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Abstract

In this paper, we study the effect of discreteness on various models for patterning in bacte-
rial colonies (finite-size effect) and present two types of models to describe the growth of the
bacterial colonies. The first model presented is the Communicating Walkers model (CWm),
a hybrid model composed of both continuous fields and discrete entities — walkers, which
are coarse-graining of the bacteria; coarse-graining may amplify the discreteness inherent to
the biological system. Models of the second type are systems of reaction diffusion equations,
where the branching of the pattern is due to non-constant diffusion coefficient of the bacterial
field. The diffusion coefficient represents the effect of self-generated lubrication fluid on the
bacterial movement. The representation of bacteria by a density field neglects their discrete-
ness altogether. We implement the discreteness of the bacteria by introducing a cutoff in the
growth term at low bacterial densities. We demonstrate that the cutoff does not improve the
models in any way. The cutoff affects the dynamics by decreasing the effective surface tension
of the front, making it more sensitive to anisotropy and decreasing the fractal dimension of
the evolving patterns. We compare the continuous and semi-discrete models by introducing
food chemotaxis and repulsive chemotactic signaling into the models. We find that the growth
dynamics of the CWm and the growth dynamics of the Non-Linear Diffusion model (one of the
continuous models) are affected in the same manner. From such similarities and from the in-
sensitivity of the CWm to implicit anisotropy, we conclude that even the increased discreteness,
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introduced by the coarse-graining of the walkers, is small enough to be neglected. There are
advantages and disadvantages to the two types of models. Employing both of them in parallel
enables us to conclude that the discreteness of the bacteria does not significantly affect the
growth dynamics (no finite-size effect).

1. INTRODUCTION

The endless array of patterns and shapes in nature
has long been a source of joy and wonder to lay-
man and scientists alike.1–5 During the last decade,
there have been exciting developments in the un-
derstanding of pattern determination in non-living
systems.4,6–8 The attention of many researchers is
now shifting towards living systems, in a hope
to use these new insights for the study of pat-
tern forming processes in living systems (see Ref. 9
and references therein). Bacterial colonies offer
a suitable subject for such research.10–22 In some
sense, they are similar enough to non-living systems
so as their study can benefit from the knowledge
about non-living systems, yet their building blocks
(bacteria) are complex enough to ensure ever so new
surprises.

In Fig. 1, we show representative branching pat-
terns of bacterial colonies. These colonies are made
up of about 1010 bacteria of the type Paenibacillus
dendritiformis (see Refs. 23 and 24 for first reference
in the literature and Ref. 25 for identification). For
other studies of branching bacterial patterns, see
Refs. 10, 26–30. Each colony is grown in a standard
petri-dish on a thin layer of agar (semi-solid jelly).
The bacteria cannot move on the dry surface and

cooperatively they produce a layer of lubrication
fluid in which they swim (Fig. 2). Bacterial swim-
ming is a random walk-like movement, in which the
bacteria propel themselves in nearly straight runs
separated by brief tumbling events. The bacteria
consume nutrients from the media, nutrients which
are given in limited supply. The growth of a colony
is limited by the diffusion of nutrients towards the
colony — the growth rate of the colony is deter-
mined by the bacterial reproduction rate which is
limited by the level of nutrients available for the
cells. Note that a single isolated bacterium on the
agar can reproduce, grow in numbers and make a
new colony.

Bacterial colonies entangle entities in many
length scales: the colony as a whole is in the range
of several centimeters; the individual branches are
of width in the range of millimeters and less; the in-
dividual bacteria are in the range of micrometers, so
is the width of the colony’s boundary; and chemicals
in the agar such as the constitutes of the nutrient
are on the molecular length scale.

