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Abstract—Most modern computer systems use dynamic 

random access memory (DRAM) as a main memory store. 

Recent publications have confirmed that DRAM errors are a 

common source of failures in the field. Therefore, further 

attention to the faults experienced by DRAM sub-systems is 

warranted. In this paper, we present a study of 11 months of 

DRAM errors in a large high-performance computing cluster. 

Our goal is to understand the failure modes, rates, and fault 

types experienced by DRAM in production settings. 

We identify several unique DRAM failure modes, including 

single-bit, multi-bit, and multi-chip failures. We also provide a 

deterministic bound on the rate of transient faults in the 

DRAM array, by exploiting the presence of a hardware 

scrubber on our nodes. 

We draw several conclusions from our study. First, DRAM 

failures are dominated by permanent, rather than transient, 

faults, although not to the extent found by previous 

publications. Second, DRAMs are susceptible to large multi-bit 

failures, such as failures that affect an entire DRAM row or 

column, indicating faults in shared internal circuitry. Third, 

we identify a DRAM failure mode that disrupts access to other 

DRAM devices that share the same board-level circuitry. 

Finally, we find that chipkill error-correcting codes (ECC) are 

extremely effective, reducing the node failure rate from 

uncorrected DRAM errors by 42x compared to single-error 

correct/double-error detect (SEC-DED) ECC. 

 
Keywords - soft error; hard error; single-event upset; DRAM; 
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I. INTRODUCTION 

Modern computer systems have long used dynamic 
random access memory (DRAM) as a main memory store, 
and architects have focused on the problems posed by 
DRAM failures for decades [1]. Furthermore, the amount of 
DRAM in computer systems continues to increase every 
year, and is predicted to increase 50x compared to 2009 
levels by 2024 [2]. This implies that DRAM failures will be 
a growing concern for system architects and designers. 
Therefore, it is somewhat surprising that, until recently [3] 
[4] [5], relatively few studies existed of DRAM failures in 
the field. This relative lack of information about DRAM 
failures leaves architects to guess at the type, kind, and rate 
of DRAM failures to expect in modern systems. 

A poor understanding of DRAM fault mechanisms can 
lead to the design of features that are poorly suited to the 
faults that actually occur. For example, memory scrubbing is 
a memory reliability technique that is often applied in 
conjunction with error-correcting codes (ECCs) [6]. A 

scrubber reads a memory location, fixes any errors that are 
correctable by the ECC, and writes the correct data back to 
the same location. This technique can correct a transient 
(non-permanent) fault and is thus most useful in a system 
that experiences many transient faults [7]. However, a 
scrubber cannot correct a permanent fault, and thus will not 
benefit memory that experiences a high rate of such faults. 

In this paper, we present a study of DRAM failures from 
the “Jaguar” high-performance computing cluster at Oak 
Ridge National Laboratories (ORNL). Jaguar is a cluster of 
18,688 two-socket nodes. During our experiment, each 
socket contained a 6-core AMD Opteron™ processor and 
four 2GB DDR-2 DIMMs. The ECC on Jaguar provides 
chipkill capability, which allows the memory sub-system to 
tolerate the failure of any single DRAM device [8]. Each 
node ran a version of the Linux operating system configured 
to log error events on the console. 

Our experiment duration was approximately 11 months, 
from November 2009 to October 2010, comprising 
approximately fifty million DIMM-days of data. The Jaguar 
system was brought online in January 2009, so our 
experiment covered the second year of production lifetime 
for the majority of the DIMMs. The Jaguar system operators 
replaced DIMMs after the first uncorrected error from that 
DIMM. During our experiment, the system was typically 90-
95% utilized except for planned maintenance windows. 

There are several contributions of this research: 

 A study of the impact of DRAM faults, failures, and 
errors in a production environment. A key finding of 
this study is that DRAM failure rate is a better 
predictor of DIMM health than the error rate. 

 A method to provide a deterministic bound on the 
DRAM transient fault rate by using the memory 
scrubber on each node. We find that DRAMs 
experience both transient and permanent faults in the 
field, but that permanent faults constitute at least 
70% of all DRAM failures. 

 A detailed study of multi-bit failure modes, 
including row, column, bank, and multiple-bank 
faults. We find that multi-bit faults such as row, 
column and bank faults constitute almost 50% of the 
DRAM failures in Jaguar’s memory system. We find 
that row faults tend to affect an entire row, while 
column faults tend to cluster around a few rows. We 
also identify a multiple-rank failure mode, where a 
fault in one DRAM affects multiple DRAMs sharing 
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the same board-level circuitry. These faults 
constitute almost 5% of the faults in our data set. 

 An analysis of the effect of chipkill on the 
uncorrected error rate of a node. We find that 
chipkill reduces the node failure rate from 
uncorrected DRAM errors by 42x relative to SEC-
DED ECC. We also find that a DIMM with a 
multiple-bank or multiple-rank fault has a 
significantly larger risk of a future uncorrected error 
than a DIMM with a single-bit or no fault.  

 
The rest of this paper is organized as follows. Section II 

defines the terminology we use in this paper. Section III 
discusses related studies and describes the differences in our 
study and methodology. Section IV discusses the 
architecture and configuration of the Jaguar system and our 
data collection methodology. Section V presents aggregate 
system-level statistics, and Sections VI-X present our 
analysis of DRAM fault types and failure modes. Section XI 
discusses implications of our findings and presents our 
conclusions. 

II. TERMINOLOGY 

In this paper, we distinguish between a fault and an error 
using the following taxonomy [9]: 

 

 A fault refers to an underlying cause of a failure, such 
as a particle-induced bit flip or a stuck-at bit. 

