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Abstract 
Planetary rovers arriving at a new site may only 

have time to deploy contact instruments at a few selected 
locations before the mission must progress to the next 
locale.  Since the number of command cycles is limited, 
operators typically script entire measurement sequences 
in advance.  Onboard data analysis can improve the 
quality of these measurements by reacting immediately 
to collected data and optimizing the measurement 
sequence on the fly.  Here we present a method by 
which a smart arm-mounted contact instrument can 
improve the efficiency of transect and raster patterns, 
selectively sampling from distinctive materials instead of 
distributing its time budget evenly across repetitive 
points. We focus on the specific case of contact 
measurements for x-ray fluorescence spectroscopy.  
Simulated and laboratory experiments demonstrate 
significant improvements in science data yield. 

1 Introduction 

Planetary surface survey missions generally face 
challenging time constraints.  Rovers with contact 
instruments may only be able to measure a few targets at 
each site before the mission must progress to its next 
locale. On Earth, field geologists faced with time 
pressure would use fast exploratory measurements to 
find the important targets and focus their 
study.  However, this is not always possible for 
planetary rovers; the number of command cycles at each 
site is limited, and entire measurement sequences are 
often scripted in advance.  This can lead to redundancies 
or gaps in data collection, particularly for instruments 
with long integration times such as the Alpha Particle 
X-Ray Spectrometer (APXS) [Rieder et al., 2003] or 
Dynamic Albedo of Neutrons (DAN) [Litvak et al. 
2008].  Without knowing which features will be most 
interesting, missions must compromise and use shorter 
integration times over more sample sites, reducing 
sensitivity.  If deployed in transect or raster patterns, the 
sampled area must provide a margin around the targets of 
interest to accommodate uncertain instrument pointing. 
Moreover, there is a trend of higher spatial resolution 

measurements that co-locate compositional data with 
small-scale textures, fabrics, and structures in the rock 
[Wade et al. 2012].  High spatial resolution provides 
valuable contextual information for interpreting potential 
biosignatures, but makes efficient sample allocation even 
more critical. 

In these scenarios, instrument autonomy can improve 
data quality by reacting immediately to data and adapting 
the measurement sequence [Smith et al. 2007, Thompson 
et al. 2013].  This paper describes a method for onboard 
data analysis that can immediately recognize distinctive 
units from instrument data.  It allocates integration time 
to favor a representative sampling rather than evenly 
distributing observation time across many repetitive 
points.  This can achieve a significant improvement in 
time efficiency while approaching the fidelity and 
science value of exhaustive measurements. 

We focus our study on contact instruments, with a 
case example of x-ray fluorescence spectroscopy 
[Hodyss et al. 2012, Wade et al. 2012].  We consider the 
Planetary Instrument for X-Ray Lithochemistry (PIXL) 
that demonstrates a well-defined tradeoff between 
sampling time and measurement accuracy.  PIXL is a 
rover arm-mounted spectrometer proposed for future 
rover missions such as a Mars 2020 rover.  Placed next 
to the target, it excites the surface with x-rays producing 
a fluorescence spectrum that indicates elemental 
composition.  Uniquely among flight instruments, PIXL 
incorporates a source-ray focusing optic with very high 
spatial resolution.  Rovers can deploy it with multiple 
acquisitions in transects or grid patterns to generate fine 
scale elemental maps.  Integration times can vary from a 
few seconds to a minute or longer.  One second is 
sufficient for a quick scan of major elements [Hodyss et 
al. 2012], while longer integrations provide accurate 
compositional information for trace element analysis. 

Our adaptive data collection approach is based on 
unsupervised machine learning principles that recognize 
distinctive materials and modify the integration 
time.  This provides a survey map indicating major 
compositional units, with at least one authoritative long 
integration for each type.   We have implemented the 
algorithm in the instrument control software for the 
PIXL breadboard instrument, where it has proven 
effective in laboratory demonstrations.  



We begin with a discussion of the instrument and an 
adaptive sampling methodology based on principles of 
vector quantization.  We then describe the experimental 
approach and results.  Tests on heterogeneous “worst 
case” samples have achieved 60% reductions in the 
number of long integrations.  We find an even larger 
savings for homogeneous samples.  This simple 
approach is easy to implement in embedded processors 
and applies to a wide range of planetary exploration 
instruments.  We will continue to test this method as a 
component of the control strategy.  We conclude with a 
discussion of other instrument platforms that could 
benefit from this approach, and of future development. 