Kessler and Levine31 studied discrete pattern
forming systems, using reaction-diffusion models
with linear diffusion and various growth terms.
It can be showed that the ability of the system
to form two-dimensional patterns depend on the

Fig. 1 Observed branching patterns of colonies of P. dendritiformis grown on 2% agar concentration. The nutrient level
is, from left to right, 0.25 gram peptone per liter, 0.5 g/l and 5 g/l. In the colony on the right, wide branches can be seen,
branches much wider than the gaps between them. The pattern in the middle is less ordered, fractal-like pattern, similar to
patterns seen in electro-chemical deposition and DLA simulations.4,8 As the nutrient level is further decreased, the pattern
becomes denser again, with pronounced circular envelope (on the left).
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Fig. 2 Closer look on a branch of a bacterial colony. The
left figure shows the lubrication fluid in which the bacteria
are immersed. On the right, the individual bacteria can be
seen. Each dot in the branch is a 1× 2 µm bacterium. The
dots outside the branch are not bacteria but deformations of
the agar.

derivative of the growth term (reaction term) at
zero densities. With a negative derivative, the sys-
tem can form branching patterns; with a positive
derivative, the system can form only compact pat-
terns with circular envelope. Kessler and Levine31

accounted for the discreteness of the system by in-
troducing a low-densities cutoff in the growth term.
Doing so to a growth term with positive derivative
at zero can introduce bumps to the pattern, which is
a manifestation of a diffusive instability in the two-
dimensional front (the first step towards a branch-
ing pattern).

We present here three models for growth of the
bacterial colonies. The first is the Communicating
Walkers model (Sec. 2) which includes discrete en-
tities to describe the bacteria, continuous fields to
describe chemicals in the agar and an explicit free
boundary for the colony’s edge. The second model
is a continuous one, a reaction-diffusion model that
couples the bacterial movement to a field of lubri-
cation fluid (Sec. 3). The diffusion coefficients of
the bacterial field and the lubrication field depend
on the lubrication fluid, resulting in a spontaneous
formation of a sharp boundary (singular line) to the
colony. The third model tries to simplify the former
model and disposes of the lubrication field by intro-
ducing a density-dependent diffusion of the bacte-
rial field (Sec. 4). We discuss the effect of a cutoff
in the growth term in the two continuous models.
We then turn our attention to various features of
the observed bacterial patterns and see similarities
in the different models’ ability to reproduce these
features (Sec. 5).

2. THE COMMUNICATING
WALKERS MODEL: A HYBRID
MODEL

The Communicating Walkers model (CWm)11

was inspired by the diffusion-transition scheme
used to study solidification from supersaturated
solutions.32–34 The former is a hybridization of the
“continuous” and “atomistic” approaches used in
the study of non-living systems. The diffusion of the
chemicals is handled by solving diffusion equations
(including sources and sinks) on a tridiagonal lat-
tice. The bacterial cells are represented by walkers
allowing a more detailed description. In a typical
experiment, there are 109–1010 cells in a petri-dish
at the end of the growth. Hence, it is impractical
to incorporate into the model each and every cell.
Instead, each of the walkers represents about 104–
105 cells so that we work with 104–106 walkers in
one numerical “experiment”.

The walkers perform an off-lattice random walk
on a plane within an envelope representing the
boundary of the wetting fluid. This envelope is
defined on the same triangular lattice where the
diffusion equations are solved. To incorporate the
swimming of the bacteria into the model, each of
the active walkers (motile and metabolizing, as de-
scribed below) moves a step of size d at a random
angle Θ at each time step. Starting from location
ri, it attempts to move to a new location r′i given
by:

r′i = ri + d(cos Θ, sin Θ) . (1)

If r′i is outside the envelope, the walker does not
move. A counter on the segment of the envelope
which would have been crossed by the movement
form ri to r′i is increased by one. When the seg-
ment counter reaches a specified number of hits Nc,
the envelope propagates one lattice step and an ad-
ditional lattice cell is added to the colony. This
requirement of Nc hits represents the colony propa-
gation through wetting of unoccupied areas by the
bacteria. Note that Nc is related to the agar dry-
ness, as more wetting fluid must be produced (more
“collisions” are needed) to push the envelope on a
harder substrate.

