
A Study of DRAM Failures in the Field

Vilas Sridharan, Dean Liberty

RAS Architecture
AMD, Inc.

Boxborough, MA, USA
{vilas.sridharan, dean.liberty}@amd.com

Abstract—Most modern computer systems use dynamic

random access memory (DRAM) as a main memory store.

Recent publications have confirmed that DRAM errors are a

common source of failures in the field. Therefore, further

attention to the faults experienced by DRAM sub-systems is

warranted. In this paper, we present a study of 11 months of

DRAM errors in a large high-performance computing cluster.

Our goal is to understand the failure modes, rates, and fault

types experienced by DRAM in production settings.

We identify several unique DRAM failure modes, including

single-bit, multi-bit, and multi-chip failures. We also provide a

deterministic bound on the rate of transient faults in the

DRAM array, by exploiting the presence of a hardware

scrubber on our nodes.

We draw several conclusions from our study. First, DRAM

failures are dominated by permanent, rather than transient,

faults, although not to the extent found by previous

publications. Second, DRAMs are susceptible to large multi-bit

failures, such as failures that affect an entire DRAM row or

column, indicating faults in shared internal circuitry. Third,

we identify a DRAM failure mode that disrupts access to other

DRAM devices that share the same board-level circuitry.

Finally, we find that chipkill error-correcting codes (ECC) are

extremely effective, reducing the node failure rate from

uncorrected DRAM errors by 42x compared to single-error

correct/double-error detect (SEC-DED) ECC.

Keywords - soft error; hard error; single-event upset; DRAM;

memory; reliability.

I. INTRODUCTION

Modern computer systems have long used dynamic
random access memory (DRAM) as a main memory store,
and architects have focused on the problems posed by
DRAM failures for decades [1]. Furthermore, the amount of
DRAM in computer systems continues to increase every
year, and is predicted to increase 50x compared to 2009
levels by 2024 [2]. This implies that DRAM failures will be
a growing concern for system architects and designers.
Therefore, it is somewhat surprising that, until recently [3]
[4] [5], relatively few studies existed of DRAM failures in
the field. This relative lack of information about DRAM
failures leaves architects to guess at the type, kind, and rate
of DRAM failures to expect in modern systems.

A poor understanding of DRAM fault mechanisms can
lead to the design of features that are poorly suited to the
faults that actually occur. For example, memory scrubbing is
a memory reliability technique that is often applied in
conjunction with error-correcting codes (ECCs) [6]. A

scrubber reads a memory location, fixes any errors that are
correctable by the ECC, and writes the correct data back to
the same location. This technique can correct a transient
(non-permanent) fault and is thus most useful in a system
that experiences many transient faults [7]. However, a
scrubber cannot correct a permanent fault, and thus will not
benefit memory that experiences a high rate of such faults.

In this paper, we present a study of DRAM failures from
the “Jaguar” high-performance computing cluster at Oak
Ridge National Laboratories (ORNL). Jaguar is a cluster of
18,688 two-socket nodes. During our experiment, each
socket contained a 6-core AMD Opteron™ processor and
four 2GB DDR-2 DIMMs. The ECC on Jaguar provides
chipkill capability, which allows the memory sub-system to
tolerate the failure of any single DRAM device [8]. Each
node ran a version of the Linux operating system configured
to log error events on the console.

Our experiment duration was approximately 11 months,
from November 2009 to October 2010, comprising
approximately fifty million DIMM-days of data. The Jaguar
system was brought online in January 2009, so our
experiment covered the second year of production lifetime
for the majority of the DIMMs. The Jaguar system operators
replaced DIMMs after the first uncorrected error from that
DIMM. During our experiment, the system was typically 90-
95% utilized except for planned maintenance windows.

There are several contributions of this research:

 A study of the impact of DRAM faults, failures, and
errors in a production environment. A key finding of
this study is that DRAM failure rate is a better
predictor of DIMM health than the error rate.

 A method to provide a deterministic bound on the
DRAM transient fault rate by using the memory
scrubber on each node. We find that DRAMs
experience both transient and permanent faults in the
field, but that permanent faults constitute at least
70% of all DRAM failures.

 A detailed study of multi-bit failure modes,
including row, column, bank, and multiple-bank
faults. We find that multi-bit faults such as row,
column and bank faults constitute almost 50% of the
DRAM failures in Jaguar’s memory system. We find
that row faults tend to affect an entire row, while
column faults tend to cluster around a few rows. We
also identify a multiple-rank failure mode, where a
fault in one DRAM affects multiple DRAMs sharing

SC12, November 10-16, 2012, Salt Lake City, Utah, USA
978-1-4673-0806-9/12/$31.00 ©2012 IEEE

the same board-level circuitry. These faults
constitute almost 5% of the faults in our data set.

 An analysis of the effect of chipkill on the
uncorrected error rate of a node. We find that
chipkill reduces the node failure rate from
uncorrected DRAM errors by 42x relative to SEC-
DED ECC. We also find that a DIMM with a
multiple-bank or multiple-rank fault has a
significantly larger risk of a future uncorrected error
than a DIMM with a single-bit or no fault.

The rest of this paper is organized as follows. Section II

defines the terminology we use in this paper. Section III
discusses related studies and describes the differences in our
study and methodology. Section IV discusses the
architecture and configuration of the Jaguar system and our
data collection methodology. Section V presents aggregate
system-level statistics, and Sections VI-X present our
analysis of DRAM fault types and failure modes. Section XI
discusses implications of our findings and presents our
conclusions.

II. TERMINOLOGY

In this paper, we distinguish between a fault and an error
using the following taxonomy [9]:

 A fault refers to an underlying cause of a failure, such
as a particle-induced bit flip or a stuck-at bit.

 A failure is a deviation of a DRAM from its specified
operation, meaning that it is not possible to read from
or write to a location in that DRAM, or that a location
in the DRAM returns data that differs from the data
that was last written to the location. Note that ECC will
often prevent a DRAM failure from propagating to
higher architectural levels, but if the ECC cannot
correct the failure, a node or system failure may result.
A single fault normally causes a single DRAM failure,
which can be incorrect or inaccessible data in one or
more memory locations.

 An error is a symptom of a failure. A DRAM failure
will return an error when it is read if the node provides
higher-level detection such as parity or ECC. Note that
each DRAM failure can cause many errors if the failed
locations are accessed multiple times.

