
F i r s t R e s u l t s i n R o b o t R o a d - F o l l o w i n g 

R i c h a r d W a l l a c e , A n t h o n y S t e n t z 

C h a r l e s T h o r p e , H a n s M o r a v e c 

W i l l i a m W h i t t a k e r , T a k e o K a n a d e 

R o b o t i c s I n s t i t u t e , C a r n e g i e - M e l l o n U n i v e r s i t y 

A b s t r a c t 

The new Carnegie Mellon Autonomous I and Vehicle group has 
produced the first demonstrations of road following robots. In this 
paper we first describe the robots that are part of the CMU 
Autonomous Land Vehicle project. We next describe the vision 
system of the CMU ALV. We then present the control algorithms, 
including a simple and stable control scheme for visual servoing. 
Finally we discuss our plans for the future. 

I n t r o d u c t i o n 

CMU has formed the Autonomous Land Vehicle (ALV) group to 
develop a perceptive outdoor robot. We have produced the first 
demonstrations of an autonomous vehicle able to follow a road 
using a single on board black and white television camera as Its 
only sensor. Our robot has made several successful runs over a 
curving 20 meter path, and 10 meter segments of staright 
sidewalk, moving continuously at slow speeds, by tracking the 
edges of the road. 

The research described in this paper is a first complete system, 
covering everything from low-level motor drivers to the top-level 
control loop and user interface. We took a "depth first" approach 
to building our testbed: we picked one rough design and built all 
the pieces of a functioning system, rather than spending a lot of 
time at the beginning exploring design alternatives. 

Related research at the Unversity of Maryland [6] has focused on 
the problem of visually finding and tracking roadways. The 
"bootstrapping" phase of the Maryland road finding program, in 
which the robot detects a road on start-up with no a priori position 
information, currently has no counterpart in our system. Our 
vehicle is always started with an orientation more or less aligned 
with the direction of the road and with knowledge of an initial road 
model. The Maryland road finding module is expected to be 
tested soon on an ALV built at Martin Marietta Denver Aerospace. 

In this paper we first describe the robots that are part of the CMU 
Autonomous Land Vehicle project. We next describe the vision 

Currently, this project is funded in part by Carnegie-Mellon University, by the 
Office of Naval Research under contract number N00014-81-K-0503, by the 
Western Pennsylvania Advanced Technology Center, by Defense Advanced 
Research Projects Agency (DOD). ARPA Order No 3597, monitored by the Air 
Force Avionics Laboratory under contract F33615-81 K 1539. and by Denning 
Mobile Robotics. Inc Richard Wallace thanks NASA for supporting him with a 
NASA Graduate Student Researchers Program Fellowship Grant. 

system of the CMU ALV. We then present the control algorithms, 
including a simple and stable control scheme for visual servoing. 
rinally, we discuss our plans for the future. 

T e r r e g a t o r a n d N e p t u n e 

No mobile robot system is complete without a mobile robot. The 
primary vehicle of the CMU ALV project is the Terregator, built in 
the Civil Engineering Department. The design and construction of 
the lerreyator (for terrestrial naviya/o/) is documented in [7]. It is 
a 6 wheeled vehicle, 64 inches long by 39" wide by 37" tall. All 
wheels are driven, with one motor for the 3 left wheels and one for 
the 3 right wheels. Shaft encoders count wheel turns, but the 
vehicle skid steering introduces some indeterminacy. 

The Terregator is untethered. Power is provided by an onboard 
generator. Communications with a host computer are via a bi-
directional 1200 baud radio link for vehicle status and commands, 
and a 10 megahertz microwave link for television signal from the 
vehicle to a digitizer. A remote VAX 11/780 runs programs for 
symbolic processing of visual data and navigation. A Grinnell 
GMR 270 attached to the Vax computes low- level visual 
operations such as edge detection. A Motorola 68000 on the 
Terregator translates steering commands from the VAX into wheel 
velocities for the left and right wheels. 

