current time of day.

&SYSTIME provides the time in the form: hours:minutes:seconds. If executed at
2:32 and 58 seconds P.M., the following statement displays the message “It’s
14:32:58”:
WRITE It's &SYSTIME

&SYSSTIME provides a shortened version of &SYSTIME, in the form:
hours:minutes. If executed at 2:32 and 58 seconds P.M., the following statement
displays the message “It’s 14:32”:
WRITE It's &SYSSTIME

Getting Terminal Characteristics
Three control variables provide information about the terminal to which the user is
logged on.

Getting Current Date and Time

Chapter 5. Using Control Variables 33

&SYSTERMID
&SYSTERMID contains the terminal ID of the terminal where the CLIST has been
started. For example,
PROC 0
WRITE &SYSTERMID
EXIT

may return a terminal ID of M02XA06R, with a maximum length of eight characters.
Trailing blanks are removed.

If your CLIST runs in the background, the &SYSTERMID control variable returns a
null string.

&SYSLTERM and &SYSWTERM
&SYSLTERM provides the number of lines available for applications on your
terminal screen. &SYSWTERM provides the width of the screen.

&SYSLTERM and &SYSWTERM can be used when a CLIST reformats the screen
using Session Manager commands. For example, a CLIST called HORZNTL splits
the terminal screen horizontally based on the number of lines on the screen and its
width. The following section of HORZNTL substitutes the control variables in the
Session Manager commands that define the windows for the reformatted screen. By
using &SYSLTERM and &SYSWTERM instead of explicit screen positions,
HORZNTL makes optimal use of the space available on a given screen.
SET LINE = (&SYSLTERM-5)/2
SET TOPS = &LINE-1;
SET BOT = &LINE+1;
SET BOTS = (&SYSLTERM-1)-&BOT
SET BOTSX = (&SYSLTERM-3)-&BOT
smput /save screen;save.pfk;+

save.win main;save.win line;save.win current;+
del.win main;del.win line;del.win current;+
define.window main 1 1 &TOPS &SYSWTERM;+
define.window line &LINE 1 1 &SYSWTERM;+
define.window current &BOT 1 &BOTS &EVAL(&SYSWTERM-18)/

Getting Information about the User
Three control variables provide user-related information including the current user
ID, logon procedure, and data set prefix.

&SYSUID
&SYSUID provides the user ID under which the current TSO/E session is logged
on. Use this variable in messages and wherever logic depends on, or references,
the user ID. For example, the following message displays information about how the
CLIST is invoked:
WRITE CLIST invoked by user &SYSUID at &SYSTIME on &SYSSDATE

&SYSPREF
&SYSPREF provides the current data set name prefix that is prefixed to
non-fully-qualified data set names. The PROFILE command controls this prefix. Use
&SYSPREF when you want to allocate data sets that are unique to the user who
invoked the CLIST. For example, the following ALLOCATE command allocates
unique data sets for invokers of a CLIST containing the command:
alloc da('&SYSPREF..records.data') shr reuse

Getting Terminal Characteristics

34 OS/390 V2R10.0 TSO/E CLISTs

Two periods are required between &SYSPREF and RECORDS; the first indicates
the end of the variable name, and the second is part of the text to be concatenated.
After substitution, the command has the following form:
alloc da('prefix.records.data') shr reuse

&SYSPROC
&SYSPROC provides the name of the logon procedure used when the user logged
on to the current TSO/E session. You can use &SYSPROC to determine whether
programs, such as Session Manager, are available to the user. For example, before
invoking the CLIST (HORZNTL) that reformats the screen using Session Manager
commands, verify that Session Manager is active. One way to make the verification
is to check the logon procedure as follows:
IF &STR(&SYSPROC) = SMPROC THEN +
%horzntl
ELSE +
DO
WRITE Your screen cannot be reformatted.
WRITE Log on using SMPROC as logon proc.
END

&SYSPROC provides the following values:

v When the CLIST is invoked in the foreground (&SYSENV provides ’FORE’),
&SYSPROC will provide the name of the current LOGON procedure.

v When the CLIST is invoked in batch (from a job submitted via the SUBMIT
command), &SYSPROC will provide the value ’INIT’, which is the ID for the
initiator.

v When the CLIST is invoked from a Started Task (an address space that is started
via the Start operator command), &SYSPROC will provide the ID of the started
task. If ’S procname’ is issued from the operator console, &SYSPROC will
provide the value ’procname’.

Getting Information about the System
The following control variables provide information about the system environment
under which the CLIST is executing.

You can use these control variables in your CLISTs for different purposes. For
example, the variables &SYSNAME, &SYSPLEX, &SYSCLONE, and
&SYSSYMDEF allow you to write common CLISTs that are to run in a sysplex
environment. You can build or identify the system-specific data set names by using
the values returned by these control variables.

&SYSCLONE
&SYSCLONE returns the MVS system symbol representing its system name. It is a
1- to 2-byte shorthand notation for the system name. The value is obtained from
SYS1.PARMLIB member IEASYMxx 2. For example, if SYSCLONE(A1) is specified in
IEASYMxx, then
PROC 0
WRITE &SYSCLONE
EXIT

2. Introduced with MVS/ESA SP 5.2; provides a mechanism to assign system substitution symbols names and values.

Getting Information about the User

Chapter 5. Using Control Variables 35

returns a value of A1. A null string is returned if no MVS SYSCLONE ID is specified
in IEASYMxx.

&SYSCPU and &SYSSRV
&SYSCPU provides the number of seconds of central processing unit (CPU) time
used during the session in the form: seconds.hundredths_of_seconds.

&SYSSRV provides the number of System Resource Manager (SRM) service units
used during the session.

These variables can be used for measuring the performance of applications and
reporting session duration to the user.

For example, to measure the performance of an application invoked from a CLIST,
you can code the following:
SET CPU = &SYSCPU
SET SRV = &SYSSRV
call mylib(payroll) '50,84'
SET CPU = &STR(&SYSCPU-&CPU)
SET SRV = &STR(&SYSSRV-&SRV)
call mylib(calc) '&STR(&CPU),&STR(&SRV)' /* Measure performance */...

/* Do calculations and pass back results */...
WRITE &CPU &SRV

The user can then see the number of seconds of CPU time and SRM service units
used by the program PAYROLL.

&SYSDFP
&SYSDFP contains the level of MVS/Data Facility Product (MVS/DFP) installed. For
example,
PROC 0
WRITE &SYSDFP
EXIT

may return a value of 01.01.02.00. The value returned is in the format cc.vv.rr.mm,
where cc is the component, vv the version, rr the release number, and mm the
modification level. All values are two-digit decimal numbers.

A value of 00 for cc indicates a pre-DFSMS/MVS component, whereas any value
other than 00 indicates a DFSMS/MVS component or a follow-on component.

&SYSHSM
&SYSHSM indicates the status of the Data Facility Hierarchical Storage Manager
(DFHSM) or the level of DFSMShsm, depending of what is installed.

When DFHSM is installed and active, &SYSHSM returns the level of DFHSM
installed, unless the level is before Version 1 Release 3. If a pre-Release 3 level is
installed and active, &SYSHSM returns the value AVAILABLE. When DFHSM is not
installed or not active, &SYSHSM returns a null value.

If Version 1 Release 3 or higher is installed, &SYSHSM indicates it in the following
format:

Getting Information about the System

36 OS/390 V2R10.0 TSO/E CLISTs

If DFSMS/MVS is installed and active, &SYSHSM returns the level of DFSMShsm,
otherwise it returns a null string.

&SYSISPF
&SYSISPF indicates whether ISPF dialog manager services are available. The
variable can have one of two values:

ACTIVE ISPF services are available.

NOT ACTIVE ISPF is not initialized.

&SYSJES
&SYSJES contains the name and the level of the JES installed. For example,
PROC 0
WRITE &SYSJES
EXIT

may return JES2 SP 4.3. In this example JES2 is the JES name and SP 4.3 is the
JES level, representing version and release number of JES2. The JES level may
contain a modification level as well.

The values returned are provided by the subsystem interface request routine
(IEFSSREQ).

Both strings are separated by a blank character; any trailing blank characters are
removed. If either the JES name or level returns an empty character string, then no
separating blank character is inserted.

If the subsystem is not active the string -INACTIVE- is returned (note the string
delimiters).

If the system finds that the subsystem is neither JES2 4.3 or later nor JES3 5.1.1 or
later, the &SYSJES control variable contains the string -DOWNLEVEL- (note the string
delimiters).

&SYSLRACF
&SYSLRACF indicates the version, release, and modification level of RACF
installed on the system. If RACF is not installed, &SYSLRACF contains a null value.
If RACF is installed, &SYSLRACF returns the level of RACF in the following format:

Getting Information about the System

Chapter 5. Using Control Variables 37

&SYSAPPCLU
&SYSAPPCLU contains the MVS/APPC logical unit (LU) name. The LU name
identifies the TSO/E address space your CLIST will be running in as the SNA
addressable unit for Advanced-Program-to-Program-communication (APPC). The
LU name is obtained via the APPC/MVS Advanced TP Callable Services (ATBEXAI
- Information Extract Service). For example,
PROC 0
WRITE &SYSAPPCLU
EXIT

may return an LU name of LU0001. Trailing blanks are removed. A null string is
returned if:

v There is no APPC activity in the address space the CLIST is running in, or

v No LU name is provided by the APPC/MVS Advanced TP Callable Services.

Note: CLISTs do not support CPI Communication (a method to let one program
communicate with another program on the same or other MVS system in an
SNA network). Therefore the use of the &SYSAPPCLU control variable
makes sense only in a CLIST that is invoked by a program (for example, a
REXX exec) that has established APPC. If the control variable is used
outside this environment, a null string is returned.

&SYSMVS
&SYSMVS contains the level of the base control program (BCP) component of
OS/390. For example,
PROC 0
WRITE &SYSMVS
EXIT

may return SP4.3.0 as the version, release, and modification level of the BCP
component.

The value returned is that of the CVTPRODN field in the communications vector
table (CVT).

Note: The format of the value returned by &SYSMVS may change in future, but will
remain the content of the CVTPRODN field.

OS/390 Users: To provide customers with the least disruptive change when
changing from MVS/ESA SP 5.x to OS/390, the format of the
CVTPRODN field is maintained and contains SP5.3.0 for OS/390
Release 1. This is because some products test byte 3 to see if it is
“5”, which indicates that certain functions are available.

&SYSNAME
&SYSNAME returns the system’s name your CLIST is running on, as specified in
SYS1.PARMLIB member IEASYSxx on the SYSNAME statement. For example,
PROC 0
WRITE &SYSNAME
EXIT

may return ATQS as the MVS system name.

Getting Information about the System

38 OS/390 V2R10.0 TSO/E CLISTs

You may want to use the &SYSNAME control variable to identify on which system
in a multi-system global resource serialization complex your CLIST is running on.
See OS/390 MVS Initialization and Tuning Reference, on how the SYSNAME value
is used in a multi-system complex.

&SYSNODE
&SYSNODE contains the network node name of your installation’s JES. This name
identifies the local JES in a network of systems or system complexes being used
for network job entry (NJE) tasks. For example,
PROC 0
WRITE &SYSNODE
EXIT

may return a value of BOE9, which is the network node name of your local JES.

The node name returned by the &SYSNODE control variable derives from the
NODE initialization statement of JES.

If the system finds that the subsystem is not active, the &SYSNODE control
variable contains the string -INACTIVE- (note the string delimiters).

If the system finds that the subsystem is neither JES2 4.3 or later nor JES3 5.1.1 or
later, the &SYSNODE control variable contains the string -DOWNLEVEL- (note the
string delimiters).

&SYSOPSYS
&SYSOPSYS contains the OS/390 name, version, release, modification level, and
FMID of your installation’s OS/390. For example,
PROC 0
WRITE &SYSOPSYS
EXIT

may return a string of OS/390 01.01.00 HBB6601, where OS/390 represents the
product name, followed by a blank character, followed by an eight-character string
representing version, release, modification number, followed by a blank character,
followed by the FMID.

The &SYSOPSYS control variable was introduced after TSO/E Version 2 Release 5
with APAR OW17844. If you use this variable in a environment earlier than TSO/E
2.5, or without the PTF associated with APAR OW17844, the system returns a null
string.

Note: A “/” character might appear in the product name, for example, in “OS/390”.
CLISTs might interpret that character to be the divide operator. For example,
SET LEVEL=&SYSOPSYS might produce an error message. To prevent a CLIST
from evaluating the resulting string you should use the &STR function; for
example, SET LEVEL=&STR(&SYSOPSYS).

&SYSRACF
&SYSRACF indicates the status of RACF. The variable can have one of three
values:

AVAILABLE RACF services are available.

NOT AVAILABLE RACF is not initialized.

Getting Information about the System

Chapter 5. Using Control Variables 39

NOT INSTALLED RACF is not installed.

&SYSPLEX
&SYSPLEX returns the MVS sysplex name as found in the COUPLExx or LOADxx
member of SYS1.PARMLIB. For example,
PROC 0
WRITE &SYSPLEX
EXIT

may return a value of PLEXNY02. The value has a maximum of eight characters;
trailing blanks are removed. If no sysplex name is specified in SYS1.PARMLIB,
&SYSPLEX returns a null string.

&SYSSECLAB
&SYSSECLAB returns the SECLABEL name that is valid for the TSO/E session
where the CLIST is started. For example,
PROC 0
WRITE &SYSSECLAB
EXIT

may return a value of SYSHIGH as the current security label name. Trailing blanks
are removed.

Note: The use of the &SYSSECLAB control variable requires that RACF is
installed, and that security label checking has been activated. If no security
information is found, the &SYSSECLAB control variable contains a null
string.

&SYSSMS
&SYSSMS indicates whether DFSMS/MVS is available to your CLIST. For example,
PROC 0
WRITE &SYSSMS
EXIT

returns one of the following character strings:

UNAVAILABLE DFSMS/MVS is not available on your system.

INACTIVE DFSMS/MVS is available on your system but not
active.

ACTIVE DFSMS/MVS is available and active, so your CLIST
can depend on it.

Note: This control variable requires MVS/Data Facility Product (MVS/DFP) Version
3.3 or later. If used with lower releases, an error message is issued.

&SYSSMFID
&SYSSMFID identifies the system on which System Management Facilities (SMF)
is active. The value returned is as specified in SYS1.PARMLIB member SMFPRMxx
on the SID statement. Trailing blanks are removed. For example,
PROC 0
WRITE &SYSSMFID
EXIT

Getting Information about the System

40 OS/390 V2R10.0 TSO/E CLISTs

returns ATQS as the SMF ID. Note that the value returned by &SYSSMFID and
&SYSNAME may be the same in your installation. See OS/390 MVS Initialization
and Tuning Reference, for more details on the SYSNAME and SID statement in
member SMFPRMxx.

&SYSSYMDEF
&SYSSYMDEF(symbol_name) returns the value represented by the variable
″symbol_name″ as specified in SYS1.PARMLIB member IEASYMxx on the
SYSDEF ... SYMDEF statement. Or, the ’string’ can also be one of the system
static or dynamic symbols as defined in OS/390 MVS Initialization and Tuning
Reference.

For example, if SYMDEF(&SYSTEMA = 'SA') is specified in IEASYMxx, then
PROC 0
WRITE &SYSSYMDEF(SYSTEMA)
EXIT

returns a value of SA. A null string is returned if the symbolic name is not specified
in IEASYMxx, and it is not one of the MVS defined static or dynamic symbols.

Here, the symbol name SYSTEMA is assigned a name of SA on the SYMDEF
statement in IEASYMxx. The &SYSSYMDEF(symbol_name) control variable
resolves to a string of SA.

You can also retrieve the value for one of the MVS defined static or dynamic
system symbols. For example:
WRITE &SYSSYMDEF(JOBNAME) /*Returns JOBNAME

BOB perhaps */

Refer to OS/390 MVS Initialization and Tuning Reference for a discussion and a list
of the currently defined MVS static and dynamic system symbols.

For example, you can retrieve the IPL Volume Serial Name of your system using
WRITE &SYSSYMDEF(SYSR1) /* may return 640S06

as IPL Vol. Ser. Name */

The SYSSYMDEF function goes through CLIST substitution first, the result of which
must be a 1-8 character name specifying the symbol that has been defined in the
SYMDEF statement. Any other values including CLIST delimiters may cause
unpredictable results.

&SYSTSOE
&SYSTSOE indicates the version, release, and modification level of TSO/E installed
on the system. &SYSTSOE returns the level of TSO/E in the following format:

Getting Information about the CLIST
The following control variables provide information about the CLIST.

Getting Information about the System

Chapter 5. Using Control Variables 41

&SYSENV
&SYSENV indicates whether the CLIST is executing in the foreground (FORE) or
the background (BACK). You can use this variable when a CLIST must make logical
decisions based on the environment. For example, the way a CLIST obtains its
input is sensitive to background and foreground executions. You can use &SYSENV
to prevent the CLIST executing READ statements in the background as follows:
GLOBAL LNAME /* Define global variable to be set by FETCHNAM */...
IF &SYSENV=FORE THEN +
DO
WRITE Enter your last name.
READ LNAME
END
ELSE +
%fetchnam

&SYSSCAN
&SYSSCAN contains a number that defines the maximum number of times
symbolic substitution is performed on each line in a CLIST. The default number is
16. You can assign &SYSSCAN a value from 0 to +2,147,483,647 (2³¹-1). A zero
limit inhibits all scans, preventing any substitution of values for symbolic variables.

For example, to write a record containing an ampersand (&), and prevent a CLIST
from performing erroneous symbolic substitution, you can code the following:

...
SET &SYSSCAN=0 /* Prevent symbolic substitution
WRITE Jack & Jill went up the hill
SET &SYSSCAN=16 /*Reset &SYSSCAN

&SYSICMD
&SYSICMD contains the name by which the user implicitly invoked the currently
executing CLIST. If the user invoked the CLIST explicitly, this variable has a null
value.

&SYSPCMD
&SYSPCMD contains the name of the TSO/E command that the CLIST most
recently executed. The initial value of &SYSPCMD depends on the environment
from which the CLIST was invoked. If the invoker used the EXEC command, the
initial value is EXEC. If the invoker used the EXEC subcommand of EDIT, the initial
value is EDIT.

&SYSSCMD
&SYSSCMD contains the name of the TSO/E subcommand that the CLIST most
recently executed. If invoker used the EXEC command, the initial value of
&SYSSCMD is null. If the invoker used the EXEC subcommand of EDIT, the initial
value is EXEC.

Relationship between &SYSPCMD and &SYSSCMD
The &SYSPCMD and &SYSSCMD control variables are interdependent. Following
the initial invocation, the values of &SYSPCMD and &SYSSCMD depend on the
TSO/E command or subcommand most recently executed. For example, if the value
of &SYSSCMD is EQUATE, a subcommand unique to the TEST command, the
value of &SYSPCMD is TEST.

Getting Information about the CLIST

42 OS/390 V2R10.0 TSO/E CLISTs

You can use &SYSPCMD and &SYSSCMD in error and attention exits to determine
where the error or attention interrupt occurred.

&SYSNEST
&SYSNEST indicates whether the currently executing CLIST is nested. (A nested
CLIST is one that was invoked by another CLIST rather than explicitly by the user.)
If the CLIST is nested, &SYSNEST contains the value YES. If it is not nested,
&SYSNEST contains the value NO.

Setting Options of the CLIST CONTROL Statement
The following control variables let you test or modify options of the CLIST
CONTROL statement. For full information about the CONTROL statement and its
options, see “CONTROL Statement” on page 154.

&SYSPROMPT
&SYSPROMPT indicates whether the CONTROL statement’s PROMPT or
NOPROMPT option is active. The value ON indicates that CONTROL PROMPT is
active, and TSO/E commands in the CLIST can prompt the terminal for input. OFF
indicates that CONTROL NOPROMPT is active, and TSO/E commands cannot
prompt the terminal.

Your CLISTs can use &SYSPROMPT to test which option is active, or change the
option. For example, if you want the CLIST to allow prompting from the LISTDS
command only, you can code:
SET &SYSPROMPT = ON
LISTDS
SET &SYSPROMPT = OFF

&SYSSYMLIST
&SYSSYMLIST indicates whether the CONTROL statement’s SYMLIST or
NOSYMLIST option is active. The value ON indicates that CONTROL SYMLIST is
active, and CLIST statements are displayed at the terminal before being scanned
for symbolic substitution. The value OFF indicates that CONTROL NOSYMLIST is
active, and CLIST statements are not displayed at the terminal before symbolic
substitution.

Your CLISTs can use &SYSSYMLIST to test which option is in effect, or to change
the option. For example, if you suspect an error in part of a CLIST and you want to
display certain statements before substitution, you could code:
SET &SYSSYMLIST = ON...

(suspected statements in error)...
SET &SYSSYMLIST = OFF

&SYSCONLIST
&SYSCONLIST indicates whether the CONTROL statement’s CONLIST or
NOCONLIST option is active. The value ON indicates that CONTROL CONLIST is
active, and CLIST statements are displayed at the terminal after symbolic
substitution. The value OFF indicates that CONTROL NOCONLIST is active, and
CLIST statements are not displayed at the terminal after symbolic substitution.

Getting Information about the CLIST

Chapter 5. Using Control Variables 43

Your CLISTs can use &SYSCONLIST to test which option is in effect, or to change
the option. For example, if you suspect an error in part of a CLIST and you want to
display certain statements after substitution, you could code:
SET &SYSCONLIST = ON...

(suspected statements in error)...
SET &SYSCONLIST = OFF

&SYSLIST
&SYSLIST indicates whether the CONTROL statement’s LIST or NOLIST option is
active. The value ON indicates that CONTROL LIST is active, and TSO/E commands
and subcommands are displayed at the terminal after symbolic substitution. The
value OFF indicates that CONTROL NOLIST is active, and commands and
subcommands are not displayed at the terminal after symbolic substitution.

Your CLISTs can use &SYSLIST to test which option is in effect, or to change the
option. For example, if you suspect an error in part of a CLIST and you want to
display certain commands or subcommands, you could code:
SET &SYSLIST = ON...

(suspected commands in error)...
SET &SYSLIST = OFF

&SYSASIS
&SYSASIS indicates whether the CONTROL statement’s ASIS option is active. The
value ON indicates that CONTROL ASIS is active, and lowercase characters are not
converted to uppercase before processing. The value OFF indicates that CONTROL
CAPS is active, and lowercase characters are converted to uppercase.

Your CLISTs can use &SYSASIS to test which option is in effect, or to change the
option. For example, if you want READ and WRITE statements to preserve
lowercase letters, you could code:
SET &SYSASIS = ON
WRITE Enter data exactly as you want it to appear.
WRITE Lowercase letters won't be changed to uppercase.
READ &Ulc_data

&SYSMSG
&SYSMSG indicates whether the CONTROL statement’s MSG or NOMSG option is
active. The value ON indicates that CONTROL MSG is active, and the CLIST can
display informational messages at the terminal. The value OFF indicates that
CONTROL NOMSG is active, and the CLIST cannot display informational
messages at the terminal.

Your CLISTs can use &SYSMSG to test which option is in effect, or to change the
option. For example, if you wanted to make sure that informational messages are
displayed at the terminal, you could code:
SET &SYSMSG = ON...

&SYSFLUSH
&SYSFLUSH indicates whether the CONTROL statement’s FLUSH or NOFLUSH
option is active. The value ON indicates that CONTROL FLUSH is active, and the

Setting Options of the CLIST CONTROL Statement

44 OS/390 V2R10.0 TSO/E CLISTs

system can erase (flush) any nested CLISTs when an error occurs. The value OFF
indicates that CONTROL NOFLUSH is active, and the system cannot flush nested
CLISTs. When CONTROL MAIN is active, &SYSFLUSH cannot be set to ON.

Your CLISTs can use &SYSFLUSH to test which option is in effect, or to change the
option. For example, if your CLIST invokes other CLISTs, you can set &SYSFLUSH
to OFF to protect them from being flushed in the event of an error. You could then
use an error routine to recover from the error and continue processing.
SET &SYSFLUSH = OFF
ERROR +

DO...
(error routine)...
END

For more information about error routines and protecting nested CLISTs, see
“Chapter 10. Writing ATTN and ERROR Routines” on page 101.

Getting Information about User Input
Two control variables are related to input supplied to a CLIST.

&SYSDLM
&SYSDLM (“DLM” is for delimiter) contains a number that identifies the position
(first, second, third, and so on) of the TERMIN or TERMING statement character
string entered by the user to return control to the CLIST.

You can use this variable to determine what action should be taken when the user
returns control to the CLIST, based on the string chosen. For example, the following
statements inform the user what is requested (WRITE), pass control to the terminal
and establish valid control character strings (TERMIN or TERMING), and determine
the subsequent action based on the string entered.
WRITE The first phase of BUDGET has completed with
WRITE a return code of &RCODE
WRITE Enter YES if you want the results printed.
WRITE Enter NO if you do not want them printed.
TERMIN YES NO
IF &SYSDLM = 1 THEN +...

(Print results)...

&SYSDVAL
&SYSDVAL (“DVAL” is for default value) contains one of the following at any given
time:

v A null value

v The input the user entered when returning control to the CLIST after a TERMIN
or TERMING statement

v The user’s response after a READ statement without operands

v The value assigned to &SYSDVAL by an assignment statement.

Initially, &SYSDVAL contains a null value. It can also contain a null value, if:

v The user does not enter anything but a pre-defined character string or null line
after a TERMIN or TERMING statement.

Setting Options of the CLIST CONTROL Statement

Chapter 5. Using Control Variables 45

v The user does not enter any input after a READ statement without operands.

v You assign a null value to &SYSDVAL.

You can also use &SYSDVAL when performing I/O to a data set. You can assign
the data to variables by defining SYSDVAL as the file name of the data set and
naming the variables on the READVAL statement. For an example of using
&SYSDVAL and READVAL in I/O, see “Using &SYSDVAL When Performing I/O -
The PHONE CLIST” on page 132.

Trapping TSO/E Command Output
Two control variables allow you to trap TSO/E command output in a CLIST:
&SYSOUTTRAP and &SYSOUTLINE. These variables save output from TSO/E
commands and allow a CLIST or application to process the output. You can modify
the values of &SYSOUTTRAP and &SYSOUTLINE with assignment statements. For
example, the assignment statement
SET &SYSOUTTRAP = 100

lets you trap and save 100 lines of output from a TSO/E command.

&SYSOUTTRAP
Use &SYSOUTTRAP to specify the maximum number of lines of TSO/E command
output to be saved. If you want to save all the output from a TSO/E command, set
&SYSOUTTRAP to a number greater than or equal to the number of output lines
that the command produces. Any output lines produced in excess of the
&SYSOUTTRAP value are not saved.

To save the output of a single command, set &SYSOUTTRAP to zero after issuing
the command. Otherwise, output from subsequent commands may replace the
original saved output.

&SYSOUTLINE
When you use &SYSOUTTRAP, the CLIST saves TSO/E command output in
variables beginning with &SYSOUTLINE.

The CLIST uses the variable &SYSOUTLINE to record the number of output lines
produced by a command. The CLIST saves the actual command output in the
variables &SYSOUTLINEnn, where nn represents the positional number of the line
being saved. nn can be any decimal number up to 21 digits in length. However, the
value in &SYSOUTTRAP and the amount of storage available determine the actual
number of lines saved.

The following CLIST traps output from the TSO/E LISTD command, retrieves it
using nested variables, and writes each line of output.
PROC 0 DATASET(DEFAULT)
IF &DATASET = DEFAULT THEN +

DO
WRITE What data set do you want to process?
READ DATASET

END
SET &SYSOUTTRAP = 1000 /* Expect command produces no */

/* more than 1000 lines */
LISTD '&SYSPREF..&DATASET' MEMBERS /* List data set members */
SET B = &SYSOUTLINE /* Get number of lines produced */
SET &SYSOUTTRAP = 0 /* Reset &SYSOUTTRAP */
SET A = 1 /* Initialize counter */

Getting Information about User Input

46 OS/390 V2R10.0 TSO/E CLISTs

DO WHILE /* Loop for the lesser of */
(&A <= 1000) AND /* num of lines expected and */
(&A <= &B) /* num of lines produced */
SET MEMBER = &STR(&&SYSOUTLINE&A) /* Get a &SYSOUTLINEnn variable */
WRITE &STR(&MEMBER) /* Write the output line */
SET A = &A +1 /* Increase the line counter */

END /* End of loop on counter */

For another example of using &SYSOUTTRAP and &SYSOUTLINE to process
command output, see “Allocating Data Sets to SYSPROC - The SPROC CLIST” on
page 133.

Considerations for Using &SYSOUTTRAP and &SYSOUTLINE
v If you add the CONTROL LIST and SYMLIST options to a CLIST that uses

&SYSOUTTRAP, more output lines are produced and you might need to adjust
&SYSOUTTRAP and &SYSOUTLINEnn values to retrieve the desired output
lines.

v To trap the output of TSO/E commands under ISPF/PDF, you must invoke a
CLIST with command output trapping after ISPF or one of its services has been
invoked.

v If you try to display a line of output in &SYSOUTLINEnn where nn is greater than
the value of &SYSOUTTRAP, the &SYSOUTLINEnn variable contains unreliable
data.

v If you try to display a &SYSOUTLINEnn variable that contains no command
output, the CLIST returns a null line.

v Because CLISTs use the TSO/E EXEC command to invoke nested CLISTs,
&SYSOUTTRAP saves all output of nested CLISTs as TSO/E command output.
Therefore, if you need to trap all of the output of a command processor that
processes several subcommands, consider using a nested CLIST to do so.

v &SYSOUTTRAP does not save command output sent to the terminal by a TPUT
macro, but does save output from the PUTLINE macro with DATA or INFOR
keywords.

v Whenever a CLIST starts to execute a TSO/E command or subcommand, it
resets &SYSOUTLINE to zero. However, if a CLIST invokes a CLIST or a
non-CLIST program containing TSO/E commands, the invoked program does not
reset &SYSOUTLINE to zero for each TSO/E command. To record the number of
command output lines in an invoked program, use an assignment statement to
reset &SYSOUTLINE to zero before each TSO/E command. For information
about assigning a value to CLIST variables in a non-CLIST environment, see
OS/390 TSO/E Programming Services.

Getting Return Codes and Reason Codes
Two control variables enable you to obtain return codes and reason codes. You can
modify both &LASTCC and &MAXCC with an assignment statement.

&LASTCC
When you use &LASTCC outside an error routine, &LASTCC contains the return
code from the last TSO/E command or subcommand, nested CLIST, or CLIST
statement executed. Because the value of this variable is updated after the
execution of each statement or command, store its value in a symbolic variable
before executing code that references the value.

Trapping TSO/E Command Output

Chapter 5. Using Control Variables 47

In an error routine, &LASTCC is not updated after the execution of each statement
or command. Only the RETURN statement updates the value of &LASTCC. If you
use &LASTCC in an error routine, &LASTCC contains the return code from the
command or statement that was executing when the error occurred.

&LASTCC does not support negative return codes. When a negative return code is
received from a REXX exec, CLIST converts it to binary, removes the first byte, and
stores the remainder in &LASTCC as a positive decimal integer.

When &LASTCC receives an error return code from a TSO/E command,
subcommand, nested CLIST, or CLIST statement, control passes to an error routine
if present in the CLIST. However, when &LASTCC contains the return code from a
subprocedure RETURN statement, control does not pass to an error routine.

&LASTCC can be used in error routines that handle multiple error conditions. For
example, if an error routine handles arithmetic errors, it can use &LASTCC to
determine what type of message to display at the terminal:
ERROR +
DO
SET RCODE = &LASTCC

/* Character data in operands? */
IF &RCODE = 852 THEN +
WRITE Character data was found in numbers being added.

/* Numeric value too large? */
IF &RCODE = 872 THEN +
WRITE A numeric value in the addition was too large.
. (Other tests)
.

RETURN
END
SET SUM = &VALUE1 + &VALUE2 + &VALUE3;

Note that &LASTCC itself does not get updated within the error routine.

When an error occurs during CLIST I/O processing, use an error routine to obtain
the error code in &LASTCC. For example, to trap the error code generated by
OPENFILE when attempting to open a file (BADFILE) that does not exist, code the
following CLIST:
PROC 0
ERROR DO
SET RC=&LASTCC.
RETURN
END
OPENFILE BADFILE
WRITE LASTCC=&RC

See Table 8 on page 112 for a list of the CLIST error codes that &LASTCC can
contain.

&MAXCC
&MAXCC contains the highest return code returned by a nested CLIST or by a
TSO/E command, subcommand, or CLIST statement in the currently executing
CLIST.

&MAXCC is not set when a subprocedure returns to the CLIST.

You can use &MAXCC with &LASTCC to determine error conditions. For example,
error codes caused by evaluation errors are in the 800-899 range. You can modify

Getting Return Codes and Reason Codes

48 OS/390 V2R10.0 TSO/E CLISTs

the error routine in the example under &LASTCC to determine first whether the
error was caused by an arithmetic evaluation. Insert the following IF-THEN-ELSE
sequence before the check for character data in operands:

...
/* Evaluation error? */

IF &MAXCC <800 OR &MAXCC >899 THEN +
GOTO ...

ELSE +...

Getting Results of the TSOEXEC Command
Three variables are related to the use of the TSOEXEC command: &SYSABNCD,
&SYSABNRC, and &SYSCMDRC. You can modify any one of them with an
assignment statement.

&SYSABNCD, &SYSABNRC, and &SYSCMDRC contain, respectively, the ABEND
code, ABEND reason code, and command return code returned by the command
most recently invoked by the TSOEXEC command. You can use these variables in
situations similar to those in which you would use &LASTCC and &MAXCC. For
example, to determine if the TRANSMIT command terminated abnormally, you can
code:
tsoexec transmit plpsc.d00abc1 dataset(letter.text)
/* Abend code non-zero? */
IF &SYSABNCD¬=0 THEN +
DO
WRITE The transmission of LETTER.TEXT to
WRITE PLPSC.D00ABC1 abended.
END

Getting Data Set Attributes
Control variables include certain predefined variables set by CLIST statements. The
LISTDSI statement sets a number of variables with information about data set
attributes. These LISTDSI variables cannot be modified.

The LISTDSI Statement
You can use the LISTDSI (list data set information) statement to retrieve detailed
information about a data set’s attributes. The statement stores the information in
CLIST variables. The CLIST can use the information to determine if the data set
has enough space or the correct format for a given task. The CLIST can also use
the information as input to the TSO/E ALLOCATE command to create a new data
set with some attributes of the old data set while modifying others.

To retrieve a data set’s allocation information, specify the data set’s name on the
LISTDSI statement. You can also specify that a data set migrated by the Data
Facility Hierarchical Storage Manager (DFHSM) be recalled, and that directory
information be retrieved for a partitioned data set.

In response to the LISTDSI statement, the CLIST stores each of the data set’s
allocation attributes in a specific variable. For example, the data set’s primary space
allocation is stored in the variable &SYSPRIMARY, and its organization is stored in
&SYSDSORG. For a complete list of the CLIST variables set by LISTDSI, see
“LISTDSI Statement” on page 162.

For an example of using LISTDSI, see “Allocating a Data Set with LISTDSI
Information - The EXPAND CLIST” on page 146.

Getting Return Codes and Reason Codes

Chapter 5. Using Control Variables 49

Getting Data Set Attributes

50 OS/390 V2R10.0 TSO/E CLISTs

Chapter 6. Using Built-in Functions

Determining the Data Type of an Expression - &DATATYPE 52
Forcing Arithmetic Evaluations - &EVAL 53
Determining an Expression’s Length in Bytes - &LENGTH 53

Suppressing Arithmetic Evaluations 53
Including Leading and Trailing Blanks and Leading Zeros 53

Determining an Expression’s Length in Characters - &SYSCLENGTH. 54
Preserving Double Ampersands - &NRSTR 54

Double Ampersands . 54
One Level of Symbolic Substitution 54
Records Containing JCL Statements 55

Temporary Data Set Names 55
Symbolic Parameters . 55

Defining Character Data - &STR 55
Using &STR with &SYSDATE or &SYSSDATE 56
Using &STR with Leading and Trailing Blanks 56
Using &STR with Strings that Match CLIST Statement Names 56
Using &STR When Supplying Input Using SYSIN JCL Statements 56

Defining a Substring - &SUBSTR 57
Defining a Substring - &SYSCSUBSTR 59
Converting Character Strings to Uppercase Characters - &SYSCAPS. 59
Converting Character Strings to Lowercase Characters - &SYSLC 59
Determining Data Set Availability - &SYSDSN 59
Locating One Character String Within Another - &SYSINDEX 60

Using &SYSINDEX with DBCS Strings 61
Limiting the Level of Symbolic Substitution - &SYSNSUB 62
Converting DBCS Data to EBCDIC - &SYSONEBYTE 63
Converting EBCDIC Data to DBCS - &SYSTWOBYTE 63

The CLIST language includes built-in functions that you can perform on variables,
expressions, and character strings. If necessary, CLIST evaluates the variable or
expression first, and then performs the requested function. The CLIST then stores
the result under the name of the built-in function.

To use a built-in function, type its name, followed by the variable, expression, or
character string in parentheses. The variable, expression, or character string is also
called the argument of the built-in function. The argument must immediately follow
the built-in function name, with no blanks between them. Table 6 describes each of
the built-in functions briefly and gives page numbers where you can find more
information.

Table 6. Built-in Functions
Built-in Function Function Page

&DATATYPE(expression) Indicates whether the evaluation of expression is a character string or a
numeric value.

52

&EVAL(expression) Performs an arithmetic evaluation of expression. 53

&LENGTH(expression) Evaluates expression if necessary and indicates the number of bytes in
the result.

53

&NRSTR(string) Preserves double ampersands, defines non-rescannable strings. 54

&STR(string) Defines data to be used as a character string. 55

&SUBSTR(exp[:exp],string) Uses certain bytes in a character string. 57

&SYSCAPS(string) Converts the string to uppercase characters. 59

&SYSCLENGTH(expression) Evaluates expression if necessary and indicates the number of
characters in the result.

54

© Copyright IBM Corp. 1988, 2000 51

Table 6. Built-in Functions (continued)
Built-in Function Function Page

&SYSCSUBSTR(exp[:exp],string) Uses certain characters in a character string. 59

&SYSDSN(dsname[(member)]) Indicates whether the specified data set exists. 59

&SYSINDEX(string_1,string_2[,start]) Finds the position of a character string (string_1) within another
(string_2), from a specific starting point.

60

&SYSLC(string) Converts the string to lowercase characters. 59

&SYSNSUB(level,expression) Limits the level of symbolic substitution in the expression. 62

&SYSONEBYTE(string) Converts a string of data from the double-byte character set (DBCS) to
EBCDIC.

63

&SYSTWOBYTE(string) Converts a string of data from EBCDIC to the double-byte character set
(DBCS).

63

In addition to these built-in functions, TSO/E provides an installation exit that lets
your installation add its own CLIST built-in functions. For information about the exit,
see OS/390 TSO/E Customization.

Note: With the exception of &SYSNSUB, built-in functions will not resolve double
ampersands (&&) that appear in an argument.

Determining the Data Type of an Expression - &DATATYPE
Use the &DATATYPE built-in function to determine what type of data an evaluated
expression contains. After evaluating the expression, a CLIST replaces this built-in
function with one of the following strings: CHAR, NUM, DBCS, or MIXED. The
strings indicate the following:

v CHAR -- The evaluated expression contains at least one non-numeric EBCDIC
character and no double-byte character set (DBCS) characters.

v NUM -- The evaluated expression is entirely numeric.

v DBCS -- The evaluated expression is a single delimited string of DBCS data.

v MIXED -- The evaluated expression contains both DBCS and EBCDIC data.

The following examples show the evaluations of various expressions:
SET A = &DATATYPE(ALPHABET) /* result: &A = CHAR
SET B = &DATATYPE(1234) /* result: &B = NUM
SET C = &DATATYPE(SYS1;PROCLIB) /* result: &C = CHAR
SET D = &DATATYPE(3*2/4) /* result: &D = NUM
SET E = &DATATYPE(12.34) /* result: &E = CHAR

For example, the following clause evaluates as true:
IF &DATATYPE(12.34)=CHAR THEN

The following examples use the convention d1d2 to represent two DBCS characters
and < and > to represent the shift-out and shift-in delimiters (X'0E' and X'0F') that
mark the beginning and end of the DBCS string.
SET A = &DATATYPE(<d1d2>) /* result: &A = DBCS
SET B = &DATATYPE(ABC<d1d2>123) /* result: &B = MIXED
SET C = &DATATYPE(<>) /* result: &C = DBCS
SET D = &DATATYPE(A<>C) /* result: &D = MIXED
SET E = &DATATYPE(<d1d2><d3d4>) /* result: &E = MIXED

For example, the following clauses evaluate as true:
IF &DATATYPE(<d1d2d3>)=DBCS THEN
IF &DATATYPE(A<d1d2d3>B)=MIXED THEN

Using Built-in Functions

52 OS/390 V2R10.0 TSO/E CLISTs

Forcing Arithmetic Evaluations - &EVAL
On most statements, the appearance of arithmetic expressions results in
evaluations of those expressions when a CLIST executes the statements. However,
on the WRITE statement, you must explicitly instruct a CLIST to evaluate an
arithmetic expression by using the &EVAL built-in function. For example, to create a
WRITE statement that adds two variables, &FNUM and &SNUM, and displays the
results, code the following:
WRITE &FNUM + &SNUM = &EVAL(&FNUM+&SNUM)

Assuming &FNUM is four and &SNUM is three, the CLIST displays the following
message:

4 + 3 = 7

Determining an Expression’s Length in Bytes - &LENGTH
Use the &LENGTH built-in function to determine the number of bytes in an
expression or character string. &LENGTH performs symbolic substitution and
arithmetic evaluations before determining the length. If a variable has a null value,
&LENGTH returns a value of zero.

For example, after the following statement executes, &LENANSWR has the value 2
because there are two bytes in the result of the addition, 11.
SET LENANSWR = &LENGTH(1+1+9)

&LENGTH can also reference symbolic variables. Assume you want to save a value
that is triple the length of the value of a variable called &CSTRING. To save the
value in a variable called &NXTFIELD, code:
SET NXTFIELD = 3 * &LENGTH(&CSTRING)

If &CSTRING contains the value 100, &NXTFIELD contains the value 9.