DRAM failures can be caused by many different types of

faults [10]. These faults can be classified as:

 Transient faults, which cause incorrect data to be
read from a memory location until the location is
overwritten with correct data. These faults occur
randomly and are not indicative of device damage
[11]. Particle-induced upsets (“soft errors”), which
have been extensively studied in the literature [1]
[11], are one type of transient fault.

 Hard faults, which cause a memory location to
consistently return an incorrect value (e.g., a stuck-at-
0 fault). Hard faults are permanent and can be
repaired only by replacing the faulty device [12].

 Intermittent faults, which cause a memory location
to sometimes return incorrect values. Unlike hard
faults, intermittent faults occur only under specific
conditions (e.g., elevated temperature) [10]. Unlike
transient faults, however, an intermittent fault is
indicative of device damage or malfunction.

Distinguishing a hard fault from an intermittent fault in a

running system requires knowing the exact memory access
pattern to determine whether a memory location returns the
wrong data on every access. In practice, this is impossible in
a large-scale field study such as ours. Therefore, we group
intermittent and hard faults together in a category of
permanent faults.

Permanent faults have two distinguishing characteristics.
First, a memory location that experiences an error due to a
permanent fault has an increased probability of subsequent
errors. Second, a permanent fault requires device
replacement to repair. By contrast, a device that experiences
a transient fault can be repaired by overwriting the location
with correct data, and is at no greater risk of subsequent
errors once the fault has been repaired.

In this paper, we present data on DRAM failures and
DRAM failure rates. As noted, DRAM failures can be due to
either permanent or transient faults. Unless otherwise
specified, failure counts and rates in this paper include
failures due to both permanent and transient faults.

A memory sub-system typically provides reliability
features such as ECC or parity to detect and correct errors.
Therefore, we classify DRAM errors as corrected,
uncorrected, or undetected [13]:

 A corrected error is detected and corrected by the
hardware and does not impact the correct operation of
software. A corrected error may result in temporary or
permanent performance degradation on the node.

 An uncorrected error is detected by the hardware
but cannot be corrected. An uncorrected error can
result in the termination of a process or a crash of the
entire node, depending on the reliability features of
the node.

 An undetected error is not detected by hardware. An
undetected error may result in silent data corruption,
or may be benign if the data in error does not affect
program output [14].

III. RELATED WORK

During the past few years, several studies have been
published studying DRAM failures in the field. In 2006,
Schroeder and Gibson published a study on failure data from
high-performance computer systems at Los Alamos National
Labs [3]. In 2007, Li et al. published a study of memory
errors on three different data sets, including a server farm of
an Internet service [5]. In 2009, Schroeder et al. published a
large-scale field study using Google’s server fleet [4]. In
2010, Li et al. published an expanded study of memory
errors on an Internet server farm and other sources [15]. In
2012, Hwang et al. published an expanded study on Google’s
server fleet as well as two IBM Blue Gene clusters [16], and

Sridharan and Liberty presented a summary of DRAM errors
[17].

Due to the sheer size of our data set, our study has
significantly more statistical power than many of these
previous studies [3] [5] [15]. As a result, the data in our
study is more likely to be representative of DRAM failures
in general than smaller-scale studies. Furthermore, the scale
of our study allows us to evaluate techniques such as chipkill
that operate on relatively rare events such as DRAM device
failures. Our study also has significantly more detail and
analysis on failure patterns and modes than Sridharan [17].

Two of the cited studies have similar or larger scale than
ours. First, Schroeder et al. analyzed error rates with respect
to several factors such as DIMM capacity and organization,
system utilization, temperature, and age [4]. Several of the
study’s findings (e.g., failure rates, incidence of transient
faults) differ substantially from our findings. This is due to a
methodological difference. Schroeder et al. calculated rates
using the number of observed errors over time [18]. We
calculate rates using the number of observed DRAM failures
over time.

This has a significant impact on our results and makes it
difficult to compare the two studies. For example, a failure
due to a permanent fault will persist until the failing DRAM
is replaced, potentially days or weeks after the first detected
error. During this time, every access to the failing location
can result in an error. In contrast, a transient fault persists
only until the memory element is written, which may be just
a few DRAM cycles after the first error [11]. As a result, a
typical transient fault will generate many fewer errors than a
typical permanent fault.

More recently, Hwang et al. analyzed error logs for
patterns of failing addresses, the impact of chipkill on the
rate of corrected errors, and the effectiveness of page
retirement techniques [16]. However, the authors are unable
to conclusively differentiate errors caused by transient faults
from those caused by permanent faults. For example, the
authors report a significant incidence of repeat errors from
the same address, but it is impossible to determine whether
this is due to a permanent fault or to a transient fault that was
read multiple times before being overwritten. The authors
also perform their analyses on error rates, making it difficult
to differentiate patterns due to failure modes from artifacts of
system activity. The study also does not examine the impact
of chipkill on a node’s uncorrected error rate.

There have also been many laboratory studies of DRAM
failures dating back several decades [19] [20] [21] [22]. Most
of these studies focus solely on particle-induced transient
faults. Of particular interest are the studies by Borucki et al.
and Quinn et al., which identified large multi-bit failures as a
possible consequence of particle strikes [21] [22]. However,
while all these studies examine failures caused by neutron or
alpha particle strikes, they do not necessarily represent the
total range of failures experienced by DRAM in the field.

IV. SYSTEM CONFIGURATION AND DATA COLLECTION

The Jaguar system at Oak Ridge National Laboratory is a
cluster of 18,688 two-socket nodes. During our experiment,
each two-socket node contained two 6-core 2.6GHz AMD
Opteron™ processors and four memory channels. A memory

channel consists of 72 DQ signals, 64 for data bits and eight
for check bits. Each memory channel is populated with two
2GB DDR-2 DIMMs for a total of 4GB of DRAM per
memory channel, or 16GB per node. Each DIMM consists of
18 DRAM devices. Therefore, the Jaguar system has
approximately 2.69 million DRAM devices in total.

A. DRAM Configuration

Figure 1 shows a simplified logical view of a single
memory channel. Each DIMM contains one rank of 18
DRAM devices, each with four data (DQ) signals (known as
an x4 DRAM device). Sixteen of the DRAM devices are
used to store data bits and two are used to store check (ECC)
bits. A memory request accesses all devices on a rank in
parallel by activating a chip-select signal dedicated to that
rank.

A lane is a group of DRAM devices that share data (DQ)
signals. In Jaguar, each memory channel has 18 lanes, each
with two DRAM devices. DRAMs in the same lane also
share a strobe (DQS) signal, which is used as a source-
synchronous clock signal for the data signals.

