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Abstract. Botnets such as Conficker and Torpig utilize high entropyalosifor fluxing and evasion.
Bots may query a large number of domains, some of which mhyrfahis paper, we present tech-
niques where the failed domain queries (NXDOMAIN) may bizedi for: (i) Speeding up the present
detection strategies which rely only on successful DNS dwnéi) Detecting Command and Con-
trol (C&C) server addresses through features such as teaipmrrelation and information entropy
of both successful and failed domains. We apply our teclenigwa Tier-1 ISP dataset obtained from
South Asia, and a campus DNS trace, and thus validate ouradethy detecting Conficker botnet IPs
and other anomalies with a false positive rate as low as 0.02ur technique can be applied at the
edge of an autonomous system for real-time detection.
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1 Introduction

Botnets have been used for spamming, phishing, DDoS (bBig&d Denial of Service) attacks. Some bot-
nets such as Kraken/Bobax, Torpig [8], and Conficker [6]izgifluxing techniques, where the domain
name of a C&C server changes rapidip(ain fluxing or the IP address for a domain name is alteted (
fluxing). To automate the domain name generation for fluxing, baingters rely on generating domain
names algorithmically. The domain names thus formed, cm®jf alphanumeric characters chosen ran-
domly, and which thus exhibit higimformation entropy As the domain names for the C&C servers are
short lived, and as only a fraction of this large set of dormamay be used for actual DNS use, blacklisting
techniques prove ineffective in countering such fluxingniets.

Reverse engineering of bot executables may yield the doraaime generation algorithm and subse-
guently the domain names that a bot may query in the futures&lilomain names may be blacklisted
or pre-registered in advance by security researchers. idilnaing botnets overcome this vulnerability
by choosing to generate a large number of names, where orlyw affthem may host the C&C server.
The large number of domain names is expected to overwhelpréisegistration by others and potentially
provide a cover for the actual name of the C&C server used &ptinet.

Botnets that employ domain fluxing can be characterized &ydhowing two important features: (a)
The alphanumeric distribution or entropy of the domain nafioe C&C servers is considerably different
from human generated names. (b) The bots generate many BEN& queries as many of the algorithmi-
cally generated domain names may not be registered or nidalaleaas C&C servers. We exploit these
two important properties to detect botnets with very lowetetty, where we define latency as the number of
domain names required for successful anomaly detectiothéaime taken to collect those domains).

With our approach, we analyze successful DNS queries, anfdilled DNS queries within the vicinity
of the successful queries, thus exploiting their featusest only detect the C&C servers of those botnets
faster, but also simultaneously detect bots within the ngtwwWhile our detection mechanism is designed
specifically to detect domain fluxing botnets by utilizing BN&ilures, previous approaches relying only
on domain entropy analysis can still be used in the eventtheat are no DNS failures. By analyzing
the failed queries along with the successful queries, weease the data available for analysis and hence
speed up the detection process. While our technique candekamine (or in real-time), we focus on a
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trace-driven evaluation methodology here to keep the egblen simpler. Additionally, our analysis is
based only on DNS network traffic, thereby reducing resoteqeirements, in comparison to techniques
relying on general network traffic analysis.

When individual clients/hosts query a resolver, the faigeries can potentially be attributed to the
presence of bots on that client and the successful quedss th the failures can be assumed to be related
with high confidence. However, when queries are forwardedresolver from another local resolver or a
DNS query aggregator, the queries from many clients can depgd together and relating failed queries
to other successful queries in the query stream becomesepmatic. Our approach is cognizant of this
difficulty and is capable of producing accurate results emghesence of aggregated query streams.

The main contributions of this work are:

e We utilize the failures around successful DNS queries aacttiropy of the domains belonging to such
queries, fodetectingootnets with lower latency compared to previous techniques

e \We propose and evaluatespeedingechnique which correlates DNS domain query failures fetefa
detection of domain fluxing botnets’ C&C server IPs. We méltemporal correlation between DNS
queries and entropy-based correlation between domaing)danespeedier detection.

e We show through a trace driven analysis that the proposduhigees can considerably speed up the
detection of botnets that generate many DNS query fail{it@s.in turn will constrain the domain name
generation algorithms further if they want to evade detechiy techniques such as proposed here.

We apply our techniques to two datasets. The first is a TiSPL dataset obtained from South Asia,
captured for a period of approximately one day. Additiopalle analyze a university campus DNS trace
captured over a month. The datasets consist of botnetsatadidhrough previous techniques applied to
the trace [11]. Based on our analysis, we detect the pres#nhbe recently discovere@onfickerbotnet.
Our experiments indicate a false positive rate as low as¥.@&h a high detection rate. Our evaluation
also yields how different features characterizing botoatsbe varied, to assist a network administrator in
tuning these parameters for their network(s).