Motivated by the existence of a maximal growth
rate of the bacteria even in optimal conditions, each
walker in the model consumes food at a constant
rate Ωc if sufficient food is available. We repre-
sent the metabolic state of the ith walker by an
“internal energy” Ei. The rate of change of the
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internal energy is given by

dEi
dt

= κCconsumed −
Em
τR

(2)

where κ is a conversion factor from food to inter-
nal energy (κ ∼= 5 ·103 cal/g) and Em represents the
total energy loss for all processes over the reproduc-
tion time τR, excluding energy loss for cell division.
Cconsumed is Cconsumed ≡ min(ΩC ,Ω

′
C), where Ω′C is

the maximal rate of food consumption as limited by
the locally available food.9 When sufficient food is
available, Ei increases until it reaches a threshold
energy. Upon reaching this threshold, the walker di-
vides into two. When a walker is starved for a long
interval of time, Ei drops to zero and the walker
“freezes”. This “freezing” represents the entry into
a pre-spore state (starting the process of sporula-
tion, see Sec. 5).

We represent the diffusion of nutrients by solv-
ing a diffusion equation for a single agent whose

concentration is denoted by n(r, t):

∂n

∂t
= Dn∇2C − bCconsumed (3)

where the last term includes the consumption of
food by the walkers (b is their density). The equa-
tion is solved on the tridiagonal lattice. The simu-
lations are started with inoculum of walkers at the
center and a uniform distribution of the nutrient.

Results of numerical simulations of the model are
shown in Figs. 3 to 5. As in the case of real bacterial
colonies, the patterns are compact at high nutrient
levels. With decreasing food levels, the patterns
become less ordered and their fractal dimension de-
creases. For a given nutrient level, the patterns are
more ramified with decreasing fractal dimension as
the agar concentration increases. The results shown
in Fig. 3 capture some features of the experimen-
tally observed patterns. However, at this stage the
model does not account for some critical features,

Fig. 3 Colonial pattern of CWm. Here Nc = 20 and n0 is 6, 8, 10 and 30 from left to right respectively.

Fig. 4 Fractal dimension and growth velocity as a function of initial food concentrations. The data are for typical runs of
CWm. The growth velocity is presented in arbitrary units.
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Fig. 5 Closer look on simulated colonies. On the right: a
tip of a branch in a run of CWm. The boundary of the branch
and walkers can be seen. On the left: lubrication at a tip of a
branch in LBm. The boundary of the branch is a singularity
line, where the spatial derivative are discontinuous.

such as the ability of the bacteria to develop or-
ganized patterns at very low nutrient levels. Ben–
Jacob et al.5,35–37 suggested that chemotactic sig-
naling must be included in the model to produce
these features (see Sec. 5).

3. A LAYER OF LUBRICATION

The Lubricating Bacteria model (LBm) is a reac-
tion-diffusion model for the bacterial colonies.18,19

This model includes four coupled fields. One field
describes the bacterial density b(x, t), the second
describes the height of lubrication layer in which
the bacteria swim l(x, t), the third describes the
nutrient n(x, t) and the fourth is the stationary bac-
teria that “freeze” and begin to sporulate s(x, t)
(see Sec. 5).

The dynamics of the bacterial field b consists
of two parts; a diffusion term which is coupled
to the lubrication field and represents movement,
and a reaction part which is coupled to the nutri-
ent field and contains terms for reproduction and
sporulation. Following the same arguments pre-
sented for CWm, we get a reaction term of the
form (κbmin(ΩC , n)−Emb/τR). Assuming that the
nutrient is always the factor limiting the bacterial
growth, we get, upon rescaling, the growth term
bn− µb (µ constant).