If a string contains data of the double-byte character set (DBCS), &LENGTH counts
each DBCS character as two bytes, and counts each DBCS delimiter as one byte.
For example, using d1d2 to denote two DBCS characters and using < and > to
represent the DBCS delimiters X'0E' and X'0F':
SET A = &LENGTH(<d1d2>) /* result: &A = 6

The same is true when a string contains mixed EBCDIC and DBCS characters. For
example:
SET A = &LENGTH(ABC<d1d2>) /* result: &A = 9

Suppressing Arithmetic Evaluations
If you do not want a CLIST to perform arithmetic evaluations of a &LENGTH
expression, enclose the expression in a &STR built-in function as follows:
SET LENANSWR = &LENGTH(&STR(1+1+9))

After the previous statement executes, &LENANSWR contains the value 5.

Including Leading and Trailing Blanks and Leading Zeros
If you want leading and trailing blanks and leading zeros in a &LENGTH expression
included in the assignment, enclose the expression in a &STR built-in function.
Otherwise, the blanks and zeroes are ignored.

Forcing Arithmetic Evaluations - &EVAL

Chapter 6. Using Built-in Functions 53

For example, suppose that you want to save the length of the variable &IFIELD in a
variable called &SLNGTH. The contents of &IFIELD are 0 472.20. Include &IFIELD
in the &STR built-in function to include the blanks and the leading zero as part of
the assignment:
SET SLNGTH= &LENGTH(&STR(&IFIELD))

After the previous statement executes, &SLNGTH contains the value 8.

Determining an Expression’s Length in Characters - &SYSCLENGTH
Use &SYSCLENGTH built-in function to determine the number of characters in an
expression or string that contains characters of the double-byte character set
(DBCS). &SYSCLENGTH differs from &LENGTH in that &SYSCLENGTH counts
each DBCS character as one character instead of two bytes, and does not count
DBCS delimiters. For example:
SET A = &SYSCLENGTH(<d1d2>) /* result: &A = 2

The same is true when a string contains mixed EBCDIC and DBCS characters. For
example:
SET A = &SYSCLENGTH(ABC<d1d2>) /* result: &A = 5

Except for the difference in counting DBCS characters, &SYSCLENGTH is identical
to &LENGTH.

Preserving Double Ampersands - &NRSTR
You can use the &NRSTR built-in function to prevent a CLIST from:

v Removing the first ampersand when it encounters a character string with a prefix
of double ampersands.

v Performing more than one level of symbolic substitution on a variable.

You can use &NRSTR with JCL statements that include the name of a temporary
data set (for example, &&TEMP). Using &NRSTR prevents a CLIST from changing
the name of a temporary data set (&&TEMP) to a symbolic parameter (&TEMP).

Double Ampersands
To assign the character string &&DATA to the variable &FILE, code:
SET FILE = &NRSTR(&&DATA)

One Level of Symbolic Substitution
To set two variables, &A and &C, to the value &B code:

...
SET A = &&B
SET C = &NRSTR(&A)...

After the execution of the first SET statement, &A contains the value &B. When the
second SET statement is executed, the CLIST performs symbolic substitution and
substitutes &B for &A. &NRSTR prevents any further scan of the statement;
therefore, &C is assigned the value &B.

Expression’s Length - &LENGTH

54 OS/390 V2R10.0 TSO/E CLISTs

Records Containing JCL Statements
The following paragraphs discuss the use of the &NRSTR built-in function when
processing records that contain JCL statements.

Temporary Data Set Names
If a JCL statement contains a temporary data set name (for example, &&TEMP),
enclose the statement in a &NRSTR built-in function to prevent the CLIST from
removing the first ampersand. The following CLIST uses &NRSTR to preserve a
temporary data set name in a JCL statement.
submit *
//&sysuid job 'Y2803P,?,S=C','SteveR',msgclass=r,class=j
// exec pgm=IEFBR14
//dd1 dd dsn=&NRSTR(&&temp),disp=(,pass),unit=sysda
&null

Symbolic Parameters
If a JCL statement contains a symbolic parameter (for example, &LIBRARY),; use
the &SYSNSUB built-in function to prevent the CLIST from performing erroneous
symbolic substitution. Assume that the preceding CLIST contained the JCL
statement:
//dd2 dd dsn=&library,disp=(,pass),unit=sysda

To prevent any symbolic substitution, you can enclose the symbolic parameter
&library in the &SYSNSUB built-in function as follows:
//dd2 dd dsn=&SYSNSUB(0,&library),disp=(,pass),unit=sysda

The number 0 in parentheses after &SYSNSUB tells the CLIST how many levels of
symbolic substitution you want performed on the parameter (in this case, zero
levels). For more information about the &SYSNSUB built-in function, see “Limiting
the Level of Symbolic Substitution - &SYSNSUB” on page 62.

Defining Character Data - &STR
Use the &STR built-in function to define character data and prevent the CLIST from
evaluating it. The data can be any expression or statement, and can include nested
variables and characters of the double-byte character set (DBCS) within DBCS
delimiters.

For example, the statement SET DIMENSNS=&STR(2*4) defines 2*4 as a character
string and assigns the string to the variable &DIMENSNS; Without the &STR built-in
function, you could not make the desired assignment because a CLIST would
evaluate 2*4 as an arithmetic expression and set &DIMENSNS to the value 8.

The &STR built-in function suppresses arithmetic evaluations only for the data
between the parentheses. If you set &STATS to &DIMENSNS,; &STATS; will
contain the value 8, not the character string 2*4. To preserve the character string,
code:
SET STATS=&STR(&DIMENSNS)

Special procedures are required when defining parentheses as character data.
Unlike other CLIST operators, left and right parentheses can appear at the
beginning or in the middle of character data without having to be defined as
character data. Only when they appear at the end of a character string do
parentheses have to be defined with &STR, like the other operators.

Preserving Double Ampersands - &NRSTR

Chapter 6. Using Built-in Functions 55

The following examples show how to define right and left parentheses to appear as
character data at the end of a character string called TEXT:

RIGHT PARENTHESIS:
SET &A =)
SET &B = TEXT&STR(&A) /* result: B = TEXT)

LEFT PARENTHESIS:
SET &C = &STR((
SET &D = TEXT&STR(&C) /* result: D = TEXT(

Using &STR with &SYSDATE or &SYSSDATE
If you use &SYSDATE or &SYSSDATE on a CLIST statement other than WRITE,
enclose the variable in an &STR built-in function. Otherwise, a CLIST views the
slashes separating the day, month, and year as division operators and performs
division.
SET TODAY = &STR(&SYSDATE)

Using &STR with Leading and Trailing Blanks
Use the &STR built-in function to preserve leading and trailing blanks in a character
string. For example, the following statement sets the variable &CMNDFLD to a
blank, 2 hyphens, a greater than symbol, and four blanks:
SET CMNDFLD= &STR(-->)

Using &STR with Strings that Match CLIST Statement Names
You can use the &STR built-in function to distinguish installation-written commands
that match the names of CLIST statements. For example, if your installation had
written a command named NGLOBAL, you could use &STR to issue the command
from a CLIST and prevent the CLIST from misinterpreting it as the NGLOBAL
statement:
&STR(NGLOBAL)

Similarly, to issue the SELECT subcommand of the RACF command RACFRW, you
need to use the &STR built-in function to distinguish the subcommand from the
SELECT statement. For more information, see “Distinguishing the SELECT
Statement from the RACF SELECT Subcommand” on page 69.

Using &STR When Supplying Input Using SYSIN JCL Statements
When you submit a background job that invokes a program, you sometimes include
a ‘//SYSIN DD *’ JCL statement that supplies the input statements. If any input
statement contains leading blanks or is the same as a CLIST statement, enclose
that statement in a &STR built-in function. For example, suppose a hypothetical
language called SES has an IF-THEN-ELSE sequence. If you were to include such
a sequence in the SYSIN input statements, you would have to enclose it in an
&STR built-in function as shown in the following background invocation of a
hypothetical SES program called MATRIX.
PROC 1 FORMAT ACCT() CLASS(A)
CONTROL MAIN...
submit * end(nn)
//&SYSUID1 JOB &ACCT,&SYSUID,CLASS=&CLASS;
//STEP1 EXEC PGM=MATRIX...
//SYSIN DD *

Defining Character Data - &STR

56 OS/390 V2R10.0 TSO/E CLISTs

&STR(IF &FORMAT=1 THEN OPEN DS1)
&STR(ELSE OPEN DS2)
GETFILES 1-12
&STR(SET COLUMNS=GETFILES)...
nn

Only those input statements that contain leading blanks or are the same as CLIST
statements are enclosed in &STR built-in functions. If the CLIST invoked MATRIX in
the foreground, the &STR built-in functions would be unnecessary because the
program’s statements would appear in the data set containing MATRIX. Thus, they
would be associated with the program, not the CLIST.

Defining a Substring - &SUBSTR
Use the &SUBSTR built-in function to request that a CLIST use only certain bytes
of an indicated string when performing substitution. You indicate the starting and
ending positions of the string from which the substitution is made.

For example, assuming a variable called &ANIMALS contains the character string
“DOGSCATSSEALS”, to set a variable called &FELINE to the character string
“CATS”, code the following:
SET FELINE = &SUBSTR(5:8,&ANIMALS)

Note that the character string “CATS” begins in the fifth position of &ANIMALS and
ends in the eighth position.

A &SUBSTR built-in function can contain other built-in functions. Assume your
CLIST receives input from the user and assigns it to a variable called &NAME.
&NAME contains a person’s first and middle initial followed immediately by the last
name. To add a blank between the initials and the last name, you can set a variable
called &NFIELD to a character string consisting of the following:
1. The first and middle initials
2. A blank
3. The last name.
SET NFIELD = &STR(&SUBSTR(1:2,&NAME) &SUBSTR(3:&LENGTH(&NAME)+

,&NAME))

If you want the substring to contain only one character, you can omit the colon and
end-expression. For example, if you are interested only in the first letter of the last
name, code the following:
SET FLTRLNAME = &SUBSTR(3,&NAME)

You can substitute variables for starting and ending expressions. For instance, to
set the section of &STRING beginning at the second position and ending at the
eighth position to a variable called &WIDGET, you can create a variable and
substitute it in the SET statement. Assume that the substring data represents a part
number.
SET PART# = &STR(2:8,)
SET WIDGET = &SUBSTR(&PART#&STRING)

When a variable is named in &SUBSTR, arithmetic evaluation of the variable’s
contents is suppressed, as in &STR. For example:
SET DIMENSNS = &STR(2*4)
SET X = &SUBSTR(1:2,&DIMENSNS) /result: X = 2*

Defining Character Data - &STR

Chapter 6. Using Built-in Functions 57

However, when another built-in function such as &LENGTH is specified in the
&SUBSTR, the variable within the built-in function is evaluated before the
&SUBSTR. To protect that variable from arithmetic evaluation, use &STR.
SET DIMENSNS = &STR(2*4)
SET X = &SUBSTR(1:&LENGTH(&STR(&DIMENSNS)),&DIMENSNS)
/* result: X = 2*4

If a string contains data of the double-byte character set (DBCS), &SUBSTR counts
each DBCS character as two bytes, and counts each DBCS delimiter as one byte.
For example, using d1d2 to denote two DBCS characters and using < and > to
denote the DBCS delimiters X'0E' (shift-out) and X'0F' (shift-in):
SET X = &SUBSTR(8:9(A<d1d2>BC) /* result: X = BC

When &SUBSTR returns DBCS data, &SUBSTR encloses the data between the
DBCS delimiters X'0E' and X'0F'. &SUBSTR attempts to return the exact bytes
requested. However, when the starting or ending positions of the substring are
DBCS data or DBCS delimiters, &SUBSTR makes the following adjustments:

If the substring: &SUBSTR does the following:

Starts on the first byte of a DBCS character Replaces that byte with a single-byte blank
and the right-next byte with a shift-out
delimiter

Starts on the second byte of a DBCS
character

Replaces that byte with a shift-out delimiter

Starts on a shift-in delimiter Replaces that byte with a single-byte blank

Ends on shift-out delimiter Replaces that byte with a single-byte blank

Ends on the first byte of a DBCS character Replaces that byte with a shift-in delimiter

Ends on the second byte of a DBCS
character

Replaces that byte with a single-byte blank
and the left-next byte by a shift-in delimiter.

In addition, if the adjustment causes a not valid DBCS character, or a contiguous
pair of DBCS delimiters, &SUBSTR replaces those by single-byte blanks. However,
SUBSTR does not change any contiguous pairs of DBCS delimiters that were part
of the original data string.

The following are several examples of the adjustment process. In the examples, the
characters s, Dn, <, >, and b denote a single-byte character, double-byte character,
shift-out delimiter, shift-in delimiter, and single-byte blank, respectively.
&SUBSTR(4:10,ss<D1D2D3D4>) /* result: b<D2D3>

&SUBSTR(5:11,ss<D1D2D3D4>) /* result: <D2D3>b

&SUBSTR(6:10,ss<D1><D3D4>) /* result: b<D3>

&SUBSTR(1:3,ss<D1D2D3D4>) /* result: ssb

&SUBSTR(3:5,ss<D1D2D3D4>) /* result: bbb

Because &SUBSTR may truncate data in DBCS strings, you can use
&SYSCSUBSTR as an alternative to &SUBSTR for DBCS data.

Defining a Substring - &SUBSTR

58 OS/390 V2R10.0 TSO/E CLISTs

Defining a Substring - &SYSCSUBSTR
Use the &SYSCSUBSTR built-in function when you want a CLIST to treat
double-byte character set (DBCS) characters as single characters in a substring
operation. &SYSCSUBSTR differs from &SUBSTR in that &SYSCSUBSTR counts
each DBCS character as one character, and does not count DBCS delimiters. If
resulting substrings begin or end with DBCS characters, &SUBSTR adds DBCS
delimiters as needed. For example:
SET X = &SUBSTR(2:3,<d1d2d3>) /* result: X = <d2d3>

The same is true if a string contains both EBCDIC and DBCS characters:
SET Y = 1260
&SUBSTR(1:3,AB<d1d2d3>) /* result: X = AB<d1>

Except for the difference in treating DBCS characters, &SYSCSUBSTR is identical
to &SUBSTR.

Converting Character Strings to Uppercase Characters - &SYSCAPS
Use &SYSCAPS to convert character strings to uppercase characters. &SYSCAPS
does not modify special characters or DBCS characters included in the string. If a
string begins with leading zeros, &SYSCAPS strips them off. Otherwise,
&SYSCAPS does not modify numbers in the string. You can use variables
containing the character strings in &SYSCAPS built-in functions.

You can use &SYSCAPS with &SYSLC to control the capitalization of text in a
CLIST. For an example, see “Controlling Uppercase and Lowercase for READ
Statement Input” on page 90.

Converting Character Strings to Lowercase Characters - &SYSLC
Use &SYSLC to convert character strings to lowercase characters. &SYSLC does
not modify numbers, special characters, or DBCS characters included in the string.
You can use variables containing the character strings in &SYSLC built-in functions.
For data to be changed to lowercase, CONTROL ASIS or NOCAPS must be in
effect or &SYSASIS must be set to the value ON.

Determining Data Set Availability - &SYSDSN
Use the &SYSDSN built-in function to determine whether a specified data set or a
specified data set and member exist and are available for use. If a data set has
been migrated, &SYSDSN attempts to recall it. The data set name can be the name
of any cataloged data set or cataloged partitioned data set with a member name.
Additionally, if you specify a member of a partitioned data set, &SYSDSN checks
whether you have access to the data set.

To suppress TSO/E messages issued by the &SYSDSN function, use the
CONTROL NOMSG statement. For information about the CONTROL statement, see
“CONTROL Statement” on page 154.

&SYSDSN returns one of the following values:
OK /* the data set or the data set and member exist

/* and are available
MEMBER SPECIFIED, BUT DATASET IS NOT PARTITIONED
MEMBER NOT FOUND
DATASET NOT FOUND

Defining a Substring - &SYSCSUBSTR

Chapter 6. Using Built-in Functions 59

ERROR PROCESSING REQUESTED DATASET
PROTECTED DATASET /* a member was specified but the

/* data set is RACF-protected
VOLUME NOT ON SYSTEM
UNAVAILABLE DATASET /* another user has an exclusive

/* ENQ on the specified data set
INVALID DATASET NAME, data-set-name
MISSING DATA SET NAME

When a data set is available for use, you may find it useful to get more detailed
information. For example, if you later need to invoke a service that requires a
specific data set organization, then use the LISTDSI statement. For a description of
the LISTDSI statement, see “LISTDSI Statement” on page 162.

For example, you can use the &SYSDSN built-in function with conditional logic (see
“Chapter 7. Structuring CLISTs” on page 65) to determine which data set to allocate
for use in a CLIST.
IF &SYSDSN('SYS1.MYLIB')=OK THEN +

DO
alloc f(utility) da('SYS1.MYLIB')
call (iecompar)

END
ELSE +
IF &SYSDSN('SYS1.INSTLIB(IECOMPAR)')=OK THEN +

DO
alloc f(utility) da('SYS1.INSTLIB')
call iecompar

END
ELSE +...

Enclose fully-qualified data set names in single quotes when they appear in
&SYSDSN built-in functions. You can use variables containing data set names in
&SYSDSN built-in functions.

The &SYSDSN function issues message IKJ56709I if a syntactically not valid data
set name is passed to the function. To prevent this message from being displayed,
use CONTROL NOMSG.
PROC 0
SET DSNAME = ABCDEFGHIJ.XYZ /* Syntactically invalid name,

/* because a qualifier is longer
/* than 8 characters

CONTROL NOMSG /* Set OFF to suppress any SYSDSN
/* TSO/E messages

WRITE VALUE RETURNED BY SYSDSN ==> &SYSDSN(&DSNAME)
EXIT CODE(0)

Locating One Character String Within Another - &SYSINDEX
Use the &SYSINDEX built-in function to locate the position where one character
string begins within another character string. In other words, &SYSINDEX returns
the numeric index (or offset) of string_1 within string_2. If SYSINDEX does not find
string_1 within string_2, &SYSINDEX returns a value of zero.

Use the following syntax:
&SYSINDEX(string_1,string_2[,start])

where:

Determining Data Set Availability - &SYSDSN

60 OS/390 V2R10.0 TSO/E CLISTs

string_1
is the character string that you are searching for.

string_2
is the character string to be searched in.

start is a numeric expression indicating where in string_2 the search for string_1
should begin. If omitted or zero, this value defaults to one.

In examples 1-4, assume that &X is DOG, &Y is CATDOGSDOG and &Z is 2:
1. SET A = &SYSINDEX(&X,&Y) /* result: A = 4

&SYSINDEX found DOG in the fourth position of CATDOGSDOG, thus the
index is 4.

2. SET A = &SYSINDEX(&X,&Y,&Z) /* result: A = 4
&SYSINDEX started searching at the second position, and found DOG again at
the fourth position.

3. SET A = &SYSINDEX(&X,&Y,3+&Z) /* result: A = 8
Because the search started in the fifth position (3+2) &SYSINDEX found the
second occurrence of DOG, in the eighth position.

4. SET A = &SYSINDEX(&X,&Y,9) /* result: A = 0
The search started in the ninth position and &SYSINDEX could not find the
target string DOG.

Blanks are valid in string_1 and string_2. For example:
SET A = &SYSINDEX(is full,the car is full) /* result: A = 9

To search for a blank in string_2, you can set string_1 to a variable containing the
value &STR(). For example:
SET BLANK = &STR()
SET TARG = THIS IS A TEST
SET LOC = &SYSINDEX(&BLANK,&TARG) /* result: &LOC = 5

If string_1 or string_2 might contain a comma or right parenthesis, first set the string
to a variable’s value using &STR, then use the variable in &SYSINDEX, again
enclosed in &STR(...). For example:
SET ARG = &STR(,)
SET TARG = &STR((80,60))
SET &LOC = &SYSINDEX(&STR(&ARG),&STR(&TARG)) /* result: &LOC = 4

SET ARG = &STR())
SET TARG = &STR((80,60))
SET &LOC = &SYSINDEX(&STR(&ARG),&STR(&TARG)) /* result: &LOC = 7

Using &SYSINDEX with DBCS Strings
&SYSINDEX can search for strings that contain characters of the double-byte
character set (DBCS). The following considerations apply:

v Always include DBCS delimiters around DBCS characters in string_1 and
string_2. For example, using < and > to denote the DBCS delimiters X'0E'
(shift-out) and X'0F' (shift-in):
SET A = &SYSINDEX(<d2>,<d1d2d3>) /* result: A = 2

v String_1 and string_2 can have EBCDIC, DBCS, or mixed data. For example:
SET X = &SYSINDEX(CD,A<d1d2>BCD) /* result: X = 5
SET X = &SYSINDEX(<d2>,A<d1d2>BCD) /* result: X = 3

EBCDIC and DBCS strings never match, even when they have the same
hexadecimal values. For example:

Locating String Within Another - &SYSINDEX

Chapter 6. Using Built-in Functions 61

SET X = &SYSINDEX(AB,<d1d2d3>) /* result: X = 0
/* where EBCDIC characters 'AB' and a DBCS character 'd2'
/* have the same hexadecimal value.

v Contiguous shift-out/shift-in delimiters and contiguous shift-in/shift-out delimiters
in string_1 are treated as parts of the target. For example:
SET X = &SYSINDEX(<d1><d2>,A<d1><d2>B) /* result: X = 1
SET X = &SYSINDEX(<d1><d2>,A<d1d2>B) /* result: X = 0

v If string_1 consists of DBCS delimiters only, they are searched for in string_2,
and the result is the position of the character following the delimiters. For
example:
SET X = &SYSINDEX(<>,A<>BCD) /* result: X = 3

Limiting the Level of Symbolic Substitution - &SYSNSUB
Use the &SYSNSUB built-in function to limit the number of times a CLIST performs
symbolic substitution in a statement. With &SYSNSUB, you can limit the CLIST to
from 0 to 99 levels of substitution.

&SYSNSUB has the following syntax:
&SYSNSUB(level,expression)

where:

level
is a positive whole number, or a symbolic variable that resolves to a positive
whole number, from 0 to 99. This number tells the CLIST how many levels of
symbolic substitution to perform on the expression. The level parameter cannot
contain other built-in functions or expressions.

expression
is a CLIST expression whose level of symbolic substitution is to be controlled,
and whose final value is to be frozen without further evaluation of any kind.

For example,
SET Y = 30 /* result: &Y contains 30
SET X = &&Y /* result: &X contains &Y
SET Z = &&X /* result: &Z contains &X
SET A = &SYSNSUB(2,&Z) /* result: &A contains &Y

As specified, the CLIST performs only two levels of substitution, substituting &X for
&Z and then substituting &Y for &X. The CLIST does not continue and resolve &Y
to 30, as it would without the &SYSNSUB limit.

You can use &SYSNSUB to override the rule for double ampersands, in which the
CLIST removes the first ampersand and does no substitution of the remaining
variable. &SYSNSUB counts removal of the first ampersand as one level of
substitution, and allows substitution to continue until the value in the level
parameter is reached.

For example:
SET X = 10 /* result: &X = 10
SET Y = &&X /* result: &Y = &X (rule for double &&)

SET Y = &SYSNSUB(2,&&X) /* result: &Y = 10 (&SYSNSUB overrides &&)

Locating String Within Another - &SYSINDEX

62 OS/390 V2R10.0 TSO/E CLISTs

Note: The control variable &SYSSCAN restricts the levels of substitution that you
can specify with &SYSNSUB. &SYSSCAN must contain a number greater
than or equal to the number you specify in &SYSNSUB’s level parameter.

Converting DBCS Data to EBCDIC - &SYSONEBYTE
Use the &SYSONEBYTE built-in function to convert character strings from the
double-byte character set (DBCS) to the EBCDIC character set. &SYSONEBYTE
converts only DBCS characters that have EBCDIC equivalents: the DBCS blank
(X'4040') and DBCS characters that begin with the value X'42'.

&SYSONEBYTE converts the DBCS characters that have EBCDIC equivalents by
removing the first byte (X'40' or X'42'). The second byte, which remains, represents
the character in EBCDIC.

&SYSONEBYTE places DBCS delimiters around DBCS characters that are not
convertible (those that lack EBCDIC equivalents).

The following example represents a complete conversion from DBCS to EBCDIC:
SET X = &SYSONEBYTE(<d1d2d3d4>) /* result: X = ABCD

The following example represents a partial conversion from DBCS to EBCDIC,
assuming that d5 and d6 do not start with X'42' and are not the hex blank (X'4040'):
SET X = &SYSONEBYTE(<d3d4d5d6d7d8>) /* result: X = CD<d5d6>EF

Converting EBCDIC Data to DBCS - &SYSTWOBYTE
Use the &SYSTWOBYTE built-in function to convert EBCDIC characters to the
double-byte character set (DBCS). The EBCDIC characters that can be converted
are those with the hexadecimal equivalents X'40' and in the range from X'41' to
X'FE'. Any other EBCDIC characters cause errors when used with
&SYSTWOBYTE.

&SYSTWOBYTE converts the EBCDIC characters to DBCS by prefixing them with
the value X'42'. In the case of the EBCDIC blank (X'40'), &SYSTWOBYTE prefixes
it with the value X'40' to create the DBCS blank.

&SYSTWOBYTE encloses the resulting DBCS strings in DBCS delimiters (X'0E'
and X'0F').

The following example represents a complete conversion from EBCDIC to DBCS:
SET X = &SYSTWOBYTE(ABCD) /* result: X = <dAdBdCdD>

The following example represents a partial conversion from EBCDIC to DBCS:
SET X = &SYSTWOBYTE(CD<d5d6>EF) /* result: X = <dCdDd5d6dEdF>

Limiting Level of ... - &SYSNSUB

Chapter 6. Using Built-in Functions 63

Converting EBCDIC Data to DBCS - &SYSTWOBYTE

64 OS/390 V2R10.0 TSO/E CLISTs

Chapter 7. Structuring CLISTs

Making Selections. 66
The IF-THEN-ELSE Sequence 66

The Standard Format . 66
The Null ELSE Format . 67
The Null THEN Format . 67

Nesting IF-THEN-ELSE Sequences 67
The SELECT Statement . 68

Using SELECT without a Test Expression (Simple SELECT) 68
Using SELECT with a Test Expression (Compound SELECT) 68
Distinguishing WHEN Clauses from WHEN Commands 69
Distinguishing the SELECT Statement from the RACF SELECT

Subcommand . 69
Loops . 70

The DO-WHILE-END Sequence 70
The DO-UNTIL-END Sequence 71
The Iterative DO Sequence 71
Compound DO Sequences 72
Nesting Loops . 73
Distinguishing END Statements from END Commands or Subcommands 74

Using the CONTROL Statement 74
Using the DATA-ENDDATA Sequence 75

Subprocedures . 75
Calling a Subprocedure. 75
Returning Information from a Subprocedure 76

Using the RETURN CODE Statement 76
Using the SYSREF Statement 77

Sharing Variables among Subprocedures 77
Using the NGLOBAL Statement. 77

Restricting Variables to a Subprocedure. 78
Considerations for Using Other Statements in Subprocedures 78

Using ATTN and ERROR statements in Subprocedures 78
Using CONTROL Statements in Subprocedures. 78
Using GOTO statements in Subprocedures 78

Nesting CLISTs. 79
Protecting the Input Stack from Errors or Attention Interrupts 79
Global Variables . 80
Exiting from a Nested CLIST 80

Using the END Command 81
Using the EXIT Statement 81

GOTO Statements . 81

A CLIST can be:

v A single list of commands and statements

v A series of short lists connected by statements indicating which list is to be
executed next

When you create a CLIST as a series of short lists, you can connect the lists using
structured programming techniques. In structured programming, you direct the flow
of execution from list to list in a generally top-down sequence, from the highest to
the lowest level of detail. At the lower levels of detail, the lists can be independent
modules (subprocedures and nested CLISTs) containing common code that you can

© Copyright IBM Corp. 1988, 2000 65

call from other parts of the CLIST. A structured CLIST helps you avoid repetitive
code and is easier to read and maintain than an unstructured CLIST.

This chapter describes the structural elements of the CLIST language and how to
use them to move from one list of commands and statements to another. Structural
CLIST statements belong to the following categories:
v Selection
v Loops
v Calls to subprocedures
v Calls to other CLISTs

Making Selections
To tell the CLIST which commands or statements to execute next, you can use the
IF Statement or the SELECT statement. These statements combine each selection
with a test; if the test proves true, the CLIST executes the instructions, if not, the
CLIST can execute alternative instructions.

The IF-THEN-ELSE Sequence
The IF-THEN-ELSE sequence tests a condition or set of conditions, then
determines the logical path of execution (action) based on the results of the test.

The condition must be either a comparative expression or a variable containing a
comparative expression. You may code multiple conditions, in which case the
comparative expressions (and/or variables) must be joined by logical operators.

The action can be one or more instructions. If the condition or set of conditions is
true, the CLIST executes the instructions in the THEN action. If the condition or set
of conditions is false, the CLIST executes the instructions in the ELSE action.

The Standard Format
The standard format includes actions for both true and false conditions, for
example:
IF condition THEN action ELSE action

If an action involves more than one statement or command, it is necessary to
enclose the action in a DO-END sequence, for example:
IF condition THEN +
DO...
(action) /* action consists of a list of statements or commands...
END
ELSE action /* action consists of a single statement or command

For example, assume a CLIST optionally prints a data set it has updated based on
user input. Assume the CLIST has prompted the user to determine whether to print
the data set and has saved the response in a variable called &PRINT; The following
IF-THEN-ELSE sequence performs the desired processing:
/***/
/* If the user wants data set printed, issue a message */
/* saying that it is being printed and issue the command */
/* that prints it. If user does not want data set printed */
/* just issue a message saying that the data set is not */
/* being printed. */
/***/

Structuring CLISTs

66 OS/390 V2R10.0 TSO/E CLISTs

IF &PRINT=YES THEN +
DO
WRITE We are printing the data set as you requested.
printds da(&dsn)
END
ELSE +
WRITE The data set will not be printed.

When there is only one instruction in an action, you may place the instruction on
the same line as the THEN or ELSE statement. For example, you could code the
ELSE statement in the previous example as follows:
ELSE WRITE The data set will not be printed.

The Null ELSE Format
When a specific ELSE action is not required, you can code a null ELSE clause in
one of two ways: omit the ELSE clause entirely or just code ELSE without operands
(an action). The following IF-THEN-ELSE sequence omits the ELSE entirely:
IF &PRINT=YES THEN +
DO
WRITE We are printing the data set as you requested.
printds da(&dsn)
END

You can also code the following:
IF &PRINT=YES THEN +
DO
WRITE We are printing the data set as you requested.
printds da(&dsn)
END
ELSE

The Null THEN Format
Assume a CLIST prints a data set itself and does not have to invoke another CLIST
to do the printing. By coding a condition that is true when the data set should not
be printed, you define a null THEN clause that effectively branches to the end of the
ELSE clause, avoiding the code that prints the data set.

The following IF-THEN-ELSE sequence bypasses the printing action when
&PRINT=NO; (If &PRINT has any other value, such as YES or null, then printing is
performed.)
IF &PRINT=NO THEN
ELSE +
DO...
(The rest of the CLIST, which prints the data set)...
END

Nesting IF-THEN-ELSE Sequences
IF-THEN-ELSE sequences can contain other (nested) IF-THEN-ELSE sequences.
For example, the following IF-THEN-ELSE sequence uses a nested IF-THEN-ELSE
sequence as the action of its ELSE clause:
IF condition1 THEN +

DO
action1 /* Do if condition 1 is true
END

ELSE +
IF condition2 THEN +

DO
action2 /* Do if condition1 is false and

Making Selections

Chapter 7. Structuring CLISTs 67

END /* condition2 is true
ELSE +

DO
action3 /* Do if condition1 and condition2
END /* are both false

Nested IF-THEN-ELSE sequences allow you to control the flow of processing under
very precise conditions. However, multiple nested IF-THEN-ELSE sequences can
be difficult to write and maintain. As an alternative, you can use the SELECT
statement in many cases.

The SELECT Statement
In situations where you might want to use multiple IF-THEN-ELSE statements, you
can often use a single SELECT statement instead. The SELECT statement allows a
CLIST to select actions from a list of possible actions. An action consists of one or
more statements or commands. The SELECT statement has the following syntax,
ending with the END statement. You can use the SELECT statement with or without
the initial test expression.
SELECT [test expression]

WHEN expression1...
(action)...
WHEN expression2
WHEN expression3

[OTHERWISE]...
(action)...

END

Using SELECT without a Test Expression (Simple SELECT)
If you omit the test expression from the SELECT statement, the CLIST tests the
WHEN expressions in sequence for a true value. If a true value is found (for
example, 1 = 1) the CLIST executes the action of that WHEN clause only. Then the
CLIST passes control to the END statement. If none of the expressions evaluate to
a true value, the CLIST executes the OTHERWISE action, if any.

For example, the following SELECT statement selects an action based on a return
code from previous processing:
SELECT

WHEN (&RTNCODE = 0) CALL 'A.B.LOAD(PGM)'
WHEN (&RTNCODE = 1) +

DO
SET &X = X + 1
SET RETRY = &STR(YES)

END
OTHERWISE SET &MSG = &STR(SEVERE ERROR)

END

For other examples of using the simple SELECT statement, see Figure 6 on
page 107 and Figure 26 on page 138.

Using SELECT with a Test Expression (Compound SELECT)
If you include a test expression on the SELECT statement, the CLIST compares the
test expression to the expressions on the WHEN clauses. On each WHEN clause,
you can specify multiple expressions, or a range of values by using a colon (:)

Making Selections

68 OS/390 V2R10.0 TSO/E CLISTs

between the low and high values in the range. You can combine expressions and
ranges on a WHEN clause by using the operator OR or |.

If a test expression matches a value or falls within a range of values in a WHEN
expression, the CLIST executes the action for that WHEN clause, then passes
control to the END statement.

For example, in the following SELECT statement, the CLIST executes the action of
the first WHEN clause because the test expression (5) falls within the range of
values 4:6 on that WHEN clause:
SELECT 5

WHEN (3 | 7 | 4:6) action...
WHEN (9 | &A + &Z) action...

END

If no WHEN expressions satisfy the test expression, the CLIST executes the
OTHERWISE action, if any.

For example, the following CLIST uses a SELECT statement to invoke other CLISTs
that print quarterly reports. The CLIST bases its selection on a test expression (the
number of the month) that the invoker supplies. When the number of the month falls
within a certain range, the CLIST prints the appropriate report. Otherwise, the
CLIST writes an error message.
PROC 1 MONTH
SELECT (&MONTH)

WHEN (1:3) %FIRSTQTR
WHEN (4:6) %SECNDQTR
WHEN (7:9) %THIRDQTR
WHEN (10:12) %FORTHQTR
OTHERWISE WRITE The month must be a number from 1 to 12.

END

Distinguishing WHEN Clauses from WHEN Commands
The WHEN clause in a SELECT statement is syntactically distinct from the WHEN
SYSRC TSO/E command. In a SELECT statement, a left parenthesis must follow a
WHEN clause. If you want to use the WHEN command as part of an action in a
SELECT statement, enclose the WHEN command in a DO-END sequence to
prevent the SELECT statement from interpreting the command as a not valid
WHEN clause. For example, the following syntax is acceptable:
SELECT

WHEN (&X=1) +
DO /* The action of the WHEN clause */
WHEN SYSRC(= 8) TIME /* is the WHEN SYSRC TSO command. */
END /* End of the DO group */

END /* End of the SELECT statement */

For more information about using the WHEN SYSRC TSO/E command, see
OS/390 TSO/E Command Reference.

Distinguishing the SELECT Statement from the RACF SELECT
Subcommand
If, in a CLIST, you invoke the SELECT subcommand of the RACF command
RACFRW, you must distinguish the subcommand from the SELECT statement. To
do so, use the &STR built-in function. For example, you could specify the
subcommand name as follows:
RACFRW
&STR(SELECT) VIOLATIONS

Making Selections

Chapter 7. Structuring CLISTs 69

Loops
Unlike the simple DO-END sequence, the other DO-sequences in the CLIST
language create loops. Loops are lists of statements or commands that can be
executed one or more times or not at all, depending on conditions that you specify
in the loop. A CLIST executes a loop as many times as the conditions dictate.
When the conditions are satisfied or no longer true, execution continues at the
instruction after the loop.

The following sections describe how to create loops with the DO statement.

The DO-WHILE-END Sequence
The DO-WHILE-END sequence creates a loop that executes while a specified
condition is true. If the condition is not true, the loop does not execute.

To use the DO-WHILE-END sequence, code:
DO WHILE condition...

(action)...
END

The condition must be either a comparative expression or a variable containing a
comparative expression. You can code multiple conditions by joining expressions
and/or variables with logical operators.

The action can be one or more instructions. The CLIST executes the instructions
within the sequence repeatedly while the condition on the WHILE clause is true.
When the condition is false, the CLIST executes the next instruction after the END
statement.

For example, you can initialize a variable (usually a counter) before the sequence
and include it in the conditional expression. Then, you can modify the variable in
the action so that eventually the condition is false.

For example, to process a set of instructions five times, you can code the following:
SET &COUNTER = 5 /* Initialize counter */
/* Perform the action while counter is greater than 0 */
DO WHILE &COUNTER > 0...

(Set of instructions)...
SET COUNTER = &COUNTER - 1 /* Decrease counter by 1 */
END

The variable &COUNTER is a loop counter initially set to a value of five. WHILE
tests of the value of this counter each time the CLIST begins to execute the
DO-WHILE-END sequence. As long as the value of &COUNTER is greater than
zero (the test condition is true), the CLIST executes the sequence, whose last
instruction decreases the counter’s value by one. When the counter’s value reaches
zero (the test condition is false), the CLIST ends the loop, and continues processing
at the instruction following the END statement.

If an error occurs in a DO-WHILE sequence, execution stops. In previous releases,
a warning message was issued and execution continued, with the DO-WHILE
sequence treated as a simple DO-END sequence.

Loops

70 OS/390 V2R10.0 TSO/E CLISTs

The DO-UNTIL-END Sequence
The DO-UNTIL-END sequence creates a loop that executes at least once and
continues until a specified condition is true.

To use the DO-UNTIL-END sequence, code:
DO UNTIL condition...

(action)...
END

The condition must be either a comparative expression or a variable containing a
comparative expression. You can code multiple conditions by joining expressions
and/or variables with logical operators.

The action can be one or more instructions. The CLIST executes the instructions
within the sequence once, then tests whether the condition on the UNTIL clause is
true. If the condition is false, the CLIST repeats the loop until the condition is true.
When the condition is true, the CLIST ends the loop and executes the next
instruction after the END statement.

For example, to repeat some instructions until a condition is true, you can code the
following:
DO UNTIL &INPUT = YES /* Perform action until condition is YES...

(action)...
WRITE Type YES if you are finished
READ &INPUT;

END

The DO UNTIL sequence is useful for requesting input from a user. Because the
decision is made after the input is received, the loop can continue or end depending
on the value of the input.

The Iterative DO Sequence
The iterative DO sequence creates a loop that executes as long as a numeric value
stays within a given range of values. The values can be variables derived from
CLIST processing. The iterative DO sequence has the following structure:
DO variable = from_expression TO to_expression +
[BY by_expression]...

(action)...
END

where:

variable
is the control variable for the loop. Its value changes each time the loop
executes, increasing by one (the default) or by a value that you specify in the
BY expression.

from_expression
is a decimal integer, or an expression that evaluates to a decimal integer, from
which the control variable starts. The CLIST sets the control variable to this
value when the loop begins.

Loops

Chapter 7. Structuring CLISTs 71

to_expression
is a decimal integer, or an expression that evaluates to a decimal integer, that
the control variable must increase or decrease to. The CLIST executes the loop
as long as the value of the control variable stays within the range created by
the FROM and TO expressions.

by_expression
is a decimal integer, or an expression that evaluates to a decimal integer, by
which the control variable increases or decreases. The default value is one.
After the loop executes, the control variable increases or decreases by this
amount. If the control variable is no longer within the FROM-TO range,
execution continues at the instruction after the END statement.

For example, a CLIST would execute the following loop ten times:
DO &count = 1 to 10 /* using default BY, increase &count by one

/* each time through the loop...
END /* &count is now equal to 11

And a CLIST would execute the following loop five times:
DO &count = 1 TO 10 BY 2 /* increase &count by two

/* each time through the loop...
END /* &count is now equal to 12

The FROM, TO, and BY expressions can all contain CLIST variables:
DO &count = &min TO &max BY &increment...
END

Compound DO Sequences
The preceding sections describe different ways to control the execution of loops.
You can combine these different types of loop control in a compound DO sequence.
A compound DO sequence combines an iterative DO sequence with a DO-WHILE
and/or DO UNTIL sequence.

In a compound DO sequence, the iterative DO sequence comes first, followed by
either the DO-WHILE or DO-UNTIL sequence:
DO variable = from_exp TO to_exp BY by_exp +
WHILE condition1 +
UNTIL condition2 +...

(action)...
END

The CLIST executes the compound DO sequence as shown in Figure 2 on page 73.

The following example demonstrates a possible compound DO sequence:
SET &increment = 2 /* Initialize BY condition
SET &year = 87 /* Initialize WHILE condition
DO &count = 1 TO 10 BY &increment +
WHILE &year=87 UNTIL &input=YES;...

(action)..

Loops

72 OS/390 V2R10.0 TSO/E CLISTs

.
WRITE Type YES if you are finished
READ &INPUT;

END

If you want a WHILE or UNTIL expression to contain a return code from the action
of the DO sequence, obtain the return code from &LASTCC and store it into
another variable as part of the action. For example:
DO &I = 1 to 10 WHILE (&RCODE = 0)...
SET RCODE = &LASTCC
END

Nesting Loops
The action of a loop can contain other loops. Loops within loops are called nested
loops. Loops can contain nested loops of the same type or of a different type.