Each DRAM device contains eight internal banks that
can be accessed in parallel. Logically, each bank is organized
into rows and columns. Row and column addresses are
delivered on a shared command/address bus. Each
row/column address pair uniquely identifies a 4-bit word in
the DRAM device. Internally, a DRAM bank is constructed
as multiple sub-arrays that are accessed in parallel and that
each contribute exactly one bit to every 4-bit word [23].

B. Error Detection and Correction

DRAM sub-systems are typically protected by an error
detection and correction code, referred to as an ECC. A
conventional ECC stores several additional check bits along
with each data word [24]. These check bits are encoded to
allow detection of some errors in both the data and check
bits. For certain errors, ECCs can also identify the specific
data bits in error, allowing the hardware to correct the data.

There are many variants of ECC in use. Single Error
Correct-Double Error Detect (SEC-DED) ECC allows
correction of a single-bit error and detection of a double-bit

Figure 1. A simplified logical view of a single channel of the DRAM
memory subsystem on each node in the Jaguar system.

error. SEC-DED was frequently used on DRAM sub-systems
for many years, and is still in common use on CPU cache
memories [7] [8].

The ECC used on the Jaguar system, by contrast, is a
single-symbol correct (SSC) ECC. A symbol is a group of
eight adjacent data bits (bits 0-7, 8-15, etc.). This code can
correct any number of bit errors within one symbol. The
memory system is laid out such that the bits from a single
DRAM device contribute to only one symbol in the ECC
word. This allows the ECC to correct any number of failing
bits from a single DRAM device, a capability referred to as
chipkill [8].

ECC detection and correction is performed on every read
access to DRAM. In addition, each node in the Jaguar
system also has a hardware memory scrubber [6]. The
hardware scrubber periodically reads every location in
memory. Its goal is to correct any latent (unaccessed)
correctable errors before a second failure creates an
uncorrectable error in the ECC word. The time that the
scrubber takes to cycle through every location in a node’s
DRAM memory is a scrub interval. A scrub interval on
nodes in the Jaguar system is on the order of a few hours.

C. Data Collection Methodology

The data collection infrastructure on Jaguar contains both
hardware and software components. These components work
together to record detected errors on each node, including
both corrected and uncorrected errors. Note that this
infrastructure does not attempt to record any undetected
errors.

The hardware memory controller in each node logs
corrected error events in registers provided by the x86
machine-check architecture (MCA) [25]. Each node’s
operating system is configured to poll the MCA registers
once every few seconds and record any events it finds to the
node’s console log. These console logs are then collected by
the administrators and saved for later analysis. The console
logs contain a variety of information, including the physical

address associated with the error, the time the error was
recorded, the type of error (corrected or uncorrected), and the
ECC syndrome associated with the error.

Hardware can log many corrected errors during a single
software polling interval. Because there is only one set of
MCA registers per core, hardware cannot guarantee that all
errors are communicated to software and recorded in the
console logs. To track this case, the x86 MCA registers
provide an overflow bit to indicate that at least one error was
not logged [25]. However, this bit gives no information on
how many errors were missed. Therefore, a node’s console
log can be viewed as a statistical sample of all corrected
errors on the node.

The hardware also logs uncorrected error events to the
MCA registers. These errors may result in an immediate
reset of the node and thus cannot reliably be captured by the
software polling mechanism. The MCA registers preserve
their values across a warm reset, however, and uncorrected
errors are logged after the node resets.

D. Limitations

Information not tracked by this research limits the
analyses that we can perform. We do not track DIMM
vendor information and thus cannot distinguish differences
in vendor failure rates. We also do not track temperature or
other environmental conditions, which have been shown to
have an effect on certain DRAM failures [10]. Finally,
because all DIMMs in the system are of the same capacity
and organization, we cannot analyze differences due to these
factors.

V. AGGREGATE STATISTICS

In this section, we present aggregate data on failures and
errors across the Jaguar system. The failure rates observed in
our data set indicate that two DRAM devices (0.00008% of
all DRAM devices in Jaguar) will experience more than one
fault in a single year. By contrast, more than 2,000 DRAM
devices (0.09% of all DRAMs) experience a single fault, a
difference of approximately three orders of magnitude.
Therefore, we make the simplifying assumption that each
DRAM in our system experiences exactly one fault over our
experiment duration.

A. Node Behavior Over Time

It is first instructive to look at the behaviors of individual
nodes in our data set. Figure 2 shows a plot of corrected
errors over time for several representative nodes. Each node
had exactly one failing DRAM, and the errors in each node
were confined to a single memory location.

Node 1 had only one error reported during the entire 11-
month period. Node 2 had between zero and fifty errors per
month. As discussed, we can say with high probability that
these errors are likely due to a single fault. In contrast, nodes
3 and 4 each recorded hundreds or thousands of errors per
month. Due to the sampling behavior noted in Section IV.C,
each of these nodes may have actually experienced millions
of corrected errors per month. Node 3 did not experience any
errors until a few months into the measurement window,
indicating that this node developed a fault during the
measurement interval.

Figure 2. Corrected errors per month for several representative nodes. The
number of errors per node varies substantially, but each node experienced
exactly one DRAM failure. Node 1 experienced a transient fault, while
nodes 2-4 each experienced a permanent fault.

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11

Er
ro

r
C

o
u

n
t

Month

Node 1 Node 2 Node 3 Node 4

B. Total Errors and Failures

In this section, we examine the total number of logged
errors and the total number of failures per month in our data
set in order to determine the overall health of the DRAM
population in the system.

Figure 3 shows the total number of corrected errors
logged per month in our data set. The average number of
errors is just under 250,000 per month, but the number of
errors varies by more than 90%, from a low of 180,559 in the
first month to a high of 344,365 in the fifth month of the
study. This translates to an average of 6.6 errors per node per
month across the entire system.

Figure 4 and Figure 5 show the total number of failures
in our data set. Figure 4 shows the total number of activated
DRAM failures per month in our data set. We say a DRAM
failure is activated in a given month if the DRAM produced
at least one error in that month. For example, a DRAM
failure that caused errors in months 3, 4, 5, and 7, would be
counted exactly once in each of those months. On average,
there are 927.5 activated DRAM failures per month, and the
number of activated failures varies by 15%, from a low of
866 in month three to a high of 996 in month ten.