We now turn to the bacterial movement. In a uni-
form layer of liquid, bacterial swimming is a random
walk with variable step length and can be approxi-
mated by diffusion. The layer of lubrication is not
uniform, and its height affects the bacterial move-
ment. An increase in the amount of lubrication de-

creases the effective friction between the bacteria
and the agar surface. The term “friction” is used
here in a very loose manner to represent the total
effect of any force or process that slows down the
bacteria. As the bacterial motion is over-damped,
the local speed of the bacteria is proportional to the
self-generated propulsion force divided by the fric-
tion. It can be shown that variation of the speed
leads to variation of the diffusion coefficient, with
the diffusion coefficient proportional to the speed
to the power of two. We assume that the friction
is inversely related to the local lubrication height
through some power law: friction∼ lγ and γ < 0.
We get an expression for the bacterial flux:

Jb = −Dbl
−2γ∇b . (4)

The lubrication field l is the local height of the
lubrication fluid on the agar surface. Its dynamics
is given by:

∂l

∂t
= −∇ · Jl + Γbn(lmax − l)− λl (5)

where Jl is the fluid flux (to be discussed), Γ is the
production rate and λ is the absorption rate of the
fluid by the agar. λ is inversely related to the agar
dryness.

The fluid production is assumed to depend on
the bacterial density. As the production of lubri-
cation probably demands substantial energy, it also
depends on the nutrient’s level. We assume the sim-
plest case where the production depends linearly
on the concentrations of both the bacteria and the
nutrient.

The lubrication fluid flows by diffusion and by
convection caused by bacterial motion. A sim-
ple description of the convection is that as each
bacterium moves, it drags along with it the fluid
surrounding it. The diffusion term of the fluid is
assumed to depend on the height of the fluid to the
power η > 0 (the nonlinearity in the diffusion of
the lubrication, a very complex fluid, is motivated
by hydrodynamics of simple fluids):

Jl = −Dll
η∇l + jJb (6)

where Dl is a lubrication diffusion constant, Jb
is the bacterial flux and j is the amount of fluid
dragged by each bacterium. The nonlinearity in the
diffusion term causes the fluid field to have a sharp
boundary (singular line) at the front of the colony,
as is observed in the bacterial colonies (Fig. 5).



240 I. Cohen et al.

The complete model for the bacterial colony is:

∂b

∂t
= Db∇ · (l−2γ∇b) + bn− µb

∂n

∂t
= Dn∇2n− bn

∂l

∂t
= ∇ · (Dll

η∇l + jDbl
−2γ∇b)

+ Γbn(lmax − l)− λl
∂s

∂t
= µb .

(7)

The second term in the equation for b represents
the reproduction of the bacteria. The reproduc-
tion depends on the local amount of nutrient and
it reduces this amount. The third term in the
equation for b represents the process of bacterial
“freezing”. For the initial condition, we set n to
have uniform distribution of level n0, b to have
compact support at the center, and the other fields
to be zero everywhere.

Preliminary results show that the model can re-
produce branching patterns, similar to the bacterial
colonies (Fig. 6). At low values of absorption rate,
the model exhibits dense fingers. At higher absorp-
tion rates, the model exhibits finer branches with

lower fractal dimension (Fig. 7). We also obtain
finer branches with lower fractal dimension if we
change other parameters that effectively decrease
the amount of lubrication. We can relate these con-
ditions to high agar concentration. Comparing the
fractal dimension and growth velocity of the simula-
tions of LBm to those of CWm (Fig. 4), it seems as
if the Communicating Walkers simulations are done
for a narrower range of initial food concentration.
Note, however, that at the lowest concentrations the
patterns of the bacterial colonies are dominated by
additional effects (see Sec. 5) and both models must
be modified to accommodate these effects.

We can now check the effect of bacterial discrete-
ness on the observed colonial patterns. Following
Kessler and Levine,31 we introduce the discreteness
of the system into the continuous model by repress-
ing the growth term at low bacterial densities (“half
a bacterium cannot reproduce”). The growth term
is multiplied by a Heaviside step function Θ(b−β),
where β is the threshold density for growth. In
Fig. 8, we show the effect of various values of β
on the pattern. High cutoff values make the model
more sensitive to the implicit anisotropy of the un-
derlying tridiagonal lattice used in the simulation.
The result is dendritic growth with marked six-fold

Fig. 6 Growth patterns of LBm, for different values of initial nutrient level n0 (printed at the bottom of the columns), and
different values of the parameters Db and λ. The different sets of values for these later parameters are related to different
values of agar concentration, with lowest concentration at the bottom row. The apparent (though weak) six-fold anisotropy
is due to the underlying tridiagonal lattice. The different colors represent different densities of bacteria, both active and
stationary, i.e. different values of b+ s.
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Fig. 7 Fractal dimension and growth velocity as a function of initial food concentrations. The data are for typical runs of
LBm with parameters as in the middle row of Fig. 6. The growth velocity is presented in arbitrary units.