 A failure is a deviation of a DRAM from its specified 
operation, meaning that it is not possible to read from 
or write to a location in that DRAM, or that a location 
in the DRAM returns data that differs from the data 
that was last written to the location. Note that ECC will 
often prevent a DRAM failure from propagating to 
higher architectural levels, but if the ECC cannot 
correct the failure, a node or system failure may result. 
A single fault normally causes a single DRAM failure, 
which can be incorrect or inaccessible data in one or 
more memory locations. 

 An error is a symptom of a failure. A DRAM failure 
will return an error when it is read if the node provides 
higher-level detection such as parity or ECC. Note that 
each DRAM failure can cause many errors if the failed 
locations are accessed multiple times. 

 
DRAM failures can be caused by many different types of 

faults [10]. These faults can be classified as: 
 

 Transient faults, which cause incorrect data to be 
read from a memory location until the location is 
overwritten with correct data. These faults occur 
randomly and are not indicative of device damage 
[11]. Particle-induced upsets (“soft errors”), which 
have been extensively studied in the literature [1] 
[11], are one type of transient fault. 

 Hard faults, which cause a memory location to 
consistently return an incorrect value (e.g., a stuck-at-
0 fault). Hard faults are permanent and can be 
repaired only by replacing the faulty device [12]. 

 Intermittent faults, which cause a memory location 
to sometimes return incorrect values. Unlike hard 
faults, intermittent faults occur only under specific 
conditions (e.g., elevated temperature) [10]. Unlike 
transient faults, however, an intermittent fault is 
indicative of device damage or malfunction. 

 
Distinguishing a hard fault from an intermittent fault in a 

running system requires knowing the exact memory access 
pattern to determine whether a memory location returns the 
wrong data on every access. In practice, this is impossible in 
a large-scale field study such as ours. Therefore, we group 
intermittent and hard faults together in a category of 
permanent faults. 

Permanent faults have two distinguishing characteristics. 
First, a memory location that experiences an error due to a 
permanent fault has an increased probability of subsequent 
errors. Second, a permanent fault requires device 
replacement to repair. By contrast, a device that experiences 
a transient fault can be repaired by overwriting the location 
with correct data, and is at no greater risk of subsequent 
errors once the fault has been repaired.  

In this paper, we present data on DRAM failures and 
DRAM failure rates. As noted, DRAM failures can be due to 
either permanent or transient faults. Unless otherwise 
specified, failure counts and rates in this paper include 
failures due to both permanent and transient faults. 

A memory sub-system typically provides reliability 
features such as ECC or parity to detect and correct errors. 
Therefore, we classify DRAM errors as corrected, 
uncorrected, or undetected [13]: 

 

 A corrected error is detected and corrected by the 
hardware and does not impact the correct operation of 
software. A corrected error may result in temporary or 
permanent performance degradation on the node. 

 An uncorrected error is detected by the hardware 
but cannot be corrected. An uncorrected error can 
result in the termination of a process or a crash of the 
entire node, depending on the reliability features of 
the node. 

 An undetected error is not detected by hardware. An 
undetected error may result in silent data corruption, 
or may be benign if the data in error does not affect 
program output [14]. 

III. RELATED WORK 

During the past few years, several studies have been 
published studying DRAM failures in the field. In 2006, 
Schroeder and Gibson published a study on failure data from 
high-performance computer systems at Los Alamos National 
Labs [3]. In 2007, Li et al. published a study of memory 
errors on three different data sets, including a server farm of 
an Internet service [5]. In 2009, Schroeder et al. published a 
large-scale field study using Google’s server fleet [4]. In 
2010, Li et al. published an expanded study of memory 
errors on an Internet server farm and other sources [15]. In 
2012, Hwang et al. published an expanded study on Google’s 
server fleet as well as two IBM Blue Gene clusters [16], and 



Sridharan and Liberty presented a summary of DRAM errors 
[17]. 

Due to the sheer size of our data set, our study has 
significantly more statistical power than many of these 
previous studies [3] [5] [15]. As a result, the data in our 
study is more likely to be representative of DRAM failures 
in general than smaller-scale studies. Furthermore, the scale 
of our study allows us to evaluate techniques such as chipkill 
that operate on relatively rare events such as DRAM device 
failures. Our study also has significantly more detail and 
analysis on failure patterns and modes than Sridharan [17]. 

Two of the cited studies have similar or larger scale than 
ours. First, Schroeder et al. analyzed error rates with respect 
to several factors such as DIMM capacity and organization, 
system utilization, temperature, and age [4]. Several of the 
study’s findings (e.g., failure rates, incidence of transient 
faults) differ substantially from our findings. This is due to a 
methodological difference. Schroeder et al. calculated rates 
using the number of observed errors over time [18]. We 
calculate rates using the number of observed DRAM failures 
over time. 

This has a significant impact on our results and makes it 
difficult to compare the two studies. For example, a failure 
due to a permanent fault will persist until the failing DRAM 
is replaced, potentially days or weeks after the first detected 
error. During this time, every access to the failing location 
can result in an error. In contrast, a transient fault persists 
only until the memory element is written, which may be just 
a few DRAM cycles after the first error [11]. As a result, a 
typical transient fault will generate many fewer errors than a 
typical permanent fault. 

More recently, Hwang et al. analyzed error logs for 
patterns of failing addresses, the impact of chipkill on the 
rate of corrected errors, and the effectiveness of page 
retirement techniques [16]. However, the authors are unable 
to conclusively differentiate errors caused by transient faults 
from those caused by permanent faults. For example, the 
authors report a significant incidence of repeat errors from 
the same address, but it is impossible to determine whether 
this is due to a permanent fault or to a transient fault that was 
read multiple times before being overwritten. The authors 
also perform their analyses on error rates, making it difficult 
to differentiate patterns due to failure modes from artifacts of 
system activity. The study also does not examine the impact 
of chipkill on a node’s uncorrected error rate. 