Nested loops of the same type are often iterative DO-loops within other iterative
DO-loops. For example, to execute 100 CLISTs named PROC00 through PROC99,
you could code:

1.
┌──────────────────────────┐
│ Set control variable to │
│ value of from_expression │
└────────────┬─────────────┘

│
2. b
┌──────────────────────────┐

┌───c│ Use TO value to test ├──c If TO value is exceeded,
│ │ control variable for │ discontinue execution
│ │ termination │
│ └────────────┬─────────────┘
│ │
│ 3. b
│ ┌──────────────────────────┐
│ │ Use WHILE expression to ├──c If WHILE condition is not
│ │ test for termination │ met, discontinue execution
│ └────────────┬─────────────┘
│ │
│ 4. b
│ ┌──────────────────────────┐
│ │ │
│ │ Execute Action │
│ │ │
│ └────────────┬─────────────┘
│ │
│ 5. b
│ ┌──────────────────────────┐
│ │ Use UNTIL expression to ├──c If UNTIL condition is met,
│ │ test for termination │ discontinue execution
│ └────────────┬─────────────┘
│ │
│ 6. b
│ ┌──────────────────────────┐
│ │ Use BY value to update │
│ │ control variable │
│ └────────────┬─────────────┘
│ │
└─────────────────┘

Figure 2. How a CLIST Executes a Compound DO Sequence

Loops

Chapter 7. Structuring CLISTs 73

DO &I = 0 to 9
DO &J = 0 to 9
%proc&I&J
END
END

Nested loops of a different type are often DO-UNTIL loops within DO-WHILE loops,
for example:
SET &COUNTER1 = 0 /* Initialize outer loop counter */
SET &COUNTER2 = 3 /* Initialize nested loop counter */
DO WHILE &COUNTER1 < 5
/* Perform action while &counter1 is less than 5 */...
(action) /* Executes 5 times */...
DO UNTIL &COUNTER2 = 0
/* Perform action until &counter2 is equal to 0 */...
(Subset of action) /* Executes 3 times */...
SET COUNTER2 = &COUNTER2 - 1 /* Increase nested loop counter by 1 */
END...
SET COUNTER1 = &COUNTER1 + 1 /* Increase outer loop counter by 1 */
END

Distinguishing END Statements from END Commands or
Subcommands

You can issue TSO/E END commands or subcommands in a CLIST. The END
command terminates the CLIST, and END subcommands terminate certain
commands, such as the TEST command. When you include TSO/E END
commands or subcommands in the action of a DO-sequence or a SELECT
statement, you must distinguish the END commands or subcommands from the
END statement. You can distinguish the END statement using the CONTROL
statement or the DATA-ENDDATA sequence.

Using the CONTROL Statement
One way to distinguish an END statement from an END command or subcommand
is by coding a CONTROL statement with the END operand. The value you code for
the END operand must then be substituted for the END statement anywhere in the
CLIST, unless another CONTROL END overrides the value.

For example, if you want to substitute ENDO for the END statement, you can code
the following:
CONTROL END(ENDO)
SET COUNTER = 10
DO WHILE &COUNTER GT 0...

(action)...
test datapak(newpgm) /* Issue TSO/E TEST command */...

(TEST subcommands)...
end /* Issue END subcommand of TSO/E TEST */...
(more action).

Loops

74 OS/390 V2R10.0 TSO/E CLISTs

..
SET COUNTER = &COUNTER - 1 /* Decrease counter by 1 */
ENDO

Using the DATA-ENDDATA Sequence
Another way to identify END commands or subcommands in DO-sequences or
SELECT statements, is to place them in a DATA-ENDDATA sequence. For example:
SET COUNTER = 10
DO WHILE &COUNTER GT 0...

(action)...
DATA
test datapak(newpgm) /* Issue TSO/E TEST command */...
(TEST subcommands)...
end /* Issue END subcommand of TSO/E TEST */
ENDDATA...
(more action)...
SET COUNTER = &COUNTER - 1 /* Decrease counter by 1 */
END

Only TSO/E commands and subcommands can appear within the DATA-ENDDATA
sequence. If a CLIST statement is included, TSO/E attempts to execute it as a
TSO/E command, causing an error. For more information about the
DATA-ENDDATA sequence, see “Coding Responses to Prompts - The DATA
PROMPT-ENDDATA Sequence” on page 85.

Subprocedures
A subprocedure is a part of a CLIST that you can call from one or more places in a
CLIST. With subprocedures, you can organize a CLIST into logical units, making the
CLIST easier to write and maintain. You can also keep common code in a single
location and call it from other parts of the CLIST, thus avoiding repetitive code.

Subprocedures offer a variety of ways to communicate information within a CLIST.
You can:
v Pass parameters to and from subprocedures, for reference or modification
v Share variables globally among subprocedures
v Isolate variables in a subprocedure from the rest of the CLIST

Calling a Subprocedure
You call a subprocedure using the SYSCALL statement. On the SYSCALL
statement, name the subprocedure and any parameters you want to pass to the
subprocedure. The parameters can be data strings, variable values, or variable
names.

For example, the following CLIST uses the SYSCALL statement to pass a data
string (Jones), a variable value (&A), and a variable name (B) to a subprocedure
(XYZ):

SET &A = AL
SET &B = Jr.
SYSCALL XYZ Jones &A B /* pass parameters to XYZ */

Loops

Chapter 7. Structuring CLISTs 75

XYZ: PROC 3 PARM1 PARM2 PARM3 /* receive parameters on PROC stmt */
SYSREF PARM3 /* indicate parm3 holds a var. name */
WRITE &PARM1, &PARM2 &PARM3 /* result: JONES, AL Jr. */

END

Subprocedures always begin with a labeled PROC statement. The label can consist
of 1-31 characters (A-Z, 0-9, #, $, @) beginning with an alphabetic character (A-Z).
In the example above, the label is XYZ; the number 3 on the PROC statement
indicates that the subprocedure receives 3 positional parameters; those parameters
are assigned to the variables PARM1, PARM2, and PARM3. For more information
about the PROC statement, see “PROC Statement” on page 171.

The SYSREF statement tells the CLIST that PARM3 contains the name of a
variable (B). The SYSREF statement allows other statements in subprocedure to
reference and modify the variable’s value (Jr.). For more information, see “Using the
SYSREF Statement” on page 77.

To pass a parameter containing blanks to a subprocedure, set a variable equal to
the parameter value, then refer to that variable (without the ampersand) using
&STR on the SYSCALL statement. In the subprocedure, use the SYSREF
statement to refer to the PROC statement parameter that corresponds to the
variable name passed on the SYSCALL statement. For example,
SET &A = JOHN AL
SYSCALL XYZ &STR(A) /* Pass variable to XYZ, omitting & from

/* the variable name...
XYZ: PROC 1 PARM /* Subprocedure XYZ
SYSREF &PARM /* indicate PARM holds a variable name
WRITE &PARM /* result: JOHN AL

Subprocedures must always end with the END statement. When subprocedures
end, they pass control back to the statement following the SYSCALL statement.

Subprocedures can use the SYSCALL statement to:
v Call other subprocedures and pass parameters to them
v Call themselves
v Call the CLIST’s main procedure, if it has a label

Returning Information from a Subprocedure
Subprocedures can return information to the caller using:
v Return codes
v SYSREF variables
v NGLOBAL variables

Using the RETURN CODE Statement
Subprocedures can return information to the caller using the CODE option of the
RETURN statement. Like return codes from TSO/E commands, return codes from
subprocedures are stored in the control variable &LASTCC, but error return codes
from subroutines will not cause an error routine to receive control.

In the following example, the subprocedure passes a return code to the statement
following SYSCALL:

SET &A = AL
SYSCALL XYZ &A /* pass variable &A to XYZ */
IF &LASTCC = 0 THEN +

WRITE All's Well!

Subprocedures

76 OS/390 V2R10.0 TSO/E CLISTs

XYZ: PROC 1 PARM1
WRITE &PARM1
RETURN CODE(0)

END

Using the SYSREF Statement
When a SYSCALL statement passes a variable name (without the ampersand), the
subprocedure can use a SYSREF statement to let following statements reference
and modify the variable’s value. All changes to a SYSREF variable are retroactive;
that is, the new values are assigned to the original variable back in the caller.

In the following example, the subprocedure gives a new value to the variable whose
name is passed (A). The new value (GEORGE) replaces the old value (AL) in the
caller.

SET &A = AL
SYSCALL XYZ A /* pass var. &A to XYZ, omitting the &*/;
IF &LASTCC = 0 THEN +

WRITE &A /* result: GEORGE

XYZ: PROC 1 &PARM1
SYSREF &PARM1 /* refer changes to the caller */
SET &PARM1 = GEORGE
RETURN CODE(0)

END

Reminder: For SYSREF variables, always omit the ampersand (&) from
corresponding variables on the SYSCALL statement. By omitting the ampersand on
SYSCALL, you pass the name of the variable, not its value, to the subprocedure.
Using the SYSREF statement, the subprocedure can then assign new values to the
variable.

Sharing Variables among Subprocedures
In addition to passing return codes and variable values, you can define common
variables to be shared among different CLISTs, or among subprocedures in a single
CLIST.

Variables shared among different CLISTs are called GLOBAL variables. GLOBAL
variables are defined using the GLOBAL statement, and are fully described in
“Nesting CLISTs” on page 79.

Variables shared by subprocedures in one CLIST are called NGLOBAL (named
global) variables. You define named global variables with the NGLOBAL statement.
When you define an NGLOBAL variable, any subprocedure in the same CLIST can
refer to it by name and modify its value.

The NGLOBAL variables differ from GLOBAL variables in that:
v They are not global to (shared with) other CLISTs.
v They are defined by name only (not position).
v They need to be defined only once.

Using the NGLOBAL Statement
The NGLOBAL statement names variables that all the subprocedures in a CLIST
can use. The following subprocedure (ABC) defines variables A, B, and C and uses
the NGLOBAL statement to make them available to other subprocedures in the
CLIST:
ABC: PROC 0 /* In subprocedure ABC,
NGLOBAL A,B,C /* define NGLOBAL variables
SET A = apples

Subprocedures

Chapter 7. Structuring CLISTs 77

SET B = bananas
SET C = cantaloup
SYSCALL XYZ /* call subprocedure XYZ
END

XYZ: PROC 0 /* In subprocedure XYZ,
WRITE Mix &A, &B, and &C /* use the NGLOBAL variables
END

The NGLOBAL statement must precede any statement that uses its variables. The
number of variables that you can name on the NGLOBAL statement is unlimited.

For another example of using the NGLOBAL statement with subprocedures, see
“Allocating a Data Set with LISTDSI Information - The EXPAND CLIST” on
page 146.

Restricting Variables to a Subprocedure
Variables that you define in a subprocedure are local to that subprocedure, unless
you specifically name them on a GLOBAL or NGLOBAL statement. Different
subprocedures in a CLIST can have variables with the same name, and each
variable is local to the subprocedure that defined it. Therefore, when you define a
variable, you don’t have to check to see if that name has been used in the CLIST
before.

Considerations for Using Other Statements in Subprocedures
Some CLIST statements require special consideration when used in subprocedures.
The following sections describe these statements and considerations.

Using ATTN and ERROR statements in Subprocedures
Subprocedures can have their own attention and error routines. These are routines
that receive control when the CLIST user presses the attention key on a terminal
keyboard, or an error occurs. See “Chapter 10. Writing ATTN and ERROR
Routines” on page 101 for a full description of these routines, including special
considerations for using them with subprocedures. For example, a subprocedure’s
attention or error routine cannot contain a nested attention or error routine.

When a subprocedure receives control, the caller’s attention and error routines
remain in effect until the subprocedure issues an ATTN or ERROR statement. Then
the subprocedure’s attention or error routine prevails until the routine is turned off or
replaced, or the subprocedure ends. When the subprocedure ends, the caller’s
attention and error routines take control again.

Using CONTROL Statements in Subprocedures
CLISTs can establish special conditions by issuing the CONTROL statement and
certain control variables. These conditions, comprising a CONTROL environment,
remain in effect when you call a subprocedure. Subprocedures can set up their own
CONTROL environment, but it only applies to the subprocedure and any
subprocedures it calls. When a subprocedure ends, the caller’s CONTROL
environment takes effect again.

Using GOTO statements in Subprocedures
If you use a GOTO statement in a subprocedure, it can only branch to labels in the
same subprocedure. Also, GOTO statements cannot branch to PROC statements.

Subprocedures

78 OS/390 V2R10.0 TSO/E CLISTs

Nesting CLISTs
A CLIST can invoke another CLIST, which in turn can invoke another, and so forth.
CLISTs that are invoked by other CLISTs are called nested CLISTs. When a nested
CLIST ends, it automatically branches back to the statement following the one that
invoked it. You can define global variables that allow nested CLISTs to
communicate with each other.

You can structure a series of nested CLISTs in levels. The CLIST invoked by the
user is the top-level or outer-level CLIST in the nesting chain. CLISTs invoked by
the outer-level CLIST are nested within it, and they may have lower-level CLISTs
nested within them.

In Figure 3, PROC1 is the outer-level CLIST. It invokes PROC2 and then PROC3,
which are nested within it. PROC2 invokes PROC4, and PROC4 invokes PROC5.
PROC4 is nested within PROC2, and PROC5 within PROC4.

Because CLISTs are executed sequentially, PROC1 cannot invoke PROC3 until
PROC5, PROC4, and PROC2 finish processing.

The same CLIST can be invoked at two or more levels of a nested hierarchy
because each invocation of a nested CLIST causes a new copy of it to be brought
into storage. For example, PROC2 and PROC4 could both invoke PROC5.

Protecting the Input Stack from Errors or Attention Interrupts
When a CLIST is executed, it translates each statement into an executable format
and places it in a section of storage called the input stack. The input stack is the
source from which TSO/E obtains its input (TSO/E commands and CLIST
statements).

PROC1

PROC2

PROC4

PROC5

PROC3

Figure 3. Nested CLISTs

Nesting CLISTs

Chapter 7. Structuring CLISTs 79

For nested CLISTs, the input stack holds the contents of the CLISTs in the order in
which they are nested.

You can protect the input stack from being erased (flushed) when an error or
attention interrupt occurs. To protect the input stack, code the CONTROL statement
with the NOFLUSH or MAIN operand at the beginning of a CLIST that you want to
receive control when an error or attention interrupt occurs.

Any options established by a nested CLIST are in effect only when that nested
CLIST is executing. In particular, a nested CLIST’s CONTROL statement options
and attention and error routines are no longer in effect when the nested CLIST
returns control to its caller.

Nested CLISTs in the subcommand environment (those invoked under the EXEC
subcommand of EDIT) can execute only subcommands and CLIST statements.
They cannot execute TSO/E commands, nor can any nested CLISTs that they
invoke, until the END subcommand is executed.

Global Variables
Global variables are variables defined on a GLOBAL statement. They allow
communication between nested CLISTs. Any CLIST in the nested chain can modify
or reference the value of a global variable.

All global variables in a given CLIST must have unique names. You cannot have
more global variables on the GLOBAL statement in a nested CLIST than there are
on the GLOBAL statement in the top-level CLIST.

To establish global variables, first determine the total number of symbolic variables
that are referenced by more than one of the CLISTs in the nested chain. (Include
the top-level CLIST among those in the nested chain.) Then, code GLOBAL
statements in each of the CLISTs in the chain that are involved in the passing of
data.

For example, in Figure 3 on page 79, assume the following global variable
definitions in each of the CLISTs:

In PROC1: GLOBAL A B C D
In PROC2: GLOBAL X Y Z
In PROC3: GLOBAL F G H K
In PROC4: GLOBAL Q
In PROC5: GLOBAL R S.

Variables &A, &X, &F, &Q, and &R can be shared by all the CLISTs. If PROC4 sets
&Q equal to D777, then &A, &X, &F, and &R are also set equal to D777.

Within nested CLISTs, global variables are positional; that is, all variables defined
first refer to the same variable; all variables defined second refer to the same
variable; and so on.

Exiting from a Nested CLIST
There are three ways to exit from a nested CLIST:

v Let control automatically return to the calling CLIST at the end of the nested
CLIST.

v Issue an END command.

Nesting CLISTs

80 OS/390 V2R10.0 TSO/E CLISTs

v Issue an EXIT statement.

Using the END Command
The END command only allows you to terminate a CLIST. Control returns to the
CLIST that invoked it, but you cannot set a return code. To use the END command,
code:
end

The END command just terminates a CLIST and should not be used if a return
code is to be passed back to a calling CLIST. A calling CLIST may find the return
code in an unpredictable state. Use the EXIT statement where proper passing of a
return code to a caller is required.

Using the EXIT Statement
To cause a nested CLIST to return control to the CLIST that invoked it, you can
also code:
EXIT

You can specify a return code on the EXIT statement. The return code provides a
way for lower-level CLISTs to pass back to their callers indications of errors or
successful execution. To pass a return code when you exit, code:
EXIT CODE(expression)

The expression must be a positive integer, zero, or a symbolic variable whose
value, after substitution, is an integer. The nested CLIST stores the value of the
expression into the control variable &LASTCC.

If an error or attention interrupt occurs, a nested CLIST can pass control back to a
CLIST that is protected from termination by the CONTROL MAIN or CONTROL
NOFLUSH options. To return control to such a CLIST, code:
EXIT QUIT

or
EXIT CODE(expression) QUIT

If a CLIST in the nested chain is protected from termination, execution continues
based on actions in the CLIST’s active error or attention routine. For information on
writing error and attention routines, see “Chapter 10. Writing ATTN and ERROR
Routines” on page 101.

If no CLIST in the nested chain is protected from being terminated after an error or
an attention interrupt, coding QUIT causes control to return to the environment from
which the CLIST was invoked: TSO/E, TSO/E EDIT mode, or ISPF.

GOTO Statements
The GOTO statement causes an unconditional branch to a label within a CLIST.
The label may be a variable whose value, after symbolic substitution, is a valid label
within the CLIST. Examples of using GOTO statements are:

IF &A = 555 THEN GOTO A1
IF &A NE 0 THEN GOTO A2

A1: processing
.
.

A2: processing
.
.

Nesting CLISTs

Chapter 7. Structuring CLISTs 81

SET TARGET = B1
IF &X = 777 THEN GOTO &TARGET
ELSE +

DO
SET TARGET = B2
.
.
IF LASTCC = 0 THEN +
SET TARGET = B1
GOTO &TARGET
END

B1: processing
B2: processing

.

.

GOTO statements cannot branch:
v To another CLIST
v To a subprocedure’s PROC statement
v From one subprocedure to another
v From a subprocedure to the CLIST’s main procedure

GOTO Statements

82 OS/390 V2R10.0 TSO/E CLISTs

Chapter 8. Communicating with the Terminal User

Prompting the User for Input . 83
Prompting with the PROC Statement 83
Prompting with the WRITE and WRITENR Statements 84
Prompting with TSO/E Commands. 84

Coding Responses to Prompts - The DATA PROMPT-ENDDATA Sequence 85
Writing Messages to the Terminal 86

Using the WRITE and WRITENR Statements. 87
Controlling the Display of Informational Messages 87

Receiving Responses from the Terminal 88
Using the READ Statement 88

Controlling Uppercase and Lowercase for READ Statement Input 90
Using the READDVAL Statement 91

Passing Control to the Terminal 92
Returning Control After a TERMIN or TERMING Statement 93
Entering Input After a TERMIN or TERMING Statement 93

Using ISPF Panels . 94
ISPF Restrictions . 94
Sample CLIST with ISPF Panels 94

The CLIST language offers several ways to communicate with the terminal user.
These methods are:
v Prompting the user for input
v Writing messages to the user
v Receiving replies from the user
v Passing control to the user
v Using ISPF panels

Prompting the User for Input
A CLIST can prompt for input by:

v Using a PROC statement with positional or keyword parameters on the first line
of the CLIST

v Using WRITE and WRITENR statements

v Using TSO/E commands

Prompting with the PROC Statement
When you include positional parameters on a PROC statement at the beginning of
a CLIST, the CLIST user must supply a value for each of them. If the user does not
specify a value at execution, the CLIST prompts until the user specifies a value. For
example, the PROC statement
PROC 2 NAME ADDRESS

requires the user to pass two positional parameters at execution, for example:
EX clistname 'Jones Fishville'

If the user does not pass a parameter, the CLIST prompts for a NAME and an
ADDRESS. A PROC statement at the beginning of a CLIST also prompts when a
user passes a keyword parameter without a required value. For example, the
following PROC statement allows the user to pass the parameter ACCT with a
value in parentheses:

© Copyright IBM Corp. 1988, 2000 83

PROC 0 ACCT()

If the user passes ACCT without a value, for example,
EX clistname 'ACCT'

the CLIST prompts for a value.

Unlike PROC statements at the beginning of a CLIST, PROC statements on
subprocedures do not prompt for missing parameters. For more information about
the PROC statement, see “Using the PROC Statement” on page 20.

Prompting with the WRITE and WRITENR Statements
You can use either a WRITE or WRITENR statement, or a combination of both, to
send a message to the terminal user and prompt for input. To obtain input after a
WRITE or WRITENR, use the READ statement. For details about how to use the
WRITE and WRITENR statements, see “Using the WRITE and WRITENR
Statements” on page 87.

Prompting with TSO/E Commands
Some TSO/E commands, such as LISTDS, require more information than just the
name of the command and they prompt when that information is not supplied.
However, TSO/E commands included in a CLIST can prompt for input only when
the CLIST allows prompting. Prompting in a CLIST is controlled by the TSO/E
commands PROFILE and EXEC, and by the CLIST statement CONTROL and the
control variable &SYSPROMPT.

The following table illustrates the effect on prompting using different explicit
specifications of PROMPT/NOPROMPT on the PROFILE and EXEC commands
and on the CONTROL statement. Note that SET &SYSPROMPT = ON has the
same effect as CONTROL PROMPT and SET &SYSPROMPT = OFF has the same
effect as CONTROL NOPROMPT.

Prompting User for Input

84 OS/390 V2R10.0 TSO/E CLISTs

Notes:

1. PROFILE PROMPT is the default specification and applies to a TSO/E session,
not to a particular CLIST. You don’t need to specify PROFILE PROMPT unless
you want to override a prior PROFILE NOPROMPT command.

2. The PROFILE command can be executed either outside of, or within, a CLIST.

3. EXEC NOPROMPT is the default specification and applies only to the CLIST
that it invokes.

4. The CONTROL statement applies only to the CLIST in which it appears.

5. If a CONTROL statement does not appear in a CLIST, CONTROL NOPROMPT
is implied, unless &SYSPROMPT is set to a value of ON.

Coding Responses to Prompts - The DATA PROMPT-ENDDATA
Sequence
If you execute a CLIST in the background, a user cannot respond to prompts from
the CLIST. To avoid this problem, use the DATA PROMPT-ENDDATA sequence.
The DATA PROMPT-ENDDATA sequence lets you designate responses to prompts
by TSO/E commands or subcommands.

To use the DATA PROMPT-ENDDATA sequence, code:
DATA PROMPT...

/* Responses */
ENDDATA

profile noprompt
exec prompt
CONTROL PROMPT

profile prompt
exec prompt

profile prompt
CONTROL PROMPT

profile prompt
exec noprompt
CONTROL PROMPT

profile prompt
exec prompt
CONTROL PROMPT

profile prompt

profile prompt
exec noprompt

profile prompt
exec prompt
CONTROL NOPROMPT

Specifications

Prompting by TSO/E commands
allowed in CLIST

YES NO

X

X

X

X

X

X

X

X

Prompting User for Input

Chapter 8. Communicating with the Terminal User 85

If the sequence is not immediately preceded by a TSO/E command or subcommand
that prompts, an error occurs (error code 968 appears in control variable
&LASTCC). You can ignore the error condition if a command or subcommand that
could prompt, does not prompt.

The responses in the DATA PROMPT-ENDDATA sequence must appear exactly as
if a user entered the response. Each DATA PROMPT-ENDDATA sequence can
respond only to prompts issued by the immediately preceding command or
subcommand. However, you can include multiple responses to satisfy multiple
prompts. Excess responses can result in an error message and termination of the
CLIST if an error routine is not present.

To stop TSO/E commands from prompting after a DATA PROMPT-ENDDATA
sequence, code a null line after ENDDATA. To code a null line, first set a variable
equal to null:
SET &abc =

Then place that variable on the line after ENDDATA:
ENDDATA
&abc

Some TSO/E commands prompt for input when you code certain operands. For
example, the LINK command invokes the linkage editor. When you substitute an
asterisk (*) for the data set name, TSO/E prompts for control statements. If you
include such a LINK command in a CLIST that might run in the background, place
the control statements within a DATA PROMPT-ENDDATA sequence. The following
CLIST, when run in the background, link-edits the member X, which resides in the
file DD1:
CONTROL PROMPT LIST
IF &SYSENV=FORE THEN /* CLIST is running in the foreground */ +

link (*) /* Prompt user for control statements */ +
load('d32kds1.load') pr(*) ncal xref list let

ELSE /* CLIST is being run in the background */ +
DO

SET NULL = /* set null line to stop prompting after ENDDATA
link (*) +
load('d32kds1.load') pr(*) ncal xref list let
DATA PROMPT /* Designate responses to prompts */
include dd1(x)
entry x
name x
ENDDATA
&NULL /* null line stops prompting */

END

There are additional considerations for using the DATA PROMPT-ENDDATA
sequence:

v The CLIST must allow prompting.

v The CLIST performs symbolic substitution before using the responses to satisfy
the prompt. (You can include variables in the responses.)

Writing Messages to the Terminal
CLISTs send two types of messages to the terminal user: messages that you
specifically write from the CLIST, and informational messages from commands or
statements in the CLIST.

Prompting User for Input

86 OS/390 V2R10.0 TSO/E CLISTs

Using the WRITE and WRITENR Statements
Two CLIST statements are available for sending messages to the terminal and
prompting for input:

v WRITE displays a message at the terminal and causes the terminal’s display
cursor to return to the beginning of the next line after the message is displayed.

v WRITENR displays a message at the terminal and causes the terminal’s display
cursor to remain at the end of the message. (The “NR” in WRITENR is for “No
Return”.)

You can use either statement to send messages. You might find WRITENR
preferable when the message prompts the user for input.

When prompting the user for input, include a READ statement after the WRITE or
WRITENR statement. The READ statement reads the user input into a variable or
variables. For more information, see “Using the READ Statement” on page 88.

Both WRITE and WRITENR must be followed by one or more blanks and the text
of the message. For example:
CONTROL ASIS...
WRITE Your previous entry was invalid.
WRITE Do you want to continue?
WRITENR Enter yes or no.

As a result of these statements, the terminal user sees the following messages on
the screen:

Your previous entry was invalid.
Do you want to continue?
Enter yes or no. __

The cursor stops after the period in the last line to indicate the CLIST is waiting for
the user’s response. Because CONTROL ASIS is specified the CLIST displays the
message ‘as written’, in both uppercase and lowercase letters.

You can also use the WRITENR statement to join text. For example:
CONTROL CAPS...
WRITENR Please enter your userid
WRITE followed by two blanks.

As a result of these statements, the terminal user sees the following message:

PLEASE ENTER YOUR USERID FOLLOWED BY TWO BLANKS.

Because CONTROL CAPS is specified, the message is translated to all capital
letters before being displayed.

Controlling the Display of Informational Messages
You can request that informational messages from commands or statements in a
CLIST be displayed or suppressed using operands on the CONTROL statement or
the &SYSMSG control variable.

v To request that they be displayed, code:
CONTROL MSG

Writing Messages to Terminal

Chapter 8. Communicating with the Terminal User 87

or
SET &SYSMSG = ON

v To suppress the display of informational messages, code:
CONTROL NOMSG

or
SET &SYSMSG = OFF

The MSG/NOMSG option has no effect on error messages, they are always
displayed.

Receiving Responses from the Terminal
The READ and READDVAL statements provide two ways for CLISTs to access user
input from the terminal. The READ statement obtains input directly from the
terminal, usually following a WRITE or WRITENR statement. The READDVAL
statement obtains input from the &SYSDVAL control variable.

Using the READ Statement
The READ statement makes terminal input available to a CLIST in the form of
symbolic variables. You normally precede a READ statement with one or more
WRITE or WRITENR statements to let the user know that the CLIST is expecting
input, and what sort of input it is expecting.

You can include one or more symbolic variables on a READ statement. If a READ
statement does not include any variables, the CLIST stores the information the user
enters into the control variable &SYSDVAL.

Assume that a WRITE statement requests that the user enter four names. The
accompanying READ statement could be coded as follows:
READ A,B,C,D

Note that variables on a READ statement do not require ampersands.

If the user’s response to the previous WRITE statement is:
SMITH,JONES,KELLY,INGALLS,GREENE

The CLIST assigns the names to the symbolic variables on the READ statement as
follows:
&A has the value SMITH.
&B has the value JONES.
&C has the value KELLY.
&D has the value INGALLS.

Because the READ statement only includes four variables, the CLIST ignores the
fifth name (GREENE).

You can also code READ statements without variables:
READ

If the user responded with the same five names, they would all be stored in the
control variable &SYSDVAL. To preserve the input strings, the CLIST does not

Writing Messages to Terminal

88 OS/390 V2R10.0 TSO/E CLISTs

remove the delimiters. For example, if the user responds to the previous READ
statement by entering “SMITH,JONES,KELLY,INGALLS,GREENE”, &SYSDVAL has
the following value:
SMITH,JONES,KELLY,INGALLS,GREENE

To assign a null value to one of the variables on a READ statement, the user can
enter either a double comma or a double apostrophe (two single quotes). For
example, assume that the CLIST sends a message to the user requesting four
numbers. The READ statement to obtain these numbers is:
READ NUM1,NUM2,NUM3,NUM4

If the user responds either:
15,24,,73

or
'15' '24' '' '73'

The symbolic variables on the READ statement then have the following values:
&NUM1 has the value 15.
&NUM2 has the value 24.
&NUM3 has a null value.
&NUM4 has the value 73.

The fact that single quotes are valid delimiters requires that you exercise care when
reading fully-qualified data set names into variables. Precautions are necessary
because, if the user enters the data set name within single quotes (according to
TSO/E naming conventions), the CLIST normally reads them as delimiters, not
data. If a WRITE statement requests the name of a fully-qualified data set, the
CLIST can obtain the data set name as entered by the user, with single quotes
preserved, by using the READ statement with the &SYSDVAL control variable.

The following CLIST uses a READ statement and &SYSDVAL to preserve single
quotes around a data set name. It also checks for the quotes to see if the user
entered a fully-qualified data set name and, if not, adds the quotes and the user’s
prefix to the name.
PROC 0
WRITE Enter the name of a data set.
READ
SET &DSN = &SYSDVAL /* Get name from &SYSDVAL; */
IF &SUBSTR(1:1,&DSN) ¬= &STR(') THEN +
DO /* If not fully qualified, */
SET &DSN = '&SYSPREF;.&DSN' /* add prefix and quotes. */
END
WRITE &DSN

You can also use the READ statement to obtain values for PROC statement
keywords that were not supplied on the invocation of the CLIST. For example,
suppose a PROC statement defines &ALPHA as a keyword with a default null
value. Assume &ALPHA contains the number of golf balls on the moon and that the
user does not assign a value to &ALPHA when invoking the CLIST. However, a
variable, &SPACEVENTS, in the CLIST results in code being executed that requires
a non-null value for &ALPHA. To obtain a value for &ALPHA, the following code
sends a message to the user requesting a value for &ALPHA. Then, it issues a
READ statement with &ALPHA as a parameter.
PROC 0 ALPHA()...
SET SPACEVENTS = &ALPHA

Receiving Responses from Terminal

Chapter 8. Communicating with the Terminal User 89

DO WHILE &SPACEVENTS = /* Null */
WRITE Enter the number of golf balls there
WRITE are on the moon. A null value is unacceptable.
READ ALPHA
SET SPACEVENTS = &ALPHA
END

If a user ends a line of READ input with a plus sign or hyphen, the READ statement
treats it as a continuation symbol and waits for another line of input. For more
information, see “Continuation Symbols” on page 10.

Controlling Uppercase and Lowercase for READ Statement Input
To control uppercase and lowercase for READ statement input, use the
CAPS/ASIS/NOCAPS operand on the CONTROL statement, or the &SYSASIS
control variable, or the &SYSLC and &SYSCAPS built-in functions. The &SYSASIS
control variable and the CAPS/ASIS/NOCAPS operand indicate whether the CLIST
should translate all READ statement input to uppercase characters. (The CLIST
does not modify numbers, national characters, special characters, or DBCS
characters in such input.)

If you want the CLIST to translate all input obtained by READ statements to
uppercase characters, you can use the default value (CAPS) or code:
CONTROL CAPS

or
SET &SYSASIS = OFF

To request that the CLIST leave all input obtained by READ statements in the
format in which it was entered, code:
CONTROL ASIS

or
CONTROL NOCAPS

or
SET &SYSASIS = ON

The CAPS/ASIS/NOCAPS operands affect output from WRITE statements the
same as they affect input from READ statements.

&SYSLC and &SYSCAPS enable you to tailor individual strings as well as
substrings of input strings.

For example, a CLIST that prompts for first, middle, and last names, might want to
guarantee that the name is properly capitalized before saving it. The following
section of code shows a way to do so:
CONTROL ASIS /* Do not translate READ input to uppercase */
WRITENR Enter first name:
READ FNAME
WRITENR Enter middle name:
READ MNAME
WRITENR Enter last name:
READ LNAME

/**/
/* Set the lengths of the first, middle, and last names to */
/* variables so that the substring notation is easier to read. */
/**/

Receiving Responses from Terminal

90 OS/390 V2R10.0 TSO/E CLISTs

SET LGTHFNAME = &LENGTH(&FNAME)
SET LGTHMNAME = &LENGTH(&MNAME)
SET LGTHLNAME = &LENGTH(&LNAME)

/**/
/* Capitalize the first letters in first, middle, and last names */
/* and make sure all other letters are in lowercase characters. */
/**/

SET F = &SUBSTR(1,&SYSCAPS(&FNAME))&SUBSTR(2:&LGTHFNAME,&SYSLC(&FNAME))
SET M = &SUBSTR(1,&SYSCAPS(&MNAME))&SUBSTR(2:&LGTHMNAME,&SYSLC(&MNAME))
SET L = &SUBSTR(1,&SYSCAPS(&LNAME))&SUBSTR(2:&LGTHLNAME,&SYSLC(&LNAME))
SET NAME = &STR(&F &M &L)

If the input entered is CADman haVVy fisH, &NAME contains the string “Cadman
Havvy Fish”.

Using the READDVAL Statement
The READDVAL statement accesses the contents of the &SYSDVAL control
variable. &SYSDVAL contains one of three types of information:

v Information obtained by a READ statement without operands

v The non-delimiter data on the line returning control to the CLIST after a TERMIN
statement, as described in “Passing Control to the Terminal” on page 92

v Information that the CLIST explicitly placed into &SYSDVAL with an assignment
statement

The CLIST successively places each input string in &SYSDVAL into each variable
on the READDVAL statement.

Assume for the remainder of this topic that the following strings are in &SYSDVAL:
SMITH JONES KELLY

The following statement assigns the strings to symbolic variables:
READDVAL NAME1,NAME2,NAME3

Note that variables on the READDVAL statement do not require ampersands.

The preceding READDVAL statement produces the following results:
&NAME1; has the value SMITH.
&NAME2; has the value JONES.
&NAME3; has the value KELLY.

Note: The variables &NAME1, &NAME2, and &NAME3 can be set to different
values during the execution of a CLIST. However, if the contents of
&SYSDVAL is not modified and READDVAL is executed again, those
variables are reset to the current value of SYSDVAL.

The following statement also reads all three strings from &SYSDVAL:
READDVAL NAME1,NAME2,NAME3,NAME4

The value of &NAME4 is null because there are not enough input strings in
&SYSDVAL to provide a fourth value.

The following statement, however, assigns values only to the variables NAME1 and
NAME2:

Receiving Responses from Terminal

Chapter 8. Communicating with the Terminal User 91

READDVAL NAME1,NAME2

Because there are only two variables on READDVAL to which the CLIST can
assign the input strings in &SYSDVAL, the CLIST ignores the excess strings. In the
previous example, the CLIST ignores KELLY.

Passing Control to the Terminal
Two CLIST statements are available for transferring control to the terminal and
establishing a means for the user to return control to the CLIST:

1. TERMIN transfers control to the terminal and establishes a means for the user
to return control to the CLIST. A CLIST executed from the TERMIN is
considered to be not nested within the CLIST that issued the TERMIN
statement, and global variables sharing between the two CLISTs is not allowed.

2. TERMING transfers control to the terminal and establishes a means for the user
to return control to the CLIST. A CLIST executed from the TERMING is
considered to be nested within the CLIST that issued the TERMING statement,
and global variables sharing between the two CLISTs is allowed.

Other differences in how TERMIN and TERMING transfer control are listed in
Table 7.

Table 7. TERMIN and TERMING Statement Comparison

Characteristic TERMIN TERMING

Share GLOBAL variables across the TERMIN(G)
element

No Yes

Variable access across the TERMIN(G) element through
CLIST access routine IKJCT441

No Yes

Checking Command Output Trapping - IKJCT441 and
IRXEXCOM recognize CLIST and REXX execs on
opposing sides of a TERMIN(G) element

No Yes

CONTROL NOMSG statement - allow checking the
NOMSG setting on opposing sides of a TERMIN(G)
element

No Yes

Because the TERMIN and TERMING elements are CLIST-generated type elements
which cannot be added to the input stack through the external STACK service
routine, they are considered to be of the same type. If the topmost stack element is
a TERMIN or TERMING element, return code 60 (X'3C') is returned. For more
information see “TERMIN and TERMING Statement” on page 178.

Note: If you issue a CLIST containing a TERMIN or TERMING statement, under
either ISPF or a REXX exec, or in the TSO/E background, the TERMIN or
TERMING statement ends the CLIST. For CLISTs issued in the TSO/E
background, TSO/E also issues message IKJ56550I to indicate that the
TERMIN or TERMING statement is not supported for background
processing.

The TERMIN or TERMING statement either defines character strings, one of which
the user must enter to return control to the CLIST; or null lines, where the user must
press the Enter key to return control to the CLIST.

Receiving Responses from Terminal

92 OS/390 V2R10.0 TSO/E CLISTs

The TERMIN or TERMING statement normally does not function alone. WRITE
statements preceding the TERMIN or TERMING statement inform the user why
control is being transferred to the terminal and how to return control to the CLIST.

Unlike the READ statement, TERMIN or TERMING enables the user to enter
commands or subcommands, and invoke programs before responding to the
WRITE statement prompts.

As soon as the CLIST issues the TERMIN or TERMING statement, the user
receives control at the terminal. The user might receive a mode message after the
TERMIN or TERMING statement is issued. If issued, the mode message might be
READY or the name of the command under which the CLIST was invoked. (When
READY is displayed, users might think the CLIST has terminated. You may want to
avoid any confusion by telling them otherwise in the WRITE statement that
precedes the TERMIN or TERMING statement.)

Returning Control After a TERMIN or TERMING Statement
To return control to the CLIST after a TERMIN or TERMING statement, code the
TERMIN or TERMING statement and define one or more character strings that
return control to the CLIST. For example:
TERMIN IGNORE,PROCESS,TERMINATE

The user then enters IGNORE, PROCESS, or TERMINATE to return control to the
CLIST. The &SYSDLM control variable identifies the position of the string used. For
example, if the user enters TERMINATE to return control, &SYSDLM contains a 3
because TERMINATE is the third variable on the TERMIN or TERMING statement.
Multiple strings enable the user to indicate desired actions to the CLIST.

You can allow a null line as one of the valid strings but it must be the first string on
the TERMIN or TERMING statement. To do so, place a comma directly before the
first character string as follows:
TERMIN ,PROCESS,TERMINATE

The previous statement enables the user to return control by entering either a null
line (pressing the Enter key), PROCESS, or TERMINATE.

You can issue a TERMIN or TERMING statement that lets the user return control by
entering a null line (pressing the Enter key). To do so, code:
TERMIN

Exercise care in using a null line as the means for a user to return control to the
CLIST, because some TSO/E command processors use null lines as function
delimiters (for example, to switch between input and edit modes under EDIT).

Entering Input After a TERMIN or TERMING Statement
The user can optionally enter input when returning control by appending the input to
the string that returns control. The CLIST stores the input in the &SYSDVAL control
variable, which the CLIST can then access by executing a READDVAL statement.
The READDVAL statement changes the input to upper case, unless you code
CONTROL ASIS in the CLIST.

Suppose a WRITE statement prompts the user to inform the CLIST, when returning
control after a TERMIN or TERMING statement, if any data sets should be deleted.
The user affirms the request by entering the following:

Passing Control to Terminal

Chapter 8. Communicating with the Terminal User 93

PROCESS JCL.CNTL(BUDGT) ACCOUNT.DATA

The following CLIST deletes the data sets in the previous statement:
WRITE Check your catalog and enter the names of
WRITE up to two data sets you want deleted.
WRITE They must be separated by a comma or blank and
WRITE the first name must be preceded by the word PROCESS
WRITE and a blank. If you do not want to delete any data
WRITE sets, type in the word IGNORE. If you want to end
WRITE the CLIST, type in TERMINATE.
TERMIN IGNORE,PROCESS,TERMINATE
/* Read the two data set names (if any) in &SYSDVAL into
/* variables called &DSN1 and &DSN2
READDVAL DSN1 DSN2
/* If the user wants to delete data sets (PROCESS),
/* delete them
IF &SYSDLM = 2 THEN +
DO
IF &DSN1¬= THEN +
delete &DSN1
IF &DSN2¬= THEN +
delete &DSN2

END
/* If the user wants the CLIST to ignore the deletion request
/* but continue processing, execute the rest of CLIST. The
/* null ELSE path covers the request to terminate immediately.
IF &SYSDLM = 1 THEN +
DO

(Rest of CLIST)
END

Using ISPF Panels
A CLIST can communicate with terminal users by displaying panels of the
Interactive System Productivity Facility (ISPF). ISPF panels allow users to make
selections and enter data; the selections and entries are then available for the
CLIST to use. ISPF panels can also invoke CLISTs based on user input. With ISPF,
CLISTs can conduct extensive panel-driven dialogs with users.

CLISTs use the ISPEXEC command to display ISPF panels. For complete
information about using the ISPEXEC command and its operands, see OS/390
ISPF User’s Guide Volume I.