Fig. 8 The effect of a cutoff on the growth patterns in LBm. Aside from the cutoff, the conditions and parameters are the
same in all patterns. In such conditions, the maximal value of b is about 0.025. The values of the cutoff β are, from left to
right, 10−6, 10−5 and 3 · 10−5. The six-fold symmetry is due to anisotropy of the underlying lattice which is enhanced by
the cutoff.

symmetry of the pattern. Increased values of cut-
off also decrease the maximal values of b reached in
the simulations (and the total area occupied by the
colony).

The reason for the pattern turning dendritic is as
follows: the difference between tip-splitting growth
and dendritic growth is the relative strength of
the effect of anisotropy and an effective surface
tension.4 In LBm, there is no explicit anisotropy
and no explicit surface tension. The implicit
anisotropy is related to the underlying lattice, and
the effective surface tension is related to the width
of the front. The cutoff prevents the growth at the
outer parts of the front, thus making it thinner, re-
duces the effective surface tension and enables the
implicit anisotropy to express itself.

We stress that it is possible to find a range of pa-
rameters in which the growth patterns resemble the
bacterial patterns, in spite of a high value of cutoff.
Yet the cutoff does not improve the model in any

sense, it introduces an additional parameter, and it
slows the numerical simulation. We believe that the
well-defined boundary makes the cutoff (as a repre-
sentation of the bacterial discreteness) unnecessary.

4. NON-LINEAR DIFFUSION

It is possible to introduce a simplified model, where
the fluid field is not included, and is replaced by a
density-dependent diffusion coefficient for the bac-
teria Db ∼ bk.9,38 Such a term can be justified by a
few assumptions about the dynamics at low bacte-
rial and lubrication densities:

(a) The production of lubricant is proportional to
the bacterial density to the power α > 0 (α = 1
in the previous model).

(b) There is a sink in the equation for the time
evolution of the lubrication field, e.g. absorp-
tion of the lubricant into the agar. This sink
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is proportional to the lubrication density to the
power β > 0 (β = 1 in the previous model).

(c) Over the bacterial length scale, the two pro-
cesses above are much faster than the diffusion
process, so the lubrication density is propor-
tional to the bacterial density to the power of
β/α.

(d) The friction is proportional to the lubrication
density to the power γ < 0.

Given the above assumptions, the lubrication field
can be removed from the dynamics and be replaced
by a density-dependent diffusion coefficient. This
coefficient is proportional to the bacterial density
to the power k ≡ −2γβ/α > 0.

A model of this type, the Non-Linear Diffusion
model (NLDm) was offered by Kitsunezaki15 and
by Cohen:38

∂b

∂t
= ∇ · (D0b

k∇b) + nb− µb (8)

∂n

∂t
= ∇2n− bn (9)

∂s

∂t
= µb . (10)

For k > 0, time evolution of the model in 1-D gives
rise to a front “wall”, with compact support (i.e.
b = 0 outside a finite domain). For k > 1, this

Fig. 9 Growth patterns of the NLD model, for different values of initial nutrient level n0. Parameters are: D0 = 0.1, k = 1
and µ = 0.15. The apparent six-fold symmetry is due to the underlying tridiagonal lattice. The different colors represent
different values of the combined field b+ s.

Fig. 10 Growth patterns of the NLD model, with varying values of µ. All other parameters are as in Fig. 9, left pattern.
The apparent six-fold symmetry is due to the underlying tridiagonal lattice.
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n0=2.0

Fig. 11 Growth patterns of the NLDm, with a cutoff cor-
rection. Cutoff value β = 0.1, all other parameters as in
Fig. 9, right pattern. The apparent six-fold symmetry is due
to the underlying tridiagonal lattice.

wall has an infinite slope. The model exhibits
branching patterns for suitable parameter values
and initial conditions, as depicted in Fig. 9. In-
creasing the initial nutrient level makes the colonies
more dense, similarly to what happens in the other
models.