There have also been many laboratory studies of DRAM 
failures dating back several decades [19] [20] [21] [22]. Most 
of these studies focus solely on particle-induced transient 
faults. Of particular interest are the studies by Borucki et al. 
and Quinn et al., which identified large multi-bit failures as a 
possible consequence of particle strikes [21] [22]. However, 
while all these studies examine failures caused by neutron or 
alpha particle strikes, they do not necessarily represent the 
total range of failures experienced by DRAM in the field. 

IV. SYSTEM CONFIGURATION AND DATA COLLECTION 

The Jaguar system at Oak Ridge National Laboratory is a 
cluster of 18,688 two-socket nodes. During our experiment, 
each two-socket node contained two 6-core 2.6GHz AMD 
Opteron™ processors and four memory channels. A memory 

channel consists of 72 DQ signals, 64 for data bits and eight 
for check bits. Each memory channel is populated with two 
2GB DDR-2 DIMMs for a total of 4GB of DRAM per 
memory channel, or 16GB per node. Each DIMM consists of 
18 DRAM devices. Therefore, the Jaguar system has 
approximately 2.69 million DRAM devices in total. 

A. DRAM Configuration 

Figure 1 shows a simplified logical view of a single 
memory channel. Each DIMM contains one rank of 18 
DRAM devices, each with four data (DQ) signals (known as 
an x4 DRAM device). Sixteen of the DRAM devices are 
used to store data bits and two are used to store check (ECC) 
bits. A memory request accesses all devices on a rank in 
parallel by activating a chip-select signal dedicated to that 
rank.  

A lane is a group of DRAM devices that share data (DQ) 
signals. In Jaguar, each memory channel has 18 lanes, each 
with two DRAM devices. DRAMs in the same lane also 
share a strobe (DQS) signal, which is used as a source-
synchronous clock signal for the data signals. 

Each DRAM device contains eight internal banks that 
can be accessed in parallel. Logically, each bank is organized 
into rows and columns. Row and column addresses are 
delivered on a shared command/address bus. Each 
row/column address pair uniquely identifies a 4-bit word in 
the DRAM device. Internally, a DRAM bank is constructed 
as multiple sub-arrays that are accessed in parallel and that 
each contribute exactly one bit to every 4-bit word [23]. 

B. Error Detection and Correction 

DRAM sub-systems are typically protected by an error 
detection and correction code, referred to as an ECC. A 
conventional ECC stores several additional check bits along 
with each data word [24]. These check bits are encoded to 
allow detection of some errors in both the data and check 
bits. For certain errors, ECCs can also identify the specific 
data bits in error, allowing the hardware to correct the data. 

There are many variants of ECC in use. Single Error 
Correct-Double Error Detect (SEC-DED) ECC allows 
correction of a single-bit error and detection of a double-bit 

 
 

Figure 1. A simplified logical view of a single channel of the DRAM 
memory subsystem on each node in the Jaguar system. 



error. SEC-DED was frequently used on DRAM sub-systems 
for many years, and is still in common use on CPU cache 
memories [7] [8]. 

The ECC used on the Jaguar system, by contrast, is a 
single-symbol correct (SSC) ECC. A symbol is a group of 
eight adjacent data bits (bits 0-7, 8-15, etc.). This code can 
correct any number of bit errors within one symbol. The 
memory system is laid out such that the bits from a single 
DRAM device contribute to only one symbol in the ECC 
word. This allows the ECC to correct any number of failing 
bits from a single DRAM device, a capability referred to as 
chipkill [8]. 

ECC detection and correction is performed on every read 
access to DRAM. In addition, each node in the Jaguar 
system also has a hardware memory scrubber [6]. The 
hardware scrubber periodically reads every location in 
memory. Its goal is to correct any latent (unaccessed) 
correctable errors before a second failure creates an 
uncorrectable error in the ECC word. The time that the 
scrubber takes to cycle through every location in a node’s 
DRAM memory is a scrub interval. A scrub interval on 
nodes in the Jaguar system is on the order of a few hours. 

C. Data Collection Methodology 

The data collection infrastructure on Jaguar contains both 
hardware and software components. These components work 
together to record detected errors on each node, including 
both corrected and uncorrected errors. Note that this 
infrastructure does not attempt to record any undetected 
errors. 

The hardware memory controller in each node logs 
corrected error events in registers provided by the x86 
machine-check architecture (MCA) [25]. Each node’s 
operating system is configured to poll the MCA registers 
once every few seconds and record any events it finds to the 
node’s console log. These console logs are then collected by 
the administrators and saved for later analysis. The console 
logs contain a variety of information, including the physical 

address associated with the error, the time the error was 
recorded, the type of error (corrected or uncorrected), and the 
ECC syndrome associated with the error. 

Hardware can log many corrected errors during a single 
software polling interval. Because there is only one set of 
MCA registers per core, hardware cannot guarantee that all 
errors are communicated to software and recorded in the 
console logs. To track this case, the x86 MCA registers 
provide an overflow bit to indicate that at least one error was 
not logged [25]. However, this bit gives no information on 
how many errors were missed. Therefore, a node’s console 
log can be viewed as a statistical sample of all corrected 
errors on the node. 

The hardware also logs uncorrected error events to the 
MCA registers. These errors may result in an immediate 
reset of the node and thus cannot reliably be captured by the 
software polling mechanism. The MCA registers preserve 
their values across a warm reset, however, and uncorrected 
errors are logged after the node resets. 