ISPF Restrictions
The names of variables used on ISPF panels can be no longer than eight
characters.

Sample CLIST with ISPF Panels
For an example of displaying ISPF panels from a CLIST, see “Writing Full-Screen
Applications Using ISPF Dialogs - The PROFILE CLIST” on page 137. The
PROFILE CLIST displays any of four panels, based on input passed at invocation.
On two of the panels, user input (pressing the Enter or END PF key) causes the
CLIST to display another panel or end the session. The panels for the PROFILE
CLIST are illustrated in their ISPF panel-definition form. Instructions for allocating
the panels are included.

Passing Control to Terminal

94 OS/390 V2R10.0 TSO/E CLISTs

Chapter 9. Performing File I/O

Characters Supported in I/O . 95
Opening a File . 95
Closing a File . 96
Reading a Record from a File 96
Writing a Record to a File . 97
Updating a File . 98
End-of-File Processing . 98
Special Considerations for Performing I/O 99

CLISTs can perform I/O to a physical sequential data set, a member of a partitioned
data set (PDS), or the terminal when allocated to a file. Four CLIST statements are
available for opening, reading, writing, and closing files:

v OPENFILE opens a previously allocated file for input, output, or updating. You
may have allocated the file using the TSO/E ALLOCATE command or using step
allocation (JCL statements in a logon procedure).

v GETFILE reads a record from a file opened in the same CLIST.

v PUTFILE writes a record to a file opened in the same CLIST.

v CLOSFILE closes a file opened in the same CLIST.

Whenever a CLIST performs I/O, include an error routine that can handle end-of-file
conditions and errors that may occur. “End-of-File Processing” on page 98 shows a
CLIST with an error routine that handles end-of-file conditions.

Whenever CLISTs are nested, corresponding OPENFILE, GETFILE, PUTFILE, and
CLOSFILE statements must be in the same CLIST.

Characters Supported in I/O
CLIST I/O statements can process all data characters represented by hexadecimal
codes 40 through FF. See “Characters Supported in CLISTs” on page 12 for more
information and warnings for doing I/O from data sets containing special characters.

Opening a File
The OPENFILE statement has the following syntax:
OPENFILE filename {INPUT } /* to read records from the file

{OUTPUT} /* to write records to the file
{UPDATE} /* to update records in the file

To open a data set for I/O, you must allocate the data set to a file name, then use
that file name on the OPENFILE statement. To preserve data integrity, after the file
is opened for I/O, CLIST performs only one level of substitution against the file
name variable. That is, after the file name is substituted with a file record, and to
ensure the file record can be saved in its original format, CLIST does not re-scan
the record.

To allocate the data set to a file name, use the ALLOCATE command with the FILE
keyword. The file name is an arbitrary value; you can create it on the allocation.

For example, you can code the following:
...

© Copyright IBM Corp. 1988, 2000 95

allocate file(paycheks) da('d58tan1.checks.data') shr
OPENFILE PAYCHEKS...

You can also code the file name as a symbolic variable as follows:
...

SET FILEID= PAYCHEKS...
allocate file(&FILEID) da('d58tan1.checks.data') shr
OPENFILE &FILEID...

You can open a member of a PDS after allocating the member to a file name, for
example:
allocate file(income) da('d58tan1.receipts(july)') shr
OPENFILE INCOME

However, do not use OPENFILE statements to open more than one member of a
PDS for output at the same time.

Closing a File
To close an open file, use a CLOSFILE statement that includes the same file name
as that specified on the corresponding OPENFILE statement. For example, if you
opened a file by coding:
OPENFILE &FILEID

close that file by coding:
CLOSFILE &FILEID

If you do not close an open file before the CLIST terminates, you may not be able
to process that file again until you logoff and logon again.

For examples of CLOSFILE, see the examples in “Reading a Record from a File”
and “Writing a Record to a File” on page 97.

Reading a Record from a File
To read a record from an open file, use a GETFILE statement. The CLIST creates a
variable of the same name as the file name and places the record into it. As long as
the file remains open, successive GETFILE statements read successive records
from the file. When the end of the file has been reached, &LASTCC contains the
error code 400. For information about how to detect and handle end-of-file
conditions, see “End-of-File Processing” on page 98.

Assume a data set called D58TAN1.CHECKS.DATA contains the following records:
200BLACKBUY
449REFY
450YARRUM

To read the records into three variables, you could code the following:
...
(error routine)...

allocate file(paycheks) da('d58tan1.checks.data') shr reu
OPENFILE PAYCHEKS /* Defaults to INPUT */
SET COUNTER=1

Opening a File

96 OS/390 V2R10.0 TSO/E CLISTs

DO WHILE &COUNTER ¬> 3
GETFILE PAYCHEKS /* Read a record */
SET EMPLOYEE&COUNTER=&PAYCHEKS /* Store the record */
SET COUNTER=&COUNTER+1 /* Increase counter by one */
END
CLOSFILE PAYCHEKS /* Close the file */

If you use GETFILE to read data from the terminal, the data is translated to
uppercase, and the terminal user must end the data with a symbol that the CLIST
recognizes as an end-of-file.

Writing a Record to a File
To write a record to a file, do the following:

1. Open the file for output (OPENFILE filename OUTPUT).

2. Set a variable of the same name as the file name to the record you are writing
to the file.

3. Specify the file name on the PUTFILE statement to write the record to the data
set, for example:

OPENFILE PRICES OUTPUT /* open the file for output
SET PRICES = $2590.00 /* set variable to input record
PUTFILE PRICES /* put variable record into the file

Note: If you use a variable for the filename on a PUTFILE statement, use a nested
variable to contain the record, for example:
OPENFILE &FILEID OUTPUT /* open the file for output
SET &&FILEID = $2590.00 /* set variable to input record
PUTFILE &FILEID /* put variable record into the file

As long as the file remains open, successive PUTFILE statements write successive
records to the data set. For a data set with a disposition of NEW, OLD, or SHR, if
you close the file and then re-open it, a subsequent PUTFILE statement overlays
the first record in the data set. For a data set with a disposition of MOD, if you
close the file and then re-open it, a subsequent PUTFILE statement adds a record
to the end of the data set.

Assume a CLIST contains the following variables:
&EMPLOYEE1,; which contains the value 'BLACKBUY: $200.00'.
&EMPLOYEE2,; which contains the value 'REFY: $449.00'.
&EMPLOYEE3,; which contains the value 'YARRUM: $450.00'.

To place the previous values in a data set called D58TAN1.CURNTSAL.DATA, you
could code the following:
allocate file(salaries) da('d58tan1.curntsal.data') shr reu
OPENFILE SALARIES OUTPUT /* Open the file for output */
SET COUNTER=1
DO WHILE &COUNTER ¬> 3
SET EMPLOYEE=&&EMPLOYEE&COUNTER
SET SALARIES=&EMPLOYEE /* Set the record to be written */
PUTFILE SALARIES /* Write the record */
SET COUNTER=&COUNTER+1 /* Increase counter by one */
END
CLOSFILE SALARIES /* Close the file */

Reading a Record from a File

Chapter 9. Performing File I/O 97

Updating a File
To update a record in an open file, use the GETFILE and PUTFILE statements.
After opening a file for updating (OPENFILE filename UPDATE), perform
successive GETFILE statements until the desired record is read. After assigning the
new value to a variable of the same name as the file name, perform a PUTFILE
statement to update the record.

As long as the file remains open, you may update records.

Assume a data set called D58TAN1.CHECKS.DATA has a variable-blocked record
format and contains the following records:
200BLACKBUY
449REFY
450YARRUM

To update the record for REFY, you can code the following:
...
(error routine)...

allocate file(paycheks) da('d58tan1.checks.data') shr reu
OPENFILE PAYCHEKS UPDATE /* Open file for updating */
GETFILE PAYCHEKS /* Read first record */
DO WHILE &SUBSTR(4:7,&PAYCHEKS)¬=REFY
GETFILE PAYCHEKS /* Read another record */
END
SET PAYCHEKS = 000REFY /* Set new value */
PUTFILE PAYCHEKS /* Write new value to data set */
CLOSFILE PAYCHEKS /* Close the file */

End-of-File Processing
Whenever a CLIST performs I/O, include code that handles end-of-file conditions. In
a CLIST, end-of-file causes an error condition (error code 400). To process this
condition, provide an error routine before the code that performs the I/O.

An error routine is a block of code that gets control when an error occurs in a
CLIST. The error routine can try to identify the error (such as error code 400) and
take appropriate action. For a complete description of how to write an error routine,
see “Chapter 10. Writing ATTN and ERROR Routines” on page 101.

The following error routine saves the value of &LASTCC, closes and frees the open
file, and branches to a statement that determines whether end-of-file was reached.
SET RCODE=0 /* Initialize the return code variable to 0 */
SET EOF=OFF /* Set the end-of-file indicator off */...
ERROR +
DO
SET RCODE = &LASTCC /* Save the value of &LASTCC */
IF &RCODE=400 THEN +
DO
CLOSFILE PAYCHEKS /* Close the open file
free f(paycheks) /* Free the open file
WRITE No record to update because end-of-file was reached.
SET EOF=ON
RETURN /* Branch to statement that tests for
END /* EOF (IF &EOF=ON THEN...)
ELSE EXIT /* For other errors, EXIT
END
allocate file(paycheks) da('d58tan.checks.data') shr reu /* Allocate

Updating a File

98 OS/390 V2R10.0 TSO/E CLISTs

/* file */
/* and establish file name of paycheks */
OPENFILE PAYCHEKS UPDATE /* Open file for updating */
SET COUNTER=1 /* Initialize counter to 1 */
DO WHILE &COUNTER <= 4
GETFILE PAYCHEKS /* Skip records */
SET COUNTER= &COUNTER+1 /* Increase counter by 1 */
/* If EOF reached, end loop. Null else */
IF &EOF=ON THEN GOTO OUT
END
SET PAYCHEKS = 480BUZZBEE /* Set variable to new value */
PUTFILE PAYCHEKS /* Update fourth record */
CLOSFILE PAYCHEKS /* Close the file */...

(rest of CLIST)...
OUT: END

Special Considerations for Performing I/O
v MOD operand

When allocating the data set you can use the MOD operand. It allows you to
append data to the end of a sequential data set. For more information on the
MOD operand see OS/390 TSO/E Command Reference, and OS/390 TSO/E
REXX User’s Guide .

v Records Containing JCL Statements

If a CLIST reads or writes records containing JCL statements, that CLIST could
make unwanted modifications to the statements by symbolic substitution. To
prevent the unwanted modifications, use the &NRSTR or &SYSNSUB built-in
functions. See “Chapter 6. Using Built-in Functions” on page 51 for details and
examples.

v Concatenated Data Sets

You can perform I/O on multiple data sets that are allocated (concatenated) to a
single file name. However, the first data set in the concatenation must not be
empty: if a GETFILE statement is issued and the first data set in the
concatenation is empty, all other data sets allocated to the file are ignored, and
no records are read.

End-of-File Processing

Chapter 9. Performing File I/O 99

Special Considerations for Performing I/O

100 OS/390 V2R10.0 TSO/E CLISTs

Chapter 10. Writing ATTN and ERROR Routines

Writing Attention Routines . 101
Cancelling Attention Routines 102
Protecting the Input Stack from Attention Interrupts 102
Sample CLIST with an Attention Routine 102
Subprocedures and Attention Routines. 104
CLIST Attention Facility . 104

Writing Error Routines . 105
Cancelling Error Routines 105
Protecting the Input Stack from Errors 106
Sample CLIST with an Error Routine 106
Subprocedures and Error Routines 106

Two types of events cause the execution of a CLIST to halt prematurely: attention
interrupts and errors. The CLIST language provides two statements that enable you
to code routines to handle attention interrupts and errors. They are ATTN and
ERROR, respectively. The ATTN statement is described in “Writing Attention
Routines”. The ERROR statement is described in “Writing Error Routines” on
page 105.

An attention interrupt occurs when the user presses the attention key (usually PA1
or ATTN) on the terminal keyboard. The user may enter an attention interrupt for
any number of reasons, such as to terminate an infinite loop or simply to end the
CLIST. The user cannot enter an attention interrupt when a CLIST error routine is in
execution as a result of a CLIST-invoked command processor abend or before a
TSO/E command is executed within the CLIST. Any attention interruption received
while a command abend is in progress is ignored.

An error can occur for any number of reasons, such as a numeric value that
exceeds 231-1, an end-of-file condition, or a non-zero return code from a TSO/E
command.

Writing Attention Routines
Use the ATTN statement to identify an action to be taken when the user enters an
attention interrupt. The action can be any executable statement and is often a
DO-sequence that performs operations tailored to the CLIST. You can structure an
ATTN action as follows:
ATTN +
DO...
(action)...
END

The ATTN statement and its action must precede the code to which it applies.
Multiple CLIST statements may be executed in the action but only one TSO/E
command, TSO/E subcommand, or null line may be executed. (A null line returns
control to the statement or command that was executing when the attention
interrupt occurred.) If the one TSO/E command executed is an invocation of an
attention handling CLIST, you may execute as many TSO/E commands or
subcommands as you wish in the attention handling CLIST.

© Copyright IBM Corp. 1988, 2000 101

If an attention action does not execute a TSO/E command, subcommand, or null
line, the action must include an EXIT or RETURN statement. The EXIT statement
ends the CLIST, and the RETURN statement returns control to the CLIST
statement, command, or subcommand following the one that was executing when
the user entered the attention interrupt.

You should inform the user at the beginning of the attention routine that TSO/E is
processing the attention interrupt. Otherwise, the user may enter another attention
interrupt. For a description of how TSO/E processes multiple attention interrupts,
see OS/390 TSO/E Programming Services.

Cancelling Attention Routines
You can cancel an attention routine at any point, letting the CLIST continue without
any special attention processing. To cancel an attention routine, code:
ATTN OFF

This entry nullifies the most recently established attention routine. ATTN OFF
should not be used within an attention routine itself.

You can also code attention routines that override previous ones. Each attention
routine overrides all previous ones. You can initialize new attention routines as
many times as you wish.

Protecting the Input Stack from Attention Interrupts
When a CLIST is executed, it translates each statement into an executable format
and places it in a section of storage called the input stack. The input stack is the
source from which TSO/E obtains its input (TSO/E commands, CLIST statements).

If you write an attention routine that does not terminate the CLIST, protect the input
stack from being erased (flushed) from storage when an attention interrupt occurs.
You can protect the input stack by coding a CONTROL statement with the MAIN
operand. The MAIN operand indicates that the CLIST is the main CLIST in the
invoker’s TSO/E environment and prevents TSO/E from flushing the input stack in
the event of an attention interrupt.

Attention routine processing depends on whether CONTROL MAIN has been
coded, and whether the routine executes a TSO/E command, RETURN statement,
or null line.

v If CONTROL MAIN has not been coded, the CLIST terminates and the user sees
the READY message, indicating that control has returned to the terminal.

v If CONTROL MAIN has been coded, and a null line executes in the attention
routine, the CLIST continues at the statement or command that was executing
when the user entered the attention interrupt.

v If CONTROL MAIN has been coded, and a TSO/E command or RETURN
statement is issued, the CLIST continues at the statement or command following
the one that was executing when the user entered the attention interrupt.

Also refer to OS/390 TSO/E User’s Guide, for a further explanation of attention
interrupt processing.

Sample CLIST with an Attention Routine
The ALLOCATE CLIST shown in Figure 4 on page 103 contains an attention routine
that prompts the user to indicate whether he or she wants to end the CLIST.

Writing Attention Routines

102 OS/390 V2R10.0 TSO/E CLISTs

If the user types YES to end the CLIST, and data sets have been allocated, the
attention routine invokes a CLIST called HOUSKPNG (see Figure 5 on page 104),
which frees the allocated data sets. Then the attention routine ends the ALLOCATE
CLIST.

If the user does not type YES to end the ALLOCATE CLIST, the attention routine
issues CONTROL MAIN and a null line to return control to the point where the
attention interrupt occurred.

Note that the attention routine in Figure 4 issues only one TSO/E command:
%houskpng or the null line. However, the HOUSKPNG CLIST itself issues up to three
commands, depending on how many data sets it has to free.

/***/
/* THE ALLOCATE CLIST ALLOCATES THREE DATA SETS REQUIRED FOR */
/* A PROGRAM. IT IS EQUIPPED TO HANDLE ATTENTION INTERRUPTS */
/* ENTERED AT ANY POINT. WHEN NECESSARY, IT INVOKES HOUSKPNG. */
/***/

PROC 2 &DS1 &DS2
CONTROL END(STOP) /* substitute "STOP" for END statement */
CONTROL PROMPT
ATTN +

DO
WRITE TSO is processing your attention
WRITENR Do you want to end? If so, type YES ====>
READ &END
IF &END = YES THEN +

/* If user wants to end, terminate the CLIST after the HOUSKPNG routine */ +
/* frees any data sets allocated by the CLIST. */

DO
CONTROL FLUSH /* flush the input stack after HOUSKPNG */

STOP
ELSE +

CONTROL MAIN /* return control to the CLIST */
IF &FOOTPRINT = YES AND &END = YES THEN +

%houskpng &ds1 &ds2 &cleanup /* call HOUSKPNG to free data sets */
ELSE +

DO
SET &NULL =
&NULL /* issue null line to continue at the */

/* point where the attention occurred. */
STOP

STOP
alloc f(input) da(&ds1.text) shr reu
SET FOOTPRINT = YES
SET CLEANUP=1
alloc f(output) da(&ds2.text) reu
SET CLEANUP=2
alloc f(temp) da(temp.text)
SET CLEANUP=3
call 'myid.myprog.load(member)'
free f(temp) da(temp.text)
SET CLEANUP=2
free f(output) da(&ds2.text)
SET CLEANUP=1
free f(input) da(&ds1.text)
SET FOOTPRINT = /* Set FOOTPRINT back to null */

Figure 4. A CLIST Containing an Attention Routine - The ALLOCATE CLIST

Writing Attention Routines

Chapter 10. Writing ATTN and ERROR Routines 103

Subprocedures and Attention Routines
Attention routines can call CLIST subprocedures. TSO/E commands in called
subprocedures have the same effect as TSO/E commands in the attention routine
itself: when the first TSO/E command executes, attention processing ends and
control passes to the line in the CLIST following the one that was executing when
the attention interrupt occurred.

Subprocedures can contain attention routines. However, attention routines in
subprocedures cannot contain nested attention or error routines.

CLIST Attention Facility
The CLIST attention facility (in TSO/E) and the CLSTATTN parameter of the STAX
macro provide greater flexibility in the handling of attention interruptions. The
CLSTATTN parameter of the STAX macro lets a program establish an attention
routine that receives control when an attention interruption occurs during the
processing of a CLIST that contains an attention routine. The program’s attention
routine can invoke the CLIST attention facility to process the CLIST attention
routine.

Previously, the terminal monitor program (TMP) handled attention interruptions for
CLISTs with attention routines. Now a program can maintain control by having its
own attention routine perform that processing. For more information about using the
CLIST attention facility and the STAX macro, see OS/390 TSO/E Programming
Services.

/***/
/* THE HOUSKPNG CLIST IS INVOKED WHEN THE USER WANTS TO END THE */
/* ALLOCATE CLIST AFTER AN ATTENTION AND DATA SETS ARE ALREADY */
/* ALLOCATED. BASED ON THE VALUE OF THE VARIABLE CLEANUP, */
/* THE CLIST FREES FROM ONE TO THREE OF THE DATA SETS ALLOCATED */
/* IN THE ALLOCATE CLIST. */
/***/

PROC 3 &DS1 &DS2 &CLEANUP
CONTROL END(ENDO)
ATTN +
EXIT QUIT
IF &CLEANUP=1 THEN +
free f(input) da(&ds1.text)
IF &CLEANUP=2 THEN +
DO
free f(input) da(&ds1.text)
free f(output) da(&ds2.text)
ENDO
IF &CLEANUP=3 THEN +
DO
free f(input) da(&ds1.text)
free f(output) da(&ds2.text)
free f(temp) da(temp.text)
ENDO

Figure 5. An Attention Handling CLIST - The HOUSKPNG CLIST

Writing Attention Routines

104 OS/390 V2R10.0 TSO/E CLISTs

Writing Error Routines
Use the ERROR statement to create an error routine. The error routine defines an
action to be taken when a CLIST receives a non-zero return code from something
other than a CLIST subprocedure. (Table 8 on page 112 lists the CLIST error
codes.) The action can be any executable statement and is often a DO-group that
performs operations tailored to the indicated error. You can structure an ERROR
action as follows:
ERROR +
DO...
(action)...
END

The ERROR statement and its action must precede the code to which it applies. An
action may contain TSO/E commands and subcommands, subject to the mode in
which the CLIST is executing when the error occurs. Unlike attention routines, error
routine actions can issue multiple TSO/E commands or subcommands.

If an error routine action does not end the CLIST, it must include a RETURN
statement. The RETURN statement returns control to the CLIST statement, TSO/E
command, or TSO/E subcommand following the one that was executing when the
error occurred. Repeated errors which activate the same error routine may cause
the CLIST to terminate.

You may also code error routines that override previous ones. Each error routine
overrides all previous ones. You may initialize new error routines as many times as
you want.

Cancelling Error Routines
To cancel the most recently established error routine in a CLIST, code either:
ERROR OFF

or
ERROR

following the error routine to be cancelled.

When ERROR OFF is coded, processing continues as if an error routine had never
been established. When a failure occurs, one of the following occurs depending on
the type of failure:

v If the failure was due to an ABEND or non-zero return code from a TSO/E
command or subcommand, the CLIST continues execution with the next
sequential instruction following the failing instruction.

v If the failure was in a CLIST statement or in expression evaluation, the failing
instruction and explanatory CLIST error messages are displayed, and the CLIST
terminates.

When ERROR is entered with no operands, the CLIST displays the command,
subcommand, or statement on the CLIST that ended in error. No explanatory CLIST
error messages are displayed. &LASTCC is reset to 0 and the CLIST continues
with the next sequential statement or command.

Writing Error Routines

Chapter 10. Writing ATTN and ERROR Routines 105

Protecting the Input Stack from Errors
When a CLIST is executed, it translates each statement into an executable format
and places it in a section of storage called the input stack. The input stack is the
source from which TSO/E obtains its input (TSO/E commands, CLIST statements).

If you write a CLIST that contains an error routine, protect the input stack from
being erased from storage (flushed) when an error occurs. You can protect the input
stack by coding a CONTROL statement that includes the NOFLUSH or MAIN
operand. The CONTROL statement must appear before any error routine,
preferably at the beginning of the CLIST.

Sample CLIST with an Error Routine
The COPYDATA CLIST, shown in Figure 6 on page 107, contains an error routine
that handles:
v Pre-allocation errors
v End-of-file condition
v Allocation errors

The CLIST allocates the data sets required to copy an existing data set into an
output data set. If the copy is successful, the CLIST cancels the error routine by
executing an ERROR statement with no operands and continues.

Subprocedures and Error Routines
Error routines can call CLIST subprocedures, and subprocedures can issue the
RETURN statement to return control to the error routine. The error routine itself
must issue RETURN to return control to the statement after the one in error. For
example, the following error routine calls a subprocedure:
ERROR +
DO
SET &ECODE = 8
SELECT
WHEN (&FOOTPRINT=2) SYSCALL ABC ECODE...
END /* End of SELECT
RETURN /* return control to CLIST
END /* End of error routine...
ABC: PROC 1 CODEPARM /* subroutine ABC
SYSREF &CODEPARM /* refer variable back to caller's &ECODE
free f(indata) /* free data sets
free f(outdata)
SET &CODEPARM = 12 /* set error code
RETURN /* return control to error routine
END /* end of subroutine ABC

Subprocedures can contain error routines. However, error routines in subprocedures
cannot contain nested attention or error routines.

Writing Error Routines

106 OS/390 V2R10.0 TSO/E CLISTs

/***/
/* THE COPYDATA CLIST COPIES RECORDS FROM A DATA SET INTO AN */
/* OUTPUT DATA SET. IT IS EQUIPPED TO HANDLE ERRORS CAUSED BY */
/* END-OF-FILE, ALLOCATION ERRORS, AND ERRORS CAUSED BY OTHER */
/* STATEMENTS AND COMMANDS IN THE CLIST. */
/***/

CONTROL NOFLUSH END(ENDO) /* Protect the stack from being flushed
/* so that when error is caused by end-of-file, CLIST can continue
ERROR +
DO
SET RCODE=&LASTCC /* Save return code
/* If end-of-file, branch to CLOSFILE statements
SELECT
WHEN (&RCODE=400) +
DO /* IF End-of-file is reached, */
SET EOFFLAG = YES /* Set flag and return to the */
RETURN /* I/O procedure. */
ENDO
/* If error occurred before allocation, set exit code to 4
WHEN (&FOOTPRINT=0) SET ECODE=4
/* If allocation of file OUTDS failed, free file INDATA and set
/* exit code to 8
WHEN (&FOOTPRINT=1) +
DO
free f(indata) da(text.data)
SET ECODE=8
ENDO
/* If the error was not caused by end-of-file or allocation error,
/* free both files and set exit code to 12. In this case, error was
/* caused by one of the file I/O statements
WHEN (&FOOTPRINT=2) +
DO
free f(indata) da(text.data)
free f(outds)
SET ECODE=12
ENDO
ENDO /* End of SELECT statement
EXIT CODE(&ECODE) /* For all errors except end-of-file condition,
/* exit the CLIST with the appropriate exit code
ENDO /* End of error routine
SET FOOTPRINT=0 /* Identify pre-allocation errors...
SET FOOTPRINT=1 /* Identify allocation error for file INDATA
alloc f(indata) da(d15rbo1.text.data) shr reu /* Allocate input data set
SET FOOTPRINT=2 /* Identify allocation error for file OUTDS
alloc f(outds) sysout(a) /* Allocate output data set
OPENFILE INDATA /* Open input data set
OPENFILE OUTDS OUTPUT /* Open output data set
/* Copy records from input data set to output data set */

Figure 6. The COPYDATA CLIST (Part 1 of 2)

Writing Error Routines

Chapter 10. Writing ATTN and ERROR Routines 107

DO WHILE &EOFFLAG ¬= YES /* Do the following until EOF is reached*/
GETFILE INDATA /* Read input record
IF &EOFFLAG ¬= YES THEN +
DO
SET OUTDS=&INDATA /* Set output record to value of input record
PUTFILE OUTDS /* Write output record to output data set
ENDO

ENDO
EOF: CLOSFILE INDATA /* Close input data set
CLOSFILE OUTDS /* Close output data set
ERROR /* From this point on, display statement that causes error
/* along with any error messages...

Figure 6. The COPYDATA CLIST (Part 2 of 2)

Writing Error Routines

108 OS/390 V2R10.0 TSO/E CLISTs

Chapter 11. Testing and Debugging CLISTs

Using Diagnostic Options of the CONTROL Statement 109
Messages in Diagnostic Output 110
How to Make Diagnostic Output Optional in a CLIST 111

Getting Help for CLIST Messages 111
Obtaining CLIST Error Codes 111

This chapter describes how to test CLISTs using diagnostic procedures to find and
correct errors. The diagnostic procedures include:

v Using diagnostic options of the CONTROL statement to find errors in CLIST
statements and TSO/E commands

v Getting help for CLIST messages

v Finding and understanding CLIST error codes

Using Diagnostic Options of the CONTROL Statement
The CONTROL statement lets you define processing options for a CLIST. Some of
the CONTROL statement options can help you diagnose CLIST errors. These
diagnostic options, LIST, CONLIST, SYMLIST, and MSG, cause a CLIST to display
its statements, commands, and any informational messages at the terminal when
you execute the CLIST. From the displayed information, you can often find
statements or commands that contain errors.

You can use the diagnostic options separately or together on the CONTROL
statement. To obtain the most complete diagnostic information, code the options
together (the order is not significant):
CONTROL LIST CONLIST SYMLIST MSG

You can place the CONTROL statement at the top of the CLIST or in any part of
the CLIST that you want to test or debug. Each CONTROL statement overrides any
previous CONTROL statements. To turn off the diagnostic options, type:
CONTROL NOLIST NOCONLIST NOSYMLIST NOMSG

As an alternative to retyping the CONTROL statement when you want to change
options, you can use the control variables &SYSLIST, &SYSCONLIST,
&SYSSYMLIST, and &SYSMSG to test or change the current settings. For more
information about using these control variables, see “Setting Options of the CLIST
CONTROL Statement” on page 43.

The diagnostic options have the following effects:

SYMLIST
The CLIST displays each TSO/E command, subcommand, or CLIST statement
at the terminal before scanning it for symbolic substitution.

LIST
The CLIST displays each TSO/E command or subcommand at the terminal
after symbolic substitution but before execution.

CONLIST
The CLIST displays each CLIST statement at the terminal after symbolic
substitution but before execution.

© Copyright IBM Corp. 1988, 2000 109

MSG
The CLIST displays informational messages at the terminal.

Note: SYMLIST and CONLIST do not display the GLOBAL or NGLOBAL
statements.

The CLIST in Figure 7 contains diagnostic options on the CONTROL statement.
When you execute the CLIST, the commands and statements appear at the
terminal as shown in Figure 8.

Notice that each statement and command appears twice at the terminal. The first
version is caused by CONTROL SYMLIST and shows the statement or command
as it appears in the CLIST. The second version shows the results of symbolic
substitution on the preceding line. If a line undergoes no substitution (contains no
variables), both versions are the same.

Messages in Diagnostic Output
The CLIST executes each statement or command after performing symbolic
substitution on it. Therefore, when you use the MSG option with LIST and
CONLIST, messages about execution errors appear at the terminal after the line
that caused the error.

For example, the CLIST in Figure 7 fails when the input data set is not cataloged.
When the input data set is not cataloged, the CLIST displays the following
information at the terminal, with messages after the statement that failed to execute.

CONTROL LIST CONLIST SYMLIST MSG
SET INPUT = data.set.name
SET DSN = &INPUT;
allocate file(a) dataset('myid.&dsn')
free file(a)

Figure 7. Sample CLIST with Diagnostic CONTROL Options

SET INPUT = data.set.name
SET INPUT = data.set.name
SET DSN = &INPUT;
SET DSN = data.set.name
allocate file(a) dataset('myid.&dsn')
allocate file(a) dataset('myid.data.set.name')
free file(a)
free file(a)

Figure 8. Diagnostic Output from Sample CLIST

Diagnostic Options of CONTROL Statement

110 OS/390 V2R10.0 TSO/E CLISTs

The diagnostic output ends after the ALLOCATE command, when the CLIST detects
the error. Working backwards from the last line, you can find and correct the source
of the error (in this case, the value of &INPUT).

Note that the last line in Figure 9 is a continuation of the preceding message line.
When the CLIST is executed under ISPF, the continuation is displayed as shown in
Figure 9. Under line-mode TSO/E, you must type a question mark (?) after the plus
sign to see the continuation.

How to Make Diagnostic Output Optional in a CLIST
You can make the diagnostic output available as an option to anyone who invokes
your CLIST. To do so, code a keyword parameter such as DEBUG on the PROC
statement as follows:
PROC 0 DEBUG
IF &DEBUG=DEBUG THEN +
CONTROL LIST CONLIST SYMLIST MSG

The CONTROL options take effect when you invoke the CLIST with the DEBUG
parameter, for example (explicit invocation):
EX clistname 'DEBUG'

or, implicit invocation:
%clistname DEBUG

Getting Help for CLIST Messages
CLIST message numbers begin with the characters IKJ. For explanations of CLIST
messages, look up the message number in the IKJ section of OS/390 TSO/E
Messages. The message explanations include information about the action, if any,
you need to take to correct a problem.

Obtaining CLIST Error Codes
The CLIST control variable &LASTCC contains an error code from the last TSO/E
command or CLIST statement executed. After each command or statement in a
CLIST, you can retrieve the error code from &LASTCC, for example, by coding
SET ECODE = &LASTCC

You can then write the error code to the terminal or use it as a basis for further
processing. For more information about using &LASTCC, see “Getting Return
Codes and Reason Codes” on page 47.

SET INPUT = data.set.name
SET INPUT = data.set.name
SET DSN = &INPUT;
SET DSN = data.set.name
allocate file(a) dataset('myid.&dsn')
allocate file(a) dataset('myid.data.set.name')
IKJ56228I DATA SET MYID.DATA.SET.NAME NOT FOUND IN CATALOG
OR CATALOG CANNOT BE ACCESSED
IKJ56701I MISSING DATA SET NAME+
IKJ56701I MISSING NAME OF DATA SET TO BE ALLOCATED

Figure 9. Error Messages in Diagnostic Output from Sample CLIST

Diagnostic Options of CONTROL Statement

Chapter 11. Testing and Debugging CLISTs 111

Note: With the exception of the RETURN statement, CLIST statements and TSO/E
commands in error routines do not update the value of &LASTCC If you use
&LASTCC in an error routine, &LASTCC contains the return code from the
command or statement that was executing when the error occurred.

Table 8 lists and explains the error codes that CLIST statements return in
&LASTCC. Except as otherwise noted, the codes are in decimal format.

Table 8. CLIST Statement Error Codes (Decimal)

Error Code Meaning

16 Not enough virtual storage. Log on with more
storage.

300 User tried to update a control variable that
can only be updated by the system.

304 Not valid keyword found on EXIT statement.

308 CODE keyword specified, but no code given
on EXIT statement.

312 Internal GLOBAL processing error.

316 TERMIN delimiter has more than 256
characters.

324 GETLINE error.

328 More than 64 delimiters on TERMIN.

332 Not valid file name syntax.

336 File already open.

340 Not valid OPEN type syntax.

344 Undefined OPEN type.

348 File specified did not open. (For example,
the file name was not allocated.) Reallocate
the file.

352 GETFILE - file name is not currently open.

356 GETFILE - the file has been closed by the
system. (For example, the file was opened
under EDIT mode and EDIT mode has been
terminated.)

360 PUTFILE - file name not currently open.

364 PUTFILE - file closed by system (see code
356).

368 PUTFILE - CLOSFILE - file not opened by
OPENFILE.

372 PUTFILE - issued before GETFILE on a file
opened for update.

376 Unable to open the directory of a PDS using
a variable record format.

380 Data sets with a logical record length greater
than 32767 are not supported for CLIST I/O.

400 GETFILE - end of file. TSO/E treats this
condition as an error that can be handled by
an ERROR action.

404 User tried to write to a file open for INPUT.

Obtaining CLIST Error Codes

112 OS/390 V2R10.0 TSO/E CLISTs

Table 8. CLIST Statement Error Codes (Decimal) (continued)

Error Code Meaning

408 User tried to read from a file open for
OUTPUT.

412 User tried to update a file after end of file
was reached.

416 User tried to update an empty file.

500 The TO value on a DO statement is
non-numeric.

502 The FROM value on a DO statement is
non-numeric.

504 The BY value on a DO statement is
non-numeric.

508 A SYSCALL statement contains an undefined
procedure name.

512 A RETURN statement contains an undefined
keyword.

516 The name of a procedure is used as a
variable.

524 Unable to establish an ESTAE routine.

528 A positional specification on the PROC
statement was not valid.

532 Not valid characters were found in a
symbolic parameter on the PROC statement.

536 A symbolic parameter name on the PROC
statement is too long.

540 The number of positional parameters defined
on the PROC statement is fewer than the
number passed.

544 No symbolic parameters were defined on the
PROC statement.

548 Duplicate parameter names were found on
the PROC statement.

552 A keyword parameter has a not valid default
value.

556 A default keyword value was missing an
ending quote on the PROC statement.

560 A PARSE error occurred while processing
the PROC statement.

568 Abnormal termination

572 SYSREF variable was not passed as a
parameter.

576 SYSREF variable was not defined on a
PROC statement.

580 An ERROR statement was found within a
subprocedure’s ERROR or ATTN routine.

584 An ATTN statement was found within a
subprocedure’s ERROR or ATTN routine.

Obtaining CLIST Error Codes

Chapter 11. Testing and Debugging CLISTs 113

Table 8. CLIST Statement Error Codes (Decimal) (continued)

Error Code Meaning

588 A character between DBCS delimiters was
outside the range of double-byte characters.

592 A DBCS string contains an odd number of
bytes, indicating that one of the characters is
incomplete.

596 A beginning DBCS delimiter was found
without a corresponding ending delimiter.

600 Two beginning DBCS delimiters were found
without an intervening ending delimiter.

604 An error occurred while processing an
installation-written CLIST built-in function in
IKJCT44B.

608 An error occurred while processing an
installation-written CLIST statement in
IKJCT44S.

612 An error occurred in an installation exit.

620 EBCDIC &SYSTWOBYTE data is outside
valid DBCS range.

624 An error occurred while processing a system
variable (see note below).

708 The preceding statement has a not valid
&SYSINDEX expression.

712 The preceding statement has a not valid
&SYSINDEX start parameter; the start
parameter must be a non-negative number.

716 The preceding statement has a not valid
&SYSNSUB level parameter; the level
parameter must be a number from 0 to 99.

720 The preceding statement has a missing
&SYSNSUB level and/or expression
parameter.

724 The preceding statement has a &SYSNSUB
level parameter that uses a built-in function
as a symbolic variable.

8xx Evaluation routine error codes.

800 Data was found where operator was
expected.

804 An operator was found where data was
expected.

808 A comparison operator was used in a SET
statement.

812 (Reserved).

816 An operator was found at the end of a
statement.

820 Operators are out of order; data may
resemble operators.

824 More than one exclusive operator was found.

Obtaining CLIST Error Codes

114 OS/390 V2R10.0 TSO/E CLISTs

Table 8. CLIST Statement Error Codes (Decimal) (continued)

Error Code Meaning

828 More than one exclusive comparison
operator found.

832 The result of an arithmetic calculation is
outside the valid range, -2,147,483,647 to
+2,147,483,647.

836 (Reserved).

840 Not enough operands.

844 No valid operators.

848 An attempt was made to load data as
character data, but the data was numeric (an
arithmetic operation had been performed on
the data).

852 Addition error - character data.

856 Subtraction error - character data.

860 Multiplication error - character data.

864 Divide error - character data or division by 0.

868 Prefix found on character data.

872 Numeric value is too large.

900 Single ampersand was found.

904 (Reserved).

908 An error occurred in an error action that
received control because of another error.

912 Substring range is not valid.

916 A non-numeric value was found in a
substring range.

920 Substring range value too small (zero or
negative).

924 Substring syntax is not valid.

932 Substring found outside of the range of the
string. (For example, an &SUBSTR variable
attempted to substring the first three
positions of data that contains only two
characters.)

936 A built-in variable that requires a value was
entered without a value.

940 Not valid symbolic variable.

944 A label was used as a symbolic variable.

948 Not valid label syntax on a GOTO statement.

952 A GOTO label was not defined.

956 A GOTO statement has no label.

960 &SYSSCAN was set to a not valid value.

964 &LASTCC was set to a not valid value and
EXIT tried to use it as a default value.

968 DATA PROMPT-ENDDATA statements
supplied, but no prompt occurred.

Obtaining CLIST Error Codes

Chapter 11. Testing and Debugging CLISTs 115

Table 8. CLIST Statement Error Codes (Decimal) (continued)

Error Code Meaning

972 TERMIN statement cannot be used in
background jobs.

976 READ statement cannot be used in
background jobs.

980 Maximum statement length (32756)
exceeded during symbolic substitution.

984 TERMING delimiter has more than 256
characters.

988 TERMING has more than 64 delimiters.

992 TERMING statement cannot be used in
background jobs.

999 Internal CLIST error.

Sxxx A system abend code, printed in
hexadecimal.

Uxxx A user abend code, printed in hexadecimal.

Note: The underlaying error, which is summarized by error code 624, will always be shown
by a more detailed error message; this message will not be suppressed when using an
error routine.

Obtaining CLIST Error Codes

116 OS/390 V2R10.0 TSO/E CLISTs

Chapter 12. Sample CLISTs

Including TSO/E Commands - The LISTER CLIST 118
Simplifying Routine Tasks - The DELETEDS CLIST 118
Creating Arithmetic Expressions from User-Supplied Input - The CALC CLIST 119
Using Front-End Prompting - The CALCFTND CLIST 119
Initializing and Invoking System Services - The SCRIPTDS CLIST 121
Invoking CLISTs to Perform Subtasks - The SCRIPTN CLIST 122
Including JCL Statements - The SUBMITDS CLIST 125
Analyzing Input Strings with &SUBSTR - The SUBMITFQ CLIST 125
Allowing Foreground and Background Execution of Programs - The

RUNPRICE CLIST . 126
Including Options - The TESTDYN CLIST 127
Simplifying System-Related Tasks - The COMPRESS CLIST 129
Simplifying Interfaces to Applications - The CASH CLIST 131
Using &SYSDVAL When Performing I/O - The PHONE CLIST 132
Allocating Data Sets to SYSPROC - The SPROC CLIST 133
Writing Full-Screen Applications Using ISPF Dialogs - The PROFILE CLIST 137
Allocating a Data Set with LISTDSI Information - The EXPAND CLIST 146

This chapter contains examples of CLISTs that illustrate the CLIST functions
described in previous chapters. The examples assume that the CLISTs reside in a
PDS allocated to SYSPROC.

Table 9 lists the names of the CLISTs and provides short descriptions of the
functions they illustrate. Many of these CLISTs include examples of symbolic
variables, control variables, built-in functions, and conditional sequences.

Table 9. Sample CLISTs and Their Functions

CLIST Function Page

LISTER Including TSO/E commands 118

DELETEDS Simplifying routine tasks 118

CALC Creating arithmetic expressions from user supplied input 119

CALCFTND Performing front-end prompting 119

SCRIPTDS Initializing and invoking system services 121

SCRIPTN Invoking CLISTs to perform subtasks 122

SUBMITDS Including JCL; performing front-end prompting 125

SUBMITFQ Performing substringing; adding flexibility 125

RUNPRICE Allowing foreground or background submittal of jobs 126

TESTDYN Providing invoker with options and performing initialization based
on options specified

127

COMPRESS Simplifying routine, system-related tasks 129

CASH Simplifying invoker’s interface to complex applications 131

PHONE Performing I/O; reading records into &SYSDVAL 132

SPROC Using &SYSOUTTRAP and &SYSOUTLINE variables to manage
command output

133

PROFILE Using ISPF dialog management services in CLISTs to create
full-screen applications

137

© Copyright IBM Corp. 1988, 2000 117

Table 9. Sample CLISTs and Their Functions (continued)

CLIST Function Page

EXPAND Using LISTDSI statement to allocate a new data set with
characteristics of an existing data set.