Changes in other parameters of the model can
result in similar changes in the pattern. In Fig. 10,
we present the effect of µ, the rate in which the
bacteria turn stationary. Two strains of the bacte-
ria which differ only in their corresponding values
of µ can have different colonial patterns at the same
growth conditions, but similar patterns in different
growth conditions. In Ref. 39, we discuss the rela-
tion between variations in the model’s parameters,
bacterial strains and developing patterns.

As in LBm, adding the “Kessler and Levine
correction” to the model, i.e. making the growth
term vanish for b < β, does not seem to make
the patterns “better”, or closer to the experimental
observations (Fig. 11). The apparent increased sen-
sitivity to the implicit anisotropy results from the
narrowed front, which decreases the effective surface
tension.

5. CHEMOTAXIS

So far, we have tested the models for their abil-
ity to reproduce macroscopic patterns and micro-
scopic dynamics of the bacterial colonies. All suc-
ceeded equally well, reproducing some aspects of
the microscopic dynamics and the patterns in some
range of nutrient level and agar concentration. How-
ever, the same results can be obtained with other
models (Ref. 19 and references therein). We will
now extend CWm and NLDm to test for their
success in describing other aspects of the bacte-

rial colonies involving chemotaxis and chemotac-
tic signaling (which are believed to by used by the
bacteria5,35–37). Chemotaxis means changes in the
movement of the cell in response to a gradient of
certain chemical field.40–43 The movement is biased
along the gradient either in the gradient direction or
in the opposite direction. Usually chemotactic re-
sponse means a response to an externally produced
field, like in the case of chemotaxis towards food.
However, the chemotactic response can also be to
a field produced directly or indirectly by the bacte-
rial cells. We will refer to this case as chemotactic
signaling. The bacteria sense the local concentra-
tion r of a chemical via membrane receptors binding
the chemical’s molecules.40,42 It is crucial to note
that when estimating gradients of chemicals, the
cells actually measure changes in the receptors’ oc-
cupancy and not in the concentration itself. When
put in continuous equations,19,44 this indirect mea-
surement translates to measuring the gradient

∂

∂x

r

(K + r)
=

K

(K + r)2

∂r

∂x
(11)

where K is a constant whose value depends on the
receptors’ affinity, the speed in which the bacterium
processes the signal from the receptor, etc. This
means that the chemical gradient times a factor
K/(K + r)2 is measured. This factor is known as
the “receptor law”.44

When modeling chemotaxis performed by walk-
ers, it is possible to modulate the periods between
tumbling (without changing the speed) in the same
way as the bacteria. It can be shown that step
length modulation has the same mean effect as
keeping the step length constant and biasing the
direction of the steps (higher probability to move
in the preferred direction). As this later approach
is numerically simpler, this is the one implemented
in CWm.

In a continuous model, we incorporate the ef-
fect of chemotaxis by introducing a chemotactic flux
Jchem:

Jchem ≡ ζ(σ)χ(r)∇r (12)

χ(r)∇r is the gradient sensed by the cell (with χ(r)
having the units of 1 over chemical’s concentration).
χ(r) is usually taken to be either constant or the
“receptor law”. ζ(σ) is the bacterial response to
the sensed gradient (having the same units as a dif-
fusion coefficient). In NLDm, the bacterial diffu-
sion is Db = D0b

k, and the bacterial response to
chemotaxis is ζ(b) = ζ0b(D0b

k) = ζ0D0b
k+1. ζ0 is
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Fig. 12 The effect of chemotaxis on the growth in CWm. Growth conditions and model’s parameters are the same in all
patterns, excluding parameters related to chemotaxis. The different colors represent different growth times, and indicate the
speed of colonial growth. In the center: a typical colony without chemotaxis. On the left: chemotaxis towards food is included
in the model. The growth velocity is almost doubled, but the pattern is essentially unchanged by food chemotaxis. On the
right: repulsive chemotactic signaling is included in the model. The pattern is of fine radial branches with circular envelope,
like the bacterial colony presented in Fig. 1, left pattern.