Earlier work also used the tethered robot Neptune, built by the 
Mobile Robot Lab. Neptune is a simple tricycle, with a powered 
and steered from wheel and two passive wheels in the rear. Its 
sensors consist of two cameras (for stereo vision work), plus a 
ring of 24 sonars. While it was intended primarily for indoor work, 
it has large enough wheels to run outside on gentle terrain. With 
suitable modifications (an umbrella taped to the camera mast), it 
even has limited all-weather capability. 

Our first successful continuous motion road following was 
achieved with Neptune running in our lab on a road marked with 
black electrical tape on the floor. This 5 meter road had one left 
turn and one right turn, which Neptune navigated successfully. At 
the end of the road, Neptune made a sharp right turn and drove 
around in circles. 



1090 R. Wallace et al. 

T h e V i s i o n a n d N a v i g a t i o n P r o g r a m 

The primary task of our vision and navigation program is to keep 
the vehicle centered on the road as it rolls along at a constant 
speed. The program accomplishes this task by repeatedly 
digitizing road images, locating the road edges in the image, 
calculating the deviation from the center line, and steering to 
realign the vehicle. 

The program was designed to be fast yet reliable. While the 
vehicle is moving along a planned path, an image is digitized. 



R. Wallace et at. 1091 

Since images are digitized frequently, the appearance of the road 
edges does not change appreciably across successive images; 
consequently, searching the entire image is unnecessary, In order 
to constrain the search, the program maintains a model of the 
road I he model contains the position and orientation of the left 
and right road edges seen in a recent image. The program uses 
these model edges to generate two small suhimage rectangles in 
which to search for the left and right road edges. Since the 
approximate direction of each road edge is known a priori, the 
program uses directed curve tracing to reduce processing time 
and to preclude spurious edges Generally the program finds 
more than one edge in each subimago rectangle. The model is 
used to select the pair of extracted edges most likely to be road 
enges. I Ins new pair replaces the old pair in the model. From the 
model pair, the program computes a center line, the vehicle's drift 
from the center line, and a steering command to bring the vehicle 
closer to the center line. As the vehicle executes a steering 
command another image is digitized and the cycle repeats. Figure 
3 depicts the program control flow. In the remainder of the paper 
we explain each component of the program in greater detail. 

Constraining the Search 
Each time the program digitizes an image it chooses two 

subimage rectangles to constrain the search for left and right 
edges The representation of the rectangle is two horizontal and 
two vertical bounding line segments. The vehicle always "looks" 
a fixed distance ahead; therefore, the placement in the image of 
the horizontal bounding segments is predetermined and remains 
fixed across successive images. The placement of the segments 
is partly determined by two parameters selected manually: the 
height of the rectangle (typically 50 to 100 pixels) and rectangle 
overlap, that is, the percentage of the road in a rectangle seen in 
the preceding image (typically 50%). These two parameters 
present important trade offs: If a large height is chosen, the 
extracted road edges will be longer, thus providing more accurate 
information about the road; however, the processing time will be 
increased, and the road will be scrutinized less often. If a large 
overlap is chosen, more information is available from the previous 
image and spurious edges are less likely to deceive the algorithm; 
however, the vehicle's speed must be slowed to enable such 
overlap. The two parameters, coupled with the vehicle's speed, 
the image processing time, and the camera's tilt determine the 
placement of the horizontal bounding segments in the image. 

The vertical bounding segments change from image to image. 
The program selects bounding segments so that the road edges, 
based on predictions from the model and a preset error tolerance, 
will appear within the rectangle. This error tolerance arises from 
two sources; First, the program obtains its estimates of the 
vehicle's motion by dead reckoning, which is somewhat 
inaccurate. Second, the program assumes the road is straight, 
that is, predictions are made by linearly extending the road edges. 
Road curvature introduces a discrepancy between these 
predictions and the actual road; consequently, the .ectangle must 
be wide enough to see the road edge within a preset tolerance. 