146

Including TSO/E Commands - The LISTER CLIST
You can organize related activities so that users can simply invoke a CLIST to
perform a given task or group of tasks. The simplest example is a CLIST that
groups TSO/E commands together.

The LISTER CLIST consists of two TSO/E commands. (See Figure 10.) The
LISTCAT command lists all of the entries in the invoker’s catalog. The LISTALC
command lists the names and status of all data sets allocated to the invoker’s user
ID. TSO/E displays the output produced by these commands in the same order as
that in which it executes the commands. The invoker does not have to enter a
command, view its output, then enter another command; all input required from the
invoker is supplied at one time.

Simplifying Routine Tasks - The DELETEDS CLIST
One way to simplify routine tasks is to write CLISTs that make the process as
interactive as possible. For example, the syntax of the DELETE command could
confuse users who simply want to delete some of their data sets. For those users,
you could write a CLIST that simplifies the process. The DELETEDS CLIST shown
in Figure 11 is an example of such a CLIST. It prompts the invoker for a data set
name or a completion indicator.

listcat
listalc status

Figure 10. The LISTER CLIST

/**/
/* THIS CLIST PROMPTS THE USER FOR THE NAMES OF THE DATA */
/* SETS TO BE DELETED, ONE AT A TIME. */
/**/

SET DONE=NO
DO WHILE &DONE=NO
WRITE Enter the name of the data set you want deleted.
WRITE Omit the identification qualifier (userid).
WRITE Do not put the name in quotes.
WRITE When you are finished deleting all data sets, type an 'f'.
READ DSN
IF &DSN = F THEN SET DONE=YES
ELSE delete &DSN
END

Figure 11. The DELETEDS CLIST

118 OS/390 V2R10.0 TSO/E CLISTs

Creating Arithmetic Expressions from User-Supplied Input - The CALC
CLIST

The CALC CLIST, shown in Figure 12, contains a PROC statement that requires
three input strings from the invoker:
v A numeric value
v An arithmetic operator
v Another numeric value.

The CLIST creates an arithmetic expression using the positional parameter
variables that represent these three values. A WRITE statement displays a
message made up of the unevaluated expression, an equal sign, and the evaluated
expression. CALC contains no validity-checking statements; therefore, input that
does not meet the above requirements causes the &EVAL; built-in function to fail
and generate an error code.

Using Front-End Prompting - The CALCFTND CLIST
Front-end prompting verifies input data before the CLIST uses it in other
statements. For example, the CALC CLIST in Figure 12 assumed that &FVALUE
and &LVALUE represented valid numeric values or variables containing valid
numeric values. It also assumed that &OPER represented a valid arithmetic
operator.

In CALCFTND, shown in Figure 13 on page 120, the CLIST first ensures that
&FVALUE is numeric, not character data. The WRITE statement message is
tailored to address the possibility that the invoker is including decimal points in the
value. The CLIST views such a value as character data, not numeric data. The
DO-WHILE-END sequence executes until the invoker supplies a valid numeric
value. A similar DO-WHILE-END sequence is provided for &LVALUE;

The verification of &OPER is somewhat more involved. &OPER must be a valid
arithmetic operator, one of the following symbols: +, -, *, /, **, //. Therefore,
the condition for the corresponding DO-WHILE-END sequence requires a logical
ANDing of comparative expressions. Each expression is true when &OPER does
not equal the operator in the expression. When all of the expressions are true,
&OPER is not a valid arithmetic operator. To ensure that the CLIST views &OPER
and the valid arithmetic operators as character data, enclose them in &STR built-in
functions.

PROC 3 FVALUE OPER LVALUE

/**/
/* DISPLAY THE ENTIRE EQUATION AT THE TERMINAL, INCLUDING THE RESULT */
/* OF THE EXPRESSION. */
/**/

WRITE &FVALUE&OPER&LVALUE = &EVAL(&FVALUE&OPER&LVALUE)

Figure 12. The CALC CLIST

The CALC CLIST

Chapter 12. Sample CLISTs 119

PROC 0 FVALUE() OPER() LVALUE()

/**/
/* IF &FVALUE IS INVALID, CONTINUE PROMPTING THE USER TO ENTER */
/* AN ACCEPTABLE VALUE. */
/**/

CONTROL ASIS /* Allow upper and lower case WRITE statements */

SET &NULL =
DO WHILE &DATATYPE(&FVALUE) ¬= NUM

IF &STR(&FVALUE) = &NULL THEN +
WRITE Please enter a first value without decimal points &STR(-)

ELSE +
DO
WRITENR Your first value is not numeric. Reenter a number without
WRITE decimal points &STR(-)
END
READ &FVALUE

END

/**/
/* IF &OPER IS INVALID, CONTINUE PROMPTING THE USER TO ENTER */
/* AN ACCEPTABLE VALUE. */
/**/

DO WHILE &STR(&OPER)¬=&STR(+) AND &STR(&OPER)¬=&STR(-) AND +
&STR(&OPER)¬=&STR(*) AND &STR(&OPER)¬=&STR(/) AND +
&STR(&OPER)¬=&STR(**) AND &STR(&OPER)¬=&STR(//)

IF &STR(&OPER) = &NULL THEN +
DO
WRITE Please enter a valid arithmetic operator (+,-,*,/,**,//)
WRITE enclosed in parentheses, for example, (+) or (-).
END
ELSE +
DO
WRITE Your second value is not a valid operator (+,-,*,/,**,//).
WRITE Reenter this value, using one of the valid arithmetic
WRITE operators enclosed in parentheses, for example, (+) or (-).
END
READ &OPER

END

Figure 13. The CALCFTND CLIST (Part 1 of 2)

Using Front-End Prompting - The CALCFTND CLIST

120 OS/390 V2R10.0 TSO/E CLISTs

Initializing and Invoking System Services - The SCRIPTDS CLIST
The SCRIPTDS CLIST enables a user to run the SCRIPT program against an input
data set and have the output printed.

As shown in Figure 14, SCRIPTDS requires a positional parameter, &DSN; The
invoker supplies the name of a PDS member to be printed. The CLIST includes the
&DSN variable as the member name of the memo.text data set on the invocation of
the SCRIPT program. The invoker does not have to supply input for &SYSPREF
because it is a control variable whose value is available to the CLIST. The inclusion
of &SYSPREF as the identification qualifier of the input data set frees the invoker
from having to enter a fully-qualified data set name. The CLIST also substitutes
&SYSPREF and &DSN on the allocation of the output data set so that its name
corresponds to the name of the input data set.

/**/
/* IF &LVALUE IS INVALID, CONTINUE PROMPTING THE USER TO ENTER */
/* AN ACCEPTABLE VALUE. */
/**/

DO WHILE &DATATYPE(&LVALUE) ¬= NUM
IF &STR(&LVALUE) = &NULL THEN +

WRITE Please enter a second value without decimal points &STR(-)
ELSE +
DO
WRITENR Your last value is not numeric. Reenter a number without
WRITE decimal points &STR(-).
END
READ LVALUE

END

/**/
/* ONCE THE OPERANDS HAVE BEEN VERIFIED, EVALUATE THE EXPRESSION AND */
/* DISPLAY THE RESULT AT THE TERMINAL. */
/**/
WRITE &FVALUE&OPER&LVALUE = &EVAL(&FVALUE&OPER&LVALUE)

Figure 13. The CALCFTND CLIST (Part 2 of 2)

PROC 1 DSN LIST
/**/
/* THIS CLIST (SCRIPTDS) SETS UP THE ENVIRONMENT FOR SCRIPTING A */
/* DATA SET, ISSUES THE SCRIPT COMMAND, AND PRINTS THE OUTPUT. */
/**/
CONTROL NOFLUSH NOMSG
IF &LIST=LIST THEN +

CONTROL LIST
/**/
/* DELETE THE OUTPUT DATA SET INTO WHICH THE SCRIPTED FILE WILL BE */
/* PLACED IN CASE IT IS STILL ALLOCATED FROM A PREVIOUS INVOCATION */
/* OF SCRIPTDS. */
/**/
delete '&SYSPREF.&DSN.list'

Figure 14. The SCRIPTDS CLIST (Part 1 of 2)

System Services - SCRIPTDS CLIST

Chapter 12. Sample CLISTs 121

Invoking CLISTs to Perform Subtasks - The SCRIPTN CLIST
While you can write CLISTs that perform application tasks directly, you can also
write CLISTs that subdivide application tasks among nested CLISTs and control
their execution. For example, you can write a CLIST that invokes two other CLISTs
to perform the same tasks as those performed by SCRIPTDS in Figure 14 on
page 121.

SCRIPTN, shown in Figure 15 on page 123, produces the same results as
SCRIPTDS. The invoker provides a data set name qualifier as done for SCRIPTDS.
SCRIPTN defines &DSNAM as a global variable because SCRIPTN invokes two
CLISTs that refer to the variable. SCRIPTN invokes a CLIST called SCRIPTD,
which includes the &DSNAM variable as the member name of the memo.text data
set on the invocation of the SCRIPT command (See Figure 16 on page 123). When
finished with these tasks, SCRIPTD returns control to SCRIPTN and execution
continues at the command following the invocation of SCRIPTD. This command is
the invocation of a CLIST called OUTPUT (See Figure 17 on page 124). OUTPUT

/**/
/* DEFINE A FILE NAME (DDNAME) FOR THE OUTPUT DATA SET SO THAT THE */
/* SCRIPT PROGRAM CAN REFERENCE IT. FREE THE FILE BECAUSE SCRIPT WILL*/
/* ALSO ALLOCATE THE DATA SET. */
/**/
alloc f(a) da('&SYSPREF.&DSN.list') dsorg(ps) recfm(v,b,m) +

blk(3156) sp(10,10) tr new release reu
free f(a)
CONTROL LIST

/**/
/* ISSUE THE SCRIPT COMMAND, SPECIFYING THE NAME OF THE DATA SET */
/* MEMBER TO BE SCRIPTED: MEMO.TEXT(&DSN). */
/**/
script '&SYSPREF.memo.text(&DSN)' +
message(delay id trace) device(3800n6) twopass +
profile('script.r3.maclib(ssprof)') +
lib('script.r3.maclib') +
sysvar(c 1 d yes) +
bind(8 8) chars(gt12 gb12) file('&SYSPREF.&DSN.list') continue

/**/
/* FREE THE FILES REQUIRED TO PRINT THE SCRIPTED DATA SET. */
/* THEN ALLOCATE THEM, REQUESTING TWO COPIES ON THE 3800 PRINTER. */
/**/
SET RC=&LASTCC /* Get SCRIPT return code */
IF RC<=4 THEN +
DO
CONTROL NOMSG
CONTROL MSG
alloc f(sysprint) dummy reuse
alloc f(sysut1) da('&SYSPREF.&DSN.list') shr reuse
alloc f(sysut2) sysout(n) fcb(std4) chars(gt12,gb12) +

copies(2) optcd(j) reuse
alloc f(sysin) dummy reuse

/**/
/* INVOKE THE UTILITY TO HAVE THE DATA SET PRINTED AND FREE THE */
/* FILES. */
/**/
call 'sys1.linklib(iebgener)'
free f(sysut1,sysut2,sysprint,sysin)
END

Figure 14. The SCRIPTDS CLIST (Part 2 of 2)

Perform Subtasks - The SCRIPTN CLIST

122 OS/390 V2R10.0 TSO/E CLISTs

performs the required allocations to invoke the IEBGENER utility to print the output
data set.

PROC 1 DSN
GLOBAL DSNAM
SET DSNAM=&DSN
IF &LENGTH(&DSN) LE 8 AND /* ENSURE VALID NAME AND */ +

&DATATYPE(&SUBSTR(1,&DSN))=CHAR THEN /* VALID FIRST CHARACTER */ +
DO

/**/
/* INVOKE THE SCRIPTD CLIST TO SET UP THE ENVIRONMENT REQUIRED TO */
/* SCRIPT THE INPUT DATA SET AND THEN EXECUTE THE SCRIPT COMMAND. */

/**/
%scriptd
/**/

/* INVOKE THE OUTPUT CLIST TO PRINT 2 COPIES OF THE SCRIPTED */
/* DATA SET ON THE 3800 PRINTER. */
/**/

IF &LASTCC<=4 THEN /* Test return code from SCRIPTD */ +
DO
%output
END
ELSE WRITE SCRIPTD FAILED
END
ELSE +
WRITE The name entered must be less than 9 characters long and +

the first character must not be numeric.

Figure 15. The SCRIPTN CLIST

GLOBAL DSNAM

/**/
/* THIS CLIST (SCRIPTD) SETS UP THE ENVIRONMENT FOR SCRIPTING A */
/* DATA SET PROVIDED BY THE USER AND ISSUES THE SCRIPT COMMAND. */
/**/

CONTROL NOFLUSH NOMSG
ERROR +
DO /* If an error occurs,
SET RC=&LASTCC /* get return code
EXIT CODE(&RC)/* and pass control back to SCRIPTN
END

Figure 16. The SCRIPTD CLIST (Part 1 of 2)

Perform Subtasks - The SCRIPTN CLIST

Chapter 12. Sample CLISTs 123

/**/
/* DELETE THE OUTPUT DATA SET INTO WHICH THE SCRIPTED FILE WILL BE */
/* PLACED IN CASE IT IS STILL ALLOCATED FROM A PREVIOUS INVOCATION */
/* OF SCRIPTN. */
/**/

delete '&SYSPREF.&DSNAM.list'

/**/
/* DEFINE THE OUTPUT DATA SET SO THAT THE SCRIPT PROGRAM CAN REFERENCE*/
/* IT. FREE THE FILE BECAUSE SCRIPT WILL ALSO ALLOCATE THE DATA SET */
/**/

alloc f(a) da('&SYSPREF.&DSNAM.list') dsorg(ps) recfm(v,b,m) +
blk(3156) sp(50,30) tr new release reu

free f(a)
CONTROL LIST

/**/
/* ISSUE THE SCRIPT COMMAND, SPECIFYING THE NAME OF THE DATA SET */
/* MEMBER TO BE SCRIPTED: MEMO.TEXT(&DSNAM). */
/* THEN RETURN CONTROL TO SCRIPTN. */
/**/

script '&SYSPREF.memo.text(&DSNAM)' +
message(delay id trace) device(3800n6) twopass +
profile('script.r3.maclib(ssprof)') +
lib('script.r3.maclib') +
sysvar(c 1 d yes) +
bind(8 8) chars(gt12 gb12) file('&SYSPREF.&DSNAM.list') continue

Figure 16. The SCRIPTD CLIST (Part 2 of 2)

GLOBAL DSNAM

/**/
/* THIS CLIST (OUTPUT) FREES FILES REQUIRED TO PRINT THE SCRIPTED */
/* DATASET, ALLOCATES THEM REQUESTING TWO COPIES ON THE 3800 */
/* PRINTER, AND INVOKES IEBGENER TO HAVE THEM PRINTED. */
/**/

CONTROL NOMSG
CONTROL MSG
alloc f(sysprint) dummy reuse
alloc f(sysut1) da('&SYSPREF.&DSNAM.LIST') shr reuse
alloc f(sysut2) sysout(n) fcb(std4) chars(gt12,gb12) +

copies(2) optcd(j) reuse
alloc f(sysin) dummy reuse

/**/
/* INVOKE THE UTILITY TO HAVE THE DATA SET PRINTED AND FREE THE */
/* FILES. THEN RETURN CONTROL TO SCRIPTN. */
/**/

call 'sys1.linklib(iebgener)'
free f(sysut1,sysut2,sysprint,sysin)

Figure 17. The OUTPUT CLIST

Perform Subtasks - The SCRIPTN CLIST

124 OS/390 V2R10.0 TSO/E CLISTs

Including JCL Statements - The SUBMITDS CLIST
You can include job control language (JCL) statements in CLISTs. The SUBMITDS
CLIST, shown in Figure 18, uses the SUBMIT * command to indicate that the JCL
statements immediately follow the command.

SUBMITDS verifies job card information using front-end prompting and then submits
a job that copies one data set into another. The validity-checking does not go
beyond verifying that the account number is a four-digit number.

Because an account number may contain leading zeros that are ignored by the
&LENGTH built-in function, the CLIST uses the &STR built-in function in the
evaluation of the length of &ACCT.

The SUBMITDS CLIST assumes that:
v The account number is required and must be a four-digit number.
v The account number may contain leading zeros.
v The default CLASS for the job is C.

Analyzing Input Strings with &SUBSTR - The SUBMITFQ CLIST
You can use the &SUBSTR built-in function to analyze input from the invoker and to
modify the input if necessary.

The SUBMITFQ CLIST, shown Figure 19 on page 126, determines whether the data
set name supplied by the invoker is a fully-qualified name or not. If the data set
name is not fully qualified (does not include a user ID), the SUBMITFQ adds the
user ID and submits the data set name in the correct form on a JCL statement.

SUBMITFQ determines whether the data set name is fully qualified by comparing
the first character in &DSN to a single quote ('). If the logical comparison is true, the

PROC 2 DSN ACCT CLASS(C)

/**/
/* IF &ACCT IS INVALID, CONTINUE PROMPTING UNTIL THE USER ENTERS */
/* AN ACCEPTABLE VALUE. */
/**/

DO WHILE &LENGTH(&STR(&ACCT)) ¬= 4 OR &DATATYPE(&ACCT) ¬= NUM
WRITE Your account number is invalid.
WRITE Reenter a four-digit number.
READ ACCT
END

/**/
/* ONCE ACCOUNT NUMBER HAS BEEN VERIFIED, SUBMIT THE JOB. */
/**/

SET SLSHASK=&STR(/*) /* Set the /* required for jcl comment statement */
SUBMIT * END($$)
//&SYSUID1 JOB &ACCT,&SYSUID,CLASS=&CLASS,NOTIFY=&SYSUID
/&SLSHASK THIS STEP COPIES THE INPUT DATASET TO SYSOUT=A
//COPY EXEC PGM=COPYDS
//SYSUT1 DD DSN=&SYSUID.&DSN,DISP=SHR;
//SYSUT2 DD SYSOUT=A
$$

Figure 18. The SUBMITDS CLIST

Including JCL Statements - The SUBMITDS CLIST

Chapter 12. Sample CLISTs 125

CLIST assumes a fully-qualified data set name and removes the quotes. (Unlike on
the ALLOCATE command, fully-qualified data set names are not enclosed in single
quotes on JCL statements.) If the first character of &DSN is not a single quote, the
CLIST assumes the data set name is not fully qualified and prefixes the character
string “&SYSUID..” to the value of &DSN. In either case, &DSN contains a
fully-qualified data set name when referred to in the SYSUT1 JCL statement.

Allowing Foreground and Background Execution of Programs - The
RUNPRICE CLIST

You can write CLISTs that invoke programs in either the foreground or the
background. By creating a background job, the CLIST can have the job invoke any
program, including itself, in the background. You can use this type of a CLIST to
enable users who are unfamiliar with JCL to submit programs. By placing the JCL in
a CLIST, you simplify the user’s work, while adding greater range to the tasks the
user can perform. The RUNPRICE CLIST, shown in Figure 20 on page 127,
illustrates this type of a CLIST.

RUNPRICE either executes a COBOL program called APRICE in the foreground or
submits a job that executes APRICE in the background. The CLIST determines

PROC 2 DSN ACCT CLASS(C)

/**/
/* IF &ACCT IS INVALID, CONTINUE PROMPTING UNTIL THE USER ENTERS */
/* AN ACCEPTABLE VALUE. */
/**/

DO WHILE &LENGTH(&STR(&ACCT)) ¬= 4 OR &DATATYPE(&ACCT) ¬= NUM
WRITE Your account number is invalid.
WRITE Reenter a four-digit number.
READ ACCT
END

/**/
/* IF THE DATA SET IS FULLY QUALIFIED, REMOVE THE QUOTES. OTHERWISE, */
/* PREFIX THE CURRENT USERID. */
/**/

IF &STR(&SUBSTR(1,&DSN)) = ' THEN +
SET DSN = &STR(&SUBSTR(2:&LENGTH(&DSN)-1,&DSN))
ELSE SET DSN=&STR(&SYSUID.&DSN)
WRITE &DSN

/**/
/* ONCE ACCOUNT NUMBER HAS BEEN VERIFIED, SUBMIT THE JOB. */
/**/

SET SLSHASK=&STR(/*) /* Set the /* req. for the jcl comment statement */
SUBMIT * END($$)
//&SYSUID1 JOB &ACCT,&SYSUID,CLASS=&CLASS
/&SLSHASK THIS STEP COPIES THE INPUT DATASET TO SYSOUT=A
//COPY EXEC PGM=COPYDS
//SYSUT1 DD DSN=&DSN,DISP=SHR;
//SYSUT2 DD SYSOUT=A
$$

Figure 19. The SUBMITFQ CLIST

Analyzing Input Strings - The SUBMITFQ CLIST

126 OS/390 V2R10.0 TSO/E CLISTs

which type of invocation to perform based on whether the invoker includes the
BATCH keyword on the invocation of RUNPRICE.

Including Options - The TESTDYN CLIST
You can code options in a CLIST so that the CLIST performs different functions
depending on what the invoker specifies.

The TESTDYN CLIST, shown in Figure 21 on page 128, sets up the environment
needed to execute a program called PARMTEST, which tests dynamic allocation
input parameters entered from the terminal. In TESTDYN, conditional
IF-THEN-ELSE sequences and optional keywords on the PROC statement enable
the invoker to select a number of options when invoking the CLIST. For example,
one option is whether or not the invoker wants the system messages that
PARMTEST produces sent to a data set rather than to the terminal. TESTDYN
includes a keyword parameter, SYSPRINT, on its PROC statement and assigns it a
default value of *, which sends system messages to the terminal. The invoker can
override that default value and have system messages sent to a system output data
set.

PROC 0 M(R) BATCH

/**/
/* THIS CLIST (RUNPRICE) SUBMITS A JOB FOR EXECUTION EITHER IN THE */
/* FOREGROUND OR BACKGROUND, BASED ON WHETHER THE INVOKER INDICATES */
/* 'BATCH' ON THE INVOCATION. THE MESSAGE CLASS DEFAULTS TO 'R', */
/* THOUGH THE INVOKER MAY CHANGE IT. */
/**/
CONTROL END(ENDO)
/**/
/* IF &BATCH DOES NOT EQUAL A NULL, THIS INDICATES THAT THE INVOKER */
/* INCLUDED THE KEYWORD ON THE INVOCATION. IN THIS CASE, THE INVOKER*/
/* WANTS THE JOB SUBMITTED IN THE BACKGROUND, SO CREATE A JOB THAT */
/* EXECUTES THE TMP AND THEN INVOKES RUNPRICE WITHOUT THE 'BATCH' */
/* KEYWORD. ON THIS SECOND INVOCATION OF RUNPRICE, ONLY THE */
/* APRICE PROGRAM IS EXECUTED. */
/* IF &BATCH EQUALS A NULL, THIS INDICATES THAT THE INVOKER WANTS */
/* TO EXECUTE THE PROGRAM IN THE FOREGROUND. IN THIS CASE, SIMPLY */
/* INVOKE THE APRICE PROGRAM DIRECTLY. */
/**/

SET SLSHASK=&STR(/*) /* Set the /* for JOBPARM to a variable */
IF &BATCH=BATCH THEN +
DO
CONTROL NOMSG
SUBMIT * END(NN)
//STEVE1 JOB 'accounting info','STEVE',
// MSGLEVEL=(1,1),CLASS=T,NOTIFY=&SYSUID,MSGCLASS=&M,
// USER=????????,PASSWORD=????????
&SLSHASK JOBPARM COPIES=1
//BACKTMP EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=10
//SYSPRINT DD DUMMY
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
ex 'd84rlh1.tsoer2.pubs.clist(runprice)'
NN
ENDO
ELSE call 'd60fot1.allot.cobol(aprice)'

Figure 20. The RUNPRICE CLIST

Execution - The RUNPRICE CLIST

Chapter 12. Sample CLISTs 127

Note that special considerations are taken in the processing that determines
whether SYSOUT has been coded for SYSPRINT. On the IF statement, the variable
&SYSPRINT is enclosed in a &STR built-in function because &SYSPRINT defaults
to an asterisk, which the CLIST views as a multiplication operator. The &STR
built-in function defines the asterisk as character data and prevents the CLIST from
using it arithmetically.

PROC 0 MBR(PARMTEST) SYSPRINT(*) SYSLIB(LOAD) OUTFILE(VLDPARMS) LISTDSETS

/**/
/* THIS CLIST SETS UP THE ENVIRONMENT NEEDED FOR EXECUTION OF */
/* A PROGRAM NAMED 'PARMTEST' WHICH TESTS DYNAMIC ALLOCATION */
/* INPUT PARAMETERS ENTERED FROM THE TERMINAL. */
/**/

/**/
/* IF THE USER REQUESTED THAT DATA SETS BE LISTED, LIST THEM. */
/**/

IF &LISTDSETS = LISTDSETS THEN +
DO
WRITE PROGRAM: &MBR
WRITE SYSPRINT: &SYSPRINT
WRITE SYSLIB: &SYSLIB
WRITE OUTFILE: &OUTFILE

END

/**/
/* IF THE USER REQUESTED THAT SYSTEM MESSAGES BE SENT TO A SYSTEM */
/* OUTPUT DATA SET, ALLOCATE SYSPRINT TO SYSOUT. OTHERWISE, */
/* ALLOCATE SYSPRINT TO THE DATA SET NAME (OR TERMINAL) AS */
/* INDICATED BY THE USER. */
/**/

IF &STR(&SYSPRINT) = SYSOUT THEN +
alloc f(sysprint) sysout reu
ELSE alloc f(sysprint) da(&SYSPRINT) reu

/**/
/* ALLOCATE THE SYSTEM LIBRARY, WHETHER IT BE THE DEFAULT (LOAD) */
/* OR ANOTHER LIBRARY. */
/**/

alloc f(syslib) da(&SYSLIB) reu shr

Figure 21. The TESTDYN CLIST (Part 1 of 2)

Including Options - The TESTDYN CLIST

128 OS/390 V2R10.0 TSO/E CLISTs

Simplifying System-Related Tasks - The COMPRESS CLIST
From time to time, users must compress a data set they have updated multiple
times to free some space for additional members. The process involves allocating
the data sets required by the IEBCOPY utility, which performs the copying involved
in compressing the data set, and invoking the utility.

The COMPRESS CLIST, shown in Figure 22 on page 130, performs all of the
functions required to compress a data set.

The COMPRESS CLIST includes special procedures to make the best use of
storage space. For example, COMPRESS could allocate a data set to contain the
input required by the IEBCOPY utility. However, IEBCOPY requires only the
following command for input:
copy indd=output,outdd=output

Rather than waste permanent storage for the one command, COMPRESS creates a
virtual I/O (VIO) data set for the SYSIN file using an ALLOCATE command that
does not specify a data set name. The ALLOCATE command assigns the file name
SYSIN to the VIO data set and then writes a record containing the COPY command
to the SYSIN file.

/**/
/* ALLOCATE THE OUTPUT DATA SET FOR THE PROGRAM. ALLOCATE THE */
/* INPUT DATA SET TO THE TERMINAL. */
/**/

alloc f(outfile) da(&OUTFILE) lrecl(121) blksize(1210) recfm(f,b) reu
alloc f(sysin) da(*) reu

/**/
/* CALL PARMTEST AND NOTIFY THE USER THAT THE INVOCATION WAS */
/* SUCCESSFUL OR UNSUCCESSFUL. */
/**/

CONTROL NOFLUSH
call 'steve.lib.load(&MBR)'
IF &LASTCC = 0 THEN +
WRITE &MBR invoked successfully at &SYSTIME on &SYSDATE
ELSE +
WRITE &MBR invoked unsuccessfully at &SYSTIME on &SYSDATE

Figure 21. The TESTDYN CLIST (Part 2 of 2)

Simplifying System-Related Tasks - The COMPRESS CLIST

Chapter 12. Sample CLISTs 129

PROC 1 DSNAME DISP(OLD) LIST
CONTROL NOFLUSH /* Preserve the input stack for errors */

/**/
/* THIS CLIST (COMPRESS) COMPRESSES A DATA SET AND INFORMS THE USER */
/* WHETHER OR NOT THE COMPRESS WAS SUCCESSFUL. */
/**/
/* SET UP AN ERROR ROUTINE TO FREE ALLOCATED FILES WHEN AN ERROR OCCURS.
/**/

ERROR +
DO
ERROR OFF
WRITE An error has occurred prior to the actual compress.
free file(sysin,sysprint,sysut3,sysut4,output)
GOTO FINISH
END

/**/
/* IF THE USER WANTS TO VIEW THE TSO COMMANDS AS THEY EXECUTE, ISSUE */
/* THE CONTROL LIST STATEMENT. */
/**/

IF &LIST=LIST THEN +
CONTROL LIST

/**/
/* ESTABLISH ENVIRONMENT NEEDED BY IEBCOPY UTILITY. */
/**/

allocate file(sysin) space(1,1) track lrecl(80) recfm(f) blksize(80) reuse
IF &SYSDSN(COMPRESS;LIST) ¬= OK THEN +
allocate file(sysprint) dataset(compress.list) recfm(f,b,a) +

lrecl(121) blksize(12947) space(1,1) track reuse
ELSE +
allocate file(sysprint) dataset(compress.list) shr reuse
allocate file(sysut3) unit(sysda) space(1,1) cylinders reu
allocate file(sysut4) unit(sysda) space(1,1) cylinders reu
allocate file(output) dataset(&DSNAME) &DISP reu

/**/
/* PLACE THE COPY COMMAND INTO THE SYSIN FILE REQUIRED BY IEBCOPY. */
/**/

OPENFILE SYSIN OUTPUT
SET SYSIN = &STR(COPY INDD=OUTPUT,OUTDD=OUTPUT)
PUTFILE SYSIN
CLOSFILE SYSIN

Figure 22. The COMPRESS CLIST (Part 1 of 2)

Simplifying System-Related Tasks - The COMPRESS CLIST

130 OS/390 V2R10.0 TSO/E CLISTs

Simplifying Interfaces to Applications - The CASH CLIST
You may have access to applications written in other programming languages.
However, the interfaces required to invoke these programs may not be easily
mastered by users who use the system infrequently. Rather than write new
applications, you can write CLISTs that act as intermediaries between users and
such programs.

For example, a program called CASHFLOW creates and prints weekly and monthly
reports. If the invoker wants a weekly report, the invocation is:
call 'sys1.plib(cashflow)' 'a,,,38,ccfdacr'

If the invoker wants a monthly report, the invocation is:
call 'sys1.plib(cashflow)' 'x,,,49,ccfmacr'

Not only are the preceding invocations quite technical, they are difficult to
remember.

CASHFLOW also requires the allocation of a file. For weekly reports, it requires:
alloc f(projwkly) da(weekly) shr

For monthly reports, it requires:
alloc f(projmtly) da(monthly) shr

To simplify the process of invoking CASHFLOW, the CASH CLIST, shown in
“Simplifying Interfaces to Applications - The CASH CLIST”, performs the following
intermediary tasks:

1. It determines whether the invoker wants a weekly or monthly report.

2. It assigns values to the variables substituted in the parameter string on the
CALL command that invokes CASHFLOW. The values correspond to the
parameters required for the type of report requested.

3. It allocates the appropriate data set.

/**/
/* Set up an error routine to notify user of compress errors. */
/**/

ERROR +
DO
WRITE Compress error--Details in '&SYSPREF compress.list'
GOTO FINISH
END

/**/
/* INVOKE IEBCOPY UTILITY TO PERFORM THE COMPRESS. */
/**/

tsoexec call 'sys1.linklib(iebcopy)' 'size=512k'
WRITE &DSNAME compressed at &SYSTIME

FINISH: end /* End the CLIST */

Figure 22. The COMPRESS CLIST (Part 2 of 2)

Simplifying Interfaces - The CASH CLIST

Chapter 12. Sample CLISTs 131

Using &SYSDVAL When Performing I/O - The PHONE CLIST
Data records often contain related pieces or blocks of information. For instance, a
sequential record could contain a person’s name and phone number. When you
read records of this type, you may want to separate the blocks of information. By
defining SYSDVAL as the file name of the data set containing the records, you read
each record into SYSDVAL, which the CLIST equates with the &SYSDVAL control
variable. Then you can issue a READDVAL statement that contains the names of
the variables into which you want the blocks of information stored.

The PHONE CLIST, shown in Figure 24 on page 133, takes advantage of this
technique. PHONE receives a last name as input using a positional parameter
called NAME. PHONE then allocates a data set called SYS1.STAFF.DIRECTRY
and assigns it the file name SYSDVAL. Each record in SYS1.STAFF.DIRECTRY
contains a last name, followed by a blank and a phone number. Sample records
are:
PICKERELL 555-5555
GORGEN 555-4444

PHONE sets the first character string in the record to a variable called &LNAME
and sets the second string to a variable called &PHONUMBR. Then, it compares
&NAME to &LNAME and, if they are equal, displays the corresponding phone
number (contained in &PHONUMBR) at the terminal. If the names are not equal,
PHONE reads another record and performs the same test.

If none of the names in the directory match the name supplied by the invoker, the
CLIST branches to the end-of-file error routine. The end-of-file routine informs the

/* PROMPT THE USER FOR THE WORD 'WEEKLY' or 'MONTHLY' */

DO WHILE &TYPE¬=WEEKLY AND &TYPE¬=MONTHLY
WRITE Enter the word WEEKLY or MONTHLY to indicate the
WRITE type of report you want to create.
READ TYPE
END

/**/
/* NOW THAT A VALID REQUEST HAS BEEN ESTABLISHED, ALLOCATE THE */
/* APPROPRIATE DATA SET, ASSIGN THE APPROPRIATE VALUES TO CALL */
/* COMMAND PARAMETER VARIABLES, AND INVOKE CASHFLOW. */
/**/

IF &TYPE=WEEKLY THEN +
DO
alloc f(projwkly) da(weekly) shr
SET INVOKE=38
SET CHAR=a
SET OPT=ccfdacr
END
ELSE +
DO
alloc f(projmtly) da(monthly) shr
SET INVOKE=49
SET CHAR=x
SET OPT=ccfmacr
END
call 'sys1.plib(cashflow)' '&CHAR,,,&INVOKE,&OPT'

Figure 23. The CASH CLIST

Using &SYSDVAL When Performing I/O ...

132 OS/390 V2R10.0 TSO/E CLISTs

invoker that a name was not found, and sets the variable DONE=YES to cause the
loop to terminate.

Allocating Data Sets to SYSPROC - The SPROC CLIST
The SPROC CLIST allocates a CLIST data set to the file SYSPROC, so users can
implicitly execute CLISTs that are in that data set. The SPROC CLIST allocates the
CLIST data set as the first in the list of data sets allocated to SYSPROC, so TSO/E
searches that data set for CLISTs before searching any of the others.

PROC 1 NAME

/**/
/* THIS CLIST (PHONE) SEARCHES A DATA SET FOR A NAME THAT MATCHES THE */
/* NAME SUPPLIED TO THE CLIST. IF A MATCH IS FOUND, THE CORRESPONDING */
/* PHONE NUMBER IS DISPLAYED AT THE TERMINAL. OTHERWISE, A MESSAGE IS */
/* ISSUED INFORMING THE USER THAT A MATCH WAS NOT FOUND. */
/**/

/**/
/* ALLOCATE THE INPUT DATA SET FOR THE CLIST. */
/**/

alloc f(sysdval) da('sys1.staff.directry') shr reu

/**/
/* OPEN THE FILE, AND SET UP AN ERROR ROUTINE TO HANDLE END-OF-FILE. */
/**/

CONTROL NOMSG NOFLUSH
ERROR +
DO
IF &LASTCC = 400 THEN +
DO
WRITENR The name requested, &NAME, was not found in the staff
WRITE directory.
SET DONE=YES
END
RETURN
END /* END OF END-OF-FILE ROUTINE */
SET DONE=NO
OPENFILE SYSDVAL

/**/
/* THIS LOOP RETRIEVES RECORDS FROM THE INPUT DATA SET UNTIL A MATCH */
/* IS FOUND OR END OF FILE IS REACHED. IF A MATCH IS FOUND, THE */
/* SECOND VARIABLE ON THE READDVAL STATEMENT (THE ONE CONTAINING */
/* THE PHONE NUMBER) IS DISPLAYED. */
/**/

DO WHILE &DONE=NO
GETFILE SYSDVAL
READDVAL LNAME PHONUMBR
IF &STR(&NAME) = &STR(&LNAME) THEN +
DO
WRITE &PHONUMBR
SET DONE=YES
END

END
CLOSFILE SYSDVAL
free file(sysdval)

Figure 24. The PHONE CLIST

Using &SYSDVAL When Performing I/O ...

Chapter 12. Sample CLISTs 133

Note: You can also use the ALTLIB command to define CLIST data sets and
establish their search order for implicit execution.

SPROC performs the following steps: finds all data sets currently allocated to
SYSPROC and concatenates them; then adds the invoker’s data set to the
beginning of the concatenation and allocates the concatenation to SYSPROC.

The CLIST, shown in “Allocating Data Sets to SYSPROC - The SPROC CLIST” on
page 133, uses &SYSOUTTRAP to intercept the output from the LISTALC STATUS
command and saves the command output in &SYSOUTLINEnn variables. The
output produced by the LISTALC STATUS command is formatted as follows:
--DDNAME---DISP--
DATA-SET-NAME1

FILE-NAME1 DISPOSITION
DATA-SET-NAME2

FILE-NAME2 DISPOSITION
DATA-SET-NAME3

DISPOSITION
DATA-SET-NAME4

FILE-NAME3 DISPOSITION

In the previous format, DATA-SET-NAME1 is allocated to FILE-NAME1;
DATA-SET-NAME2 and DATA-SET-NAME3 are allocated to FILE-NAME2; and
DATA-SET-NAME4 is allocated to FILE-NAME3. The name of a file always begins
in the third position, whereas a data set name begins in the first position of the
output line. SPROC does the following:

1. Loops through &SYSOUTLINEnn variables until either the string SYSPROC is
found or until all output has been searched. (It is possible no data sets are
allocated to SYSPROC.)

2. If SYSPROC is found, SPROC sets a variable to the name of the previous data
set in the list and encloses it in single quotes.

3. Begins with the &SYSOUTLINEnn variable three lines after the one containing
the name of the first data set allocated to SYSPROC. This line either contains a
new file name, in which case SPROC has found all data sets allocated to
SYSPROC, or it contains the disposition of the next data set in the
concatenation. By setting a variable to three blanks, SPROC determines the
contents of the line.

If the line contains a disposition, SPROC decreases &SYSOUTLINEnn by one
to get the data set name and add it to the variable (&CONCAT) representing the
data sets in the new concatenation. SPROC repeats this procedure until another
file name is encountered or until all command output has been searched. After
all data sets have been added to the concatenation list, SPROC issues the
ALLOCATE command, adding the user’s data set name to the beginning of the
concatenation list.

SPROC contains an error routine to handle allocation errors should they occur.
SPROC may itself be allocated to SYSPROC, in which case the user can invoke
SPROC implicitly. However, if the CLIST fails after it frees the SYSPROC file, but
before it is able to re-establish the concatenation, the user cannot re-invoke
SPROC implicitly without first logging off and logging on again.

Allocating Data Sets to SYSPROC - The SPROC CLIST

134 OS/390 V2R10.0 TSO/E CLISTs

PROC 0 LIST
IF &LIST=LIST THEN +
CONTROL LIST CONLIST

/**/
/* THIS CLIST (SPROC) CONCATENATES DATA SETS AND ALLOCATES THEM */
/* TO THE FILE SYSPROC. */
/* THE USER IS PROMPTED TO SUPPLY THE NAME OF THE DATA */
/* SET TO BE ADDED TO THE BEGINNING OF THE CONCATENATION. */
/**/
/**/
/* IF ALLOCATION FAILS, TELL THE USER TO LOG OFF, LOG ON, AND, IF */
/* DESIRED, TRY EXECUTING SPROC AGAIN. */
/**/
CONTROL NOFLUSH
ERROR +
DO
WRITE An error has been encountered in the SYSPROC concatenation.
WRITE Please log off, then log on again, and, if desired, re-invoke
WRITE SPROC. If the problem persists, see your system programmer.
GOTO OUT
END

/**/
/* PROMPT THE USER FOR THE NAME OF THE DATA SET TO BE ADDED TO THE */
/* BEGINNING OF THE SYSPROC CONCATENATION. */
/**/
WRITE Enter the fully-qualified data set name you want
WRITE added to the beginning of the SYSPROC concatenation.
WRITE Do N O T place quotes around the dataset name.
READ ADD

Figure 25. The SPROC CLIST (Part 1 of 3)

Allocating Data Sets to SYSPROC - The SPROC CLIST

Chapter 12. Sample CLISTs 135

/**/
/* SET A VARIABLE TO THREE BLANKS. THIS VARIABLE IS USED TO CHECK */
/* THE LISTALC COMMAND OUTPUT FOR THE BEGINNING OF A DIFFERENT */
/* FILENAME AFTER SYSPROC DATA SETS HAVE BEEN LISTED. */
/**/
SET BLANKS = &STR()
/**/
/* SET &SYSOUTTRAP TO A LARGE ENOUGH VALUE TO ENSURE THAT ALL OF */
/* THE LINES OF OUTPUT FROM THE LISTALC COMMAND CAN BE VIEWED. */
/**/
SET &SYSOUTTRAP = 300

/**/
/* ISSUE THE LISTALC STATUS COMMAND AND LOOP THROUGH THE VARIABLES */
/* CONTAINING THE OUTPUT LINES UNTIL THE LINE CONTAINING */
/* THE FILENAME */
/* SYSPROC IS FOUND OR UNTIL ALL LINES HAVE BEEN VIEWED. */
/* (ALL LINES HAVE BEEN VIEWED WHEN A NULL LINE IS RETURNED.) */
/* AN AUXILIARY VARIABLE MUST BE CREATED (&DSN) TO LOOP THROUGH */
/* &SYSOUTLINEnn &I REPRESENTS THE VALUE OF nn. */
/* NOTE THAT, TO SET &DSN TO &SYSOUTLINE, TWO AMPERSANDS */
/* MUST BE PLACED BEFORE SYSOUTLINE TO AVOID SYMBOLIC SUBSTITUTION */
/* OF &SYSOUTLINE */
/* IF SYSPROC IS FOUND, SET THE VARIABLE &CONCAT EQUAL TO */
/* THE PREVIOUS LINE (CONTAINING THE NAME */
/* OF THE FIRST DATA SET ALLOCATED TO SYSPROC). */
/**/

lista st
SET &SYSOUTTRAP = 0
SET SPROC = &STR(SYSPROC)
SET FOUND = NO
SET I=1
DO WHILE &STR(&FOUND) = NO AND &I <= &SYSOUTLINE
SET DSN = &SYSOUTLINE&I
IF &LENGTH(&STR(&DSN)) >=9 THEN +

IF &STR(&SUBSTR(3:9,&DSN)) = &SPROC THEN +
DO
SET FOUND = YES
SET I = &I-1;
SET DSN = &&SYSOUTLINE&I
SET CONCAT = '&DSN'
END
ELSE SET I = &I+1

ELSE SET I = &I+1
END

Figure 25. The SPROC CLIST (Part 2 of 3)

Allocating Data Sets to SYSPROC - The SPROC CLIST

136 OS/390 V2R10.0 TSO/E CLISTs

Writing Full-Screen Applications Using ISPF Dialogs - The PROFILE
CLIST

The CLIST language is well-suited for applications that invoke ISPF dialog
management services to display full-screen panels. For more information about
ISPF, see OS/390 ISPF User’s Guide Volume I.