Fig. 13 Growth patterns of NLDm with food chemotaxis
(left) and repulsive chemotactic signaling (right) included.
For food chemotaxis χ0 = 3. For repulsive chemotactic sig-
naling χ0 = −1, Dr = 1, Γr = 0.25, Ωr = 0 and Λr = 0.001.
Other parameters are the same as in Fig. 9, middle pattern.
The apparent six-fold symmetry is due to the underlying
tridiagonal lattice.

a constant, positive for attractive chemotaxis and
negative for repulsive chemotaxis.

Ben-Jacob et al. argued5,35–37 that for the colo-
nial adaptive self-organization, the bacteria employ
three kinds of chemotactic responses, each domi-
nant in different regimes of growth conditions. One
response is the food chemotaxis mentioned above.
It is expected to be dominant for an intermedi-
ate range of nutrient levels (see the “receptor law”
above). The other two kinds of chemotactic re-
sponses are signaling chemotaxis. One is long-range
repulsive chemotaxis; the repelling chemical is se-
creted by starved bacteria at the inner parts of the
colony. The second signal is a short-range attrac-
tive chemotaxis (this signal will not be discussed
here). The length scale of each signal is determined
by the diffusion constant of the chemical agent and
the rate of its spontaneous decomposition.

Amplification of Diffusive Instability Due to Nu-
trients Chemotaxis: In non-living systems, more
ramified patterns (lower fractal dimension) are ob-
served for lower growth velocity. Based on growth
velocity as function of nutrient level and on growth
dynamics, Ben-Jacob et al.11 concluded that in the
case of bacterial colonies there is a need for a mech-
anism that can both increase the growth velocity
and maintain, or even decrease, the fractal dimen-
sion. They suggested food chemotaxis as the re-
quired mechanism. It provides an outward drift to
the cellular movements; thus, it should increase the
rate of envelope propagation. At the same time,
being a response to an external field it should also
amplify the basic diffusion instability of the nutri-
ent field. Hence, it can support faster growth veloc-
ity together with a ramified pattern of low fractal
dimension.

The above hypothesis was tested in CWm and
in NLDm. In Figs. 12 and 13 it is shown that as
expected, the inclusion of food chemotaxis in both
models led to a considerable increase of the growth
velocity without significant change in the fractal di-
mension of the pattern.

Repulsive chemotactic signaling: We focus now
on the formation of the fine radial branching pat-
terns at low nutrient levels. From the study of non-
living systems, it is known that in the same manner
that an external diffusion field leads to the diffu-
sion instability, an internal diffusion field will stabi-
lize the growth. It is natural to assume that some
sort of chemotactic agent produces such a field. To
regulate the organization of the branches, it must
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be a long-range signal. To result in radial branches
it must be a repulsive chemical produced by cells
at the inner parts of the colony. The most proba-
ble candidates are the bacteria entering a pre-spore
stage.

If nutrient is deficient for a long enough time,
bacterial cells may enter a special stationary state
— a state of a spore — which enables them to sur-
vive much longer without food. While the spores
themselves do not emit any chemicals (as they have
no metabolism), the pre-spores (sporulating cells)
do not move and emit a very wide range of waste
materials, some of which are unique to the sporulat-
ing cell. These emitted chemicals might be used by
other cells as a signal carrying information about
the conditions at the location of the pre-spores.
Ben-Jacob et al.11,36,45 suggested that such mate-
rials are repelling the bacteria (“repulsive chemo-
tactic signaling”) as if they escape a dangerous
location.

The equation describing the dynamics of the
chemorepellent contains terms for diffusion, produc-
tion by pre-spores, decomposition by active bacteria
and spontaneous decomposition:

∂r

∂t
= Dr∇2r + Γrs− Ωrbr − λrr (13)

where Dr is the diffusion coefficient of the chemore-
pellent, Γr is the emission rate of repellent by
pre-spores, Ωr is the decomposition rate of the re-
pellent by active bacteria, and λr is the rate of
self-decomposition of the repellent. In CWm, b
and s are replaced by active and inactive walkers,
respectively.