The rest of this paper is organized as follows. Section 2dises the related work on botnet detection.
In section 3, we discuss our methodology flmtectionof domain-fluxing botnets, as well as propose an
alternate correlation criteria fapeedinghe state-of-the-art detection techniques. The resuits haen
outlined in section 4 followed by the discussion on the latidns and security loopholes that attackers
may exploit, in section 5. Finally, we draw the conclusiond &ighlight the future work in section 6.

2 Related Work

Alphabet entropy measures to detect algorithmically geteerbotnets by using successful domain name
gueries mapping to IP addresses, are proposed in [11]. diaag [4] use DNS failures to determine sus-
picious activity within the local autonomous system. Thethnique analyzes bipartite graphs between
failed DNS domain names and querying clients, to determimmected components with anomalous ac-
tivity. Our approach, additionally, analyzes related sssful queries and detects the botnet C&C servers
along with the bots. The authors in [13] analyze unprodeatistwork traffic of multiple protocols to clas-
sify malicious hosts based on features such as rate of fadéftt generation, entropy of ports used etc. In
our work, we do not require training of data, and only rely ad®based features for botnet detection.

Botnet identification using DNS has been explored in [9] vehibie authors utilize query rates based
features of successful and failed DNS queries, to identtpét anomalies. [10] detects new bots based on
the similarity in querying behavior for known malicious I&ur technique does not rely on query rates
and can detect botnets even if each bot queries for an indepebotnet C&C server's domain names.
Previous work on botnet detection has also examined theletion of network activity between time and
space as exhibited by users within a network [3]. We, howawss only the DNS traffic for detecting
botnet activity, drastically reducing the resource regmients. Also, DNS security has been investigated in
a number of recent studies [12] which have focused on DNSeéntion and cache poisoning prevention.
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Fig. 1. Filtering steps

3 Methodology

In this section, we describe our technique for detectingndsistthrough DNS traffic analysis using suc-
cessful and failed DNS queries. We also highlight corretafailed domains, for speedier detection of
malicious IP addresses. Our primary goal is to detect thedtRess of a domain fluxing botnet's C&C
server. As a consequence of our analysis, we obtain the htitsnvhe local network, and the domain
names belonging to the botnet, thus exposing the botnefedhier. To discover anomalous IP address(es),
we exploit multiple features such as the botnet structuceth@ temporal correlation between DNS query
patterns of participating bots. Prior to analyzing the Di#fic, we use a white-list for filtering out known
benign DNS queries (details in section 4), leveraging a raooeirate analysis.

3.1 Filtering steps

Figure 1 demonstrates the steps involved in narrowing ddwrset of IP addresses that are returned in
DNS response packets (post white-listing), to a relatiaghaller list of anomalous IP addresses. With
each filter, we select a fraction of the input supplied by trevipus filter, reducing the subsequent work.
In the following subsections, we describe each filter appf@ a candidate C&C IP address (denoted
by cncip) resulting incncip being discarded as legitimate or subject to additionalr§ilt&he measures
employed by each filter, are either computed using seledt treatime windows in which the candidate
IP address occurs. The typical time bin/window length usedur trace is subjective to the dataset in
consideration. For evaluation presented in section 4, piedjly use a 128 sec window (64 sec symmetric
aboutcncip). The following subsections detail how each measure is coetp

Degreeof an IP address (Dcncip): Domain fluxing is characterized by multiple domain names piragp

to an IP address. We define the degree of an IP address as themoidomain names that map terecip.

As a first filter, we use the degregy(in Figure 1) to separate a set of IP addresses more likelyHibigx
botnet like domain fluxing. For a given IP address, this nunmiiey vary based on the length of the trace
analyzed. For instance, an IP address analyzed for an hophawve five domain names mapping to it.
However, if analyzed for two hours, eight domain names mapy tad, which includes previously expired
domain names. While we consider the IPs which have a degratdedst two, we vary.,.;, to evaluate
how quickly we detect anomalies. For a typical analysis, s& adegree threshold of eight, independent
of the time for which a candidate IP address is analyzed. ,Tthedfilter F; can be bypassed if an IP has
less than eight domain names mapping to it. However, this @uwonstraint on the fluxing that a botnet
server can exhibit. It should be noted that, Content Digtiiim Networks (CDNs) also have a high degree.
However, CDNs get separated through additional filters asri®ed ahead.

Correlation metric (Correncip): As introduced earlier, bots generate burst of DNS querigzagtion of
which may fail. Thus, we exploit the temporal correlatiomvxeen DNS successes and failures to identify
malicious behavior. On observing a time window of DNS quefa a bot, we may observe the presence
of failures, more frequently, than for legitimate cliertss represented by filteF; in Figure 1.