The PROFILE CLIST is an example of a CLIST that displays entry panels on which
the user can modify information. The PROFILE CLIST allows the user to perform
any of the following functions to modify his or her profiles:
v Set terminal characteristics.
v Set LOG/LIST parameters.
v Set PF keys (1-12).
v Set PF keys (13-24).

The PROFILE CLIST receives control from a CLIST that displays the primary
selection panel. The primary selection panel prompts the user to indicate which
function is being requested (QCMD); and if the function is setting PF keys, which
PF keys are to be viewed (QKEYS). Then, the CLIST invokes PROFILE, passing
the values for QCMD and QKEYS.

PROFILE determines which selection was requested by referencing PROC
statement keywords called QCMD and QKEYS.

If &QCMD is 1, PROFILE displays the terminal characteristics panel definition.

If &QCMD is 2, PROFILE displays the LOG/LIST parameters panel definition.

/**/
/* IF SYSPROC WAS FOUND, LOOP THROUGH DATA SETS UNTIL ANOTHER */
/* FILENAME IS ENCOUNTERED OR UNTIL THE REST OF THE OUTPUT HAS */
/* BEEN PROCESSED. SETTING &I = &I+3 MAPS &DSN TO THE LINE AFTER */
/* THE NEXT DATA SET NAME, WHICH WILL CONTAIN ANOTHER FILENAME IF */
/* WE HAVE ALREADY PROCESSED THE LAST DATA SET ALLOCATED TO SYSPROC */
/* AND WE HAVE NOT REACHED THE END OF THE COMMAND OUTPUT. */
/**/
IF &FOUND=YES THEN +

DO WHILE &I+3 <= &SYSOUTLINE
SET I = &I+3;
SET DSN = &&SYSOUTLINE&I
IF &STR(&SUBSTR(1:3,&DSN)) = &BLANKS THEN +
DO
SET I = &I-1
SET DSN = &&SYSOUTLINE&I
SET CONCAT = &CONCAT&STR(')&DSN'
END
ELSE +
SET I=&SYSOUTLINE

END

/**/
/* WHEN ALL DATA SETS ALLOCATED TO SYSPROC HAVE BEEN ADDED TO THE */
/* VARIABLE &CONCAT, ADD THE USER'S DATA SET TO THE BEGINNING OF */
/* THE CONCATENATION. (INSERT THE VARIABLE &ADD BEFORE &CONCAT) */
/* THIS CLIST ASSUMES THAT THE DATA SET HAS BEEN ENTERED CORRECTLY */
/* BY THE USER. */
/**/
alloc f(sysproc) da('&ADD' &CONCAT) shr reu
OUT: end

Figure 25. The SPROC CLIST (Part 3 of 3)

Applications with ISPF - PROFILE CLIST

Chapter 12. Sample CLISTs 137

If &QCMD is 3 and &QKEYS is 12, PROFILE displays the PF keys 1-12 panel
definition.

If &QCMD is 3 and &QKEYS is 24, PROFILE displays the PF keys 13-24 panel
definition.

Panels are displayed using the ISPEXEC command.

When the user presses the END key after viewing and/or modifying a particular
panel, the value of &LASTCC is 8. By testing the value of &LASTCC, PROFILE can
determine when the user is finished with the selection.

When the user is viewing one of the two PF key panels, the user can switch to the
other panel by pressing the Enter key. PROFILE sets &QKEYS to the PF key (12 or
24) that represents the other panel so that the user can continue to switch back and
forth if desired. Pressing Enter re-executes the DO-UNTIL-END sequence, causing
PROFILE to test the value of &QKEYS to determine which panel to display. As with
the other selection sequences, the PF key sequence ends when the user presses
the END key.

Values set or changed on any of the four panels displayed by PROFILE are stored
in the corresponding variables on the panel definitions.

Table 10 contains the purpose of, and figures containing, the PROFILE CLIST and
its supporting four panel definitions.

Table 10. Purpose of, and Figures Containing, PROFILE CLIST and Supporting Panels

CLIST/Panel Purpose Figure

PROFILE Manage user profile panels 26

XYZABC10 Terminal characteristics panel 27

XYZABC20 LOG/LIST parameters panel 28

XYZABC30 PF keys 1-12 panel 29

XYZABC40 PF keys 13-24 panel 30

PROC 0 QCMD(1) QKEYS(12)

/**/
/* THIS CLIST (PROFILE) DISPLAYS THE PANEL THAT CONTAINS THE PROFILE */
/* DATA THE USER WANTS TO UPDATE. IT SETS THE FINISH FLAG TO NO AND */
/* THEN DETERMINES WHICH OF THE FOUR POSSIBLE PANELS THE USER NEEDS */
/* DISPLAYED. */
/**/

CONTROL MSG END(ENDO)
SET FINISH = NO

Figure 26. The PROFILE CLIST (Part 1 of 2)

Applications with ISPF - PROFILE CLIST

138 OS/390 V2R10.0 TSO/E CLISTs

The panels displayed by the PROFILE CLIST appear on the following pages in
panel definition form. In order for the PROFILE CLIST to display them, the panels
must be members of a partitioned data set allocated to the file ISPPLIB, for
example:
allocate file(ispplib) dataset(test.panels)

/**/
/* IF THE USER WANTS TO UPDATE TERMINAL CHARACTERISTICS, DISPLAY */
/* THE ASSOCIATED PANEL. */
/**/

SELECT
WHEN (&QCMD = 1) +
DO UNTIL (&FINISH = YES)
ISPEXEC DISPLAY PANEL(XYZABC10) /* Display first panel */
IF &LASTCC = 8 THEN /* If user presses END, */ +
SET FINISH = YES /* end panel display */

ENDO

/**/
/* IF THE USER WANTS TO UPDATE LOG/LIST PARAMETERS, DISPLAY */
/* THE ASSOCIATED PANEL. */
/**/

WHEN (&QCMD = 2) +
DO UNTIL (&FINISH = YES)
ISPEXEC DISPLAY PANEL(XYZABC20) /* Display 2nd panel */
IF &LASTCC = 8 THEN /* If user presses END, */ +
SET FINISH = YES /* end panel display. */
ENDO

/**/
/* IF THE USER WANTS TO UPDATE PF KEYS, DETERMINE WHICH GROUP THE */
/* USER WANTS TO UPDATE: 1-12 or 13-24. DISPLAY THE ASSOCIATED PANEL.*/
/**/
WHEN (&QCMD = 3) +

DO UNTIL (&FINISH = YES)
IF &QKEYS = 12 THEN +
DO
ISPEXEC DISPLAY PANEL(XYZABC30) /* Display PF keys 1-12 */
IF &LASTCC = 8 THEN /* If user presses END, */ +
SET FINISH = YES /* end panel display. */
ELSE +
SET QKEYS = 24 /* If user presses ENTER, */

ENDO /* display next panel. */
ELSE +
DO
ISPEXEC DISPLAY PANEL(XYZABC40) /* Display PF keys 13-24 */
IF &LASTCC = 8 THEN /* If user presses END, */ +
SET FINISH = YES /* end panel display. */
ELSE +
SET QKEYS = 24 /* If user presses ENTER, */

ENDO /* display previous panel. */
ENDO

ENDO /* End of SELECT statement
/*
/* EXIT ROUTINE
/*
FINAL: +
SET FCODE = 0
EXIT CODE(&FCODE)

Figure 26. The PROFILE CLIST (Part 2 of 2)

Applications with ISPF - PROFILE CLIST

Chapter 12. Sample CLISTs 139

For more information about how to create and allocate ISPF panel definitions, see
OS/390 ISPF Services Guide.

)ATTR DEFAULT(%+_)
/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only */
/* _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) */

@ TYPE(INPUT) INTENS(HIGH) PAD(_) CAPS(ON)
)BODY
+ SAMPLE - SET THE TERMINAL CHARACTERISTICS
%COMMAND === _ZCMD +
%

+Type the information where requested, or change the information shown
+by typing over it:
+
+ TERMINAL TYPE %=== @Z + 3277, 3277A, 3278, 3278A, or 3278T +
+ NUMBER OF PF KEYS%===>@Z + 12 or 24
+ INPUT FIELD PAD %===>@Z+ Nulls (N) or Blanks (B)
+ SCREEN FORMAT %===>@Z + (3278 Model 5 only) DATA, STD, or MAX
+ COMMAND DELIMITER%===>@Z+ Any special character
+
+
+
+
+
+
+
+
+
+
+
+
+

)INIT
.ZVARS = '(ZTERM ZKEYS ZPADC ZSF ZDEL)'
&ZSF = TRANS (&ZFMT D,DATA S,STD M,MAX *,' ')

)PROC
IF (&ZCMD ¬= ' ') .MSG = ISPZ001 /* INVALID COMMAND */
VER (&ZTERM NB LIST 3277,3277A,3278,3278A,3278T)
&ZCHARLM = TRANS(&ZTERM

3277 , ISP3277
3277A , ISP3277A
3278 , ISP3278
3278A , ISP3278A
3278T , ISP3278T)

VER (&ZKEYS NB LIST 12,24)
IF (&ZKEYS = 24)

VER (&ZTERM LIST 3278 MSG=ISPO002)
VER (&ZPADC NB LIST N,B)
VER (&ZSF,NONBLANK)
&ZFMT = TRUNC (&ZSF,1)
VER (&ZFMT,LIST D,S,M)
VER (&ZDEL NB PICT C)
IF (.MSG ¬= ' ')

.RESP = ENTER
)END

Figure 27. The Terminal Characteristics Panel Definition (XYZABC10)

Applications with ISPF - PROFILE CLIST

140 OS/390 V2R10.0 TSO/E CLISTs

)ATTR DEFAULT(%+_)
/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only */
/* _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) */

@ TYPE(INPUT) INTENS(HIGH) PAD(_) CAPS(ON)
)BODY
+ SAMPLE - SET THE LOG/LIST PARAMETERS
%COMMAND ===>_ZCMD +
%

+Type the information where requested, or change the information shown
+by typing over it:
+
+ %LOG %LIST +
+
+ PROCESS OPTION %===>@Z+ @Z+
+ SYSOUT CLASS %===>@Z + @Z +
+ LOCAL PRINTER ID %===>@Z + @Z +
+ LINES PER PAGE %===>@Z + @Z +
+ PRIMARY PAGES %===>@Z + @Z +
+ SECONDARY PAGES %===>@Z + @Z +
+
+
+
+
+
+
+
+
+
+

Figure 28. The LOG/LIST Characteristics Panel Definition (XYZABC20) (Part 1 of 2)

Applications with ISPF - PROFILE CLIST

Chapter 12. Sample CLISTs 141

)INIT
.ZVARS = '(ZLOGFDSP,ZLSTFDSP,ZLOGCLA,ZLSTCLA,ZLOGPID,ZLSTPID, +

ZLOGLIN,ZLSTLIN,ZLOG1PG,ZLST1PG,ZLOG2PG,ZLST2PG)'

)PROC
IF (&ZCMD ¬= ' ') .MSG = ISPZ001 /* INVALID COMMAND */
VER (&ZLOGFDSP LIST J,L,K,D,' ')
VER (&ZLSTFDSP LIST J,L,K,D,' ')
IF (&ZLOGFDSP = J)

VER (&ZLOGCLA,NB)
IF (&ZLOGFDSP = L)

VER (&ZLOGPID,NB)
IF (&ZLSTFDSP = J)

VER (&ZLSTCLA,NB)
IF (&ZLSTFDSP = L)

VER (&ZLSTPID,NB)
VER (&ZLOGLIN NB NUM)
VER (&ZLOGLIN RANGE 1,99)
VER (&ZLSTLIN NB NUM)
VER (&ZLSTLIN RANGE 1,99)
VER (&ZLOG1PG NB NUM)
VER (&ZLOG1PG RANGE 0,9999)
VER (&ZLST1PG NB NUM)
VER (&ZLST1PG RANGE 1,9999)
VER (&ZLOG2PG NB NUM)
VER (&ZLOG2PG RANGE 0,9999)
VER (&ZLST2PG NB NUM)
VER (&ZLST2PG RANGE 1,9999)
IF (&ZLOG1PG = 0)

VER (&ZLOG2PG,NB)
VER (&ZLOG2PG,RANGE,0,0)

IF (&ZLOG1PG ¬= 0)
VER (&ZLOG2PG,NB NUM)
VER (&ZLOG2PG,RANGE,1,9999)

IF (.MSG ¬= ' ')
.RESP = ENTER

)END

Figure 28. The LOG/LIST Characteristics Panel Definition (XYZABC20) (Part 2 of 2)

Applications with ISPF - PROFILE CLIST

142 OS/390 V2R10.0 TSO/E CLISTs

)ATTR DEFAULT(%+_)
/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only */
/* _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) */

@ TYPE(INPUT) INTENS(HIGH) PAD(_) CAPS(ON)
)BODY
+ SAMPLE - SET PF KEYS 1-12
%COMMAND ===>_ZCMD +
%
+Type the information where requested, or change the information shown
+by typing over it:
+
+ PF1 %===>@QPF01 +
+ PF2 %===>@QPF02 +
+ PF3 %===>@QPF03 +
+ PF4 %===>@QPF04 +
+ PF5 %===>@QPF05 +
+ PF6 %===>@QPF06 +
+ PF7 %===>@QPF07 +
+ PF8 %===>@QPF08 +
+ PF9 %===>@QPF09 +
+ PF10 %===>@QPF10 +
+ PF11 %===>@QPF11 +
+ PF12 %===>@QPF12 +
+
+
+
+
+
+

)INIT
IF (&QPF01 = ' ')

&QPF01 = HELP
IF (&QPF02 = ' ')

&QPF02 = SPLIT

IF (&QPF03 = ' ')
&QPF03 = END

IF (&QPF04 = ' ')
&QPF04 = RETURN

IF (&QPF05 = ' ')
&QPF05 = RFIND

IF (&QPF06 = ' ')
&QPF06 = RCHANGE

Figure 29. The PF Keys 1-12 Panel Definition (XYZABC30) (Part 1 of 2)

Applications with ISPF - PROFILE CLIST

Chapter 12. Sample CLISTs 143

IF (&QPF07 = ' ')
&QPF07 = UP

IF (&QPF08 = ' ')
&QPF08 = DOWN

IF (&QPF09 = ' ')
&QPF09 = SWAP

IF (&QPF10 = ' ')
&QPF10 = LEFT

IF (&QPF11 = ' ')
&QPF11 = RIGHT

IF (&QPF12 = ' ')
&QPF12 = CURSOR

)PROC
IF (&ZCMD ¬= ' ') .MSG = ISPZ001
IF (&QPF01 = ' ')

&QPF01 = HELP
IF (&QPF02 = ' ')

&QPF02 = SPLIT

IF (&QPF03 = ' ')
&QPF03 = END

IF (&QPF04 = ' ')
&QPF04 = RETURN

IF (&QPF05 = ' ')
&QPF05 = RFIND

IF (&QPF06 = ' ')
&QPF06 = RCHANGE

IF (&QPF07 = ' ')
&QPF07 = UP

IF (&QPF08 = ' ')
&QPF08 = DOWN

IF (&QPF09 = ' ')
&QPF09 = SWAP

IF (&QPF10 = ' ')
&QPF10 = LEFT

IF (&QPF11 = ' ')
&QPF11 = RIGHT

IF (&QPF12 = ' ')
&QPF12 = CURSOR

IF (.MSG ¬= ' ')
.RESP = ENTER

)END

Figure 29. The PF Keys 1-12 Panel Definition (XYZABC30) (Part 2 of 2)

Applications with ISPF - PROFILE CLIST

144 OS/390 V2R10.0 TSO/E CLISTs

)ATTR DEFAULT(%+_)
/* % TYPE(TEXT) INTENS(HIGH) defaults displayed for */
/* + TYPE(TEXT) INTENS(LOW) information only */
/* _ TYPE(INPUT) INTENS(HIGH) CAPS(ON) JUST(LEFT) */

@ TYPE(INPUT) INTENS(HIGH) PAD(_) CAPS(ON)
)BODY
+ SAMPLE - SET PF KEYS 13-24
%COMMAND ===>_ZCMD +
%

+Type the information where requested, or change the information shown
+by typing over it; then, to set PF keys 1-12, press ENTER.
+
+ PF13 %===>@QPF13 +
+ PF14 %===>@QPF14 +
+ PF15 %===>@QPF15 +
+ PF16 %===>@QPF16 +
+ PF17 %===>@QPF17 +
+ PF18 %===>@QPF18 +
+ PF19 %===>@QPF19 +
+ PF20 %===>@QPF20 +
+ PF21 %===>@QPF21 +
+ PF22 %===>@QPF22 +
+ PF23 %===>@QPF23 +
+ PF24 %===>@QPF24 +
+
+
+
+
+
+

Figure 30. The PF Keys 13-24 Panel Definition (XYZABC40) (Part 1 of 2)

Applications with ISPF - PROFILE CLIST

Chapter 12. Sample CLISTs 145

Allocating a Data Set with LISTDSI Information - The EXPAND CLIST
The EXPAND CLIST, shown in “Allocating a Data Set with LISTDSI Information -
The EXPAND CLIST”, reallocates a data set with more space to prevent the data
set from running out of space.

)INIT
IF (&QPF13 = ' ')

&QPF13 = HELP
IF (&QPF14 = ' ')

&QPF14 = SPLIT
IF (&QPF15 = ' ')

&QPF15 = END
IF (&QPF16 = ' ')

&QPF16 = RETURN
IF (&QPF17 = ' ')

&QPF17 = RFIND

IF (&QPF18 = ' ')
&QPF18 = RCHANGE

IF (&QPF19 = ' ')
&QPF19 = UP

IF (&QPF20 = ' ')
&QPF20 = DOWN

IF (&QPF21 = ' ')
&QPF21 = SWAP

IF (&QPF22 = ' ')
&QPF22 = LEFT

IF (&QPF23 = ' ')
&QPF23 = RIGHT

IF (&QPF24 = ' ')
&QPF24 = CURSOR

)PROC
IF (&ZCMD ¬= ' ') .MSG = ISPZ001
IF (&QPF13 = ' ')

&QPF13 = HELP
IF (&QPF14 = ' ')

&QPF14 = SPLIT
IF (&QPF15 = ' ')

&QPF15 = END
IF (&QPF16 = ' ')

&QPF16 = RETURN

IF (&QPF17 = ' ')
&QPF17 = RFIND

IF (&QPF18 = ' ')
&QPF18 = RCHANGE

IF (&QPF19 = ' ')
&QPF19 = UP

IF (&QPF20 = ' ')
&QPF20 = DOWN

IF (&QPF21 = ' ')
&QPF21 = SWAP

IF (&QPF22 = ' ')
&QPF22 = LEFT

IF (&QPF23 = ' ')
&QPF23 = RIGHT

IF (&QPF24 = ' ')
&QPF24 = CURSOR

IF (.MSG ¬= ' ')
.RESP = ENTER

)END

Figure 30. The PF Keys 13-24 Panel Definition (XYZABC40) (Part 2 of 2)

Allocating Data Set with LISTDSI Information - EXPAND CLIST

146 OS/390 V2R10.0 TSO/E CLISTs

The EXPAND CLIST uses the LISTDSI statement to retrieve information about a
base data set’s allocation. The information is stored in CLIST variables. The CLIST
then uses the information as input to a subprocedure. The subprocedure issues the
TSO/E ALLOCATE command to create a new data set using the same attributes as
the base data set, but doubling the primary space.

For more information about the CLIST variables set by LISTDSI, see “LISTDSI
Statement” on page 162.

/**/
/* PROCEDURE: EXPAND */
/* */
/* INPUT: BASEDS - NAME OF DATA SET WITH THE ALLOCATION */
/* ATTRIBUTES YOU WANT THE NEW DATA SET */
/* TO HAVE. */
/* NEWDS - NAME OF NEW DATA SET TO BE ALLOCATED. */
/* */
/* OUTPUT: NEW DATA SET ALLOCATED WITH THE SAME ATTRIBUTES AS */
/* THE BASE DATA SET BUT WITH A PRIMARY ALLOCATION */
/* TWICE THE SIZE OF THE BASE DATA SET. */
/* */
/* DESCRIPTION: ISSUE BUILT-IN FUNCTION &SYSDSN TO ENSURE THE BASE */
/* DATA SET EXISTS. ISSUE LISTDSI STATEMENT TO SET */
/* CLIST VARIABLES WITH ATTRIBUTES OF THE BASE DATA */
/* SET. DOUBLE THE CONTENTS OF THE PRIMARY SPACE */
/* VARIABLE, THEN USE THE VARIABLES AS INPUT TO */
/* THE ALLOCATE COMMAND TO ALLOCATE A NEW DATA SET. */
/**/

PROC 2 BASEDS NEWDS
IF &SYSDSN(&BASEDS) = OK THEN +
DO /* If the base data set exists */
LISTDSI &BASEDS /* Issue LISTDSI statement */
NGLOBAL &SYSPRIMARY,&SYSSECONDS /* Make LISTDSI variables avail- */
SET &RC = &LASTCC /* able to subprocedures */
IF &RC = 0 THEN +
SYSCALL ALC &BASEDS &NEWDS /* Call subprocedure ALC */
ELSE +
DO /* If LISTDSI failed */
WRITE &SYSMSGLVL1 /* First-level message */
WRITE &SYSMSGLVL2 /* Second-level message */
WRITE RETURN CODE = &RC /* Return code */
WRITE REASON CODE = &SYSREASON /* LISTDSI reason code */
END

END
ELSE +
WRITE DATA SET &BASEDS NOT FOUND

ALC: PROC 2 BASE NEW /* Subprocedure ALC */
SET NEWPRIMARY = 2 * &SYSPRIMARY /* Compute new primary space */
ALLOCATE DA(&NEW) NEW SPACE(&NEWPRIMARY,&SYSSECONDS) +

LIKE(&BASE) CATALOG /* Allocate the new data set */
WRITE DATA SET &NEW HAS BEEN ALLOCATED

END

Figure 31. The EXPAND CLIST

Allocating Data Set with LISTDSI Information - EXPAND CLIST

Chapter 12. Sample CLISTs 147

Allocating Data Set with LISTDSI Information - EXPAND CLIST

148 OS/390 V2R10.0 TSO/E CLISTs

Chapter 13. Reference

How to Read the CLIST Statement Syntax 149
ATTN Statement . 152
CLOSFILE Statement . 153
CONTROL Statement . 154
DATA-ENDDATA Sequence . 156
DATA PROMPT-ENDDATA Sequence 156
DO Statement . 157
END Statement . 158
ERROR Statement . 158
EXIT Statement . 159
GETFILE Statement . 160
GLOBAL Statement. 160
GOTO Statement . 161
IF-THEN-ELSE Sequence . 162
LISTDSI Statement . 162

CLIST Variables Set by LISTDSI 165
Return Codes . 168
Reason Codes . 168

NGLOBAL Statement . 170
OPENFILE Statement . 170
PROC Statement . 171
PUTFILE Statement . 172
READ Statement. 173
READDVAL Statement . 173
RETURN Statement . 174
SELECT Statement . 174

Simple SELECT . 174
Compound SELECT . 175

SET Statement . 176
SYSCALL Statement . 176
SYSREF Statement. 177
TERMIN and TERMING Statement 178
WRITE and WRITENR Statements 179
END Command . 180
EXEC Command. 180

This chapter describes the syntax of the CLIST statements. For information about
the two TSO/E commands—EXEC and END—that you use to start and end CLIST
execution, see OS/390 TSO/E Command Reference.

How to Read the CLIST Statement Syntax
Throughout this chapter, syntax is described using the structure defined below.
Read the syntax diagrams from left to right, from top to bottom, following the path of
the line.

Double arrows indicate the beginning and ending of a statement.

cc STATEMENT ch

© Copyright IBM Corp. 1988, 2000 149

If a statement syntax requires more than one line to be shown, single arrows
indicate their continuation.

cc STATEMENT c

c ch

Required items appear on the horizontal line (the main path).

cc STATEMENT required_item ch

Optional items appear below the main path.

cc STATEMENT
optional_item

ch

If you can choose from two or more items, they are stacked vertically.

v If you must choose one of the items, an item of the stack appears on the main
path.

cc STATEMENT required_choice_1
required_choice_2

ch

v If choosing one of the items is optional, the entire stack appears below the main
path.

cc STATEMENT
optional_choice_1
optional_choice_2

ch

An arrow returning to the left above the main line indicates an item that can be
repeated.

cc STATEMENT i repeatable_item ch

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

How to Read CLIST Statement Syntax

150 OS/390 V2R10.0 TSO/E CLISTs

cc STATEMENT i repeatable_item_1
repeatable_item_2

ch

Default values appear above the main path. For example, if you choose neither
choice_2 nor choice_3, choice_1 is assumed. (Defaults can be coded for clarity
reasons.)

cc STATEMENT
choice_1

choice_2
choice_3

ch

If a syntax diagram becomes too large or too complex to be printed or shown,
fragments of it are shown below the main diagram as details.

cc STATEMENT required_variable
’optional_parameter’

FRAGMENT ch

FRAGMENT:

OPERAND
optional_choice_1a
optional_choice_1b

optional_choice_2a
optional_choice_2b

c

c
optional_choice_3a
optional_choice_3b

optional_choice_4a
optional_choice_4b

The previous syntax diagram is equivalent to the following diagram:

cc STATEMENT required_variable
’optional_parameter’

OPERAND c

c
optional_choice_1a
optional_choice_1b

optional_choice_2a
optional_choice_2b

optional_choice_3a
optional_choice_3b

c

c
optional_choice_4a
optional_choice_4b

ch

How to Read CLIST Statement Syntax

Chapter 13. Reference 151

In a CLIST statement, use uppercase letters, numbers, and the set of symbols
listed below exactly as shown in the syntax.

apostrophe or single quote '

asterisk *

comma ,

equal sign =

parentheses ()

period .

ampersand &

percent %

colon :

Lowercase italic letters and symbols appearing in the syntax represent variable
information for which you substitute specific information in the statement. For
example, if name appears in the syntax, substitute a specific value (for example,
ALPHA) for the variable when you enter the statement.

Hyphens join lowercase words and symbols to form a single variable. For example,
if member-name appears in the syntax, substitute a specific value (for example,
BETA) for the variable in the statement.

Alphameric characters: unless otherwise indicated, an alphameric character is one
of the following:

Alphabetic: A-Z

Numeric: 0-9

Special: $ # @.

CLIST statements may be prefixed with a label consisting of 1-31 alphameric
characters, beginning with an alphabetic character. The label may appear on a
separate line. A colon must immediately follow the label name. For example,

label: +
IF A= ...

ATTN Statement
Use the ATTN statement to define a routine that TSO/E executes when the user
causes an attention interrupt. The attention interrupt halts execution of a CLIST so
that the user can terminate or alter its processing.

cc
label:

ATTN
OFF
action ch

label
A name the CLIST can reference in a GOTO statement to branch to this ATTN
statement. label is one-to-31 alphameric characters, beginning with an
alphabetic character.

How to Read CLIST Statement Syntax

152 OS/390 V2R10.0 TSO/E CLISTs

OFF
Any previous attention action is nullified. Do not use ATTN OFF within an
attention routine.

action
specifies either:

1. One TSO/E command, commonly an EXEC command that invokes an
attention processing CLIST, or a null (blank) line. An attention processing
CLIST can execute multiple TSO/E commands, while the action can execute
only one.

2. A DO-END sequence constituting an attention exit routine. This routine can
contain CLIST statements, including the RETURN statement or EXIT
statement, and one TSO/E command, or a null line.

If a null line is executed, TSO/E ignores the attention and execution continues
at the point where the interruption occurred.

If an EXIT statement is executed, the attention is ignored and the CLIST is
terminated.

If a TSO/E command is executed, control is given to the command.

When a TSO/E command, an EXIT statement, or a null line is executed, TSO/E
ignores all other.

If the attention routine does anything other than terminate the CLIST, use the
MAIN operand of the CONTROL statement to protect the CLIST from being
flushed from the input stack when an attention interrupt occurs. For more
information, see “CONTROL Statement” on page 154.

CLOSFILE Statement
Use the CLOSFILE statement to close a QSAM file that has been previously
opened by an OPENFILE statement. Only one file can be closed with each
CLOSFILE statement.

Note: The CLOSFILE statement must be issued in the same CLIST as the
corresponding OPENFILE statement.

cc
label:

CLOSFILE file_name
&symbolic_variable_name

ch

label
A name the CLIST can reference in a GOTO statement to branch to this
CLOSFILE statement. label is one-to-31 alphameric characters, beginning with
an alphabetic character.

file_name | symbolic_variable_name

file_name
is the file name (ddname) assigned to the file (data set) when it was
allocated in the current session.

symbolic_variable_name
is the symbolic variable to which you assigned file_name.

ATTN Statement

Chapter 13. Reference 153

CONTROL Statement
Use the CONTROL statement to define processing options for a CLIST. The options
are in effect from the time CONTROL executes until either the CLIST terminates or
it issues another CONTROL statement.

You can also set CONTROL options on or off in the following variables:

&SYSPROMPT ON equals PROMPT, OFF equals NOPROMPT

&SYSSYMLIST ON equals SYMLIST, OFF equals NOSYMLIST

&SYSCONLIST ON equals CONLIST, OFF equals NOCONLIST

&SYSLIST ON equals LIST, OFF equals NOLIST

&SYSASIS ON equals ASIS, OFF equals CAPS

&SYSMSG ON equals MSG, OFF equals NOMSG

&SYSFLUSH ON equals FLUSH, OFF equals NOFLUSH.

CLISTs that do not issue CONTROL statements or one of the above variables
execute with the following options: NOPROMPT, NOSYMLIST, NOLIST,
NOCONLIST, CAPS, MSG, and FLUSH. The user can set PROMPT and LIST by
entering them as keywords on the EXEC command or subcommand issued to
invoke the CLIST.

CONTROL has no default operands. If you enter CONTROL with no operands, the
system uses options already defined by system default, the EXEC command, or a
previous CONTROL statement. In addition, when there are no operands specified,
the system displays those options currently in effect.

Note: CONTROL operands cannot be entered as symbolic variables.

cc
label:

CONTROL
PROMPT
NOPROMPT

SYMLIST
NOSYMLIST

LIST
NOLIST

c

c
CONLIST
NOCONLIST

CAPS
NOCAPS
ASIS

MSG
NOMSG

FLUSH
NOFLUSH

MAIN END(string)
ch

label
A name the CLIST can reference in a GOTO statement to branch to this
CONTROL statement. label is one-to-31 alphameric characters, beginning with
an alphabetic character.

PROMPT |NOPROMPT

PROMPT
TSO/E commands in the CLIST may prompt the terminal for input. (The
PROMPT operand on the PROFILE command must also be in effect.)

NOPROMPT
TSO/E commands in the CLIST may not prompt the terminal for input.

SYMLIST | NOSYMLIST

CONTROL Statement

154 OS/390 V2R10.0 TSO/E CLISTs

SYMLIST
Each executable statement is displayed at the terminal before it is scanned
for symbolic substitution. Executable statements include commands,
subcommands, and CLIST statements.

NOSYMLIST
Executable statements are not displayed at the terminal before symbolic
substitution.

LIST | NOLIST

LIST
Commands and subcommands are displayed at the terminal after symbolic
substitution but before execution.

NOLIST
Commands and subcommands are not displayed at the terminal.

CONLIST | NOCONLIST

CONLIST
CLIST statements are displayed at the terminal after symbolic substitution
but before execution.

NOCONLIST
CLIST statements are not displayed at the terminal after symbolic
substitution.

CAPS | NOCAPS | ASIS

CAPS
Character strings are converted to uppercase letters before being
processed.

NOCAPS or ASIS
Character strings are not converted to uppercase before being processed.

MSG | NOMSG

MSG
Informational messages from commands and statements in the CLIST are
displayed at the terminal.

NOMSG
Informational messages from commands and statements in the CLIST are
not displayed at the terminal.

FLUSH | NOFLUSH

FLUSH
The system can erase (flush) the queue of nested CLISTs called the input
stack unless NOFLUSH or MAIN is encountered. The system normally
flushes the stack when an execution error occurs.

NOFLUSH
The system cannot flush the CLIST when an error occurs.

Note: To protect a CLIST from being flushed, the CLIST must contain an
error routine.

MAIN
This is the main CLIST in your TSO/E environment and cannot be deleted by a
stack flush request from the system. When MAIN is specified, the NOFLUSH
condition is assumed for this CLIST, regardless of whether FLUSH was in

CONTROL Statement

Chapter 13. Reference 155

effect. This operand is required for CLISTs containing attention routines that do
anything other than terminate the CLIST.

END(string)
A character string recognized by the CLIST as a replacement for an END
statement that concludes a DO or SELECT statement, or a subprocedure. string
is 1-4 alphameric characters, beginning with an alphabetic character.

DATA-ENDDATA Sequence
Use the DATA-ENDDATA sequence when you do not want a command or
subcommand to be interpreted as a CLIST statement. The CLIST views the group
of commands and subcommands in the DATA-ENDDATA sequence as data to be
ignored and passed to TSO/E for execution.

Do not include CLIST statements in a DATA-ENDDATA sequence because TSO/E
attempts to execute them as commands or subcommands.

Symbolic substitution is performed before execution of the group.

cc
label:

DATA i commands
subcommands

ENDDATA ch

label
A name the CLIST can reference in a GOTO statement to branch to this
DATA-ENDDATA sequence. label is one-to-31 alphameric characters, beginning
with an alphabetic character.

commands | subcommands
The data to be ignored and passed to TSO/E for execution.

DATA PROMPT-ENDDATA Sequence
Use the DATA PROMPT-ENDDATA sequence to designate responses to prompts by
TSO/E commands or subcommands. An error condition (error code 968) occurs
unless the sequence is immediately preceded by a command or subcommand
issuing a prompt.

cc
label:

DATA PROMPT responses ENDDATA ch

Note: When using the DATA PROMPT-ENDDATA sequence, the following rules
apply:

v The CLIST must allow prompting.
v Symbolic substitution is performed before a reply is sent.

CONTROL Statement

156 OS/390 V2R10.0 TSO/E CLISTs

DO Statement
Use the DO statement to execute sequences of commands, subcommands, and
statements (DO-sequences). You can use the DO statement to execute
DO-sequences once, repeatedly, and when certain conditions are true.

To execute a DO-sequence once, include only the DO and END statements.

To execute a DO-sequence repeatedly, include a variable with a starting value, a
TO value, and, optionally, a BY value.

To execute a DO-sequence conditionally, include a WHILE or UNTIL clause. The
WHILE clause contains a leading decision and executes while a comparative
expression is true, and the UNTIL clause contains a trailing decision and executes
until a comparative expression is true.

To execute a DO-sequence repeatedly and conditionally (compound DO), the
WHILE and/or UNTIL clauses must follow the from, TO, and optional BY clauses.

The DO statement indicates the beginning of a DO-sequence. The END statement
concludes the DO-sequence. If you want to use the TSO/E END command in a
DO-sequence, you must redefine the END statement, using the END operand of the
CONTROL statement.

cc
label:

DO Type of Execution (DO-sequence)
label:

END ch

Type of Execution

Repeated Execution
WHILE condition
UNTIL condition

Repeated Execution

BY 1
variable = from_expr. TO to_expr.

BY by_expr.

label
A name the CLIST can reference in a GOTO statement to branch to this DO
statement. label is one-to-31 alphameric characters, beginning with an
alphabetic character.

variable
A symbolic variable that controls execution of the DO-sequence. With each
execution, the variable value increases or decreases by a certain amount.
When the value passes a certain limit, the CLIST stops executing the
DO-sequence and executes the next instruction after the END statement.

DO Statement

Chapter 13. Reference 157

from_expression
A decimal integer, or an expression that evaluates to a decimal integer, forming
the initial value of the DO variable.

to_expression
A decimal integer, or an expression that evaluates to a decimal integer, forming
the terminal value of the DO variable.

by_expression
A decimal integer, or an expression that evaluates to a decimal integer, by
which the DO variable increases or decreases each time the DO-sequence
executes.

condition
A comparative expression or a sequence of comparative expressions
sequenced by logical operators. The expression or expressions can include
character data, including characters of the double-byte character set.

In the absence of a BY clause, the value of the DO variable increases by 1 with
each execution of the DO sequence.

If the by-expression evaluates to a negative number or consists of a number
beginning with a minus sign, the DO variable decreases by that amount.

If the statements in a DO-sequence modify a DO variable, the CLIST uses the new
value in determining whether to repeat the DO-sequence.

DO-sequences can contain nested DO statements.

END Statement
Use the END statement to mark the end of a DO-sequence, a SELECT statement,
or a subprocedure. The END statement must appear on a line by itself following the
DO-sequence, SELECT statement, or subprocedure.

cc END ch

The END statement is distinct from the TSO/E END command. If you use both the
END statement and END command in a CLIST, you must distinguish them by
redefining the END statement. Using the CONTROL statement, you can redefine
the END statement as follows:
CONTROL END(string)

where string is 1-4 alphameric characters, beginning with an alphabetic character.
You then use the string in place of END statements in the CLIST.

ERROR Statement
Use the ERROR statement to set up an environment that checks for non-zero
return codes from commands, subcommands, and CLIST statements in the
currently executing CLIST. When an error code is detected, processing continues at
the ERROR routine active for the command, subcommand, or CLIST statement that
registered the error. If an ERROR routine is not active, the CLIST either terminates
or continues, depending on the severity of the error.

DO Statement

158 OS/390 V2R10.0 TSO/E CLISTs

The error exit must be protected from being flushed from the input stack by the
system. Stack flushing makes the error return codes unavailable. Use the MAIN or
NOFLUSH operands of the CONTROL statement to prevent stack flushing.

When ERROR is entered with no operands, the CLIST displays the command,
subcommand, or statement in the CLIST that ended in error. No explanatory CLIST
ERROR messages are displayed. &LASTCC is reset to 0 and the CLIST continues
with the next sequential statement or command.

If the LIST option was requested for the CLIST, the null ERROR statement is
ignored.

The ERROR statement must precede any statements that might cause a branch to
it.

cc
label:

ERROR
OFF
action

ch

label
A name the CLIST can reference in a GOTO statement to branch to this
ERROR statement. label is one-to-31 alphameric characters, beginning with an
alphabetic character.

OFF | action

OFF
Any action previously set up by an ERROR statement is nullified.

action
Any executable statement, commonly a DO-sequence constituting a routine.
The action may execute TSO/E commands, subcommands, and CLIST
statements.

Note: Coding ERROR OFF within the DO-sequence routine itself prevents
the routine from returning control to the CLIST.

EXIT Statement
Use the EXIT statement to return control to the program that called the currently
executing CLIST. The return code associated with this exit can be specified by the
user or allowed to default to 0.

A CLIST that is called by another CLIST is said to be nested. Multiple levels of
nesting are allowed. The structure of the nesting is called the hierarchy. You go “up”
in the hierarchy when control passes back to the calling CLIST. TSO/E itself is at
the top of the hierarchy.

Entering EXIT causes control to go up one level. When EXIT is entered with the
QUIT operand, the system attempts to pass control upward to the first CLIST
encountered that has MAIN or NOFLUSH in effect (see “CONTROL Statement” on
page 154). If no such CLIST is found, control passes to TSO/E, which flushes all
CLISTs from the input stack and passes control to the terminal.

ERROR Statement

Chapter 13. Reference 159

cc
label:

EXIT
CODE(expression) QUIT

ch

label
A name the CLIST can reference in a GOTO statement to branch to this EXIT
statement. label is one-to-31 alphameric characters, beginning with an
alphabetic character.

CODE (expression)
A CLIST-defined return code. expression must be a positive integer, zero, or an
expression that evaluates to a decimal integer. When CODE is not specified,
the system uses 0 as the default return code.

QUIT
Control is passed up the nested hierarchy until either a CLIST is found with the
MAIN or NOFLUSH option active or TSO/E receives control.

GETFILE Statement
Use the GETFILE statement to read a record from a QSAM file opened by the
OPENFILE statement. One record is obtained by each execution of GETFILE.

After GETFILE executes, the file name variable contains the record obtained. If you
use GETFILE to read data from the terminal, the data is translated to uppercase.

Note: The GETFILE statement must be issued in the same CLIST as the
corresponding OPENFILE statement.

cc
label:

GETFILE file_name ch

label
A name the CLIST can reference in a GOTO statement to branch to this
GETFILE statement. label is one-to-31 alphameric characters, beginning with an
alphabetic character.

file_name
The file name (ddname) assigned to the file (data set) when it was allocated in
the current session. Do not specify a symbolic variable containing the file name.