In Figs. 12 and 13, the effect of repulsive chemo-
tactic signaling is shown. In the presence of re-
pulsive chemotaxis, the patterns in both models
become much denser with a smooth circular enve-
lope, while the branches are thinner and radially
oriented.

6. CONCLUSIONS

We show here a pattern-forming system, bacterial
colony, whose discrete elements, the bacteria, are
big enough to raise the question of modeling discrete
systems. We study two types of models. The CWm
has explicit discrete units to represent the bacte-
ria. The ratio between the walkers’ size and the
pattern’s size is even bigger than the analog ratio
in the bacterial colony. The second type of model

is continuous reaction-diffusion equations. Non-
constant diffusion coefficient causes a sharp bound-
ary to appear in these models. Following Kessler
and Levine,31 we account for the discreteness of
the bacteria by including a cutoff in the bacterial
growth term. The cutoff does not improve the mod-
els’ descriptive power. The main effect of such a
cutoff is to decrease the width of the colony’s front,
making the growth pattern more sensitive to effects
such as implicit anisotropy. We conclude that the
presence of a boundary cancels the need for explicit
treatment of discreteness.

In order to assess the similarity between the
semi-discrete CWm and the continuous NLDm, we
incorporate food chemotaxis and repulsive chemo-
tactic signaling into the models (both are expected
to exist in the bacterial colonies). Both models re-
spond to such changes in the same way, exhibiting
altered patterns and altered dynamics, similar to
those observed in the bacterial colonies. From this
similarity, we conclude that to some extent infer-
ences from one model can be applied to the other.
Specifically, we focus on insensitivity of CWm to
implicit anisotropy and on the sensitivity a cutoff
imposes on the continuous models. From the two
facts combined, we conclude that the magnified dis-
creteness in the CWm is still small enough to be
neglected.

Increasing number of pathogenic bacteria are
developing resistance to all existing commercial an-
tibiotics. As the bacteria develop antibiotic re-
sistance at a higher rate than scientists develop
new drugs, the deficiency in reliable anti-microbial
“magic drug” becomes a severe health problem
(Ref. 46 and references therein) (see also the UN’s
World Health Report 199647). To reverse this
course of events, scientists have to “outsmart” bac-
teria by taking new avenues of study that will
lead to the development of novel therapeutic strate-
gies to fight them. There is a growing recogni-
tion of bacterial communication and cooperation
as having a major role in bacterial behavior, in-
cluding pathogenicity (D. G. Davies et al.48 are
attempting to reduce the pathogenicity of Pseu-
domonas aeruginosa by interfering with intercellu-
lar communication).

Generic models like those presented here may
lead to new insights into the effects of antibiotics on
bacterial colonies and into cooperative resistance to
antibiotics. For example, an important issue related
to resistance acquisition is the effect of non-lethal
concentrations of antibiotics on the bacteria. A
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naive assumption would be that antibiotics simply
reduce the vitality of the bacteria, causing them
to die faster (or become stationary, in the case of
growth-inhibiting antibiotics). This assumption can
be easily tested in the model by increased values of
µ. Comparison of Fig. 10 to experiments shows that
the case is rarely as simple as that. Elsewhere,49 we
present a study of the effect of different antibiotics
on bacterial colonies.
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T. Vicsek, “Cooperative Formation of Chiral Pat-
terns During Growth of Bacterial Colonies,” Phys.
Rev. Lett. 75(15), 2899–2902 (1995).

13. K. Kawasaki, A. Mochizuki, M. Matsushita,
T. Umeda and N. Shigesada, “Modeling Spatio-
Temporal Patterns Created by Bacillus-Subtilis,”
J. Theor. Biol. 188, 177–185 (1997).

14. E. Ben-Jacob, I. Cohen, A. Czirók, T. Vicsek
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