D. Limitations 

Information not tracked by this research limits the 
analyses that we can perform. We do not track DIMM 
vendor information and thus cannot distinguish differences 
in vendor failure rates. We also do not track temperature or 
other environmental conditions, which have been shown to 
have an effect on certain DRAM failures [10]. Finally, 
because all DIMMs in the system are of the same capacity 
and organization, we cannot analyze differences due to these 
factors. 

V. AGGREGATE STATISTICS 

In this section, we present aggregate data on failures and 
errors across the Jaguar system. The failure rates observed in 
our data set indicate that two DRAM devices (0.00008% of 
all DRAM devices in Jaguar) will experience more than one 
fault in a single year. By contrast, more than 2,000 DRAM 
devices (0.09% of all DRAMs) experience a single fault, a 
difference of approximately three orders of magnitude. 
Therefore, we make the simplifying assumption that each 
DRAM in our system experiences exactly one fault over our 
experiment duration. 

A. Node Behavior Over Time 

It is first instructive to look at the behaviors of individual 
nodes in our data set. Figure 2 shows a plot of corrected 
errors over time for several representative nodes. Each node 
had exactly one failing DRAM, and the errors in each node 
were confined to a single memory location.  

Node 1 had only one error reported during the entire 11-
month period. Node 2 had between zero and fifty errors per 
month. As discussed, we can say with high probability that 
these errors are likely due to a single fault. In contrast, nodes 
3 and 4 each recorded hundreds or thousands of errors per 
month. Due to the sampling behavior noted in Section IV.C, 
each of these nodes may have actually experienced millions 
of corrected errors per month. Node 3 did not experience any 
errors until a few months into the measurement window, 
indicating that this node developed a fault during the 
measurement interval. 

Figure 2. Corrected errors per month for several representative nodes. The 
number of errors per node varies substantially, but each node experienced 
exactly one DRAM failure. Node 1 experienced a transient fault, while 
nodes 2-4 each experienced a permanent fault. 
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B. Total Errors and Failures 

In this section, we examine the total number of logged 
errors and the total number of failures per month in our data 
set in order to determine the overall health of the DRAM 
population in the system. 

Figure 3 shows the total number of corrected errors 
logged per month in our data set. The average number of 
errors is just under 250,000 per month, but the number of 
errors varies by more than 90%, from a low of 180,559 in the 
first month to a high of 344,365 in the fifth month of the 
study. This translates to an average of 6.6 errors per node per 
month across the entire system. 

Figure 4 and Figure 5 show the total number of failures 
in our data set. Figure 4 shows the total number of activated 
DRAM failures per month in our data set. We say a DRAM 
failure is activated in a given month if the DRAM produced 
at least one error in that month. For example, a DRAM 
failure that caused errors in months 3, 4, 5, and 7, would be 
counted exactly once in each of those months. On average, 
there are 927.5 activated DRAM failures per month, and the 
number of activated failures varies by 15%, from a low of 
866 in month three to a high of 996 in month ten. 

Figure 5 shows the number of new failures per month in 
our data set. Each DRAM failure is counted as new in the 
first month that it produced any errors. The spike in months 
one and two are due to failures accumulated in the DRAMs 
before the start of our experiment. Note that the rate of new 
failures in months 3-11 appears to decline slightly over time. 
The majority of the DIMMs in Jaguar were installed in 
January 2009, so our experiment is in the second year of the 
DRAM devices’ lifetimes. Therefore we hypothesize that the 
DRAMs are still in the “early life” phase of the classic 
hardware reliability bathtub curve and thus are expected to 
show a declining failure rate [26]. 

One major observation is that the number of failures per 
month shows substantially lower variability than the number 
of errors per month. This can be attributed in part to changes 
over time in access patterns, utilization, and workloads, 
which all affect the frequency of error detection. The number 
of errors may also depend on external factors such as 
temperature that cause intermittent faults to manifest more 
frequently [10]. For example, the number of errors increased 
by 53.8% between months 4 and 5, but the number of 
activated failures increased by only 10.6%. Our conclusion 
from this data is that the failure rate is a better assessment of 
the health of a DIMM population than the error rate, because 
the error rate can vary widely due to factors unrelated to 
DIMM health. 

C. DRAM Failure Rates 

Table 1 shows aggregate failure rates for DRAM in the 
system, including the failure rate per megabit and fraction of 
DRAMs and DIMMs experiencing a failure. The failure rate 
is the average rate of new failures per month, excluding 
months one and two to eliminate the spike at the start of the 
experiment. 

The table shows that 1.6% of DIMMs, or 0.09% of 
DRAM devices, experienced a failure during the experiment. 
The calculated failure rate of 0.066 FIT/Mbit translates to 
one failure approximately every six hours across the Jaguar 
system. Obviously, DRAM failures are not rare events in 
large systems such as Jaguar. Note that this failure rate is not 
directly comparable to the failure rates calculated by 
Schroeder et al. due to the methodology differences 
discussed in Section III, although the number of failures per 
DIMM is in line with their corrected-error incidence per 
DIMM for DDR-2 DRAM [4]. Our calculated failure rate is 
also in line with other published studies [5]. 

VI. TRANSIENT VERSUS PERMANENT FAULTS 

To estimate the rate of different fault types in the DRAM 
array, we must ascertain the type of fault based on the pattern 
of errors logged on each node. Specifically, we would like to 
differentiate transient faults from permanent faults, which is 
difficult because we do not know workload memory access 
patterns. Thus, guarantees on fault classes are difficult to 
achieve without laboratory testing of each faulty DRAM. 

     

 

Figure 3. Corrected DRAM errors per month. 

 

Figure 4. Activated DRAM failures per month. 

 

Figure 5. New DRAM failures per month. 