GLOBAL Statement
Use the GLOBAL statement to share values between nested CLISTs. In the
hierarchy of nested CLISTs, the highest-level CLIST must contain a GLOBAL
statement with the maximum number of variables used throughout the nested chain.
Lower-level CLISTs must include a GLOBAL statement if they intend to refer to the
global variables defined in the highest-level CLIST.

Note: The GLOBAL statement cannot be used to give a REXX exec access to a
CLIST’s global variables. CLIST variables cannot be accessed by REXX
execs.

The global variables are positional, and the order is defined by the GLOBAL
statement in the highest-level CLIST. All lower-level CLISTs that reference this same
set of variables must follow this order to reference the same values. The variable

EXIT Statement

160 OS/390 V2R10.0 TSO/E CLISTs

names may be unique to the lower-level CLISTs. This means that the Nth name on
any level GLOBAL statement refers to the same value, even though the symbolic
name at each level may be different. For example, if a nested CLIST references the
fifth global variable, then it must define five global variables. If it references the
second global variable, then it needs to define only two global variables.

Multiple GLOBAL statements are cumulative. For example, if a CLIST has a
GLOBAL statement that defines three variables followed by another GLOBAL
statement that defines two variables, then five variables have been defined. The
second GLOBAL statement defines the fourth and fifth variables.

The GLOBAL statement must precede any statement that uses or defines its
variables.

cc
label:

GLOBAL variable_1 i

variable
ch

label
A name the CLIST can reference in a GOTO statement to branch to this
GLOBAL statement. label is one-to-31 alphameric characters, beginning with an
alphabetic character.

variable_1 / variable
A symbolic variable name for this CLIST. The name refers to a variable that is
either being created by this GLOBAL statement or that was created by a
GLOBAL statement in the highest-level CLIST.

GOTO Statement
Use the GOTO statement to cause an unconditional branch within a CLIST.
Branching to another CLIST is not allowed.

cc
label:

GOTO target
&variable

ch

label
A name the CLIST can reference in a GOTO statement to branch to this GOTO
statement. label is one-to-31 alphameric characters, beginning with an
alphabetic character.

target | variable

target
A label on a statement or command.

variable
A symbolic variable that contains a valid label.

GOTO statements cannot branch:
v To another CLIST
v To a subprocedure’s PROC statement
v From one subprocedure to another
v From a subprocedure to the CLIST’s main procedure

GLOBAL Statement

Chapter 13. Reference 161

IF-THEN-ELSE Sequence
Use the IF-THEN-ELSE sequence to define a condition, test the truth of that
condition, and initiate an action based on the test results. Do not code THEN and
ELSE on the same logical line.

cc
label:

IF logical_expression THEN
action ELSE

action

ch

label
A name the CLIST can reference in a GOTO statement to branch to this
IF-THEN-ELSE sequence. label is one-to-31 alphameric characters, beginning
with an alphabetic character.

logical_expression
A comparative expression or a sequence of comparative expressions
sequenced by logical operators. The expression or expressions can include
character data, including characters of the double-byte character set.

action
An executable command, subcommand, or CLIST statements. (Enclose an
action consisting of more than one statement in a DO-sequence.) The THEN
action is invoked if the logical expression is true. The ELSE action is invoked if
the logical expression is false. If a null THEN or null ELSE statement is
executed, control passes to the next sequential statement after the
IF-THEN-ELSE sequence.

The action must be on the same line as a THEN or ELSE clause, or be joined
to the line by a continuation character. For example, the following are correct:
IF &FOOTPRINT = 0 THEN SET ECODE = 4

IF &FOOTPRINT = 0 THEN +
SET ECODE = 4

IF &FOOTPRINT = 0 THEN +
DO

SET ECODE = 4

...
END

LISTDSI Statement
Use the LISTDSI statement to obtain information about a data set that is available
on DASD. The LISTDSI statement can retrieve information about a data set’s
allocation, protection, and directory, and store the information in CLIST variables.

The LISTDSI statement does not support data that is on tape. The LISTDSI
statement supports generation data group (GDG) data sets, but does not support
relative GDG names. LISTDSI does not support hierarchical file systems (HFS) data
sets. Unpredictable results may occur.

The CLIST can use the LISTDSI information to determine whether the data set is
the right size or has the right organization or format for a given task. It can also use
the LISTDSI information as input to the ALLOCATE command, to create a new data
set using some attributes from the old data set while modifying others.

IF-THEN-ELSE Sequence

162 OS/390 V2R10.0 TSO/E CLISTs

If you use LISTDSI to retrieve information about a VSAM data set, the CLIST stores
only the volume serial ID (in variable &SYSVOLUME), the generic device type (in
variable &SYSUNIT), and the data set organization (in variable &SYSDSORG). The
CLIST sets all other LISTDSI variables to question marks.

If you use LISTDSI to retrieve information about a multiple volume data set, the
CLIST stores information for the first volume only. Similarly, if you specify a file
name or the PREALLOC parameter and you have other data sets allocated to the
same file name, then the system might not retrieve information for the data set you
wanted.

When you use LISTDSI to obtain information about a FILE, LISTDSI will only return
information about the first data set in the FILE, if the file consists of a concatenation
of more than one data set. Likewise, if the FILE points to a multi-volume data set,
LISTDSI can only return information about the first volume, and will not be able to
detect that the data is multi-volume.

If the data set is SMS managed and is capable of expanding to multiple volumes,
but has not yet done so, it is considered a single volume data set by LISTDSI until
it has expanded to the second volume. In any case, LISTDSI will only retrieve
information for the first volume referenced by the request.

Note: LISTDSI considers file names in the form SYSnnnnn as system-generated file
names. If LISTDSI is used to obtain information about a data set that was
pre-allocated multiple times using a file name of the form SYSnnnnn, an
existing file may be unintentionally freed.

To suppress TSO/E messages issued by the LISTDSI statement, use the
CONTROL NOMSG statement. For information about the CONTROL statement, see
“CONTROL Statement” on page 154.

cc
label:

LISTDSI data_set_name
VOLUME(serial_id)
PREALLOC

file_name FILE

c

c
NODIRECTORY
DIRECTORY

NOSMSINFO

SMSINFO RECALL
NORECALL

ch

label
A name the CLIST can reference in a GOTO statement to branch to this
LISTDSI statement. label is one-to-31 alphameric characters, beginning with an
alphabetic character.

data_set_name | file_name

data_set_name
The name of the data set about which you want to retrieve information.

file_name
The name of an allocated file (ddname) about which you want to retrieve
information.

VOLUME(serial_id) | PREALLOC

LISTDSI Statement

Chapter 13. Reference 163

VOLUME(serial_id)
specifies the serial number of the volume where the data set is located.

PREALLOC
specifies that the location of the specified data set is determined by
allocating the data set, rather than through a catalog search. PREALLOC
allows data sets that have been previously allocated to be located without
searching a catalog and allows unmounted volumes to be mounted.

If you do not specify either VOLUME or PREALLOC, the system locates the
data set through catalog search.

If you specify a file_name, LISTDSI ignores the VOLUME and PREALLOC
parameters.

FILE
specifies that you provided a file_name instead of a data_set_name. If you do
not specify FILE, LISTDSI assumes that you provided a data set name.

DIRECTORY | NODIRECTORY

DIRECTORY
indicates that you want directory information for a partitioned data set.

NODIRECTORY
indicates that you do not want directory information for a partitioned data
set. If you do not require directory information, NODIRECTORY can
significantly speed up processing. NODIRECTORY is the default.

SMSINFO | NOSMSINFO
indicates whether you want SMS information about an SMS-managed data set,
like the type of data set, the used space, the data -, storage -, and
management class names. See also Table 11 on page 165.

SMSINFO
indicates that you want SMS information about data_set_name or
file_name. Neither data_set_name nor file_name may refer to a VSAM
index or a data component.

If the specified data set is not managed by SMS, LISTDSI continues, but no
SMS information is provided in the appropriate CLIST variables.

Specify SMSINFO only if you want SMS information about a data set.
NOSMSINFO (the default) significantly reduces the execution time of the
LISTDSI statement.

NOSMSINFO
indicates that you do not want SMS information about the specified data
set. NOSMSINFO is the default.

RECALL | NORECALL

RECALL
indicates that you want to recall a data set migrated by HSM. The system
recalls the data set regardless of its level of migration or the type of device
it has been migrated to.

NORECALL
indicates that you do not want to recall a data set. If the data set has been
migrated, the system displays an error message.

LISTDSI Statement

164 OS/390 V2R10.0 TSO/E CLISTs

If you do not specify either RECALL or NORECALL, the system recalls the data
set only if it has been migrated to a direct access storage device (DASD).

The LISTDSI function issues message IKJ56709I if a syntactically incorrect data set
name is passed to the function. To prevent this message from being displayed, use
CONTROL NOMSG.
PROC 0
SET DSNAME = ABCDEFGHIJ.XYZ /* Syntactically invalid name,

/* because a qualifier is longer
/* than 8 characters

CONTROL NOMSG /* Set OFF to suppress any LISTDSI
/* TSO/E messages

LISTDSI &DSNAME /* Obtain data set information
WRITE Return code from LISTDSI is ==> &LASTCC
EXIT CODE(0)

CLIST Variables Set by LISTDSI
Table 11 describes the contents of the CLIST variables set by LISTDSI. For VSAM
data sets, only the variables &SYSVOLUME, &SYSUNIT, and &SYSDSORG are
accurate; all other variables are set to question marks.

Table 11. Variables Set by LISTDSI

Variable Contents

&SYSDSNAME Data set name

&SYSVOLUME Volume serial ID

&SYSUNIT Generic device type on which volume resides, for example,
“3390”.

&SYSDSORG Data set organization:

PS Physical sequential

PSU Physical sequential unmovable

DA Direct organization

DAU Direct organization unmovable

IS Indexed sequential

ISU Indexed sequential unmovable

PO Partitioned organization

POU Partitioned organization unmovable

VS VSAM

??? Unknown

LISTDSI Statement

Chapter 13. Reference 165

Table 11. Variables Set by LISTDSI (continued)

Variable Contents

&SYSRECFM Record format; 1- to 6-character combination of the
following:

U Records of undefined length

F Records of fixed length

V Records of variable length

T Records written with the track overflow
feature of the device (3375, 3380, and
3390 do not support track overflow)

B Records blocked

S Records written as standard or spanned
variable-length blocks

A Records contain ASCII control characters

M Records contain machine code control
characters

?????? Unknown

&SYSLRECL Logical record length

&SYSBLKSIZE Block size

&SYSKEYLEN Key length

&SYSALLOC Allocation, in space units

&SYSUSED Allocation used, in space units. For a partitioned data set
extended (PDSE) “N/A” will be returned; see the description
of the &SYSUSEDPAGES for used space of a PDSE.

&SYSUSEDPAGES The used space of a partitioned data set extended (PDSE)
in 4K pages.

&SYSPRIMARY Primary allocation in space units

&SYSSECONDS Secondary allocation in space units

&SYSUNITS Space units:

CYLINDER Space units in cylinders

TRACK Space units in tracks

BLOCK Space units in blocks

???????? Space units are unknown

&SYSEXTENTS Number of extents allocated

&SYSCREATE Creation date in Year/day format, for example: 1985/102.

&SYSREFDATE Last referenced date in Year/day format, for example:
1995/107. (Specifying DIRECTORY causes the date to be
updated)

&SYSEXDATE Expiration date in Year/day format, for example: 1995/365.

LISTDSI Statement

166 OS/390 V2R10.0 TSO/E CLISTs

||
|

Table 11. Variables Set by LISTDSI (continued)

Variable Contents

&SYSPASSWORD Password indication:

NONE No password protection

READ Password required to read

WRITE Password required to write

&SYSRACFA RACF indication:

NONE No RACF protection

GENERIC Generic profile covers this data set

DISCRETE Discrete profile covers this data set

&SYSUPDATED Change indicator:

YES Data set has been updated

NO Data set has not been updated

&SYSTRKSCYL Tracks per cylinder for the unit identified in the &SYSUNIT
variable

&SYSBLKSTRK Blocks of &SYSBLKSIZE per track for the unit identified in
the &SYSUNIT variable. For a PDSE, the value “N/A” is
returned because a block of size &SYSBLKSIZE can ’span’
a track in a PDSE. The value contained in
&SYSUSEDPAGES is a more meaningful measurement of
space usage for a PDSE.

&SYSADIRBLK For a partitioned data set (PDS), the number of directory
blocks allocated will be returned. For a partitioned data set
extended (PDSE), “NO_LIM” will be returned because there
is no static allocation for its directory. A value is returned
only if DIRECTORY is specified on the LISTDSI statement.

&SYSUDIRBLK For a partitioned data set (PDS), the number of directory
blocks used will be returned. For a partitioned data set
extended (PDSE), “N/A” will be returned because it is not a
static value. A value is returned only if DIRECTORY is
specified on the LISTDSI statement.

&SYSMEMBERS Number of members - returned only for partitioned data sets
when DIRECTORY is specified

&LASTCC LISTDSI return code

&SYSREASON LISTDSI reason code

&SYSMSGLVL1 First-level message if an error occurred

&SYSMSGLVL2 Second-level message if an error occurred

LISTDSI Statement

Chapter 13. Reference 167

||
|
|
|
|

||
|
|
|
|

Table 11. Variables Set by LISTDSI (continued)

Variable Contents

&SYSDSSMS Contains information about the type of a data set, provided
by DFSMS/MVS.

If the SMS DSNTYPE information could not be retrieved, the
SYSDSSMS variable contains:

SEQ for a sequential data set

PDS for a partitioned data set

PDSE for a partitioned data set extended

If the data set is a PDSE and the SMS DSNTYPE
information could be retrieved, the SYSDSSMS variable
contains:

LIBRARY for an empty PDSE

PROGRAM_LIBRARY for a partitioned data set
extended program library

DATA_LIBRARY for a partitioned data set
extended data library

&SYSDATACLASS(1) The SMS data class name - returned only if SMSINFO is
specified on the LISTDSI statement and the data set is
managed by SMS.

&SYSSTORCLASS(1) The SMS storage class name - returned only if SMSINFO is
specified on the LISTDSI statement and the data set is
managed by SMS.

&SYSMGMTCLASS(1) The SMS management class name - returned only if
SMSINFO is specified on the LISTDSI statement and the
data set is managed by SMS.

Note:

1. These variables require either MVS/DFP 3.2 (or later) or DFSMS/MVS 1.1 (or later) to
be active on your system. For data sets not managed by SMS these variables return a
null string.

Return Codes
Return codes from the LISTDSI statement appear in CLIST variable &LASTCC.
Error routines do not receive control when a CLIST receives a non-zero return code
from LISTDSI. Table 12 lists the LISTDSI return codes and their meanings.

Table 12. LISTDSI Return Codes

Return Code Meaning

0 Processing successful

4 Some data set information is unavailable. All data set information other
than directory information can be considered valid.

16 Processing unsuccessful. None of the CLIST variables can be
considered valid.

Reason Codes
Reason codes from the LISTDSI statement appear in CLIST variable
&SYSREASON. Table 13 on page 169 lists the LISTDSI reason codes and their

LISTDSI Statement

168 OS/390 V2R10.0 TSO/E CLISTs

||
|

|
|

||

||

||

|
|
|

||

||
|

||
|
|

meanings. With each reason code the CLIST variable &SYSMSGLVL2 is set to
message IKJ584nnI, where nn is the reason code. These messages are described
in OS/390 TSO/E Messages.

Table 13. LISTDSI Reason Codes

Reason Code Meaning

0 Normal completion

1 Error parsing the statement.

2 Dynamic allocation processing error (SVC 99 error).

3 The data set is a type that cannot be processed.

4 Error determining UNIT name (IEFEB4UV error).

5 Data set not cataloged (LOCATE macro error).

6 Error obtaining the data set attributes (OBTAIN macro error).

7 Error finding device type (DEVTYPE macro error).

8 The data set does not reside on a direct access device.

9 DFHSM migrated the data set, NORECALL prevents retrieval.

11 Directory information was requested, but you lack authority to access
the data set.

12 VSAM data sets are not supported.

13 The data set could not be opened.

14 Device type not found in unit control block (UCB) tables.

17 System or user abend occurred.

18 Partial data set information was obtained.

19 Data set resides on multiple volumes.

20 Device type not found in eligible device table (EDT).

21 Catalog error trying to locate the data set.

22 Volume not mounted (OBTAIN macro error).

23 Permanent I/O error on volume (OBTAIN macro error).

24 Data set not found by OBTAIN macro.

25 Data set migrated to non-DASD device.

26 Data set on MSS (Mass Storage) device.

27 No volume serial is allocated to the data set.

28 ddname must be one to eight characters.

29 Data set name or ddname must be specified.

30 Data set is not SMS-managed.

31 ISITMGD macro returned with bad return code and reason code. Return
code and reason code can be found in message IKJ58431I, which is
returned in variable &SYSMSGLVL2.

32 Unable to retrieve SMS information. DFSMS/MVS has incorrect level.

33 Unable to retrieve SMS information. DFSMS/MVS is not active.

34 Unable to retrieve SMS information. OPEN error.

35 Unexpected error from DFSMS/MVS internal service IGWFAMS.

36 Unexpected error from the SMS service module.

LISTDSI Statement

Chapter 13. Reference 169

NGLOBAL Statement
Use the NGLOBAL statement to share values between subprocedures in a CLIST.

The NGLOBAL (named global) statement defines variables by name. When you
define an NGLOBAL variable, other subprocedures in the same CLIST can refer to
it by name and modify its value. Other CLISTs cannot access or modify an
NGLOBAL variable.

There is no limit to the number of variables that can be defined on an NGLOBAL
statement. The NGLOBAL statement must precede any statement that uses its
variables.

cc
label:

NGLOBAL variable_1 i

variable
ch

label
A name the CLIST can reference in a GOTO statement to branch to this
NGLOBAL statement. label is one-to-31 alphameric characters, beginning with
an alphabetic character.

variable_1 / variable
A symbolic variable name for this CLIST. The name refers to a variable that is
being defined by this NGLOBAL statement.

Note: Variables named on an NGLOBAL statement cannot appear on a PROC
statement.

OPENFILE Statement
Use the OPENFILE statement to open a QSAM file for I/O. The file must have been
allocated during the session and assigned a file name. Each execution of
OPENFILE can open only one file, and files cannot be open for different members
of the same PDS at the same time. The files must represent data sets with logical
record lengths no greater than 32767 bytes.

Note: The OPENFILE statement sets any I/O variables to nulls. Always execute the
OPENFILE statement before using any SET statements to create I/O
records.

Complete your file I/O on a specific file before changing from command to
subcommand mode and vice versa. Cross-mode file I/O is not supported and
causes unpredictable abnormal terminations.

Specify NOFLUSH for a CLIST that uses file I/O. (See the CONTROL statement.) If
a system action causes TSO/E to flush the input stack because you did not specify
NOFLUSH, a user may have to log off the system to recover. The user will
recognize the condition by receiving a message similar to “FILE NOT FREED,
DATA SET IS OPEN.”.

NGLOBAL Statement

170 OS/390 V2R10.0 TSO/E CLISTs

cc
label:

OPENFILE file_name
&symbolic_variable_name

INPUT
OUTPUT
UPDATE

ch

label
A name the CLIST can reference in a GOTO statement to branch to this
OPENFILE statement. label is one-to-31 alphameric characters, beginning with
an alphabetic character.

file_name | symbolic_variable_name

file_name
The file name (ddname) you assigned to the file (data set) when allocating
it in the current session.

symbolic_variable_name
The symbolic variable to which you assigned file_name.

INPUT | OUTPUT | UPDATE

INPUT
Open the file for input.

OUTPUT
Open the file for output.

UPDATE
Open the file for updating in place; that is, the CLIST can execute GETFILE
and PUTFILE statements before closing the file.

PROC Statement
Use the PROC statement to:

v Define parameters to be passed on the EXEC command to the CLIST. In this
case PROC is optional, but if you use it, it must be the first executable statement
in the CLIST.

v Define a subprocedure and any parameters passed on the SYSCALL statement
to the subprocedure. A subprocedure must begin with a PROC statement. In this
case the PROC statement must have a label, and a corresponding END
statement to mark the end of the subprocedure.

cc
label:

PROC positional_number i

positional_parameter
c

c i keyword_parameter
(

default_value)
END

ch

label
A name the CLIST can reference in a SYSCALL statement to pass control to

OPENFILE Statement

Chapter 13. Reference 171

this PROC statement. Required on PROC statements that begin
subprocedures, label is one-to-31 alphameric characters, beginning with an
alphabetic character.

positional_number
The number of required positional parameters to be passed. Enter 1-5 decimal
digits. If none, enter 0.

positional_parameter
A positional parameter passed to the CLIST or subprocedure.

A positional parameter name may be 1-252 alphameric characters in length,
beginning with an alphabetic character. Lowercase values are changed to
uppercase.

If the name of a positional parameter on the PROC statement is the same as
the name of a GLOBAL variable, an error occurs.

keyword_parameter
A keyword parameter passed to the CLIST or subprocedure.

A keyword parameter name can be 1-31 alphameric characters in length,
beginning with an alphabetic character, and cannot contain the character
underscore (_). Lowercase values are changed to uppercase.

default_value
The value assigned to the corresponding variable in the CLIST or subprocedure
if the user does not specify a value on the associated keyword on the EXEC
command or SYSCALL statement.

If the value is omitted (empty parentheses) the user may supply a value on the
associated keyword on the EXEC command or SYSCALL statement.

Note: Symbolic substitution does not occur for default values of a keyword
parameter.

All parameters have an initial value at the time the CLIST or subprocedure begins
execution. Each parameter name becomes the name of a symbolic variable that
has the initial value of the associated parameter. The values of passed parameters
are in effect only while the CLIST or subprocedure is active. Values passed in
lowercase are converted to uppercase by the exec command.

PUTFILE Statement
Use the PUTFILE statement to write a record to an open QSAM file. Each
execution of PUTFILE writes one record. Unless the user wants the same record
sent more than once, the file name variable must be assigned a different record
using an assignment statement before the next PUTFILE statement is issued.

Note: The PUTFILE statement must be issued in the same CLIST as the
corresponding OPENFILE statement.

cc
label:

PUTFILE file_name ch

PROC Statement

172 OS/390 V2R10.0 TSO/E CLISTs

label
A name the CLIST can reference in a GOTO statement to branch to this
PUTFILE statement. label is one-to-31 alphameric characters, beginning with an
alphabetic character.

file_name
The file name (ddname) assigned to the file (data set) when it was allocated in
the current session. Do not specify a symbolic variable containing the file name.

READ Statement
Use the READ statement to read input from the terminal and store it in symbolic
variables. These variables may be defined on the READ statement or elsewhere in
the CLIST. The READ statement is usually preceded by a WRITE or WRITENR
statement that requests the user to enter the expected input at the terminal.

cc
label:

READ

ivariable_1
variable

ch

label
A name the CLIST can reference in a GOTO statement to branch to this READ
statement. label is one-to-31 alphameric characters, beginning with an
alphabetic character.

variable_1 / variable
Any valid variable name. The variables are positional in that values in the input
data entered by the terminal user are stored sequentially into the specified
variables.

If the operand is omitted the input is stored in the &SYSDVAL control variable.

READDVAL Statement
Use the READDVAL statement to assign the current contents of the &SYSDVAL
control variable to one or more specified symbolic variables.

The assignment is done sequentially to the variables in the order specified;
variables not assigned values default to null values. If there are more values than
variables, the excess values from &SYSDVAL are not assigned.

cc
label:

READDVAL variable_1 i

variable
ch

label
provides a name the CLIST can reference in a GOTO statement to branch to
this READDVAL statement. label is one-to-31 alphameric characters, beginning
with an alphabetic character.

variable_1 / variable
Any valid variable name. A variable need not have been previously defined.

PUTFILE Statement

Chapter 13. Reference 173

RETURN Statement
Use the RETURN statement to:

v Return control from an error routine or an attention routine to the statement
following the one that ended in error or the one that was interrupted by an
attention.

v Provide a return code from a subprocedure. Control will pass to the statement
following the SYSCALL statement that called the subprocedure. The return code
is stored in the control variable &LASTCC (Note, however, that return codes from
CLIST subprocedures do not cause an error routine to receive control.)

RETURN is valid only when issued from a subprocedure, an activated error routine,
or an activated attention routine. If issued from any other place, RETURN is treated
as a no-operation.

cc
label:

RETURN
CODE(

expression)

ch

label
A name the CLIST can reference in a GOTO statement to branch to this
RETURN statement. label is one-to-31 alphameric characters, beginning with an
alphabetic character.

CODE
Subprocedures can issue a return code. Control will pass to the statement
following the SYSCALL statement that called the subprocedure.

expression
A CLIST-defined return code. expression can be a character string, a decimal
integer, or an expression that evaluates to a decimal integer. The expression is
stored in the control variable &LASTCC. If CODE appears without an
expression, &LASTCC takes a null value.

SELECT Statement
Use the SELECT statement to conditionally perform one of several alternative
actions. There are two forms of the SELECT statement: the simple SELECT and
the compound SELECT.

Simple SELECT
In the simple SELECT statement, the CLIST tests one or more expressions. When
the CLIST finds an expression that evaluates to a true value, the CLIST performs
the associated action, then passes control to the END statement. If none of the
expressions are true, the CLIST performs the action on the OTHERWISE clause, if
any, or passes control to the END statement.

cc
label:

SELECT i WHEN (logical_expression)
action

c

RETURN Statement

174 OS/390 V2R10.0 TSO/E CLISTs

c
OTHERWISE action label:

END ch

label
A name the CLIST can reference in a GOTO statement to branch to this
SELECT statement. label is one-to-31 alphameric characters, beginning with an
alphabetic character.

logical_expression
A comparative expression, such as &A = 3 or &B ¬> 10, that evaluates to a true
or false condition.

action
Any CLIST statement, TSO/E command, or DO sequence. A null action passes
control to the END statement. The action can include nested IF, DO, and
SELECT statements. Any statements in the action can have labels, allowing
GOTO statements to branch to them.

Compound SELECT
A compound SELECT statement includes an initial test expression. The CLIST
evaluates the test expression and compares its value to those of the WHEN
expressions.

In a compound SELECT statement, a WHEN expression can contain multiple
expressions separated by the logical operator | (OR). WHEN expressions can also
include ranges of values, represented by a colon (:) between the lowest and highest
values of the range. For example, 3:5 represents 3, 4, and 5.

When a test expression matches a value or falls within a range of values in a
WHEN expression, the CLIST performs the associated action and passes control to
the END statement. If no matches are found, the CLIST performs the action on the
OTHERWISE clause, if any, or passes control to the END statement.

cc
label:

SELECT test_expression c

c i WHEN (expression)
: expression action
|
OR

c

c
OTHERWISE action label:

END ch

label
A name the CLIST can reference in a GOTO statement to branch to this
SELECT statement. label is one-to-31 alphameric characters, beginning with an
alphabetic character.

SELECT Statement

Chapter 13. Reference 175

test_expression
A character string or a logical expression that results in a value to be compared
to the expressions in the WHEN clauses.

expression
A character string, a single logical expression, or a range such as 1:5. Values
and ranges can be combined, for example: WHEN (&A-3 | &B | 4:6)

action
Any CLIST statement, TSO/E command, or DO sequence. A null action passes
control to the END statement. The action can include nested IF, DO, and
SELECT statements. Any statements in the action can have labels of their own.

SET Statement
Use the SET statement to assign a value to a symbolic variable or a control
variable.

cc
label:

SET
&

symbolic_variable_name
&control_variable_name

=
EQ

value ch

label
A name the CLIST can reference in a GOTO statement to branch to this SET
statement. label is one-to-31 alphameric characters, beginning with an
alphabetic character.

symbolic_variable_name | control_variable_name

symbolic_variable_name
The symbolic variable to which you are assigning a value.

control_variable_name
The control variable to which you are assigning a value. (See Table 4 on
page 30 for those control variables that you can modify.)

EQ | =
The operator ‘equal’.

value
Any valid numeric value or character string.

SYSCALL Statement
Use the SYSCALL statement to pass control to a subprocedure. The SYSCALL
statement contains the name of the subprocedure and any parameters to be
passed. The name of the subprocedure must match the label on the PROC
statement that begins the subprocedure.

cc
label:

SYSCALL procname

iparameter_1
parameter

ch

SELECT Statement

176 OS/390 V2R10.0 TSO/E CLISTs

label
A name the CLIST can reference in a GOTO statement to branch to this
SYSCALL statement. label is one-to-31 alphameric characters, beginning with
an alphabetic character.

procname
The label of the PROC statement that begins the subprocedure.

parameter_1 / parameter
Any valid CLIST expression, including constants, symbolic variables, built-in
functions, and arithmetic expressions. All parameters are separated by CLIST
delimiters (blanks, commas, or tabs). For information about how to pass a
parameter that contains blanks, see “Calling a Subprocedure” on page 75.

If the parameter is the name of a variable that is referred to in a SYSREF
statement in the subprocedure, the variable name must not include an
ampersand on the SYSCALL statement.

The PROC statement of the subprocedure is responsible for defining variables
to receive the parameters.

SET &A = John
SET &B = AL

┌──SYSCALL XYZ &A B /* pass variables to XYZ, omitting & from
│ . h──────────────┐ /* the variable name referenced on SYSREF
│ WRITE &B │ /* result: GEORGE
│ . │
b . │
XYZ: PROC 2 PARM1 PARM2 │ /* Subprocedure XYZ */

. │
SYSREF &PARM2 │ /* indicate PARM2 holds a variable name
WRITE &PARM2 │ /* result: AL
SET &PARM2 = GEORGE │

END────────────────────┘

SYSREF Statement
Use the SYSREF statement in a subprocedure to identify the names of variables,
passed from the caller, whose values the subprocedure can reference and modify.
When you assign a new value to a SYSREF variable, the new value is retroactive;
that is, the new value takes effect in the caller as well as in the subprocedure.

On the SYSREF statement in the subprocedure, list the PROC statement parameter
that corresponds to the variable name that the caller passed. The SYSREF
statement must precede any subprocedure statement that uses its variables.

cc
label:

SYSREF

ivariable_1
variable

ch

label
A name the CLIST can reference in a GOTO statement to branch to this
SYSREF statement. label is one-to-31 alphameric characters, beginning with an
alphabetic character.

variable_1 / variable
The name of a parameter from the PROC statement. The parameters

SYSCALL Statement

Chapter 13. Reference 177

correspond to variable names that were passed to the PROC statement.
Ampersands (&) are optional on the variable name.

In the following example, the subprocedure assigns a new value to the variable
whose name was passed (B). The new value (GEORGE) replaces the variable’s old
value (AL) in the caller.

SET &A = John
SET &B = AL

┌──SYSCALL XYZ &A B /* pass variables to XYZ, omitting & from
│ . h──────────────┐ /* the variable name referenced on SYSREF
│ WRITE &A │ /* result: JOHN (original value)
│ WRITE &B │ /* result: GEORGE (changed value)
b . │
XYZ: PROC 2 PARM1 PARM2 │ /* Subprocedure XYZ */

. │
SET &parm1 = Joe │ /* change value of &parm1
WRITE &parm1 │ /* result: JOE
SYSREF &PARM2 │ /* indicate PARM2 holds a variable name
WRITE &PARM2 │ /* result: AL
SET &PARM2 = GEORGE │ /* change value of SYSREF variable

END────────────────────┘

TERMIN and TERMING Statement
Use the TERMIN or TERMING statement to pass control from the CLIST to the
terminal user. You can also use TERMIN or TERMING to define the character
strings, including a null line, that a user enters to return control to the CLIST.
TERMIN is usually preceded by a WRITE statement that requests the expected
response from the terminal user.

The TERMIN or TERMING statement ends a CLIST when you issue a CLIST in any
of the following ways:
v Under ISPF
v In the background
v From a REXX exec (a nested CLIST)

Control returns to the CLIST at the statement after TERMIN or TERMING. When
control returns, &SYSDLM and &SYSDVAL have been set.

cc
label:

TERMIN
TERMING string_1

user_input
,

c

c i

string
user_input

,

ch

label
A name the CLIST can reference in a GOTO statement to branch to this
TERMIN statement. label is one-to-31 alphameric characters, beginning with an
alphabetic character.

SYSREF Statement

178 OS/390 V2R10.0 TSO/E CLISTs

TERMIN | TERMING
transfers control to the terminal and establishes a means for the user to return
control to the CLIST.

TERMIN
A CLIST executed from the TERMIN is not considered nested within the
CLIST that issued the TERMIN statement, which has the following effects:

v Sharing GLOBAL variables - GLOBAL variables cannot be shared across
the TERMIN. Global variable sharing between the CLIST executed from
the TERMIN and the CLIST that issued the TERMIN is not allowed.

v Variable access - variable access across the TERMIN cannot be
communicated through the CLIST variable access routine IKJCT441.

v Checking command output trapping (&SYSOUTTRAP) - IKJCT441 and
IRXEXCOM do not recognize CLISTs or REXX execs on opposing sides
of a TERMIN element.

v CONTROL NOMSG statement - checking the NOMSG setting on
opposing sides of a TERMIN element is not allowed.

TERMING
A CLIST executed from the TERMING is considered nested within the
CLIST that issued the TERMING statement, which has the following effects:

v Sharing GLOBAL variables - GLOBAL variables can be shared across
the TERMING. Global variable sharing between the CLIST executed from
the TERMING and the CLIST that issued the TERMING is allowed.

v Variable access - variable access across the TERMING can be
communicated through the CLIST variable access routine IKJCT441.

v Checking command output trapping (&SYSOUTTRAP) - IKJCT441 and
IRXEXCOM recognize CLISTs or REXX execs on opposing sides of a
TERMING element.

v CONTROL NOMSG statement - checking the NOMSG setting on
opposing sides of a TERMING element is allowed.

string_1 / string
A character string that the terminal user enters to return control to the CLIST.
The &SYSDLM control variable contains a number corresponding to the position
of the string that the user entered (1 for string1, 2 for string2, and so on).

user_input
Additional input entered by the terminal user. The input is stored in the
&SYSDVAL control variable.

, If you specify a comma in place of a string, the terminal user can enter a null
line (press the Enter key) to return control to the CLIST.

If no operands are specified the terminal user enters a null line to return control to
the CLIST.

WRITE and WRITENR Statements
Use the WRITE and WRITENR statements to define text and have it displayed at
the terminal. This text can be used for messages, information, or prompting.

cc
label:

WRITE
WRITENR

text ch

TERMIN and TERMING Statement

Chapter 13. Reference 179

label
A name the CLIST can reference in a GOTO statement to branch to this
WRITE/WRITENR statement. label is one-to-31 alphameric characters,
beginning with an alphabetic character.

WRITE | WRITENR

WRITE
The cursor moves to a new line after the text is displayed.

WRITENR
The cursor does not move to a new line after the text is displayed.

text
What is displayed at the terminal. You can enter any character string, including
symbolic variables. Unless you enclose an arithmetic expression in an &EVAL
built-in function, the WRITE/WRITENR statement does not perform evaluation
on the expression. The CLIST also displays any comments on the same line as
the WRITE/WRITENR statement.

END Command
For information about the END command, see OS/390 TSO/E Command
Reference.

EXEC Command
For a description of the EXEC command, see OS/390 TSO/E Command Reference.

WRITE and WRITENR Statements

180 OS/390 V2R10.0 TSO/E CLISTs

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1988, 2000 181

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

All statements regarding IBM’s future direction or intent are subject to change
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Notices

182 OS/390 V2R10.0 TSO/E CLISTs

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to
write programs to obtain the services of OS/390 TSO/E.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v DFSMS/MVS
v DFSMShsm
v IBM
v IBMLink
v MVS/DFP
v MVS/ESA
v OS/390
v RACF
v SP
v VTAM

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices

Appendix. Notices 183

184 OS/390 V2R10.0 TSO/E CLISTs

Bibliography

This section lists the books in the TSO/E library and related publications.