Figure 5 shows the number of new failures per month in
our data set. Each DRAM failure is counted as new in the
first month that it produced any errors. The spike in months
one and two are due to failures accumulated in the DRAMs
before the start of our experiment. Note that the rate of new
failures in months 3-11 appears to decline slightly over time.
The majority of the DIMMs in Jaguar were installed in
January 2009, so our experiment is in the second year of the
DRAM devices’ lifetimes. Therefore we hypothesize that the
DRAMs are still in the “early life” phase of the classic
hardware reliability bathtub curve and thus are expected to
show a declining failure rate [26].

One major observation is that the number of failures per
month shows substantially lower variability than the number
of errors per month. This can be attributed in part to changes
over time in access patterns, utilization, and workloads,
which all affect the frequency of error detection. The number
of errors may also depend on external factors such as
temperature that cause intermittent faults to manifest more
frequently [10]. For example, the number of errors increased
by 53.8% between months 4 and 5, but the number of
activated failures increased by only 10.6%. Our conclusion
from this data is that the failure rate is a better assessment of
the health of a DIMM population than the error rate, because
the error rate can vary widely due to factors unrelated to
DIMM health.

C. DRAM Failure Rates

Table 1 shows aggregate failure rates for DRAM in the
system, including the failure rate per megabit and fraction of
DRAMs and DIMMs experiencing a failure. The failure rate
is the average rate of new failures per month, excluding
months one and two to eliminate the spike at the start of the
experiment.

The table shows that 1.6% of DIMMs, or 0.09% of
DRAM devices, experienced a failure during the experiment.
The calculated failure rate of 0.066 FIT/Mbit translates to
one failure approximately every six hours across the Jaguar
system. Obviously, DRAM failures are not rare events in
large systems such as Jaguar. Note that this failure rate is not
directly comparable to the failure rates calculated by
Schroeder et al. due to the methodology differences
discussed in Section III, although the number of failures per
DIMM is in line with their corrected-error incidence per
DIMM for DDR-2 DRAM [4]. Our calculated failure rate is
also in line with other published studies [5].

VI. TRANSIENT VERSUS PERMANENT FAULTS

To estimate the rate of different fault types in the DRAM
array, we must ascertain the type of fault based on the pattern
of errors logged on each node. Specifically, we would like to
differentiate transient faults from permanent faults, which is
difficult because we do not know workload memory access
patterns. Thus, guarantees on fault classes are difficult to
achieve without laboratory testing of each faulty DRAM.

Figure 3. Corrected DRAM errors per month.

Figure 4. Activated DRAM failures per month.

Figure 5. New DRAM failures per month.

% Failing DRAM devices 0.09%

% of DIMMs with a failing DRAM 1.6%

Failure rate (FIT/Mbit) 0.066

Failure rate (FIT/DRAM device) 66.1

Table 1. Failure rates and fraction of failing devices in the Jaguar
system. Failure rate is given in FIT, or failures per billion device-hours
of operation.

0

100,000

200,000

300,000

400,000

1 2 3 4 5 6 7 8 9 10 11

Er
ro

rs

Month

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10 11

Fa
ilu

re
s

Month

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11

Fa
ilu

re
s

Month

However, Jaguar’s memory scrubber guarantees that
every DRAM location is written at least once per scrub
interval. This enables us to place an upper bound on the rate
of transient faults in the DRAM array. A DRAM that
produces errors in only one scrub interval may be
experiencing a transient fault. A DRAM that experiences
errors in multiple scrub intervals, by contrast, is definitely
not experiencing a single transient fault. The DRAM may be
experiencing a single permanent fault, or it may be
experiencing multiple faults. Given the low probability of
multiple faults in a single DRAM device, we assume that all
such cases are a single permanent fault.

Our process for making this determination is shown in
Figure 6. For each DRAM, we group time into epochs. An
epoch begins with an error and lasts for one full scrub
interval. If a DRAM reports errors only within one epoch,
we classify the fault as transient. If a DRAM reports errors in
multiple epochs, we classify the fault as permanent.

Figure 7 plots all faulty DRAMs as a function of the
number of epochs in which that DRAM produced at least
one error. We find that 28.8% of all faulty DRAMs had
errors in just one epoch. We classify these as potential
instances of transient faults. In contrast, 10.2% of faulty
DRAMs had errors in two epochs and 61.0% had errors in
three or more epochs.

This is strong evidence that DRAM failures are
dominated by permanent rather than transient faults. Further,
our analysis is an upper bound on the rate of transient faults.
If a node writes to a memory location within an epoch, it
would overwrite any existing transient faults. A fault that
produced errors after a write operation, even if they were
confined to a single epoch, should be classified as a
permanent fault. Because we do not know each node’s
memory access patterns, however, our analysis would
classify this fault as transient. Since an epoch is several
hours long, it is possible that many of the faults we identify
as transient will fit this pattern.

VII. NODES WITH MULTIPLE FAILING DRAMS

Some nodes in our system log errors from multiple
DRAM devices. Based on our observed failure rates, we
would expect several dozen nodes to experience faults in
multiple DRAMs during the experiment. In general, we treat
these cases as multiple independent faults, but we would like
to determine if there is any relationship between DRAM
failures on the same node. Therefore, we examine nodes that

logged errors in multiple DRAMs to determine whether
these errors were coincident in time.

Table 2 shows nodes that logged errors from 1, 2, and 3
DRAMs, and reported errors from 1, 2, or 3 epochs,
expressed as a percentage of all nodes with errors. We find
that 26.3% of nodes with errors log errors from one DRAM
device in just one epoch. These nodes experienced a single
transient fault. The table also shows that 1.0% of nodes log
errors from two DRAM devices in two epochs, one from
each DRAM device. We conclude that two DRAMs
experienced a transient fault on these nodes.

Table 2 shows that 8.8% and 5.2% of nodes log errors
from one DRAM device in two and three epochs,
respectively. These nodes are much more common than
nodes that experience a single transient fault in two DRAMs.
This provides further justification for treating these faults as
single permanent faults, since we would expect the opposite
to be true if these were multiple transient faults. Similarly,
0.5% of nodes logged errors from two DRAM devices in
three epochs. We conclude that one DRAM on these nodes
experienced a transient fault, while another DRAM
experienced a permanent fault.