2 Micro-XRF instrument and datasets 

PIXL is a high spatial resolution X-ray fluorescence 
(Micro-XRF) instrument that measures a rock’s 
elemental composition by exciting the target with a 
known source and analyzing the resulting 
fluorescence.  Its spatial resolution of 100 microns can 
analyze features as small as individual laminae or sand 
grains [Wade et al. 2012].   The physical instrument 
consists of an emitter/detector pair placed within a few 
millimeters of the target.  It is actuated to translate the 
field of view horizontally.  The entire instrument can 
mount on a motorized end-effector providing a second 
degree of freedom, enabling full 2D mapping.  

Figure 1 shows two typical spectra from the 
instrument. Peaks at different energy levels indicate the 
relative abundance of different bulk and trace 
elements.    The precise relationship between peak 
height and elemental composition is subtle, but broadly 
speaking a change in peak height indicates a measurable 
difference in the material being measured.  As the 
integration time increases, the number of counts in each 
energy level grows causing the peaks to become more 
distinct and reducing noise.  The peaks can be modeled 
with high precision, enabling very accurate 
determination of trace elemental compositions. 

 

 
Figure 1: Example spectra acquired from two different 
materials in the same sample (log counts are shown). 

 

 
Figure 2: Reduction spot image and transect.  

 
We simulated adaptive sampling performance with 

two samples of different complexity.  Figure 2 shows 
the first dataset that was collected from an altered 
Neoproterozoic sandstone [Parnell 2014]. The concentric 
rings of alteration are visible in the center of the image as 
a “reduction spot”, a potential microbial biomarker 
[Spinks et al. 2010]. We acquired a sequence of 130 
x-ray spectra indicated in the image by the white line.  
It transected at least three zones: (1) the unaltered red 
(ferric) sandstone, (2) the light-colored outer zone of 
alteration, and (3) the dark-colored, Vanadium- and 
Copper-rich interior of the reduction spot.  

Figure 3 shows a more complex sample: a polymictic 
conglomerate consisting of many different materials in 
close spatial proximity.  We analyzed a vertical transect 
of this “mud conglomerate”, indicated here by the white 
vertical line. This transect has 180 spectra. In the image, 
four numbers indicate distinctive surface features: (1) a 
silicified sandstone conglomerate with diverse clasts; (2) 
a silicified tuffaceous mudstone containing fuchsite, (3) a 
heterogeneous vein structure, enriched in Titanium and 
other elements; and (4) a Fe/Mn carbonate alteration.  
Figure 4 shows two elemental maps resulting from a 
complete raster of the sample at full spatial 
resolution.  The sample surface is heterogeneous, with 
isolated reduction spots having higher iron and titanium 
concentrations.  The maps correlate these compositional 
variations with meso-scale textural differences visible in 
sample. While such products are powerful tools for 
planetary exploration, they require thousands of 
integrations at up to a minute per location; this limits 
their use to selected sites of greatest scientific interest. 



 

 
Figure 3: “Mud conglomerate” image and transect. 
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Figure 4: Elemental maps of Fe and Ti from the mud 

conglomerate sample 

3 Adaptive sampling method 

  This section describes an adaptive sampling approach 
that can provide high spectral fidelity at a few selected 
locations without the time cost of an exhaustive map. 
Our method rests on a simple but intuitive distinction 
between rough classification (for which a short 
integration is sufficient) and accurate  compositional 
analysis (which requires a long integration for optimal 
SNR). We assume spectral datapoints are presented one 
at a time to the instrument. With each new datapoint, an 
irrevocable decision must be made about whether to 
linger for a long integration or to proceed to the next 
location.  The objective is that all survey points be 
sufficiently similar to at least one representative long 
dwell spectrum, with similarity defined according to a 
meaningful spectral distance measure.  This ensures 
sufficient data to perform a full compositional analysis 
for each distinct material.  
  We begin the analysis by transforming the spectrum 
into a vector of elemental peak heights, a ∈ ℝn. Each 
entry represents the sum of detector counts over a 
relevant interval, normalized to the silicon band.  The 
normalization scales values to manageable ranges, 
controls for variable integration times, and also accounts 
for minor changes in sensitivity across 
acquisitions.  Silicon is typically the dominant element, 
so this normalization also brings the entire vector closer 
to a measurement of fractional composition.   
  Each transect consists mainly of short “survey” points 
A = {a1 … an}, but some subset of these will also be 
“long dwell” points B = {b1 … bm} B ⊆ A.  Selection of 
long dwell points is tantamount to a vector quantization 
problem from signal compression, in which a small 
number of complete template vectors b stand in for the 
complete signal elsewhere. We define a distance measure 
as a simple Euclidean metric with an isotropic rescaling 
of dimensions by a vector w of nonnegative length 
scales.  This yields the following global cost function: 