 
% Failing DRAM devices 0.09% 

% of DIMMs with a failing DRAM 1.6% 

Failure rate (FIT/Mbit) 0.066 

Failure rate (FIT/DRAM device) 66.1 

Table 1. Failure rates and fraction of failing devices in the Jaguar 
system. Failure rate is given in FIT, or failures per billion device-hours 
of operation. 
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However, Jaguar’s memory scrubber guarantees that 
every DRAM location is written at least once per scrub 
interval. This enables us to place an upper bound on the rate 
of transient faults in the DRAM array. A DRAM that 
produces errors in only one scrub interval may be 
experiencing a transient fault. A DRAM that experiences 
errors in multiple scrub intervals, by contrast, is definitely 
not experiencing a single transient fault. The DRAM may be 
experiencing a single permanent fault, or it may be 
experiencing multiple faults. Given the low probability of 
multiple faults in a single DRAM device, we assume that all 
such cases are a single permanent fault.  

Our process for making this determination is shown in 
Figure 6. For each DRAM, we group time into epochs. An 
epoch begins with an error and lasts for one full scrub 
interval. If a DRAM reports errors only within one epoch, 
we classify the fault as transient. If a DRAM reports errors in 
multiple epochs, we classify the fault as permanent. 

Figure 7 plots all faulty DRAMs as a function of the 
number of epochs in which that DRAM produced at least 
one error. We find that 28.8% of all faulty DRAMs had 
errors in just one epoch. We classify these as potential 
instances of transient faults. In contrast, 10.2% of faulty 
DRAMs had errors in two epochs and 61.0% had errors in 
three or more epochs. 

This is strong evidence that DRAM failures are 
dominated by permanent rather than transient faults. Further, 
our analysis is an upper bound on the rate of transient faults. 
If a node writes to a memory location within an epoch, it 
would overwrite any existing transient faults. A fault that 
produced errors after a write operation, even if they were 
confined to a single epoch, should be classified as a 
permanent fault. Because we do not know each node’s 
memory access patterns, however, our analysis would 
classify this fault as transient. Since an epoch is several 
hours long, it is possible that many of the faults we identify 
as transient will fit this pattern.  

VII. NODES WITH MULTIPLE FAILING DRAMS 

Some nodes in our system log errors from multiple 
DRAM devices. Based on our observed failure rates, we 
would expect several dozen nodes to experience faults in 
multiple DRAMs during the experiment. In general, we treat 
these cases as multiple independent faults, but we would like 
to determine if there is any relationship between DRAM 
failures on the same node. Therefore, we examine nodes that 

logged errors in multiple DRAMs to determine whether 
these errors were coincident in time.  

Table 2 shows nodes that logged errors from 1, 2, and 3 
DRAMs, and reported errors from 1, 2, or 3 epochs, 
expressed as a percentage of all nodes with errors. We find 
that 26.3% of nodes with errors log errors from one DRAM 
device in just one epoch. These nodes experienced a single 
transient fault. The table also shows that 1.0% of nodes log 
errors from two DRAM devices in two epochs, one from 
each DRAM device. We conclude that two DRAMs 
experienced a transient fault on these nodes.  

Table 2 shows that 8.8% and 5.2% of nodes log errors 
from one DRAM device in two and three epochs, 
respectively. These nodes are much more common than 
nodes that experience a single transient fault in two DRAMs.  
This provides further justification for treating these faults as 
single permanent faults, since we would expect the opposite 
to be true if these were multiple transient faults. Similarly, 
0.5% of nodes logged errors from two DRAM devices in 
three epochs. We conclude that one DRAM on these nodes 
experienced a transient fault, while another DRAM 
experienced a permanent fault. 

Table 2 highlights an interesting phenomenon. 0.5% of 
nodes logged errors from two DRAM devices but in just one 
epoch. There are two possible explanations for this. First, 
this node may have experienced simultaneous independent 
transient faults, but this type of multiple-fault event should 
be very rare. Alternatively, DRAMs may exhibit a failure 
mode that corrupts shared board-level circuitry, resulting in 
errors from other DRAMs sharing the same circuitry. Section 
VIII presents further evidence for this type of failure mode. 

# of DRAMs 
with Errors 

Epochs with Errors 

1 2 3 

1 26.3% 8.8% 5.2% 

2  0.5% 1.0% 0.5% 

3 0.1% 0.05% 0.05% 

Table 2. Nodes that logged errors from 1-3 DRAMs and reported errors 
in 1-3 epochs, expressed as a percentage of all nodes with errors. 1.0% 
of nodes logged errors from two DRAMs and reported errors in two 
epochs, indicating two DRAMs on these nodes experienced transient 
faults. 0.5% of nodes logged errors in two DRAM devices but reported 
errors in just one epoch, indicating potential multiple-rank faults. 

 

 

Figure 7. Faulty DRAMs as a function of the number of epochs with at 
least one error. 28.8% of faulty DRAMs had errors in just one epoch. 
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permanent fault. A DRAM that produces errors in one epoch (bottom) 
may have a transient fault. 



VIII. DRAM FAILURE MODES 

In this section, we examine the error data for patterns to 
determine the failure modes experienced by DRAM in the 
Jaguar system. Our goal is to identify and understand the 
different ways that DRAM can fail.  

A. Failure Mode Patterns  

We first analyze the logged physical addresses and ECC 
syndromes to associate each error to a specific location in a 
DRAM. In this way, we create a “map” of failing locations 
in each DRAM, which allows us to infer a failure mode for 
each DRAM. 

We identify several failure modes across all DRAMs: 
 

 Single-bit: All errors map to a single bit. 

 Single-word: All errors map to a single word. 

 Single-column: All errors map to a single 
column. 

 Single-row: All errors map to a single row. 

 Single-bank: All errors map to a single bank. 

 Multiple-bank: Errors map to multiple banks. 

 Multiple-rank: Errors map to multiple DRAMs 
in the same lane. 