Select ing the Best Edges 
The line finding routine generally returns more than one line 

from each rectangle. The program passes these lines through a 
number of filters to determine which, if any, are road edges. The 
new road edges are used to plan a path for the vehicle and to 
update the model The 16 best left and right edge candidates 
(based on weights supplied by the line finding routine) are 
retained, and the rest are discarded The program assumes that 
the camera's calibration, position, and orientation with respect to 
the road are known, that the ground is locally level and that all 
candidate edges arise from ground features. These assumptions 

allow the program to project each candidate edge into a unique 
line in the ground plane We establish a nighthanded coordinate 
system with the vehicle at the origin and the xy plane on the 
ground, with the positive x axis directed to the right of the vehicle 
and the positive y axis directed forward f or each transformed 
edge, the program calculates the following parameters: the 
perpendicular distance r measured from the origin to the edge and 
the angle 0 measured from the positive x axis The differences in r 
and 0 between each transformed candidate edge and the 
corresponding model edge are calculated (call these values dr 
and 60 respectively). The quantity dr is the difference in 
displacements of the vehicle from the model edge and from the 
candidate edge. 1 he quantity 60 is the angle between the model 
edge and the candidate edge Test runs have shown that the 
vehicle tends to remain aligned with the center line; most of the 
error is in the form of lateral drift from this line. Hence, dr provides 
the most information for evaluating candidate edges. The quantity 
60 tends to be small (less than 10 degrees); consequently, an 
early filter uses it to eliminate spurious edges. After this round of 
edge elimination, one of three cases remains: 

1. All edge candidates have been eliminated 

2 All edge candidates have been eliminated for a 
particular road edge (either left or right) 

3. At least one edge candidate remains for both the left 
and right road edge 

In the first case, the program obtains no new information and the 
vehicle continues to execute the path planned from the previous 
image. In the second case, only one road edge is visible. The 
other road edge is occluded, shadowed, or poorly defined. 
Suppose for example the program found a set of candidate road 
edges on the right side but none on the left. From the candidate 
edges on the right side the program selects the one with the 
minimum dr value. It inserts this new edge into the model, retains 
the old model edge for the left side, and generates a new steering 
command. In the third case, both road edges are visible. The 
program selects one edge from each list of road edges (left and 
right) by comparing each left edge to each right edge candidate 
and choosing the pair that minimizes the difference in their dr 
values, that is, it selects the two edge candidates that differ from 
their corresponding model edge in the same way. Figure 3 
illustrates road edge selection in this case. This decision is based 
on the observation that vehicle motion error and road curvature 
shift the location of each edge in the image in the same way. The 
program inserts the two new road edges into the model and plans 
a new path. 

Line and edge extract ion 

At the lowest levels of the vision system for our vehicle, the edge 
and line extraction modules, we found that for detecting road 
edges we could rely on the principle "almost anything works in the 
simple cases " I hat is, any of a number of simple edge and line 
finding techniques could be used to extract road edges in various 
situations. Our approach then was to try everything We tested 
various edge and line finding programs on static road images and 
on images acquired by the vehicle in actual runs. Simple 
techniques proved adequate in many situations we encountered. 

The basic approach of all the vision modules we tried was to find 
the left and right boundaries of the road and represent them as 
lines. Therefore, the task of the low level vision modules is to find 
line segments which are plausible candidate road edges. We 
sought to make only the most general assumptions about what 
might constitute a road in an image. The technique used to 
extract road edges and represent them as lines depends on 



1092 R. Wallace et al. 

whether we think of a road as an intensity change from 
background, a texture change, a color change or a combination. 
We experimented with 7 methods for extracting road edges from 
images and three methods for fitting lines to the edges. The seven 
techniques we used to find edges in road images were: 

1. Correlation. Assuming that a road edge is a more or 
less vertical feature in a subimage it can be followed 
by selecting a small sample patch of the edge and 
correlating this on a row-by-row basis with the 
subimage. Where the correlation is strongest in each 
row a road edge element is assumed The result is a 
list of points where the road edge appears in each 
row A line can be fit to these directly. The 
correlation approach worked very well when the 
sample road edge patch was hand selected. 

2. DOG operator. A Difference of Gaussian edge 
operator was tried at a wide range of spatial 
resolutions on road images. Road edges tend to be 
low spatial frequency signals so large DOGs were 
required to find them directly. Two dimensional DOG 
filters tended to break up the road edges even at low 
frequencies One dimensional DOG operators applied 
horizontally in the image produced more connected 
road edge pieces, since the road boundaries were 
almost vertical features in the image. High spatial 
frequency DOG operators can be used as the basis of 
a texture-based segmentation of road images, 
however. 

