
Ae — AN EFFICIENT NEAR ADMISSIBLE HEURISTIC SEARCH ALGORITHM

Malik Ghallab and Dennis G. Allard

Laboratoire d'Automatique et d'Analyse des Systemes
du C.N.R.S.

7, avenue du Colonel Roche - 31400 TOULOUSE, France

ABSTRACT Two drawbacks to A* explain its high complexity.
First, A* tends to do much backtracking due to the
invariable choice of n' as the node to be expanded
next. A* tends to expand many nodes not in the
final solution path since h (being a heuristic)
fluctuates in quality and hence various near
optimal paths take random turns appearing to be
optimal. Such paths effectively "race" with one
another to reach their goals. So we can trace the
cause of backtracking to A*'s desire to fine tune
an optimal cost solution.

The algorithm A* (Nilsson, 1979) presents two
significant drawbacks. First, in seeking strict
optimal solution paths it necessarily has high
order of complexity. Second, the algorithm does
not explicitly descriminate between the cost of a
solution path and the cost of finding the solution
path. To confront these problems we propose the
algorithm AE, a generalization of A*. Instead of
seeking an optimal solution, it seeks one which is
within a factor (1+e) of optimum (e > 0). The
basic idea is to avoid doing any search at all on
most near optimal partial solutions by sticking to
a small number of most f ru i t fu l paths. Various
strategies for searching for near optimal partial
solutions are discussed. Experimental results are
presented indicating that A e has average complexity
of lower order than A* and compares favorably to
the related algorithm Af* (Pearl and Kim, 1982).

I INTRODUCTION — ADMISSIBLE SEARCH IS EXPENSIVE

This paper emphasizes the main ideas behind Ae
and serves to introduce new empirical results
concerning i ts behavior. A more extensive
presentation of Ae and its properties appears in
(Ghallab, 1982) and in (Ghallab and Allard, 1982).
We assume familiarity with A* and notation of
(Nilsson, 1979). We denote the set of successors
of node n by X(n). The cost of arc <n,x> is
k(n,x)>0. We denote a path between n and m by
<n...m>. For start node s, the true costs of
minimal cost paths <s...n>, <n...t>, and
<s...n...t>, over all goal nodes t, are denoted by
g*(n), h*(n), and f*(n) respectively. The
estimators for these functions are g, h, and f
respectively. OPEN is assumed ordered by
increasing f (and decreasing g in the case of
ties). At al l times, n' denotes the f i rst (least
f) element of OPEN.

The complexity of A* has been studied in some
detail. For perfect h = h*, A* is linear. But in
general it has worst case complexity which is expo
nential as a function of the number of nodes in the
found solution path (Pohl, 1970,77). For a large
class of problems A* remains exponential in the
average case unless h is very precise and remains
unrealistically close to h* (Pearl, 1983).

The second author is participating in an exchange program between LAAS du CNRS
and the Electronics Research Laboratory, University of California, Berkeley.

The second drawback is that A* makes no explicit
attempt to minimize search cost, i.e. the number of
nodes expanded. Given two equally promising paths
with respect to path cost, it would seem wise to
develop that path which is the fewest arcs from
completion. But for A*, it does not matter too
much which promising path is developed next since
eventually al l promising paths must be. Thus A*
does not have much need for an explicit heuristic
to reduce search cost. Simply put, admissible
search is inherently expensive.

Our basic premise is that a bounded loss of
optimality can always be favorably traded for a
gain in computational efficiency. The very notion
of "cost" and "optimal cost" are imprecise in most
applications involving modelling of the real world.
Moreover, in heuristic search one often requires
only a near optimal or even just decent solution.
For example, in robotics, there is a tradeoff
between the cost of generating a plan and the
optimality of the plan when the plan is to be
executed only once.

II A6 AND NEAR OPTIMAL PATH SEARCH STRATIGIES

Ae drops the strict optimality criteria and
seeks instead a solution within a factor (l+f) of
optimum for a user specified €>,0, This at least
makes possible avoiding A*'s defect of having to
investigate all optimal looking paths. The problem
now becomes — which of the many near optimal paths
merit attention?

A€ attempts to answer this question by
generalizing A* in two primary ways. First, A€
performs a depth oriented search, preferring to
stay on a single path as long as a successor to the
frontier node (the last one expanded) of that path
is "acceptable". An open node n is acceptable i f f
f(n) is bounded by (I +€)max f (n')} over al l n'
which have appeared as the first element (least f)

790 M. Ghallab and D. Allard

in OPEN. To choose an acceptable successor to
expand next o r , in the case tha t no such
successor ex i s t s , to choose which node in OPEN to
backtrack to , A€ can make use of a second
heurist ic hc. hc(n) provides an expl ic i t guess as
to the computational cost involved in reaching a
goal node by estimating the minimum number of arcs
between n and a goal node.

The second difference between A€ and A* is that
A€ possesses an inner loop invoked when the
f r o n t i e r node has no acceptable successor. The
inner loop attempts to render some successors
acceptable by expanding a certain number of times
the f i r s t node of OPEN, n'. Doing so of ten (i f h
is monotone, always) increases f (n ') and thus may
turn unacceptable nodes in to acceptable ones. We
refer to this idea as the perserverant strategy of
A€. A more precise spec i f i ca t i on of A€ is as
follows.

Notice output €' which gives the actual relat ive
cost of the found s o l u t i o n w i t h respect to
max {f(n')')}. It is always true that €'<:€ since the
output solution (i f any) sat isf ies Acceptable.