 
Table 3 shows the percentage of DRAMs that exhibited 

each failure mode. This table does not differentiate 
permanent faults from transient faults. 

There are several interesting results in Table 3. First, 
49.7% of all DRAM faults are single-bit faults. A further 

39.6% of all DRAM faults are contained to a single row, 
column, or bank of a DRAM, demonstrating that large multi-
bit faults are a common failure mode in modern DRAMs. 
Rows, columns, and banks share circuitry in the DRAM, 
such as address decoders, control signals, and sense 
amplifiers. Therefore, it seems likely that these failures are 
due to faults in the shared circuitry rather than to faults in the 
DRAM array elements themselves. Table 3 also shows that 
2.5% of nodes have errors that affect multiple banks in a 
single DRAM. We consider these single faults rather than 
multiple independent faults. 

Finally, Table 3 shows a high incidence of multiple-rank 
faults. This indicates that a node experienced errors from 
multiple DRAMs in the same physical lane. We attribute 
these errors to a fault in a single DRAM that affects shared 
external circuitry such as a data (DQ) or strobe (DQS) pin, 
rather than to multiple independent faults. There are two 
reasons for this. First, the incidence of nodes with errors 
from DRAMs in the same lane is much higher than the 
incidence of nodes with errors in DRAMs from different 
lanes. We would expect the opposite if these errors were due 
to multiple independent faults. Second, 44% of nodes with 
errors in the same lane begin experiencing errors from both 
DRAMs in the same epoch, and many others begin 
experiencing errors within a few dozen epochs. This is 
highly improbable for independent faults. 

There are two major findings from this data. First, large 
multi-bit (row, column, bank, and multiple-bank) faults 
appear to contribute more significantly to the overall failure 

 

(a) Single-Bit Faults 

 

(b) Single-Column Faults 

 

(c) Single-Row Faults 

 

(d) Single-Bank Faults 

Figure 8. Many single-column, single-row, and single-bank faults persist across epochs, indicating that these are permanent faults. A significant fraction of 
single-bit and single-column faults are only present in one epoch, indicating that there may also be a transient fault type for these failure modes. 
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Failure Mode % Faulty DRAMs 

Single-bit 49.7% 

Single-word 2.5% 

Single-column 10.6% 

Single-row 12.7% 

Single-bank 16.3% 

Multiple-bank 2.5% 

Multiple-rank 5.5% 

Table 3. The fraction of failing DRAMs experiencing a given failure mode 
(for example, all errors mapped to a single DRAM bit on 49.7% of failing 
DRAMs). 

Failure Mode 
Fault Type Failure Rate 

Transient Permanent Transient Permanent 

Single-bit 43.3% 56.7% 14.2 18.6 

Single-word 81.4% 18.6% 1.4 0.3 

Single-column 19.7% 80.3% 1.4 5.6 

Single-row 2.8% 97.2% 0.2 8.2 

Single-bank 7.0% 93.0% 0.8 10.0 

Multiple-bank 17.5% 82.5% 0.3 1.4 

Multiple-rank 24.3% 75.7% 0.9 2.8 

Table 4. The percentage of transient and permanent faults for each failure 
mode and the corresponding failure rate in FIT/device. 

 



rate than has been reported by other studies. Second, we find 
a significant number of multiple-rank faults that affect 
communication on external (board-level) wires, disrupting 
access to multiple DRAMs simultaneously. As far as we 
know, this failure mode has not been previously observed in 
the field. Multiple-rank faults are especially troubling 
because they look like the simultaneous failure of multiple 
DRAM devices, making it difficult to identify the actual 
failing component. 

B. Putting It All Together 

Figure 8 shows the number of epochs with errors for 
DRAMs with four different fault types. A plurality of nodes 
with single-bit and single-column faults have errors in one 
epoch. This may indicate two fault types for these failure 
modes: a permanent fault and a transient fault. By contrast, 
the number of single-row and single-bank faults with errors 
in one epoch is small. This suggests that all single-row and 
single-bank faults may be permanent, but that some of them 
occurred only once during the experiment. 

Table 4 shows the percentage of each failure mode 
classified as transient and permanent faults and the 
corresponding failure rate for each failure mode. This again 
confirms that single-row and single-bank faults tend to be 
permanent, while all other failure modes show a high 
number of potential transient faults. 

IX. A CLOSER LOOK AT MULTI-BIT FAULTS 

The large number of multi-bit failure modes warrant 
closer examination. In this section, we examine these faults 
in more detail, to determine how many sub-arrays are 

affected by each failure mode and identify the areas in the 
DRAM device corrupted by each failure mode. 

A. Sub-arrays Affected 

Internally, a DRAM bank is divided into multiple sub-
arrays. Each sub-array provides one bit of a four bit DRAM 
access. Therefore, we can determine the number of sub-
arrays affected by a failure by examining the number of DQ 
pins that exhibit errors. Table 5 shows the number of unique 
DQ pins in error for each of the multi-bit failure modes in 
Table 3. The table shows that 85.8% of single-column faults 
were confined to a single DQ pin (i.e., one sub-array), while 
10.0% of single-column faults affected all four DQ pins (i.e., 
all four sub-arrays). This seems to indicate the presence of 
two distinct single-column failure modes: one confined to a 
single DRAM sub-array and one that affects all four sub-
arrays. DRAMs that have two or three DQ pins in error may 

 
(a) Single-Column Fault 

 
(b) Single-Row Fault 

 
(c) “Spread” Single-Bank Fault 

 
(d) “Row-cluster” Single-Bank Fault 

Figure 10. A “map” of failing locations for a single-column fault, a single-row fault, and two single-bank faults. Each graph plots failing locations for one 
fault. Single-column faults tend to form clusters in the row space, while single-row faults tend to be spread across the entire column space. Single-bank faults 
can be spread out (as in Figure 10c) or tightly clustered in the row space (as in Figure 10d). 