3 Temporal Edge Detector. Subtracting two 
successive image frames is an inexpensive method for 
detecting image features that change from one 
moment to the next. If a vehicle is traveling down an 
ideal road (where the intensity of the road is uniform, 
the intensity of the surrounding region is uniform and 
the road edges are straight and parallel) then the 
difference of two successive road images is zero. 
When the vehicle begins to turn left or right off the 
road, however, simple image differencing finds the 
road edges. This strategy was used in one 
experiment to servo Neptune visually down a hallway. 
Here the road edges were particularly distinct so the 
idealness assumption was more or less satisfied. 

4. Roberts Operator A ?x2 Roberts edge operator 
was sufficient to find road edges where they were 
relatively well defined intensity step functions, such as 
when the vehicle traveled down a hallway or when we 
artificially marked the road edges with tape. 

5. Intensity Segmentation. A simple binary intensity 
segmentation of the road image works in many cases 
where the road is a set of pixels most of whose 
intensities are grouped together in the image 
histogram. We used a simple segmentation technique 
based on classifying all the pixels in the bottom 50% 
of the histogram as one region and those in the upper 
50% as another Standard procedures for expanding 
and shrinking the resulting segments to join closely 
spaced segments and eliminate small ones are 
applied. Road edges are assumed to lie along the 
boundaries of the resulting regions. 



R. Wallace et al. 1093 

6 Texture Segmentation Texture based 
segmentation often proves better than intensity based 
segmentation for mad edges where the road is 
relatively smooth and the surrounding region is not, 
such as when the road is asphalt against a grass 
background. A simple texture operator which we 
have found useful in detecting road edges is one 
which counts the number of edges per unit area and 
classifies all those areas where the edge count is high 
as a single region. 

7 Row Integration Summing the intensities column-
by-column in a set of scanlmos in the image results in 
a single scanline intensity image where the road is 
roughly a one dimensional box function, given that the 
road is a more or less vertical feature and the road 
and surrounding area each have fairly uniform but 
different intensities. Finding the boundaries of the 
box amounts to finding the average position of the left 
and right road edges over the scanlines summed. 
Repeating the procedure for another set of rows in the 
image locates another pair of road edge points which 
can be joined with the first to approximate the road 
boundaries as line segments. 

The three line-extraction techniques we used were: 

1 Least Sqaures Line Fitting When we had only one 
possible line in an edge image, such as the result of 
running a correlation operator over the rows or 
collecting a number of road edge points by row 
integration, a line could be fit to the points by least 
squares. 

2. Muff Transform. A modified Hough (Muff) transform 
was used to fit lines to edge data where the edge 
extractor returned points that could plausibly be parts 
of several lines. The Hough transform has been used 
to detect road edges in other road finding programs 
[6][1]. The Muff transform uses a new 
parameterization tor lines in images. the Muff 
transform has several implementational advantages 
over the conventional p-0 parameterization. The 
details and implementation of the Muff transform are 
presented elsewhere [5]. 

3. Line Tracing. Most of the subimages we processed 
to find lines were bands about 50 pixels tall and 250 
pixels wide. A simple raster tracking algorithm found 
in [3] proved sufficient to trace the road edges. 
Basically, if an edge point P above some high 
threshhold d is found while scanning the subimage, 
then we search on scan lines below for connected 
edge points above some lower threshhold /. The last 
such point found in the subimage is called 0 and we 
assume PQ is a line segment The line tracing 
procedure is much like the inverse of a Bresenham 
algorithm for drawing lines, with the similar limitation 
that we can find lines, that are only with 45 degrees of 
vertical. We find lines more than 45 degrees from 
perpendicular and lines with gaps by searching in a 
neighborhood below an edge point for the next 
adjacent edge point. Strictly speaking, our tracing 
program returns the endpoints of a curve which may 
not necessarily be a line, but over the small distances 
in the subimages we search for lines we have found 
this fast tracing procedure yields an adequate 
approximation. The line tracing procedure was used 
in all of the real time continuous motion runs of our 
vehicle under vision control. 