L(B) = supa(minx∈B | wTa - wTx |2 ) + C(B)    (1) 

This expression has two terms.  The first represents the 
maximum distortion: the maximum spectral distance 
between any collected datapoint and its most similar long 
dwell spectrum. The term on the right is a cost function 
that increases monotonically with the number of long 
dwell datapoints B.  We use a simple iterative algorithm 
that dates at least to the early vector quantization studies 
of [Paul 1983].  The instrument maintains a library of 
all long dwell spectra collected during the transect. At 
each new survey point, it measures the weighted 
distances between the new spectrum a and each library 



spectrum b.  Distances exceeding a predefined threshold 
T trigger a new long integration.  In this way, the library 
grows to ensure that the left term of Equation 1 remains 
bounded.  If collecting a new long integration would 
cause the instrument to exceed its total time allocation 
for the transect, it forgoes all further long integrations 
and finishes the remainder of its sequence.  Algorithm 1 
below shows the entire procedure.  It requires only a 
handful of floating point operations and is suitable for an 
embedded instrument processor.  
 
Input: peak weight coefficients w ∈ ℝn,  
      total budget M for long integrations,  
      distance threshold T 
Output: survey spectra A,  
       long dwell spectra B 
 
A,B ← {} 
While the transect is not finished 
   acquire a short survey spectrum a  
   A ← A ∪ a 
   If M > |B| and minx∈B |wt a - wTx|2 > T 
      acquire a long integration spectrum b 
      B ← B ∪ b 

Algorithm 1: Online adaptive sampling  
 
  Operators can alter the system behavior in several 
ways.  First, they can change T to adjust the rate of data 
collection.  This value determines the tolerance for 
triggering long integrations.  Second, they can impose a 
time budget M as a final check to ensure that the system 
does not exceed its total resource allotment under any 
circumstances. Finally, operators can alter the weight 
vector w in order to emphasize or de-emphasize specific 
elements.  In practice it might be simpler to set channel 
weighting factors using a representative training set of 
similar library samples or prior measurements from a 
nearby locale.  For this work we compile at least 50 
spectra from a prior dataset, and use the inverse standard 
deviations of the vector elements in that population as 
weighting coefficients.  This ensures that all the values 
are scaled to an appropriate order of magnitude. 
  Note that the adaptive algorithm triggers based on a 
distance threshold; this has the effect of bounding the 
maximum distortion. There are alternative objective 
functions from the vector quantization literature such as 
the mean square distortion, which might favor different 
trigger criteria.  Additionally, other distance measures 
are possible such as a full covariance matrix in lieu of 
isotropic weights.  That would entail a Mahalanobis 
distance formulation.  We refer the reader to more 
canonical texts on vector quantization [Makhoul et al. 

1985] for a comprehensive discussion of these 
alternatives.   
  Figure 5 illustrates this process visually for the mud 
conglomerate sample, using just two channels: an iron 
channel and a titanium channel.  Most datapoints crowd 
near the origin. but there are also sparse clouds of 
outliers having elevated levels of each element.  The 
cloud at the top of the plot corresponds to region (4) of 
Figure 4. The two points at right lie on the titanium 
enriched veins of region (2). Here for illustrative 
purposes we use a strict threshold causing the adaptive 
sampling to select just four points.  It selects follow up 
points that are evenly spaced within the 2D space defined 
by these axes.  In this way both veins and iron 
alterations are sampled preferentially. 
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Figure 5: Adaptive sampling of the mud conglomerate 
sample, illustrated for just two elements. 