Table 2 highlights an interesting phenomenon. 0.5% of
nodes logged errors from two DRAM devices but in just one
epoch. There are two possible explanations for this. First,
this node may have experienced simultaneous independent
transient faults, but this type of multiple-fault event should
be very rare. Alternatively, DRAMs may exhibit a failure
mode that corrupts shared board-level circuitry, resulting in
errors from other DRAMs sharing the same circuitry. Section
VIII presents further evidence for this type of failure mode.

of DRAMs
with Errors

Epochs with Errors

1 2 3

1 26.3% 8.8% 5.2%

2 0.5% 1.0% 0.5%

3 0.1% 0.05% 0.05%

Table 2. Nodes that logged errors from 1-3 DRAMs and reported errors
in 1-3 epochs, expressed as a percentage of all nodes with errors. 1.0%
of nodes logged errors from two DRAMs and reported errors in two
epochs, indicating two DRAMs on these nodes experienced transient
faults. 0.5% of nodes logged errors in two DRAM devices but reported
errors in just one epoch, indicating potential multiple-rank faults.

Figure 7. Faulty DRAMs as a function of the number of epochs with at
least one error. 28.8% of faulty DRAMs had errors in just one epoch.

0.01%

0.10%

1.00%

10.00%

100.00%

1 10 100 1000

Fa
u

lt
y

D
R

A
M

s
(%

)

Epochs with Errors

Time

Error
Scrub Interval

Epoch

Error

Time

Error
Scrub Interval

Epoch

Error

Figure 6. A DRAM that produces errors in two epochs (top) has a
permanent fault. A DRAM that produces errors in one epoch (bottom)
may have a transient fault.

VIII. DRAM FAILURE MODES

In this section, we examine the error data for patterns to
determine the failure modes experienced by DRAM in the
Jaguar system. Our goal is to identify and understand the
different ways that DRAM can fail.

A. Failure Mode Patterns

We first analyze the logged physical addresses and ECC
syndromes to associate each error to a specific location in a
DRAM. In this way, we create a “map” of failing locations
in each DRAM, which allows us to infer a failure mode for
each DRAM.

We identify several failure modes across all DRAMs:

 Single-bit: All errors map to a single bit.

 Single-word: All errors map to a single word.

 Single-column: All errors map to a single
column.

 Single-row: All errors map to a single row.

 Single-bank: All errors map to a single bank.

 Multiple-bank: Errors map to multiple banks.

 Multiple-rank: Errors map to multiple DRAMs
in the same lane.

Table 3 shows the percentage of DRAMs that exhibited

each failure mode. This table does not differentiate
permanent faults from transient faults.

There are several interesting results in Table 3. First,
49.7% of all DRAM faults are single-bit faults. A further

39.6% of all DRAM faults are contained to a single row,
column, or bank of a DRAM, demonstrating that large multi-
bit faults are a common failure mode in modern DRAMs.
Rows, columns, and banks share circuitry in the DRAM,
such as address decoders, control signals, and sense
amplifiers. Therefore, it seems likely that these failures are
due to faults in the shared circuitry rather than to faults in the
DRAM array elements themselves. Table 3 also shows that
2.5% of nodes have errors that affect multiple banks in a
single DRAM. We consider these single faults rather than
multiple independent faults.

Finally, Table 3 shows a high incidence of multiple-rank
faults. This indicates that a node experienced errors from
multiple DRAMs in the same physical lane. We attribute
these errors to a fault in a single DRAM that affects shared
external circuitry such as a data (DQ) or strobe (DQS) pin,
rather than to multiple independent faults. There are two
reasons for this. First, the incidence of nodes with errors
from DRAMs in the same lane is much higher than the
incidence of nodes with errors in DRAMs from different
lanes. We would expect the opposite if these errors were due
to multiple independent faults. Second, 44% of nodes with
errors in the same lane begin experiencing errors from both
DRAMs in the same epoch, and many others begin
experiencing errors within a few dozen epochs. This is
highly improbable for independent faults.

There are two major findings from this data. First, large
multi-bit (row, column, bank, and multiple-bank) faults
appear to contribute more significantly to the overall failure

(a) Single-Bit Faults

(b) Single-Column Faults

(c) Single-Row Faults

(d) Single-Bank Faults

Figure 8. Many single-column, single-row, and single-bank faults persist across epochs, indicating that these are permanent faults. A significant fraction of
single-bit and single-column faults are only present in one epoch, indicating that there may also be a transient fault type for these failure modes.

0.01%

0.10%

1.00%

10.00%

100.00%

1 100

Fa
u

lt
y

D
R

A
M

s
(%

)

Epochs with Errors

0.1%

1.0%

10.0%

100.0%

1 100
Fa

u
lt

y
D

R
A

M
s

(%
)

Epochs with Errors

0.1%

1.0%

10.0%

100.0%

1 100

Fa
u

lt
y

D
R

A
M

s
(%

)

Epochs with Errors

0.1%

1.0%

10.0%

100.0%

1 100

Fa
u

lt
y

D
R

A
M

s
(%

)

Epochs with Errors

Failure Mode % Faulty DRAMs

Single-bit 49.7%

Single-word 2.5%

Single-column 10.6%

Single-row 12.7%

Single-bank 16.3%

Multiple-bank 2.5%

Multiple-rank 5.5%

Table 3. The fraction of failing DRAMs experiencing a given failure mode
(for example, all errors mapped to a single DRAM bit on 49.7% of failing
DRAMs).

Failure Mode
Fault Type Failure Rate

Transient Permanent Transient Permanent

Single-bit 43.3% 56.7% 14.2 18.6

Single-word 81.4% 18.6% 1.4 0.3

Single-column 19.7% 80.3% 1.4 5.6

Single-row 2.8% 97.2% 0.2 8.2

Single-bank 7.0% 93.0% 0.8 10.0

Multiple-bank 17.5% 82.5% 0.3 1.4

Multiple-rank 24.3% 75.7% 0.9 2.8

Table 4. The percentage of transient and permanent faults for each failure
mode and the corresponding failure rate in FIT/device.

rate than has been reported by other studies. Second, we find
a significant number of multiple-rank faults that affect
communication on external (board-level) wires, disrupting
access to multiple DRAMs simultaneously. As far as we
know, this failure mode has not been previously observed in
the field. Multiple-rank faults are especially troubling
because they look like the simultaneous failure of multiple
DRAM devices, making it difficult to identify the actual
failing component.