 

    

Figure 9. CDFs of the fraction of faulty columns or rows that experience errors for single-row, single-column, and single-bank faults. All single-column faults 
affect fewer than 6% of rows in that column, while some single-row faults affect up to 30% of the columns in that row. 

Failure Mode Failing DQs 

1 2 3 4 

Single-column 85.8% 3.3% 0.8% 10.0% 

Single-row 31.1% 66.8% 1.4% 0.7% 

Single-bank 55.5% 23.0% 3.8% 17.8% 

Multiple-bank 17.5% 33.3% 3.5% 45.6% 

Multiple-rank 7.5% 7.1% 1.8% 83.6% 

Table 5. The number of failing DQ pins as a fraction of DRAMs for 
large multi-bit failure modes. For example, 85.8% of DRAMs with a 
single-column failure had errors on one DQ pin. Errors on multiple DQ 
pins are indicative of failures in multiple DRAM sub-arrays. 



eventually show errors on all four DQ pins, or else this may 
indicate the presence of additional failure modes. 

Most single-row failures, by contrast, had errors on one 
or two DQ pins. Again, this indicates the presence of 
multiple failure modes: one that corrupts a row in one sub-
array and one that corrupts the same row in multiple sub-
arrays. Similarly, single-bank and multiple-bank faults often 
affect multiple DQ pins, indicating that these failure modes 
often corrupt data in multiple sub-arrays. 

Finally, another notable aspect of Table 5 is that 83.6% 
of multiple-rank failures affect four DQ pins. This may 
indicate that the most common multiple-rank failure mode is 
due to a strobe (DQS) pin fault rather than a DQ pin fault. 

B. Multi-bit Fault Patterns 

Another interesting question is whether a multi-bit fault 
affects an entire row, column, or bank. Figure 9 shows that 
single-column faults show errors on only up to 5-6% of the 
total rows in that column. By contrast, some single-row 
faults show errors on more than 25% of the columns in the 
row. The same is true of single-bank faults, which affect a 
small fraction of the total columns or rows in the bank. 

Figure 10 plots a “map” of errors for representative 
single-column, single-row, and single-bank faults from our 
data set. Each sub-graph in Figure 10 plots an error map for a 
single fault. Figure 10(b) shows that single-row faults tend to 
be spread across the entire column space, despite showing 
errors on only a subset of columns (3.2% of columns for the 
DRAM in Figure 10(b)). This is true for most single-row 
faults in our data set, indicating that these faults affect all 
columns in the row, but errors occur only in a subset of 
columns due to a combination of memory access patterns 
and the potential intermittent nature of the faults. 

By contrast, Figure 10(a) shows that single-column faults 
tend to manifest in discrete clusters in the row space. This 
pattern is representative of all single-column faults in our 
data set, indicating that this is a true failure mode, rather than 
an artifact of memory access patterns. 

DRAMs with single-bank faults appear to show two 
unique error patterns. Figure 10(c) shows errors scattered 
randomly around the row and column space, while Figure 
10(d) shows errors spread across the column space but 
confined to a small cluster of rows. These are representative 
patterns from our data set; it is unclear whether these are 
distinct failure modes or an artifact of access patterns. 

DRAMs with multiple-bank faults tend to show similar 
error patterns to single-bank faults, but spread across 
multiple banks. As shown in Table 6, 46.2% of multiple-
bank faults affect two banks of a DRAM device, while 
36.5% affect all eight banks. This may indicate the presence 
of several failure modes. Table 6 also shows that multiple-
rank faults are most likely to affect all eight banks, indicating 

that these faults are likely in the I/O logic of the DRAM 
device rather than in the array logic. 

Overall, a major finding of this data is that DRAM failure 
modes are extremely varied and depend heavily on the 
internal DRAM organization. Since this organization can 
differ substantially amongst devices and vendors, DRAM 
failure modes are likely to vary significantly as well. 

X. UNCORRECTED ERRORS AND CHIPKILL 

Uncorrected errors from DRAM can be a significant 
source of system downtime [8]. As a result, techniques such 
as chipkill have become common to reduce the rate of 
uncorrected errors in DRAM. However, few studies have 
examined the benefit of chipkill in the field. Hwang et al. 
noted that 17% of observed corrected errors required chipkill 
to correct [16], but did not examine the uncorrected error rate 
with and without chipkill. Furthermore, operators typically 
replace DIMMs that experience an uncorrected error; in the 
absence of chipkill, many of the DIMMs experiencing these 
errors would have been replaced after the first error, reducing 
the number of errors that require chipkill to correct. In this 
section, we examine the effect of chipkill on the uncorrected 
error rate of each node. 

A. Effectiveness of Chipkill 

 Jaguar’s memory sub-system can be configured with 
multiple ECC layouts, only some of which are chipkill-
capable (see Figure 11) [27]. The chipkill-capable Layout 3 
is the actual layout in use on Jaguar. 

For each error in our data set, we can identify the specific 
failing bits to determine whether the error would have been 

 

Figure 12. The uncorrected error rate for two different non-chipkill ECC 
layouts and SEC-DED ECC normalized to the average monthly 
uncorrected error rate with chipkill. Excluding the first month, chipkill 
reduces the uncorrected error rate by 36-42x over non-chipkill ECC. 

Failure 
Mode 

Banks Affected 

2 3 4 5 6 7 8 

Multiple-bank 46.2% 1.9% 3.8% 7.7% 3.8% 0.0% 36.5% 

Multiple-rank 4.0% 2.0% 3.0% 14.1% 7.1% 15.2% 54.5% 

Table 6. The fraction of banks affected by multiple-bank and multiple-rank 
faults. 46.2% of multiple-bank faults affect only two DRAM banks, while 
36.5% affect all eight DRAM banks. This is indicative of two different 
failure modes.  