A combination of three factors enabled us to reduce the image 
processing time for each image sample to about ? seconds. First, 
special image processing hardware in our Grimmelll GMR 270 
display processor was used for the low level correlation and 
convolution Second, only small subimages (550 by 250 pixels) 
were searched for road edges by the line finding routines. Third, 
selection from among the possible set of candidate road edges of 
the actual road edges was accomplished by simple means (q.v,). 

The next step in our plans for development of low level road-
finding vision is to integrate several types of feature detectors in a 
blackboard data structure. We want to evaluate, the success of 
combining intensity, texture and color edge and region features to 
find road edges. Earlier we said that we relied on the principle 
"almost anything works in simple cases". For complicated cases. 
such as we have encounteied in actual outdoor road scenes, we 
have found that none of the techniques we have tried always 
works. We believe that a combination of techniques will enable us 
to find road edges reliably in a wide range of situations. 

C o n t r o l 

The control procedure translates the visual measurements into 
vehicle motor commands that, if successful, keep the vehicle 
moving along the road. We evaluated a half-dozen approaches 
experimentally with our vehicles and analytically. One approach, 
servoing to keep the road image centered in the forward field of 
view, excelled in all the measures, by such a margin that we feel it 
deserves to be considered a fundamental navigational principle 
for mobile robots. 



1094 R. Wallace et al. 

Let x represent the shortest distance between the center of our 
vehicle and the centerline of a straight road 0 is the angle 
between the heading of the robot and the road direction, i.e. when 
0 = 0 the robot is driving parallel to the road. Suppose the vehicle 
travels at a constant scalar velocity v, and that control is achieved 
by superimposing a steering rate. 60 / dt (where t is time) on top 
of the forward motion. If there is no slippage, the following 
kinematic relationship will hold: 

(1) 
The general problem for continuous road following is to find a 

steering function F such that by setting 60 / dt = F(x,0) the 
vehicle approaches the road center. We tried several functions 
and noticed a number of recurring problems. Estimating 0 and x 
from the image requires both a precise calibration of the camera 
and accurate determination of the position and orientation of the 
road edges in the image. Both are difficult to achieve in practice, 
and the high noise level in these quantities made most of our 
functions unstable. A second problem led directly to our solution. 
The road image sometimes drifted out of the camera's 40 degree 
field of view, and in the next sampling period the program would 
fail to find a road, or (worse) identified some other feature, like a 
door edge, as road. The obvious solution was to servo to keep the 
road image centered. Experimentally this approach was a 
stunning success. Besides helping the vision, it seemed to be 
insensitive to even large calibration errors and misestimates of the 
road parameters. 

The theoretical analysis was remarkably sweet also, and bore 
out the empirical observations. A first order analysis, where we 
assume the road image is kept perfectly centered, gives the 
relation 

(2) 

where r is the distance in front of the robot where a ray through 
the camera image center intersects the ground (i.e. the range at 
which we do our road finding). The parameter r can be changed 
by raising or lowering the camera, changing its tilt, or by using a 
different scanline as the center of the region in which road edges 
are sought. 

Equation (2) can be substituted into (1) to give 
(3) 

which can be solved directly, giving 
(4) 

where x0 is the initial value of x when t = 0. so to first order the 
vehicle approaches the centerline of the road exponentially with 
time. 

A more detailed analysis considers the actual servo loop 
behavior. The displacement of the road centerline image from the 
center of the forward field of view is proportional to 

(5) 

Servoing the steering rate on (5) sets 
(6) 

where g is the servo loop gain. The full behavior of the robot can 
be found by solving (1) with (6) simultaneously. These equations 
are made linear and easily solvable by the substitution 0 - sin 0, 
giving 

(7) 

By co incidence or cosmic significance of all the servo functions 
we considered, only this one yielded a fully general analytic 
solution. 

The solution has three cases distinguished by the sign of the 
expression 

(8) 

In all cases the solution converges to x - 0, Q (and 0) = 0 
exponentially with time. When g < 4v/r the convergence is a 
decaying oscillation - the sluggish steering causes repeated 
overshoots of the road center. When g > 4v/r the solution 
contains a second exponential, and the robot approaches the 
road center more slowly. When g = 4v/r, the critically damped 
case, we have the fastest convergence and no overshoot, and the 
behavior is given by the equations 

(9) 

(10) 

The gain sets the turn rate required of the robot. Note that to 
retain the critically damped situation while increasing v without 
changing g, it is necessary only to increase r, i.e. arrange to have 
the vision look further ahead. 