4 Experimental results 

We applied adaptive and evenly-spaced sampling 
methods to the reduction spot and mud conglomerate 
datasets.  We simulated data collection by presenting 
each datum sequentially to a virtual instrument, and 
recording those selected for followup.  Figure 6 shows 
simulated performance for the reduction spot sample, in 
terms of the maximum distortion (the largest weighted 
Euclidean distance from a short spectrum to its nearest 
long integration).  We calculated distortion scores with 
the same weighting coefficients used for sampling. The 
image shows simulation trials as red and blue circles, 
with trend lines given by locally linear smoothing.  For 



very dense transects with many samples, an evenly 
spaced transect approaches the performance of adaptive 
sampling.  However, for a fixed number of spectra, 
distortions using adaptive sampling are typically half 
those of evenly spaced spacing.  It takes less than 20 
spectra for adaptive sampling to achieve the fidelity of 
100 evenly spaced samples. 
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Figure 6 Simulated performance on the reduction spot 
dataset. 
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Figure 7: Simulated performance on mud conglomerate 
dataset. 
 
  Figure 7 shows the performance for the mud 
conglomerate sample.  Here adaptive sampling yields 
more significant benefits; just 6 long integrations provide 
better fidelity than the even sampling scheme achieves 
with over 100.  The adaptive sampling is also 

considerably more consistent. This is due to the presence 
of isolated structures - particularly veins, but also the 
iron alteration - that appear in just one or two locations 
and are difficult to hit by chance.  Any such unit that is 
ignored dominates the maximum distortion score, but the 
adaptive sampling typically finds them all. 
 

 
Figure 8: Real time adaptive sampling result from the 
laboratory breadboard instrument. 

 
Figure 9: Real time adaptive sampling result from the 
laboratory breadboard. 



  We also tested the adaptive control system in real time 
demonstrations using the PIXL breadboard instrument.  
We programmed Algorithm 1 into the control system and 
performed an adaptive transect of the reduction spot 
sample using 130 short survey spectra. We set weighting 
coefficients using standard deviations of a prior dataset 
from the same rock.  Figure 8 shows the result: the 
adaptive system triggers a long integration 17 times out 
of 130 opportunities.  There are a few initial triggers at 
the start of the transect, and some more the border of the 
light-colored alteration zone.  There is also a series of 
many consecutive triggers as the instrument crosses the 
inner alteration zone and a heterogeneous region on the 
opposite side.  After 75 spectra, the sample is 
adequately characterized and the system never performs 
another long integration.  This threshold achieves an 
87% savings in long integrations vis a vis exhaustive 
sampling. 
    We also evaluated performance for the more 
challenging mud conglomerate sample.  Here we tried 
two different thresholds to represent lenient and strict 
time constraints.  Each transect contained 40 short 
survey spectra.  Figure 9 shows the result.  The lenient 
threshold triggered a long integration 12 times, for a 70% 
reduction in long integrations, while still acquiring 
samples from all four units.  When using the strict 
threshold it triggered just 4 times for a dramatic 90% 
reduction, but it still acquired a long integration spectrum 
from all units except the silicified mudstone. It is 
possible that revising to the weighting vectors would 
recover samples from the fourth unit.  It is likely that 
more redundant sample patterns (such as denser transects 
or 2D maps) would glean additional time savings. 

5 Conclusions 

This work describes a method for adaptive sampling by 
an x-ray fluorescence instrument and reports on 
successful real time tests in a laboratory setting.  There 
are several obvious paths to refine these initial proofs of 
concept.  Potential enhancements include the use of 
learned Mahalanobis distance metrics to account for 
correlations in elemental compositions [Francis et al., 
2014].  Moving beyond spectral analysis, an even more 
powerful approach might be to target the instrument 
based on onboard analysis of the context image. The 
visual analysis could involve mapping specific visual 
surfaces as in [Bekker et al., 2014] or [Wagstaff et al., 
2013], or segmenting the image and identifying local 
anomalies as in [Thompson et al., 2013, Francis et al., 
2014].  While there is scope for further development, 
we believe the existing algorithm strikes a good balance 

of simplicity and flexibility to accommodate different 
measurement objectives.  It provides a palette of 
behaviors that operators can specify at command time to 
improve the efficiency and science yield of X-ray 
fluorescence spectrometers.  More generally, the 
method applies equally well to other operations 
scenarios, such as a multi-instrument system that uses 
a fast survey sensor to selectively deploy a second 
more costly measurement [Chien et al., 2014]. 
Adaptive instrumentation will be increasingly 
important as future missions continue to improve 
collected data volumes despite persistent limits on 
bandwidth and latency. 
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