Figure 11. A single DRAM provides data bits to an ECC word over two 
beats [27]. The memory controller can route these bits to an ECC word 
in different ways (called an ECC layout). In this figure, only Layout 3 is 
capable of chipkill because all data bits from a DRAM are routed to the 
same symbol in the ECC word. 



corrected with one of the non-chipkill ECC layouts as well as 
with SEC-DED ECC. We assume that a DIMM will be 
replaced after the first uncorrected error, removing the faulty 
DRAM from the system. Therefore, for each fault we record 
only the first error that requires chipkill to correct. 

Figure 12 plots the monthly rate of these errors for all 
three non-chipkill ECC layouts, normalized to the average 
monthly rate of actual uncorrected errors. Excluding the first 
month, chipkill reduces the rate of uncorrected errors by 36x 
relative to ECC Layout 1, by 40x relative to ECC Layout 2, 
and by 42x relative to SEC-DED ECC. (We exclude the first 
month because it includes faults that developed before the 
start of the experiment.) This reduction in uncorrected error 
rate is smaller than the benefit shown in laboratory studies of 
older memory technologies [8], but is significantly larger 
than the benefit inferred from looking solely at corrected 
error rates [4] [16]. 

The primary finding from this data is that chipkill has a 
substantial reliability benefit to a DRAM sub-system. This 
finding has been confirmed by the experience of the Jaguar 
system operators, since the system did not have chipkill for 
the first half of 2009. 

B. Uncorrected Errors 

Because Jaguar’s memory system has chipkill capability, 
any remaining uncorrected errors from memory are the result 
of faults in multiple DRAM devices on the same rank, which 
are unlikely to develop simultaneously. In fact, we find that 
more than 83% of nodes with uncorrected errors first 
experienced corrected errors from an existing fault. 

Large multi-bit faults increase the likelihood of an 
uncorrected error because these faults impact more ECC 
words, and thus are more likely to overlap with a second 
fault. Figure 13 plots the probability of an uncorrected error 
on nodes with an existing fault, normalized to the probability 
of an uncorrected error on a node with no faults. The 
presence of a single-bit fault increases a node’s probability 
of an uncorrected error by 17x compared to a node with no 
faults. The presence of a multiple-bank or multiple-rank 
fault, however, increases a node’s probability of uncorrected 
error by 350x and 700x, respectively, approximately the 
same increase experienced by nodes with two independent 
DRAM faults. This implies that system operators should 
prioritize replacement of DIMMs whose DRAMs are 
experiencing multiple-bank and multiple-rank faults.  

XI. CONCLUSIONS 

This study analyzed 11 months of DRAM failure data 
from the Jaguar high-performance computing cluster at Oak 
Ridge National Lab. We performed a detailed study of 
DRAM failure modes and fault types. We derived an upper 
bound on the rate of transient faults in the DRAM array. We 
examined multi-bit failure modes and identified several 
unique fault patterns. We also analyzed the impact of 
chipkill on the uncorrected error rate due to DRAM failures.  

Prior work has shown that DRAM vendor and 
technology can have a large effect on failure rates [22]. 
Thus, more work is needed to confirm these results on other 
systems with different DRAM device types. Nonetheless, 
we believe that our findings have several implications for 
the architecture and design of future systems. 

First, we found that multi-bit failures constituted almost 
50% of all DRAM faults, and that there were a large variety 
of multi-bit failure modes. This implies that ECC techniques 
that store their data and check bits in the same DRAM 
devices must pay careful attention to the placement of data 
and check words in memory to achieve comparable 
reliability to traditional “parallel” ECC [28]. This also 
implies that memory failure rates will depend on internal 
device organization in addition to device count and capacity. 
Therefore, the performance of detection and correction 
techniques that target specific failure modes will depend 
heavily on the memory being studied [29].  

We also found that permanent faults account for at least 
70% of DRAM failures. This diminishes the effectiveness of 
memory scrubbing as a means to reduce the uncorrected 
error rate, since memory scrubbing is effective only against 
transient faults and certain intermittent faults. 

We found that 8% of DRAM faults were multiple-bank 
and multiple-rank faults, and that these faults were most 
likely to lead to a future uncorrected error. This implies that 
OS-level memory page retirement algorithms will have only 
a modest impact on the uncorrected error rate, since a node 
would need to retire an impractical amount of its memory to 
eliminate these faults. Our data show that a page retirement 
algorithm that retires up to 6.25% of a node’s memory 
(enough to counter single-bit, -row, -column, and -bank 
faults) would reduce the uncorrected error rate by only 8%. 

Finally, our data shows that chipkill reduced the 
uncorrected error rate by 42x compared to SEC-DED ECC. 
However, the Jaguar system still shows uncorrected errors 
due to DRAM faults. Due to projected increases in DRAM 
device counts and capacities, future systems will likely 
require even stronger memory error protection techniques. 

Overall, our data suggest that DRAM failures will pose 
an increasing concern in the future due to the projected 
increase in node DRAM capacity during the next decade. 
With current memory protection techniques, we would need 
several orders of magnitude improvement in DRAM failure 
rates to maintain current node failure rates. This implies that 
high-reliability systems will need significant advances in 
memory reliability techniques to maintain comparable failure 
rates to today’s systems. 

 

Figure 13. The relative probability of an uncorrected error on nodes with an 
existing fault. Existing multiple-bank and multiple-rank faults increase the 
probability of a subsequent uncorrected error by 350x and 700x, 
respectively, relative to a node with no faults. 
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