TSO/E Publications
TSO/E Publications

v OS/390 TSO/E Administration, SC28-1966

v OS/390 TSO/E CLISTs, SC28-1973

v OS/390 TSO/E Command Reference, SC28-1969

v OS/390 TSO/E Customization, SC28-1965

v OS/390 TSO/E General Information, GC28-1964

v OS/390 TSO/E Guide to SRPI, SC28-1976

v OS/390 TSO/E Messages, GC28-1978

v OS/390 TSO/E Primer, GC28-1967

v OS/390 TSO/E Programming Guide, SC28-1970

v OS/390 TSO/E Programming Services, SC28-1971

v OS/390 TSO/E REXX Reference, SC28-1975

v OS/390 TSO/E REXX User’s Guide, SC28-1974

v OS/390 TSO/E System Programming Command Reference, SC28-1972

v OS/390 TSO/E System Diagnosis: Data Areas, SC33-6678

v OS/390 TSO/E User’s Guide, SC28-1968

Related Publications
SAA Publications

v SAA Common Programming Interface REXX Level 2 Reference, SC24-5549

v SAA Common Programming Interface Communications Reference, SC26-4399

OS/390 MVS Publications

v OS/390 MVS Planning: APPC/MVS Management, GC28-1807

v OS/390 MVS Programming: Writing TPs for APPC/MVS, GC28-1775

v OS/390 MVS Initialization and Tuning Reference, SC28-1752

v OS/390 MVS Programming: Authorized Assembler Services Guide, GC28-1763

v OS/390 MVS Programming: Authorized Assembler Services Reference ALE-DYN,
GC28-1764

v OS/390 MVS System Messages, Vol 1 (ABA-ASA), GC28-1784

v OS/390 MVS System Messages, Vol 2 (ASB-ERB), GC28-1785

v OS/390 MVS System Codes, GC28-1780

v OS/390 MVS Data Areas, Vol 1 (ABEP-DALT), SY28-1164

v OS/390 MVS Data Areas, Vol 2 (DCCB-ITZYRETC), SY28-1165

v OS/390 MVS Data Areas, Vol 3 (IVT-RCWK), SY28-1166

v OS/390 MVS Data Areas, Vol 4 (RD-SRRA), SY28-1167

v OS/390 MVS Data Areas, Vol 5 (SSAG-XTLST), SY28-1168

ISPF Publications

v OS/390 ISPF Services Guide, SC28-1272

© Copyright IBM Corp. 1988, 2000 185

v OS/390 ISPF Dialog Developer’s Guide and Reference, SC28-1273

IBM Compiler and Library for REXX/370

v Introducing the Next Step in REXX Programming, G511-1430

v User’s Guide and Reference, SH19-8160

Bibliography

186 OS/390 V2R10.0 TSO/E CLISTs

Index

Special Characters
++

as an arithmetic operator 13
** (exponentiation symbol)

as an arithmetic operator 13
&& (logical AND symbol) 14
// (remainder symbol)

as an arithmetic operator 13
/ (division symbol)

as an arithmetic operator 13
= (equal sign) 14
- (minus sign) 13
* (multiplication symbol)

as an arithmetic operator 13
+ (plus sign)

as an arithmetic operator 13
&DATATYPE built-in function 52
&EVAL built-in function 53
>= (greater than or equal to) 14
> (greater than symbol) 14
<= (less than or equal to) 14
< (less than symbol) 14
¬= (not equal sign) 14
¬> (not greater than) 14
¬< (not less than) 14
&LASTCC 167
&LASTCC control variable 47
&LENGTH built-in function 53
&MAXCC control variable 48
&NRSTR built-in function 54
&STR built-in function 55
&SUBSTR built-in function 57
&SYS4DATE control variable 33
&SYS4JDATE control variable 33
&SYS4SDATE control variable 33
&SYSABNCD control variable 49
&SYSABNRC control variable 49
&SYSADIRBLK 167
&SYSALLOC 166
&SYSAPPCLU control variable 38
&SYSASIS control variable 44
&SYSBLKSIZE 166
&SYSBLKSTRK 167
&SYSCAPS built-in function 59
&SYSCLENGTH built-in function 54
&SYSCLONE control variable 35

possible uses 35
&SYSCONLIST control variable 43
&SYSCPU control variable 36
&SYSCREATE 166
&SYSCSUBSTR built-in function 59
&SYSDATACLASS 168
&SYSDATE control variable 32
&SYSDFP control variable 36
&SYSDLM control variable 45
&SYSDSN built-in function 59
&SYSDSNAME 165

&SYSDSORG 165
&SYSDSSMS 168
&SYSDVAL control variable 45
&SYSENV control variable 42
&SYSEXDATE 166
&SYSEXTENTS 166
&SYSFLUSH control variable 44
&SYSHSM control variable 36
&SYSICMD control variable 42
&SYSINDEX built-in function 60
&SYSISPF control variable 37
&SYSJDATE control variable 32
&SYSJES control variable 37
&SYSKEYLEN 166
&SYSLC built-in function 59
&SYSLIST control variable 44
&SYSLRACF control variable 37
&SYSLRECL 166
&SYSLTERM control variable 34
&SYSMEMBERS 167
&SYSMGMTCLASS 168
&SYSMSG control variable 44
&SYSMSGLVL1 167
&SYSMSGLVL2 167
&SYSMVS control variable 38
&SYSNAME control variable 38

possible uses 35
&SYSNEST control variable 43
&SYSNODE control variable 39
&SYSNSUB built-in function 62
&SYSONEBYTE built-in function 63
&SYSOPSYS control variable 39
&SYSOUTLINE control variable 46
&SYSOUTTRAP control variable 46
&SYSPASSWORD 167
&SYSPCMD control variable 42
&SYSPLEX control variable 40

possible uses 35
&SYSPREF control variable 34
&SYSPRIMARY 166
&SYSPROC control variable 35
&SYSPROMPT control variable 43
&SYSRACF control variable 39
&SYSRACFA 167
&SYSREASON 167
&SYSRECFM 166
&SYSREFDATE 166
&SYSSCAN control variable 42
&SYSSCMD control variable 42
&SYSSDATE control variable 32
&SYSSECLAB control variable 40
&SYSSECONDS 166
&SYSSMFID control variable 40
&SYSSMS control variable 40
&SYSSRV control variable 36
&SYSSTIME control variable 33
&SYSSTORCLASS 168
&SYSSYMDEF control variable 41

© Copyright IBM Corp. 1988, 2000 187

&SYSSYMLIST control variable 43
&SYSTERMID control variable 34
&SYSTIME control variable 33
&SYSTRKSCYL 167
&SYSTSOE control variable 41
&SYSTWOBYTE built-in function 63
&SYSUDIRBLK 167
&SYSUID control variable 34
&SYSUNIT 165
&SYSUNITS 166
&SYSUPDATED 167
&SYSUSED 166
&SYSUSEDPAGES 166
&SYSVOLUME 165
&SYSWTERM control variable 34
| (logical OR symbol) 14

A
action

of an attention routine
attention interrupt 101
cancelling 102
protecting the input stack for 102
protecting using the MAIN operand of

CONTROL 102
of an error routine 105

canceling 105
listing instruction causing error 105
protecting the input stack for 106
protecting using MAIN or NOFLUSH operand of

CONTROL 106
ALLOCATE CLIST

attention routine 103
allocating CLIST libraries

implicit execution 6
allocation information

retrieving with LISTDSI 49
alphameric character

definition of 11, 152
ALTLIB command

example 8
specifying alternative CLIST libraries with 7
using under ISPF 7

ampersand (&)
in the SET statement 19
meaning of, preceding a variable name 17
using double ampersands 24

AND
logical operator 13

APPC/MVS
finding name 38

application
CLIST 2
different languages

using CLIST to manage 2
full-screen

writing 137
arithmetic expression

creating from user supplied input 119
arithmetic operator 13
ASIS

CONTROL statement operand 44, 155

assigning value
to symbolic variable 19

attention facility for CLIST 104
attention handling CLIST 102

example 104
attention interrupt 101

cancelling action for 102
defining action 101
protecting the input stack for 102

attention routine
cancelling 102
establishing 101
example 103
protecting the input stack for 102

ATTN statement
creating a CLIST attention routine with 101
protecting the input stack for 102
syntax 152
using in a subprocedure 78

attribute, data set
default 4
retrieving with LISTDSI 49

availability test
data set 59

B
background

executing a CLIST 6
executing a job from a CLIST

example 127
tailoring a CLIST for background execution, using

&SYSENV 42
base control program

finding level of 38
BCP

finding level of 38
branching within a CLIST

using GOTO statement 81
built-in function 51

&DATATYPE 52
&EVAL 53
&LENGTH 53
&NRSTR 54
&STR 55
&SUBSTR 57
&SYSCAPS 59
&SYSCLENGTH 54
&SYSCSUBSTR 59
&SYSDSN 59
&SYSINDEX 60
&SYSLC 59
&SYSNSUB 62
&SYSONEBYTE 63
&SYSTWOBYTE 63
overview 51
writing your own 52

BY expression
in an iterative DO loop 72

188 OS/390 V2R10.0 TSO/E CLISTs

C
CALC CLIST

adding front-end prompting to 119
creating arithmetic expression from input 119

CALCFTND CLIST 119
capital letter

converting from lowercase
with &SYSCAPS 59
with CONTROL CAPS 155

converting to lowercase
with &SYSLC 59

capitalization in a CLIST 10
CAPS

CONTROL statement operand 155
CASH CLIST 131
category of CLIST

managing applications written in other languages 2
performing routine tasks 1
self-contained applications 1

character set
double-byte 15
supported in CLIST 12
supported in I/O 95

CLIST
attention facility 104
data set

copying 4
creating 3
default attributes 4
editing 3

debugging 109
error code 111
executing 5
language 1
library 3

allocating using ALTLIB 8
implicit execution 6
installation-defined 3
user-defined 3

naming restrictions 3
reserved words 3
restriction on naming 3
statement

list of 9
writing your own 10

testing 109
CLIST variable

set by LISTDSI
&LASTCC 167
&SYDSORG 165
&SYSADIRBLK 167
&SYSALLOC 166
&SYSBLKSIZE 166
&SYSBLKSTRK 167
&SYSCREATE 166
&SYSDATACLASS 168
&SYSDSNAME 165
&SYSDSSMS 168
&SYSEXDATE 166
&SYSEXTENTS 166
&SYSKEYLEN 166

CLIST variable (continued)
set by LISTDSI (continued)

&SYSLRECL 166
&SYSMEMBERS 167
&SYSMGMTCLASS 168
&SYSMSGLVL1 167
&SYSMSGLVL2 167
&SYSPASSWORD 167
&SYSPRIMARY 166
&SYSRACFA 167
&SYSREASON 167
&SYSRECFM 166
&SYSREFDATE 166
&SYSSECONDS 166
&SYSSTORCLASS 168
&SYSTRKSCYL 167
&SYSUDIRBLK 167
&SYSUNIT 165
&SYSUNITS 166
&SYSUPDATED 167
&SYSUSED 166
&SYSUSEDPAGES 166
&SYSVOLUME 165

CLOSFILE statement
syntax 153
using 96

closing a file 96
code, error

list of 111
coding statements and commands 149
combining variable 23
command

installation-written
distinguishing from CLIST statement name 56

TSO/E
using in a CLIST 1, 12

commands
naming restrictions 3
restriction on naming 3

comment, in a CLIST 11
comparative operator 13
compound DO sequence

using to create a loop 72
compound SELECT statement

using 175
compound variable 23
COMPRESS CLIST 129
compressing a data set 129
concatenating

CLIST data set to SYSPROC
sample CLIST for 133

CLIST data sets with ALTLIB 7
compound 23
data set for I/O 99
variable 23

continuation symbol 10
CONTROL statement

syntax 154
using for CLIST diagnosis 109
using in a subprocedure 78

control variable 30

Index 189

controlling
the display of messages 87
uppercase and lowercase

using &SYSLC and &SYSCAPS control
variables 90

using CAPS operand of CONTROL 90
converting READ statement input

to lowercase character (&SYSLC) 59
to uppercase character (&SYSCAPS) 59

copying a CLIST
considerations 4

creating a CLIST
TSO/E EDIT and full-screen editor 3

D
DATA-ENDDATA sequence

syntax 156
using to distinguish a command from a

statement 75
DATA PROMPT-ENDDATA sequence

syntax 156
using to code responses to prompts 85

data set
allocating using ALTLIB

example 8
attribute

default 4
retrieving with LISTDSI 49

availability
checking with &SYSDSN 59

I/O
performing 95

information about attributes 162
name

determining qualification 125
performing substringing on 125
reading in a CLIST, precautions for 89
specifying on the EXEC command 5

DATATYPE 52
date, obtaining the

in Julian form 32, 33
in sortable form 32, 33
in standard form 32, 33

date formats, four-digit years 33
date formats, two-digit years 32
DBCS (double-byte character set) 15, 55

CLIST support 15
combining variables containing DBCS data 25
converting DBCS data to EBCDIC, using

&SYSONEBYTE 63
converting EBCDIC data to DBCS, using

&SYSTWOBYTE 63
counting DBCS bytes with &LENGTH 53
counting DBCS characters with &SYSCLENGTH 54
defining a DBCS string as character data

using &STR 55
determining if a string contains DBCS data, using

&DATATYPE 52
error code involving DBCS 114

DBCS (double-byte character set) 15, 55 (continued)
restriction on using DBCS data in CLIST

general 15
using &SYSINDEX 61
with EDIT command 4

subdividing strings containing DBCS characters
using &SUBSTR 58
using &SYSCSUBSTR 59

debugging a CLIST 109
defining

non-rescannable character string (&NRSTR) 54
real value (&STR) 55
substring (&SUBSTR) 57
substring (&SYSCSUBSTR) 59
symbolic variable 19

DELETEDS CLIST 118
delimiter

delimiter for a DBCS string in a CLIST 15
for CLIST statement 10
for the double-byte character set 15
period

used to distinguish variable from data 125
determining

an expression’s data type (&DATATYPE) 52
an expression’s length

in bytes (&LENGTH) 53
in characters (&SYSCLENGTH) 54

data set availability (&SYSDSN) 59
DFHSM (Data Facility Hierarchical Storage Manager)

determining level
using &SYSHSM 36

DFSMS/MVS
availability to CLISTs 40

diagnostic procedure
for a CLIST 109

dialog, ISPF
creating 94
sample 137

displaying
CLIST statement

after substitution, using &SYSCONLIST 43
before substitution, using &SYSSYMLIST 43

panel from a CLIST 2
TSO/E commands

after substitution, using &SYSLIST 44
distinguishing

END statement from END subcommand
in general 74
using the CONTROL statement 74
using the DATA-ENDDATA sequence 75

RACF SELECT subcommand from the SELECT
statement 69

strings that match CLIST statement names 56
WHEN clause from WHEN command 69

DO-END sequence
in an attention routine 101
using

in the IF-THEN-ELSE sequence 66
DO statement

syntax 157

190 OS/390 V2R10.0 TSO/E CLISTs

DO-UNTIL-END sequence
using to create a loop 71

DO-WHILE-END sequence
using to create a loop 70

double ampersands
preserving, with &NRSTR 54
use of 24

E
EDIT command

creating a CLIST under 4
executing a CLIST under 5

editing a CLIST
TSO/E EDIT and full-screen editor 3

END command 81
end-of-file processing

example 107
performing 98

END statement
distinguishing from END command or

subcommand 74
syntax 158

entry panel
PROFILE CLIST example 137, 138

EQ (equal sign) 14
error

cancelling action for 105
code

list of 111
obtaining in a CLIST 111

condition
end-of-file processing 98

defining action for 105
protecting the input stack from 106
routine

cancelling 105
creating 105
end-of-file 98
protecting the input stack for 106
sample CLIST 106

error message
CLIST error routine 116
getting help for 111
viewing at the terminal 110

ERROR statement 105
canceling error action using 105
listing instruction causing error 105
protecting the input stack for 106
syntax 158
using in a subprocedure 78

EVAL 53
evaluation

order of 14
example of a CLIST

list of 117
executing a CLIST

explicitly 5
finding how a CLIST was executed 42
implicitly 5
in general 5

exit
installation

writing a built-in function 52
writing a CLIST 9

routine
establishing 101

EXIT statement
syntax 159
to exit a CLIST specifying a return code 81
to exit a CLIST without specifying a return code 81

exiting
CLIST using the END command 81
CLIST using the EXIT statement 81

specifying a return code 81
from a nested CLIST 80

EXPAND CLIST 146
explicit execution of a CLIST 5
expression

arithmetic 13
comparative 13
logical 13
simple 13

F
file input/output

performing 95
closing a file 96
end-of-file processing 98
on a JCL statement 99
on concatenated data set 99
opening a file 95
significance of file name 95
using &SYSDVAL 132
using READDVAL 132

reading a record from a file 96
updating a file 98
writing a record to a file 97

file name
significance of in file I/O 95

FLUSH option of CONTROL statement 155
flushing the input stack

with &SYSFLUSH 44
footprint (flag)

setting
in a CLIST 103

testing
in an attention handling CLIST 104

forcing arithmetic evaluation 53
foreground

executing a CLIST 6
executing a job from a CLIST

example 127
tailoring a CLIST for foreground execution using

&SYSENV 42
formatting in a CLIST 11
front-end prompting

adding to the CALC CLIST 119
example 120, 125

full-screen application
example 138

Index 191

full-screen application (continued)
writing 137

fully-qualified data set name
processing

example 125
function

built-in
converting DBCS data to EBCDIC

(&SYSONEBYTE) 63
converting EBCDIC data to DBCS

(&SYSTWOBYTE) 63
converting READ input to lowercase

(&SYSLC) 59
converting READ input to uppercase

(&SYSCAPS) 59
defining a non-rescannable character string

(&NRSTR) 54
defining a real value (&STR) 55
defining a substring (&SUBSTR) 57
defining a substring (&SYSCSUBSTR) 59
determining data set availability (&SYSDSN) 59
limiting symbolic substitution (&SYSNSUB) 62
locating strings within strings (&SYSINDEX) 60
overview 51

built-in function
determining an expression’s length in bytes

(&LENGTH) 53
determining data type (&DATATYPE) 52
forcing arithmetic evaluation (&EVAL) 53

function,
built-in 51

determining an expression’s length in characters
(&SYSCLENGTH) 54

G
GE (greater than or equal to symbol) 14
GETFILE statement

syntax 160
using 96

GLOBAL statement
syntax 160

global variable
establishing 80
example 80
in error routine

protecting using the MAIN operand of
CONTROL 106

GOTO statement
example 81
syntax 161
using in a subprocedure 78

GT (greater than symbol) 14

H
HOUSKPNG CLIST 102
hyphen

as continuation symbol 10

I
I/O

performing file 95
IF-THEN-ELSE sequence

nesting 67
null ELSE format 67
null THEN format 67
standard format 66
syntax 162
using to make a decision 66

implicit execution
allocating a CLIST for 6
benefit of 3
of a CLIST 5

implicitly defining variable 19
input

obtaining from the terminal 83
input stack

protecting
for attention routine 102
for error routine 106
for nested CLISTs 79
using MAIN operand of CONTROL 102, 106
using NOFLUSH operand of CONTROL 106

input string
performing substringing on

example 125
installation exit

writing a built-in function 52
writing a CLIST 10

Interactive System Productivity Facility (ISPF) 2
intercepting

command output from a CLIST
example 133

command output from CLISTs
using &SYSOUTTRAP 46

interface to application
simplifying 131

interpretive language
advantage 1

introduction 1
ISPEXEC command of ISPF

using in a CLIST 138
ISPF (Interactive System Productivity Facility)

availability
determining with &SYSISPF 37

command, in a CLIST 4, 94
copying a CLIST under ISPF 4
creating and editing a CLIST under ISPF 4
dialog

example 138
writing 137

executing a CLIST under ISPF 5
panel, using with a CLIST 137
restriction for a CLIST

length of variable 18
trapping TSO/E command output under ISPF 47
using ALTLIB under 7

iterative DO sequence
using to create a loop 71

192 OS/390 V2R10.0 TSO/E CLISTs

J
JCL (job control language)

including in a CLIST
example 125
precaution 12

protecting those containing /* 125
special consideration for performing I/O on 99

JES
finding level 37
finding name 37
finding network node name 39

job
foreground and background execution

example 127
jobcard information

verifying
example 125

K
keyword parameter

on PROC statement
description 20
example 127
prompting with 83

L
label 11, 152
LASTCC 47
LE (less than or equal to symbol) 14
LENGTH 53
length of a CLIST statement 11
levels of searching

specifying with ALTLIB 7
list of CLIST error codes 111
list of sample CLISTs 117
LISTALC command

managing command output 133
LISTDSI statement

reason code 168
return code 168
sample CLIST 146
syntax 162
using to assign values to variables 49
variables set by 165

LISTER CLIST 118
LOG/LIST parameter

setting 137, 140
logical operator 13
loop, creating

using the compound DO sequence 72
using the DO-UNTIL-END sequence 71
using the DO-WHILE-END sequence 70
using the iterative DO sequence 71

lowercase letter
converting from uppercase

with &SYSLC 59
converting to uppercase

with &SYSCAPS 59

lowercase letter (continued)
converting to uppercase (continued)

with CONTROL CAPS 155
preserving

with &SYSASIS 44
with CONTROL NOCAPS 155

LT (less than symbol) 14

M
MAIN operand of CONTROL

using to protect
global variable for attention routine 102
global variable for error routine 106
the input stack for attention routine 102
the input stack for error routine 106

managing command output
LISTALC command 133

MAXCC 48
message

controlling the display of
with &SYSMSG 44
with CONTROL MSG 87, 155

writing to the terminal
using WRITE and WRITENR 87

minus sign
as an arithmetic operator 13
as continuation symbol (hyphen) 10

MVS/DFP
finding the level installed 36

N
NE (not equal sign) 14
nesting

CLIST
example 79
example - the SCRIPTN CLIST 122
protecting the input stack for nested CLISTs 44,

79
determining if CLISTs are nested 43
IF-THEN-ELSE Sequence 67
loop 73
nesting CLISTs

limitations with file i/o 95
variable 24

network node name
finding 39

NG (not greater than symbol) 14
NGLOBAL statement

syntax 170
using in a subprocedure 77

NL (not less than symbol) 14
NOCAPS

CONTROL statement operand 155
NOFLUSH operand of CONTROL

using to protect the input stack
for error routine 106

NOFLUSH option of CONTROL statement 155
Notices 181
NRSTR 54

Index 193

null
ELSE format 67
line

coding for use with DATA PROMPT-
ENDDATA 85

issuing in an attention routine 103
THEN format 67
variable

creating 19
numeric value allowed in variable 15

O
obtaining

current date and time 32
input from within a CLIST

using the DATA PROMPT-ENDDATA
sequence 85

offset of a string within a string
finding, with &SYSINDEX 60

OPENFILE statement 95
syntax 170
using 95

opening a file 95
operator

arithmetic 13
comparative 13
logical 13

option
including in a CLIST

example 128
using TESTDYN 127

OR
in the SELECT statement 175
logical operator 13

order of evaluation 14
organizing related activities 118
OS/390 name, version, and so on

finding 39
OUTPUT CLIST 122
output trapping

&SYSOUTLINE 46
&SYSOUTTRAP 46
example (the SPROC CLIST) 134

P
panel, ISPF

displaying from a CLIST 2, 94
example 138
ISPF command in a CLIST 2
sample

XYZABC10 140
XYZABC20 140
XYZABC30 142
XYZABC40 144

parameter
defining on the PROC statement

keyword parameter 20, 172
positional parameter 20, 172

passing to a CLIST 6

parentheses
as arithmetic operator 13
defining as character data 55

passing control to the terminal
returning control after a TERMIN statement 93
TERMIN statement 92

percent sign (%)
using in implicit execution of a CLIST 6

performing file I/O
using &SYSDVAL 132
using READDVAL statement 132

period
used to distinguish variable from data

example 23, 125
PF key definition

setting 137
setting (1-12) 142
setting (13-24) 144

PHONE CLIST 132
plus sign

as an arithmetic operator 13
as continuation symbol 10

position of a string within a string
finding, with &SYSINDEX 60

positional parameter
on PROC statement

description 20
prompting with 83

preserving double ampersands
with &NRSTR 54

PROC statement
assigning value to variable with 20
defining parameter with 20
in a subprocedure 76
prompting with 83
syntax 171

PROFILE CLIST 137, 138
prompting for input 83

coding response to prompt
using DATA PROMPT-ENDDATA sequence 85

controlling uppercase and lowercase 90
example 120, 125
methods 83
permitting from a CLIST

using &SYSPROMPT 43
precaution when reading fully-qualified data set

name 89
returning control after a TERMIN statement 93
significance of &SYSDLM control variable after a

TERMIN statement 93
storing input in &SYSDVAL control variable 91
using statement

PROC 83
READ 88
READDVAL 91
TERMIN 92
WRITE 87
WRITENR 87

protecting
input stack

for attention routine 102

194 OS/390 V2R10.0 TSO/E CLISTs

protecting (continued)
for error routine 106
for nested CLISTs 79
using MAIN operand of CONTROL 102, 106
using NOFLUSH operand of CONTROL 106

JCL statement containing /*
example 125

PUTFILE statement
syntax 172
using 97

R
RACF availability

determining with &SYSRACF 39
READ statement

assigning value to variable with 19
defining variable with 19
syntax 173
using for prompting 88

READDVAL statement
syntax 173
using when performing file I/O 132

reading a record from a file 96
reading input from the terminal

precaution when reading fully-qualified data set
name 89

storing input in &SYSDVAL control variable 91
to obtain value for PROC statement keyword 89
using the READ statement

controlling uppercase and lowercase 90
description 88

using the READDVAL statement 91
using the TERMIN statement

description 92
returning control after a TERMIN statement 93
significance of &SYSDLM control variable 93

using the TERMING statement
returning control after a TERMING statement 93
significance of &SYSDLM control variable 93

reading input from within the CLIST
using the DATA PROMPT-ENDDATA sequence

example 86
reason code

set by LISTDSI statement 168
record

copying directly into variable using &SYSDVAL 132
performing file I/O consideration

concatenated data set 99
general 95
JCL statement 99

reading from a file 96
updating in a file 98
writing to a file 97

retroactive variable
defining in a subprocedure

using SYSREF 77
return code

from subprocedure 76
obtaining from a CLIST statement 111
set by LISTDSI statement 168

RETURN statement
in a subprocedure 76
syntax 174

routine
attention 101
error 105

routine task
performing with CLIST 1
simplifying 118

RUNPRICE CLIST 126

S
sample CLIST 132

adding
front-end prompting to the CALC CLIST 120

allowing
background execution of a CLIST 127
foreground execution of a CLIST 127

attention routine 103
background execution of a job 127
concatenating

data set to SYSPROC 134
creating

arithmetic expression from input 119
VIO data set 129

distinguishing
operator from an operand 128
variable from data 125

error routine 106
foreground execution of a job 127
full-screen application

writing 138
including

JCL statement 125
option 128
TSO/E command 118

initializing
system service 121

interface to application
simplifying 131

invoking
nested CLISTs to perform subtasks 122
system service 121

job card information
verifying 125

keyword
using to run foreground/background job 127

option
including 128

organizing
related activities 118

protecting
JCL statement containing /* 125
leading zeros 125

READDVAL statement
using when performing file I/O 133

routine task
simplifying 118

simplifying
interface to application 131
routine task 118

Index 195

sample CLIST 132 (continued)
system-related task 129

substringing
avoiding when performing file I/O 133
performing on input string 125

system-related task
simplifying 129

TSO/E command
including 118

using
keyword to run foreground/background job 127

verifying
job card information 125

VIO data set
creating 129

writing
full-screen application 138

saving command output in a CLIST
example 133

SCRIPTD CLIST 122
SCRIPTDS CLIST 121
SCRIPTNEST CLIST 122
SELECT statement

distinguishing from the RACF SELECT
subcommand 69

syntax 174
using to make a selection 68

selection menu
relevance to PROFILE CLIST 137

self-contained application 2
Session Manager

determining availability, with &SYSPROC 35
reformatting a screen with 34

SET statement
assigning value to variable with 19
defining variable with 19
syntax 176

setting
LOG/LIST parameter 137, 140
PF key definition 137
PF key definition (1-12) 142
PF key definition (13-24) 144
terminal characteristics 137, 140

shift-in character, for DBCS string 15
shift-out character, for DBCS string 15
simple SELECT statement

syntax 174
simplifying

interface to application 131
process of invoking CASHFLOW 131
routine task 118
system-related task 129

SPROC CLIST 133
standard format for IF-THEN-ELSE sequence 66
STR 55
string

performing substringing on input
example 125

structuring a CLIST 65
branching within a CLIST

using GOTO statement 81

structuring a CLIST 65 (continued)
consideration 65
exiting

CLIST using the END command 81
CLIST using the EXIT statement 81
from a nested CLIST 80

global symbolic variables
establishing 80
example 80

IF-THEN-ELSE sequence
null THEN format 67

nesting CLISTs 79
example 79

subprocedure 75
using a DO-group

consideration 70
distinguishing END statement from

subcommand 74
the DO-END sequence 66

using SELECT statement
distinguishing a WHEN clause from a

command 69
distinguishing END statement from

subcommand 74
using the compound DO sequence 72
using the DO statement

nesting DO-loops 73
using the DO-UNTIL-END sequence 71
using the DO-WHILE-END sequence 70

example 70
using the IF-THEN-ELSE sequence

condition 66
nesting IF-THEN-ELSE 67
null ELSE format 67
null THEN format 67
standard format 66

using the iterative DO sequence 71
using the SELECT statement 68

with a test expression 68
without a test expression 68

subcommand
environment

effect on nested CLISTs 80
of the EDIT command

executing a CLIST with 5
using to modify a CLIST 4

of the TEST command
executing a CLIST with 5

SUBMIT * command
example 125

SUBMITDS CLIST 125
SUBMITFQ CLIST 125
subprocedure

calling, using SYSCALL 75
defining with the PROC statement 76
passing control to 75
returning information from

retroactive (SYSREF) variable 77
return code 76

sharing variables among
using the NGLOBAL statement 77

196 OS/390 V2R10.0 TSO/E CLISTs

subprocedure (continued)
using SYSREF in 77

substitution, symbolic 17
SUBSTR 57
substringing

avoiding when performing file I/O 132
on input string

example 125
subtask

performing using nested CLISTs 122
OUTPUT 122
SCRIPTD 122

symbol
continuation 10

symbolic substitution
limiting

with &NRSTR 54
with &SYSCAN 42
with &SYSNSUB 62

of nested variables 25
of variable 17

symbolic variable
assigning value to 17
naming 18
value of 18

syntax
ATTN statement 152
CLOSFILE statement 153
CONTROL statement 154
DATA-ENDDATA sequence 156
DATA PROMPT-ENDDATA sequence 156
DO statement 157
END statement 158
ERROR statement 158
EXIT statement 159
GETFILE statement 160
GLOBAL statement 160
GOTO statement 161
IF-THEN-ELSE sequence 162
LISTDSI statement 162
NGLOBAL statement 170
OPENFILE statement 170
PROC statement 171
PUTFILE statement 172
READ statement 173
READDVAL statement 173
RETURN statement 174
SELECT statement 174
SET statement 176
SYSCALL statement 176
SYSREF statement 177
TERMIN statement 178
TERMING statement 178
WRITE statement 179
WRITENR statement 179

syntax diagram 149
syntax rule 9

CLIST
capitalization 10
comment 11
delimiter 10

syntax rule 9 (continued)
CLIST (continued)

formatting 11
label 11
length of a CLIST statement 11

continuation symbol 10
SYS4DATE 33
SYS4JDATE 33
SYS4SDATE 33
SYSABNCD 49
SYSABNRC 49
SYSAPPCLU 38
SYSASIS 44
SYSCALL statement

syntax 176
using to call a subprocedure 75

SYSCAPS 59
SYSCLENGTH 54
SYSCLONE 35
SYSCONLIST 43
SYSCPU 36
SYSCSUBSTR 59
SYSDATE 32
SYSDFP 36
SYSDLM 45
SYSDSN 59
SYSDVAL 45
SYSENV 42
SYSFLUSH 44
SYSHSM 36
SYSICMD 42
SYSINDEX 60
SYSISPF 37
SYSJDATE 32
SYSJES 37
SYSLC 59
SYSLIST 44
SYSLRACF 37
SYSLTERM 34
SYSMSG 44
SYSMVS 38
SYSNAME 38
SYSNEST 43
SYSNODE 39
SYSNSUB 62
SYSONEBYTE 63
SYSOPSYS 39
SYSOUTLINE 46
SYSOUTTRAP 46
SYSPCMD 42
SYSPLEX 40
sysplex name

finding 40
SYSPREF 34
SYSPROC 35
SYSPROMPT 43
SYSRACF 39
SYSREF statement

in a subprocedure 77
syntax 177

SYSSCAN 42

Index 197

SYSSCMD 42
SYSSDATE 32
SYSSECLAB 40
SYSSMFID 40
SYSSMS 40
SYSSRV 36
SYSSTIME 33
SYSSYMDEF 41
SYSSYMLIST 43
System Management Facilities

SMF ID 40
system name

finding 38
system-related task

simplifying 129
system service

initializing and invoking
example 121

SYSTERMID 34
SYSTIME 33
SYSTSOE 41
SYSTWOBYTE 63
SYSUID 34
SYSWTERM 34

T
TERMIN statement

passing control to the terminal 92
syntax 178

terminal
prompting for input from the 83
receiving response from the 88
writing a message to 87

terminal characteristics
setting 137, 140
variables that describe 33

TERMING statement
syntax 178

TEST command
executing a CLIST under 5

test expression
using the SELECT statement with a 68
using the SELECT statement without a 68

TESTDYN CLIST 127
testing a CLIST 109
time of day

obtaining the 33
TO expression

in an iterative DO loop 72
translating READ statement input

to lowercase character (&SYSLC) 59
to uppercase character (&SYSCAPS) 59

trapping TSO/E command output
&SYSOUTLINE 46
&SYSOUTTRAP 46
example (the SPROC CLIST) 134

TSO/E
finding level installed 41
finding MVS/DFP level 36
finding MVS symbolic name 41
finding MVS system symbol 35

TSO/E (continued)
finding security level 40
finding terminal ID 34

TSO/E commands
prompting for input with 84
trapping output from

description 46
example 134

using in a CLIST 2, 12
TSO/E service facility

using to execute a CLIST from another language 6
TSOEXEC command 49

U
understanding CLIST error code 111
updating a file 98
uppercase letter

converting from lowercase
with &SYSCAPS 59
with CONTROL CAPS 155

converting to lowercase
with &SYSLC 59

V
variable

assigning value
description 17

combining
containing DBCS data set 25
symbolic and character strings 23

control
&LASTCC 47
&MAXCC 48
&SYS4DATE 33
&SYS4SDATE 33
&SYSAPPCLU 38
&SYSASIS 44
&SYSCLONE 35
&SYSCONLIST 43
&SYSCPU 36
&SYSDATE 32
&SYSDFP 36
&SYSDLM 45
&SYSDVAL 45
&SYSENV 42
&SYSFLUSH 44
&SYSICMD 42
&SYSISPF 37
&SYSJDATE 32
&SYSJES 37
&SYSLIST 44
&SYSLRACF 37
&SYSLTERM 34
&SYSMSG 44
&SYSMVS 38
&SYSNAME 38
&SYSNEST 43
&SYSNODE 39
&SYSOPSYS 39
&SYSOUTLINE 46

198 OS/390 V2R10.0 TSO/E CLISTs

variable (continued)
&SYSOUTTRAP 46
&SYSPCMD 42
&SYSPLEX 40
&SYSPREF 34
&SYSPROC 35
&SYSPROMPT 43
&SYSRACF 39
&SYSSCAN 42
&SYSSCMD 42
&SYSSDATE 32
&SYSSECLAB 40
&SYSSMFID 40
&SYSSMS 40
&SYSSRV 36
&SYSSTIME 33
&SYSSYMDEF 41
&SYSSYMLIST 43
&SYSTERMID 34
&SYSTIME 33
&SYSTSOE 41
&SYSUID 34
&SYSWTERM 34
consideration for &SYSDATE and

&SYSSDATE 32, 33
describing terminal characteristics 33
description 28
for TSO/E command output trapping 46
i&SYS4JDATE 33
in an iterative DO loop 71
modifiable 30
non-modifiable 30
related to input 45
related to return and reason codes 47
related to the CLIST 41
related to the CLIST CONTROL statement 43
related to the current date and time 32
related to the system 35
related to the user 34
related to TSOEXEC command 49
relationship between &SYSPCMD and

&SYSSCMD 42
defining symbolic variable 19
GLOBAL 80
LISTDSI statement 165
naming

description 18
on PROC statement 18

nesting 24
NGLOBAL 77
related to the TSOEXEC command

&SYSABNCD 49
&SYSABNRC 49

set by LISTDSI statement 165
subprocedure variable 78
symbolic substitution of 17, 25
using double ampersands with 24
value of 18

VIO data set

creating 129

W
WHEN clause of SELECT statement

distinguishing from the WHEN command 69
WRITE statement

prompting with 19, 84
syntax 179

WRITENR statement
prompting with 84
syntax 179

writing
full-screen application 137
message to the terminal 87
record to a file 97

Y
year formats, four-digit years 33
year formats, two-digit years 32

Index 199

200 OS/390 V2R10.0 TSO/E CLISTs

Readers’ Comments — We’d Like to Hear from You

OS/390
TSO/E
CLISTs

Publication No. SC28-1973-04

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC28-1973-04

SC28-1973-04

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY
12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5647-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC28-1973-04

	Contents
	Figures
	Tables
	About This Book
	Who Should Use This Book
	How This Book Is Organized
	Where to Find More Information

	Summary of Changes
	Chapter 1. Introduction
	Features of the CLIST Language
	Categories of CLISTs
	CLISTs That Perform Routine Tasks
	CLISTs That Are Structured Applications
	CLISTs That Manage Applications Written in Other Languages

	Chapter 2. Creating, Editing, and Executing CLISTs
	CLIST Data Sets and Libraries
	Creating and Editing CLIST Data Sets
	CLIST Data Set Attributes
	Considerations for Copying CLIST Data Sets

	Executing CLISTs
	Passing Parameters to CLISTs

	Allocating CLIST Libraries for Implicit Execution
	Specifying Alternative CLIST Libraries with the ALTLIB Command
	Using the ALTLIB Command
	Using ALTLIB with ISPF
	Stacking ALTLIB Requests

	Examples of the ALTLIB Command

	Chapter 3. Writing CLISTs - Syntax and Conventions
	Overview of CLIST Statements
	Syntax Rules
	Delimiters
	Continuation Symbols
	Capitalization
	Formatting
	Length
	Labels
	Comments
	Characters Supported in CLISTs

	TSO/E Commands and JCL Statements
	TSO/E Commands
	JCL Statements

	Operators and Expressions
	Order of Evaluations
	Valid Numeric Ranges

	The Double-Byte Character Set (DBCS)
	DBCS Delimiters
	DBCS Restrictions

	Chapter 4. Using Symbolic Variables
	What is a Symbolic Variable?
	Valid Names of Variables
	Valid Values of Variables

	Defining Symbolic Variables and Assigning Values to Them
	Using the SET Statement
	Using the READ Statement
	Using the PROC Statement
	Passing Parameters to a PROC Statement
	Using PROC with Positional Parameters
	Using PROC with Keyword Parameters
	Keywords with Values
	Keywords without Values
	Using PROC with both Positional and Keyword Parameters

	Examples

	More Advanced Uses of Variables
	Combining Symbolic Variables
	Using a Variable to Preserve Leading Spaces in a CLIST
	Nesting Symbolic Variables
	Combining Nested Variables with Character Strings
	Substitution of Nested Variables
	Combining Variables Containing DBCS Data

	Chapter 5. Using Control Variables
	Overview of using Control Variables
	Getting the Current Date and Time
	&SYSDATE, &SYSSDATE, and &SYSJDATE
	&SYS4DATE, &SYS4SDATE, and &SYS4JDATE
	&SYSTIME and &SYSSTIME

	Getting Terminal Characteristics
	&SYSTERMID
	&SYSLTERM and &SYSWTERM

	Getting Information about the User
	&SYSUID
	&SYSPREF
	&SYSPROC

	Getting Information about the System
	&SYSCLONE
	&SYSCPU and &SYSSRV
	&SYSDFP
	&SYSHSM
	&SYSISPF
	&SYSJES
	&SYSLRACF
	&SYSAPPCLU
	&SYSMVS
	&SYSNAME
	&SYSNODE
	&SYSOPSYS
	&SYSRACF
	&SYSPLEX
	&SYSSECLAB
	&SYSSMS
	&SYSSMFID
	&SYSSYMDEF
	&SYSTSOE

	Getting Information about the CLIST
	&SYSENV
	&SYSSCAN
	&SYSICMD
	&SYSPCMD
	&SYSSCMD
	Relationship between &SYSPCMD and &SYSSCMD
	&SYSNEST

	Setting Options of the CLIST CONTROL Statement
	&SYSPROMPT
	&SYSSYMLIST
	&SYSCONLIST
	&SYSLIST
	&SYSASIS
	&SYSMSG
	&SYSFLUSH

	Getting Information about User Input
	&SYSDLM
	&SYSDVAL

	Trapping TSO/E Command Output
	&SYSOUTTRAP
	&SYSOUTLINE
	Considerations for Using &SYSOUTTRAP and &SYSOUTLINE

	Getting Return Codes and Reason Codes
	&LASTCC
	&MAXCC

	Getting Results of the TSOEXEC Command
	Getting Data Set Attributes
	The LISTDSI Statement

	Chapter 6. Using Built-in Functions
	Determining the Data Type of an Expression - &DATATYPE
	Forcing Arithmetic Evaluations - &EVAL
	Determining an Expression's Length in Bytes - &LENGTH
	Suppressing Arithmetic Evaluations
	Including Leading and Trailing Blanks and Leading Zeros

	Determining an Expression's Length in Characters - &SYSCLENGTH
	Preserving Double Ampersands - &NRSTR
	Double Ampersands
	One Level of Symbolic Substitution
	Records Containing JCL Statements
	Temporary Data Set Names
	Symbolic Parameters

	Defining Character Data - &STR
	Using &STR with &SYSDATE or &SYSSDATE
	Using &STR with Leading and Trailing Blanks
	Using &STR with Strings that Match CLIST Statement Names
	Using &STR When Supplying Input Using SYSIN JCL Statements

	Defining a Substring - &SUBSTR
	Defining a Substring - &SYSCSUBSTR
	Converting Character Strings to Uppercase Characters - &SYSCAPS
	Converting Character Strings to Lowercase Characters - &SYSLC
	Determining Data Set Availability - &SYSDSN
	Locating One Character String Within Another - &SYSINDEX
	Using &SYSINDEX with DBCS Strings

	Limiting the Level of Symbolic Substitution - &SYSNSUB
	Converting DBCS Data to EBCDIC - &SYSONEBYTE
	Converting EBCDIC Data to DBCS - &SYSTWOBYTE

	Chapter 7. Structuring CLISTs
	Making Selections
	The IF-THEN-ELSE Sequence
	The Standard Format
	The Null ELSE Format
	The Null THEN Format

	Nesting IF-THEN-ELSE Sequences
	The SELECT Statement
	Using SELECT without a Test Expression (Simple SELECT)
	Using SELECT with a Test Expression (Compound SELECT)
	Distinguishing WHEN Clauses from WHEN Commands
	Distinguishing the SELECT Statement from the RACF SELECTSubcommand

	Loops
	The DO-WHILE-END Sequence
	The DO-UNTIL-END Sequence
	The Iterative DO Sequence
	Compound DO Sequences
	Nesting Loops
	Distinguishing END Statements from END Commands orSubcommands
	Using the CONTROL Statement
	Using the DATA-ENDDATA Sequence

	Subprocedures
	Calling a Subprocedure
	Returning Information from a Subprocedure
	Using the RETURN CODE Statement
	Using the SYSREF Statement

	Sharing Variables among Subprocedures
	Using the NGLOBAL Statement

	Restricting Variables to a Subprocedure
	Considerations for Using Other Statements in Subprocedures
	Using ATTN and ERROR statements in Subprocedures
	Using CONTROL Statements in Subprocedures
	Using GOTO statements in Subprocedures

	Nesting CLISTs
	Protecting the Input Stack from Errors or Attention Interrupts
	Global Variables
	Exiting from a Nested CLIST
	Using the END Command
	Using the EXIT Statement

	GOTO Statements

	Chapter 8. Communicating with the Terminal User
	Prompting the User for Input
	Prompting with the PROC Statement
	Prompting with the WRITE and WRITENR Statements
	Prompting with TSO/E Commands
	Coding Responses to Prompts - The DATA PROMPT-ENDDATASequence

	Writing Messages to the Terminal
	Using the WRITE and WRITENR Statements
	Controlling the Display of Informational Messages

	Receiving Responses from the Terminal
	Using the READ Statement
	Controlling Uppercase and Lowercase for READ Statement Input

	Using the READDVAL Statement

	Passing Control to the Terminal
	Returning Control After a TERMIN or TERMING Statement
	Entering Input After a TERMIN or TERMING Statement

	Using ISPF Panels
	ISPF Restrictions
	Sample CLIST with ISPF Panels

	Chapter 9. Performing File I/O
	Characters Supported in I/O
	Opening a File
	Closing a File
	Reading a Record from a File
	Writing a Record to a File
	Updating a File
	End-of-File Processing
	Special Considerations for Performing I/O

	Chapter 10. Writing ATTN and ERROR Routines
	Writing Attention Routines
	Cancelling Attention Routines
	Protecting the Input Stack from Attention Interrupts
	Sample CLIST with an Attention Routine
	Subprocedures and Attention Routines
	CLIST Attention Facility

	Writing Error Routines
	Cancelling Error Routines
	Protecting the Input Stack from Errors
	Sample CLIST with an Error Routine
	Subprocedures and Error Routines

	Chapter 11. Testing and Debugging CLISTs
	Using Diagnostic Options of the CONTROL Statement
	Messages in Diagnostic Output
	How to Make Diagnostic Output Optional in a CLIST

	Getting Help for CLIST Messages
	Obtaining CLIST Error Codes

	Chapter 12. Sample CLISTs
	Including TSO/E Commands - The LISTER CLIST
	Simplifying Routine Tasks - The DELETEDS CLIST
	Creating Arithmetic Expressions from User-Supplied Input - The CALCCLIST
	Using Front-End Prompting - The CALCFTND CLIST
	Initializing and Invoking System Services - The SCRIPTDS CLIST
	Invoking CLISTs to Perform Subtasks - The SCRIPTN CLIST
	Including JCL Statements - The SUBMITDS CLIST
	Analyzing Input Strings with &SUBSTR - The SUBMITFQ CLIST
	Allowing Foreground and Background Execution of Programs - TheRUNPRICE CLIST
	Including Options - The TESTDYN CLIST
	Simplifying System-Related Tasks - The COMPRESS CLIST
	Simplifying Interfaces to Applications - The CASH CLIST
	Using &SYSDVAL When Performing I/O - The PHONE CLIST
	Allocating Data Sets to SYSPROC - The SPROC CLIST
	Writing Full-Screen Applications Using ISPF Dialogs - The PROFILECLIST
	Allocating a Data Set with LISTDSI Information - The EXPAND CLIST

	Chapter 13. Reference
	How to Read the CLIST Statement Syntax
	ATTN Statement
	CLOSFILE Statement
	CONTROL Statement
	DATA-ENDDATA Sequence
	DATA PROMPT-ENDDATA Sequence
	DO Statement
	END Statement
	ERROR Statement
	EXIT Statement
	GETFILE Statement
	GLOBAL Statement
	GOTO Statement
	IF-THEN-ELSE Sequence
	LISTDSI Statement
	CLIST Variables Set by LISTDSI
	Return Codes
	Reason Codes

	NGLOBAL Statement
	OPENFILE Statement
	PROC Statement
	PUTFILE Statement
	READ Statement
	READDVAL Statement
	RETURN Statement
	SELECT Statement
	Simple SELECT
	Compound SELECT

	SET Statement
	SYSCALL Statement
	SYSREF Statement
	TERMIN and TERMING Statement
	WRITE and WRITENR Statements
	END Command
	EXEC Command

	Appendix. Notices
	Programming Interface Information
	Trademarks

	Bibliography
	TSO/E Publications
	Related Publications

	Index
	Readers’ Comments — We'd Like to Hear from You