B. Putting It All Together

Figure 8 shows the number of epochs with errors for
DRAMs with four different fault types. A plurality of nodes
with single-bit and single-column faults have errors in one
epoch. This may indicate two fault types for these failure
modes: a permanent fault and a transient fault. By contrast,
the number of single-row and single-bank faults with errors
in one epoch is small. This suggests that all single-row and
single-bank faults may be permanent, but that some of them
occurred only once during the experiment.

Table 4 shows the percentage of each failure mode
classified as transient and permanent faults and the
corresponding failure rate for each failure mode. This again
confirms that single-row and single-bank faults tend to be
permanent, while all other failure modes show a high
number of potential transient faults.

IX. A CLOSER LOOK AT MULTI-BIT FAULTS

The large number of multi-bit failure modes warrant
closer examination. In this section, we examine these faults
in more detail, to determine how many sub-arrays are

affected by each failure mode and identify the areas in the
DRAM device corrupted by each failure mode.

A. Sub-arrays Affected

Internally, a DRAM bank is divided into multiple sub-
arrays. Each sub-array provides one bit of a four bit DRAM
access. Therefore, we can determine the number of sub-
arrays affected by a failure by examining the number of DQ
pins that exhibit errors. Table 5 shows the number of unique
DQ pins in error for each of the multi-bit failure modes in
Table 3. The table shows that 85.8% of single-column faults
were confined to a single DQ pin (i.e., one sub-array), while
10.0% of single-column faults affected all four DQ pins (i.e.,
all four sub-arrays). This seems to indicate the presence of
two distinct single-column failure modes: one confined to a
single DRAM sub-array and one that affects all four sub-
arrays. DRAMs that have two or three DQ pins in error may

(a) Single-Column Fault

(b) Single-Row Fault

(c) “Spread” Single-Bank Fault

(d) “Row-cluster” Single-Bank Fault

Figure 10. A “map” of failing locations for a single-column fault, a single-row fault, and two single-bank faults. Each graph plots failing locations for one
fault. Single-column faults tend to form clusters in the row space, while single-row faults tend to be spread across the entire column space. Single-bank faults
can be spread out (as in Figure 10c) or tightly clustered in the row space (as in Figure 10d).

Figure 9. CDFs of the fraction of faulty columns or rows that experience errors for single-row, single-column, and single-bank faults. All single-column faults
affect fewer than 6% of rows in that column, while some single-row faults affect up to 30% of the columns in that row.

Failure Mode Failing DQs

1 2 3 4

Single-column 85.8% 3.3% 0.8% 10.0%

Single-row 31.1% 66.8% 1.4% 0.7%

Single-bank 55.5% 23.0% 3.8% 17.8%

Multiple-bank 17.5% 33.3% 3.5% 45.6%

Multiple-rank 7.5% 7.1% 1.8% 83.6%

Table 5. The number of failing DQ pins as a fraction of DRAMs for
large multi-bit failure modes. For example, 85.8% of DRAMs with a
single-column failure had errors on one DQ pin. Errors on multiple DQ
pins are indicative of failures in multiple DRAM sub-arrays.

eventually show errors on all four DQ pins, or else this may
indicate the presence of additional failure modes.

Most single-row failures, by contrast, had errors on one
or two DQ pins. Again, this indicates the presence of
multiple failure modes: one that corrupts a row in one sub-
array and one that corrupts the same row in multiple sub-
arrays. Similarly, single-bank and multiple-bank faults often
affect multiple DQ pins, indicating that these failure modes
often corrupt data in multiple sub-arrays.

Finally, another notable aspect of Table 5 is that 83.6%
of multiple-rank failures affect four DQ pins. This may
indicate that the most common multiple-rank failure mode is
due to a strobe (DQS) pin fault rather than a DQ pin fault.

B. Multi-bit Fault Patterns

Another interesting question is whether a multi-bit fault
affects an entire row, column, or bank. Figure 9 shows that
single-column faults show errors on only up to 5-6% of the
total rows in that column. By contrast, some single-row
faults show errors on more than 25% of the columns in the
row. The same is true of single-bank faults, which affect a
small fraction of the total columns or rows in the bank.

Figure 10 plots a “map” of errors for representative
single-column, single-row, and single-bank faults from our
data set. Each sub-graph in Figure 10 plots an error map for a
single fault. Figure 10(b) shows that single-row faults tend to
be spread across the entire column space, despite showing
errors on only a subset of columns (3.2% of columns for the
DRAM in Figure 10(b)). This is true for most single-row
faults in our data set, indicating that these faults affect all
columns in the row, but errors occur only in a subset of
columns due to a combination of memory access patterns
and the potential intermittent nature of the faults.

By contrast, Figure 10(a) shows that single-column faults
tend to manifest in discrete clusters in the row space. This
pattern is representative of all single-column faults in our
data set, indicating that this is a true failure mode, rather than
an artifact of memory access patterns.

DRAMs with single-bank faults appear to show two
unique error patterns. Figure 10(c) shows errors scattered
randomly around the row and column space, while Figure
10(d) shows errors spread across the column space but
confined to a small cluster of rows. These are representative
patterns from our data set; it is unclear whether these are
distinct failure modes or an artifact of access patterns.

DRAMs with multiple-bank faults tend to show similar
error patterns to single-bank faults, but spread across
multiple banks. As shown in Table 6, 46.2% of multiple-
bank faults affect two banks of a DRAM device, while
36.5% affect all eight banks. This may indicate the presence
of several failure modes. Table 6 also shows that multiple-
rank faults are most likely to affect all eight banks, indicating

that these faults are likely in the I/O logic of the DRAM
device rather than in the array logic.

Overall, a major finding of this data is that DRAM failure
modes are extremely varied and depend heavily on the
internal DRAM organization. Since this organization can
differ substantially amongst devices and vendors, DRAM
failure modes are likely to vary significantly as well.

X. UNCORRECTED ERRORS AND CHIPKILL

Uncorrected errors from DRAM can be a significant
source of system downtime [8]. As a result, techniques such
as chipkill have become common to reduce the rate of
uncorrected errors in DRAM. However, few studies have
examined the benefit of chipkill in the field. Hwang et al.
noted that 17% of observed corrected errors required chipkill
to correct [16], but did not examine the uncorrected error rate
with and without chipkill. Furthermore, operators typically
replace DIMMs that experience an uncorrected error; in the
absence of chipkill, many of the DIMMs experiencing these
errors would have been replaced after the first error, reducing
the number of errors that require chipkill to correct. In this
section, we examine the effect of chipkill on the uncorrected
error rate of each node.