The method is successful for several reasons It keeps the road 
in view at all times. Because the system always converges, errors 
in g or camera calibration do not jeopardize performance. 
Because the parameter being servoed is the most robust direct 
measurable, namely road position in the image, the noise 
problems of the other approaches are almost totally eliminated. In 
particular, 6 (or Q) and x though they occupy a central position in 
the theoretical analysis, need never be calculated in the actual 
servo loop. 

C o n c l u s i o n s 

We have developed a vision and control system for a mobile 
robot capable of driving the vehicle down a road in continuous 
motion. The system has been tested on two mobile robots, 
Neptune and the Terregator, in both indoor (hallway and artificial 
road) and outdoor (asphalt paths in a park and cement sidewalk) 
environments. In our best run to date the Terregator traversed a 
20 meter outdoor path at 2 cm/sec. Image processing time has 
been reduced to 2 sec/image. 

Failure modes of our vehicle have included driving off the road, 
driving into trees and walls, and driving around in circles. Such 
failures were mostly due to bugs in our programs, imprecise 
calibration procedures, and limitations of current hardware (e.g., 
B&W camera with narrow angle lens), not fundamental limitations 
of the techniques used. 



F u t u r e W o r k 

R. Wallace et al. 1095 

There are several areas that we plan to address. First is the 
construction of a true testbed. This involves mostly software 
engineering, such as cleaning up and documenting the interfaces 
between vision and control. This will enable us to try other vision 
methods, such as texture and color operators. 

Further work will require the use of a map, along with program 
access to a magnetic compass and a gyro. The map will list 
road direction, width, appearance, and intersections, which will 
provide strong cues to both the image processing and the 
navigation system. The compass, along with the map information, 
will help predict road location in the image. This will become 
increasingly important as we venture onto curved and hilly roads, 
and as we encounter intersections and changes in the road 
surface. 

The next step is obstacle avoidance, which will require limited 
3D processing. Projects in the CMU Mobile Robot Laboratory 
have already demonstrated obstacle avoidance with sonar [2] and 
stereo cameras [4]; we intend to integrate these into the testbed. 
Later work may add a laser rangefinder and programs to handle 
that data. 

Finally, as the testbed becomes more complicated, system 
control will become a major issue. We plan to work on a 
blackboard system with cooperating and competing knowledge 
sources. All the data, from the lowest level signals to the highest 
level models and maps, will be on the blackboard and available to 
ail processes. 

A c k n o w l e d g e m e n t s 

We would like to thank first of all Pat Muir for his work on 
analysis of the control of the Terregator. Many thanks also to Mike 
Blackwell, microprocessor hacker extrodinaire, Kevin Dowling, 
tender of robots, and John Bares, prime mover of the Terregator, 
without whom the experiments described here would have been 
much more difficult and much less fun. Thanks also to Gregg 
Podnar and Bob Spies for video and digitization work. Finally, we 
would like to express our appreciation to Raj Reddy for his 
support and encouragement. 

R e f e r e n c e s 

[1] Inigo, R. M.. E. S. McVey, B. J. Berger and M. J. Wertz. 
Machine Vision Applied to Vehicle Guidance. 
IEEE translations on Pattern Analysis and Machine 

Intelligence 6(6), November, 1984. 

[2] H. Moravec and A. Elfes. 
High Resolution Maps From Wide Angle Sonar. 
In IEEE Conference on Robotics and Automation. 1985. 

(3] Rosenfeld, A. and A. C. Kak. 
Digital Pictiure Processing (Vol 1). 
Academic Press, 1976. 

[4] C. Thorpe. 
FIDO: Vision and Navigation for a Mobile Robot, 
PhD thesis, Carnegie-Mellon University, 1984. 

[5] Wallace, R.S. 
A Modified Hough Transform for Lines. 
In Computer Vision and Pattern Recognition. IEEE, 1985. 