SelectAX selects which acceptable successor of n
is to become the new n. A general approach is to
minimize a weighted sum Af(x) + Bhc(x). Since the
main purpose here is to stay on a path previously
seen to be near op t ima l , we bel ieve that A should
be larger than B. The extreme approach of taking
A = 1 and B - 0 leads to a depth or iented best
f i r s t search and has the advantage of simpl i fy ing
the main loop -- statement 2.1 can be replaced by

if Acceptable(xmin) then
n: = xmin

else
n:= SelectOPEN fi

where xmin is the open successor of n having least
f. And statement 2.4 can be removed ent i re ly.

Select OPEN has the more d i f f i c u l t task of
deciding which acceptable n in OPEN to backtrack
to. Again we can minimize some weighted function
Cf(n) + Dhc(n) over a l l n in OPEN. Minimizing f n)
gives us prec ise ly n'. This would lead a f te r
expansion to raising fthreshold as much as possible
hence increasing the l ikel ihood that the developed
path w i l l remain acceptable. Min imiz ing hc(n)
moves us closer to a so lu t ion but increases the
r i s k that the inner loop may have to abandon the
selected path soon thus provoking backtracking.
Nevertheless, we argue that SelectOPEN should place
importance on hc since the inner loop w i l l be
capable o f r a i s i n g € th resho ld . In g e n e r a l ,
experimentation should help determine weights for f
and hc in any specific application.

The perserverant strategy of A6 is embodied in
the predicate Perservere, the heurist ic element of
the inner loop. Perservere should return t r ue as
long as it seems wise to try to render at least one
of the successors of n acceptable, i .e. to perser
vere on the current path. We l i s t below factors
which would indicate that doing so is worthwhile.

- n has a successor which is "almost" acceptable.

- n has a successor close to a goal (hc small).

- The second or th i rd best f(n) over n in OPEN is
s igni f icant ly greater than f (n ') .

- The inner loop has iterated few times.

- A node already in SOLVED is almost acceptable (n '
should be expanded to t ry rendering a found goal
acceptable).

- (l + f) f (n ') = fthreshold. If h is monotone this
w i l l always be true so this condition would not be
useful in that case.

Notice that A* halts when it runs into a goal node
as f i r s t element of OPEN whereas A€ con t inua l l y
surveys a l l generated goal nodes and e x p l i c i t l y
attempts to render one or more of them acceptable.

M. Ghallab and D. Allard 791

I I I EXPERIMENTAL RESULTS AND CONCLUSION

We have tested the hehavior of A€ on TSP (the
t r a v e l l i n g salesman problem) under the same test
condit ions (N = 9 c i t i e s randomly d i s t r i bu ted
uni formly in the uni t square) and using the same
heur is t i cs h and hc as (Pearl and Kim, I982).
Tests were made on sixty different distr ibut ions of
c i t i e s . For each test A, was run wi th € set
successively to 0, 0.0I, 0.05, 0.10, 0.15, 0.25,
and 00 (€ = 0 y ie lds the optimum so lu t ion ; € = oo
yields a solution in the minimum number of steps --
exactly N-2 nodes are expanded).

Table I indicates the computational e f f o r t
exerted by A,. Three complexity ind icators were
employed: E, the number of nodes expanded, G the
number of nodes generated, and B ,the number of
times A, had to backtrack (switch paths). Table 2
gives the actual cost of the solutions obtained and
f', the guarantee returned by A€ of the degree of
o p t i m a l i t y o f the s o l u t i o n s . A l l f i g u r e s
(€ excepted) are given relative to their values for
f = 0 (corresponding to what A* would do). The

numbers in parentheses give the standard deviation
(for the corresponding mesures.

Notice that for a l l indicators (Table I) , compu
t a t i o n a l cost decreases rap id ly wi th increasing €
(from exponential complexity for t = 0 down to
l inear complexity for (= 0 0) . The obtained
results compare favorably with those of (Pearl and
Kim, 1982, Fig. 4) shown as E1 in Table I below.

As Table 2 shows, the actual so lu t ion costs
remain quite near optimal. It is interesting that
with (= 00, the found solution is guaranteed to be
within 27 % of optimal.

To obtain completeness wi th respect to Pearl's
resu l ts we also tested A, on " d i f f i c u l t problems"
in which i n t e r c i t y distances are confined to the
i n t e r va l (0.75,1.25). In 25 test cases, as soon as
(exceeded .05, no backtracking was ever performed.
Our resu l ts for number of nodes developed are
s im i l a r to those of Pearl (c.f . his Fig. 6); E = 81
and 28 for < = .0 1 and .05 respect ive ly .

These results compare A€ favorably to A* and to
A€ *. We are currently conducting further tests on
TSP and other search problems in order to
experiment with the search strategies discussed in
section I I .

REFERENCES

Ghallab M. Optimisation de processus decisionnels
pour la robotique. These d'Etat. Un ivers i te
Paul Sabatier de Toulouse. October 1982.

Ghallab M., A l la rd D. Near admissible heu r i s t i c
search algorithms. Second World Conference on
Mathematics at the Service of Man, Las Palmas
(Canary Islands), Spain, June 1982.

N i l s s o n N.J. P r i n c i p l e s o f A r t i f i c i a l
Intel l igence. Tioga Publishing Co., 1979.

Pearl J. Knowledge versus search: a quan t i ta t i ve
analysis using A*. A r t i f i c i a l In te l l i gence
20(1), January 1983.

Pearl J . , Kim J. Studies in semi-admissible
h e u r i s t i c s . IEEE Transac t ions on Pa t te rn
Analysis and Machine Intel l igence, July 1982.

Pohl I. F i r s t resu l t s on the e f fec t of er ror in
heu r i s t i c search. In Machine In te l l i gence 5,
Metzer and Michie eds., Edinburgh U. Press, 1970.

Pohl I, P rac t i ca l and theo r i t i ca l considerations
in h e u r i s t i c search a lgor i thms. In Machine
Intell igence 8, Elcock and Michie eds., 1977.