A. Effectiveness of Chipkill

 Jaguar’s memory sub-system can be configured with
multiple ECC layouts, only some of which are chipkill-
capable (see Figure 11) [27]. The chipkill-capable Layout 3
is the actual layout in use on Jaguar.

For each error in our data set, we can identify the specific
failing bits to determine whether the error would have been

Figure 12. The uncorrected error rate for two different non-chipkill ECC
layouts and SEC-DED ECC normalized to the average monthly
uncorrected error rate with chipkill. Excluding the first month, chipkill
reduces the uncorrected error rate by 36-42x over non-chipkill ECC.

Failure
Mode

Banks Affected

2 3 4 5 6 7 8

Multiple-bank 46.2% 1.9% 3.8% 7.7% 3.8% 0.0% 36.5%

Multiple-rank 4.0% 2.0% 3.0% 14.1% 7.1% 15.2% 54.5%

Table 6. The fraction of banks affected by multiple-bank and multiple-rank
faults. 46.2% of multiple-bank faults affect only two DRAM banks, while
36.5% affect all eight DRAM banks. This is indicative of two different
failure modes.

Figure 11. A single DRAM provides data bits to an ECC word over two
beats [27]. The memory controller can route these bits to an ECC word
in different ways (called an ECC layout). In this figure, only Layout 3 is
capable of chipkill because all data bits from a DRAM are routed to the
same symbol in the ECC word.

corrected with one of the non-chipkill ECC layouts as well as
with SEC-DED ECC. We assume that a DIMM will be
replaced after the first uncorrected error, removing the faulty
DRAM from the system. Therefore, for each fault we record
only the first error that requires chipkill to correct.

Figure 12 plots the monthly rate of these errors for all
three non-chipkill ECC layouts, normalized to the average
monthly rate of actual uncorrected errors. Excluding the first
month, chipkill reduces the rate of uncorrected errors by 36x
relative to ECC Layout 1, by 40x relative to ECC Layout 2,
and by 42x relative to SEC-DED ECC. (We exclude the first
month because it includes faults that developed before the
start of the experiment.) This reduction in uncorrected error
rate is smaller than the benefit shown in laboratory studies of
older memory technologies [8], but is significantly larger
than the benefit inferred from looking solely at corrected
error rates [4] [16].

The primary finding from this data is that chipkill has a
substantial reliability benefit to a DRAM sub-system. This
finding has been confirmed by the experience of the Jaguar
system operators, since the system did not have chipkill for
the first half of 2009.

B. Uncorrected Errors

Because Jaguar’s memory system has chipkill capability,
any remaining uncorrected errors from memory are the result
of faults in multiple DRAM devices on the same rank, which
are unlikely to develop simultaneously. In fact, we find that
more than 83% of nodes with uncorrected errors first
experienced corrected errors from an existing fault.

Large multi-bit faults increase the likelihood of an
uncorrected error because these faults impact more ECC
words, and thus are more likely to overlap with a second
fault. Figure 13 plots the probability of an uncorrected error
on nodes with an existing fault, normalized to the probability
of an uncorrected error on a node with no faults. The
presence of a single-bit fault increases a node’s probability
of an uncorrected error by 17x compared to a node with no
faults. The presence of a multiple-bank or multiple-rank
fault, however, increases a node’s probability of uncorrected
error by 350x and 700x, respectively, approximately the
same increase experienced by nodes with two independent
DRAM faults. This implies that system operators should
prioritize replacement of DIMMs whose DRAMs are
experiencing multiple-bank and multiple-rank faults.

XI. CONCLUSIONS

This study analyzed 11 months of DRAM failure data
from the Jaguar high-performance computing cluster at Oak
Ridge National Lab. We performed a detailed study of
DRAM failure modes and fault types. We derived an upper
bound on the rate of transient faults in the DRAM array. We
examined multi-bit failure modes and identified several
unique fault patterns. We also analyzed the impact of
chipkill on the uncorrected error rate due to DRAM failures.

Prior work has shown that DRAM vendor and
technology can have a large effect on failure rates [22].
Thus, more work is needed to confirm these results on other
systems with different DRAM device types. Nonetheless,
we believe that our findings have several implications for
the architecture and design of future systems.

First, we found that multi-bit failures constituted almost
50% of all DRAM faults, and that there were a large variety
of multi-bit failure modes. This implies that ECC techniques
that store their data and check bits in the same DRAM
devices must pay careful attention to the placement of data
and check words in memory to achieve comparable
reliability to traditional “parallel” ECC [28]. This also
implies that memory failure rates will depend on internal
device organization in addition to device count and capacity.
Therefore, the performance of detection and correction
techniques that target specific failure modes will depend
heavily on the memory being studied [29].

We also found that permanent faults account for at least
70% of DRAM failures. This diminishes the effectiveness of
memory scrubbing as a means to reduce the uncorrected
error rate, since memory scrubbing is effective only against
transient faults and certain intermittent faults.

We found that 8% of DRAM faults were multiple-bank
and multiple-rank faults, and that these faults were most
likely to lead to a future uncorrected error. This implies that
OS-level memory page retirement algorithms will have only
a modest impact on the uncorrected error rate, since a node
would need to retire an impractical amount of its memory to
eliminate these faults. Our data show that a page retirement
algorithm that retires up to 6.25% of a node’s memory
(enough to counter single-bit, -row, -column, and -bank
faults) would reduce the uncorrected error rate by only 8%.

Finally, our data shows that chipkill reduced the
uncorrected error rate by 42x compared to SEC-DED ECC.
However, the Jaguar system still shows uncorrected errors
due to DRAM faults. Due to projected increases in DRAM
device counts and capacities, future systems will likely
require even stronger memory error protection techniques.

Overall, our data suggest that DRAM failures will pose
an increasing concern in the future due to the projected
increase in node DRAM capacity during the next decade.
With current memory protection techniques, we would need
several orders of magnitude improvement in DRAM failure
rates to maintain current node failure rates. This implies that
high-reliability systems will need significant advances in
memory reliability techniques to maintain comparable failure
rates to today’s systems.

Figure 13. The relative probability of an uncorrected error on nodes with an
existing fault. Existing multiple-bank and multiple-rank faults increase the
probability of a subsequent uncorrected error by 350x and 700x,
respectively, relative to a node with no faults.

XII. ACKNOWLEDGMENTS

We thank Steve Johnson, Dave Londo, and Hansi
Bohnstedt from Cray, Inc. for providing data collection and
configuration information on the Jaguar system, and Alan
Wood and Kevin Lepak for comments on early versions of
the manuscript.

XIII. REFERENCES

[1] James F. Ziegler and William A. Lanford, "The Effect of Sea
Level Cosmic Rays on Electronic Devices," in IEEE
International Solid-State Circuits Conference, 1980, pp. 70-
71.

[2] ITRS, "International Technology Roadmap for
Semiconductors," 2010.

[3] Bianca Schroeder and Garth A. Gibson, "A Large-Scale Study
of Failures in High-Performance Computing Systems," in
Proceedings of the International Conference on Dependable
Systems and Networks, June, 2006, pp. 249-258.

[4] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich
Weber, "DRAM Errors in the Wild: A Large-Scale Field
Study," in Proceedings of the 11th Internation Joint
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), Seattle, WA, June, 2009.

[5] Xin Li, Kai Shen, Michael C. Huang, and Lingkun Chu, "A
Memory Soft Error Measurement on Production Systems," in
Proceedings of the USENIX Annual Technical Conference,
Santa Clara, CA, 2007, pp. 275-280.

[6] Abdallah M. Saleh, Juan J. Serrano, and Janak H. Patel,
"Reliability of Scrubbing Recovery Techniques for Memory
Systems," IEEE Transactions on Reliability, vol. 39, no. 1,
pp. 114-122, April 1990.

[7] Shubhendu S. Mukherjee, Joel Emer, Tryggve Fossum, and
Steven K. Reinhardt, "Cache Scrubbing in Microprocessors:
Myth or Necessity?," in Proceedings of the 10th IEEE Pacific
Rim International Symposium on Dependable Computing
(PRDC), March, 2004, pp. 37-42.

[8] Timothy J. Dell, "A White Paper on the Benefits of Chipkill-
Correct ECC for PC Server Main Memory," IBM
Corporation, 1997.

[9] Algirdas Avizenis, Jean-Claude. Laprie, Brian Randell, and
Carl Landwehr, "Basic Concepts and Taxonomy of
Dependable and Secure Computing," IEEE Transactions on
Dependable and Secure Computing, vol. 1, no. 1, pp. 11-33,
Jan-March 2004.

[10] Cristian Constantinescu, "Impact of Deep Submicron
Technology on Dependenability of VLSI Circuits," in
International Conference on Dependable Systems and
Networks (DSN), Bethesda, MD, 2002, pp. 205-209.

[11] Robert Baumann, "Soft Errors in Advanced Computer
Systems," in IEEE Design and Test of Computers, May 2005,
pp. 258-266.

[12] Cristian Constantinescu, "Trends and Challenges in VLSI
Circuit Reliability," IEEE Micro, vol. 23, no. 4, pp. 14-19,
July-August 2003.

[13] Christopher Weaver, Joel Emer, Shubhendu Mukherjee, and
Steven Reinhardt, "Techniques to Reduce the Soft Error Rate
of a High-Performance Microprocessor," in International
Symposium on Computer Architecture (ISCA), Munchen,
2004.

[14] Shubhendu Mukherjee, Christopher Weaver, Joel Emer,
Steven Reinhardt, and Todd Austin, "A Systematic

Methodology to Compute the Architectural Vulnerability
Factors for a High-Performance Microprocessor," in
International Symposium on Microarchitecture (MICRO-36),
San Diego, 2003.

[15] Xin Li, Michael C. Huang, Kai Shen, and Lingkun Chu, "A
Realistic Evaluation of Memory Hardware Errors and
Software System Susceptibility," in USENIX, Boston, MA,
2010.

[16] Andy A. Hwang, Ioan Stefanovici, and Bianca Schroeder,
"Cosmic Rays Don't Strike Twice: Understanding the Nature
of DRAM Errors and the Implications for System Design," in
Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), London, 2012.

[17] Vilas Sridharan and Dean Liberty, "A Study of DRAM Errors
in the Field," in Silicon Errors in Logic - System Effects
(SELSE), Champaign, IL, 2012.

[18] Bianca Schroeder, Personal Communication.

[19] Timothy C. May and Murray H. Woods, "Alpha-Particle
Induced Soft Errors in Dynamic Memories," IEEE
Transactions on Electron Devices, vol. 26, no. 1, pp. 2-9,
January 1979.

[20] Alan Messer et al., "Susceptibility of Commodity Systems
and Software to Memory Soft Errors," IEEE Transactions on
Computers, vol. 53, no. 12, December 2004.

[21] Ludger Borucki, Guenter Schindlbeck, and Charles Slayman,
"Comparison of Accelerated DRAM Soft Error Rates
Measured at Component and System Level," in Reliability
Physics Symposium (IRPS), Phoenix, 2008, pp. 482-487.

[22] Heather Quinn, Paul Graham, and Tom Fairbanks, "SEEs
Induced by High-Energy Protons and Neutrons in SDRAM,"
in Proceedings of the IEEE Radiation Effects Data Workshop
(REDW), Las Vegas, NV, 2011, pp. 1-5.

[23] Aniruddha N. Udipi et al., "Rethinking DRAM Design and
Organization for Energy-Constrained Multi-Cores," in
Proceedings of the International Symposium on Computer
Architecture (ISCA), Saint-Malo, 2010.

[24] Richard W. Hamming, "Error Detecting and Error Correcting
Codes," Bell System Technology Journal, vol. 29, no. 2, pp.
147-160, 1950.

[25] AMD, Inc., "AMD64 Architecture Programmer's Manual
Revision 3.17," 2011.

[26] Tom Anderson and Brian Randell, Computing Systems
Reliability. Cambridge: Cambridge University Press, 1979.

[27] AMD, Inc. (2010, April) BIOS and Kernel Developer's Guide
(BKDG) For AMD Family 10h Processors. [Online].
http://support.amd.com/us/Processor_TechDocs/31116.pdf

[28] Doe Hyun Yoon and Mattan Erez, "Virtualized and Flexible
ECC for Main Memory," in Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
Pittsburgh, PA, 2010.

[29] Aniruddha N. Udipi, Naveen Muralimanohar, Rajeev
Balasubramonian, Al Davis, and Norman P. Jouppi, "LOT-
ECC: LOcalized and Tiered Reliability Mechanisms for
Commodity Memory Systems," in ISCA: International
Symposium on Computer Architecture, Portland, OR, 2012.

http://support.amd.com/us/Processor_TechDocs/31116.pdf