The correlation metric{orry.ip) for a candidate IP address is computed as the probabilaipsdrv-
ing at least one failed DNS query in a time bin, given thatip was returned as an answer to a successful
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DNS query in the same bin. For detection, we heuristicallyose the threshold as 0.5 implying that ma-
jority of windows in which acncip appears, should also have failures for it to be consideredammgful
anomaly. In section 4, we study how the false positives dser®n increasing this threshold or when the
correlation metric changes upon restricting our analysigihdows with more failures.

We use the following equation to compute this metric:

>~ Time bins with(Scncip N Feiient)
Time bins withSc,,cip

@)

Correncip =

whereS,,.i, denotes the boolean condition of whetheeip occurs in a time binFy;.,: refers to the
boolean variable indicating the presence of at least ohaésgin the corresponding time bin for tleéent
The correlation metric is computed with the time series bthénts which receivencip as the DNS
response address. This metric may not be sufficient in tgpedocomprising of DNS aggregators where
the temporal co-occurrence of DNS failures and successastis frequent. Further developed measures
limit the errors produced due to DNS aggregators.

Succeeding domain set entropy (SENcneip): We useedit distanceas a metric for determining the
similarity between a pair of domain names. Algorithmicggnerated domains exhibit a high value for this
metric, owing to limited similarity between a given pair afrdains. However, domain names observed for
a legitimate entity, frequently have repeated occurreficedain characters, which lower the computed
normalized edit distance (or the entropy associated wiletitity), as substantiated by [11]. For instance,
a pair of domain names such asvw.google.com, ns.google.cdrave a lower normalized edit distance
than a pair likgswrts.ws, yvqcbtvztpm.cas observed for Conficker.

Edit distance is defined as an integral value indicating thelver of transformations required to convert
a given string to the other. The type of eligible transforima include addition, deletion, and modification
of a character. We use the normalized edit distance measurputed as the Levenshtein edit distance [5]
between a pair of strings normalized by the length of thedwoistying. The entropy of domains mapping to
an IP address (and hence successful DNS quefS#sN.,..ip, is determined by computing the normalized
edit distance between every pair of domains that mamtep (taken from set with cardinalityDe,, iy |),
and averaged over all such pairs. Therefore, the complekawptropy calculation i$)(n?) wheren is the
number of domain names successfully mapping to an IP adavesthe duration of analysis. This duration
is defined either in terms of a pre-determined time, or thé féss successful domains encountered for a
givencncip. OnceSEN,,.ip iS computed, if it exceeds a threshold (reserved for higlbimain fluxing
entities), we consider it for further analysis. Our evalratshows that while hightt ENcy.p IPS may
be detected easily, even enitities with relatively low epyr are detected with small false positive rates,
making it difficult for botnet owners to improve their domajeneration algorithm (DGA).

Failing domain set entropy (F ENcncip): FOr abotnet, the domain name generation algorithm fordaile
domain names is no different than the domain names suctigssiolved. The features expressed through
alphanumeric characters composing the failed and sucd €86 queries generated by a botnet, are there-
fore very similar. Thus, the failed domain names can helpcedhe latency of analysis and improve de-
tection since many more names can be analyzed in a shoriedp#rtime, when associated with the
succeeding queries.

To compute the entropy of failed domain names (denotdd&d/,.,..;p), we analyze the failing queries
that occur in the vicinity of a successful DNS query. Our hjyesis is as followsFor a bot issuing a
burst of DNS queries to determine the C&C server addressetii@py of failed DNS queries present in
the burst, is of the same order as the entropy of the sucdepsfies We again use the normalized edit
distance for determining the entropy of failed domain napresent in a time bin containing successful
query resolution. It is symmetric about the time instant glw@cip was observed. It is noteworthy that all
failed DNS queries present in the time bin, may not be reltid@te successful DNS query. Such queries
deviate the output. The noise is especially amplified at RyGegatorsvhich query on behalf of several
individual local clients. Thus, choosing an appropriategtiwindow length is critical for accurate analysis.
During evaluation, we show how changing window size afffuésperformance.
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To compute the failed domain entropy (FEN) for a candidateCOR address, we use the following
equation:

Z(FENclient)

FENcnci = o
P ™ Number of clients

@)

where FEN_j;en: iS the FEN value computed by examiniolient’s time series of query generation,
with respect tocncip. To elaborate, the failed query entropy for a client is cotagibetween pairs of
strings (failed domain names) present within every timedweim in whichencip occurs. Subsequently, all
such FEN values are averaged thus giviflg V.,.;,. The computation of this entropy requires at least two
failed domain names within the window of consideration. hgr number of failures increase the con-
fidence in the computeH EN value for that window implying that botnets are detectederamcurately.
Alternately, individual failed queries can be directly qoamned with the candidate successful domain names
to compute the edit distance relevant to each failed dormeimen We have evaluated both approaches and
obtained similar results. Owing to space constraints, we i@port on one of the approaches.

To further filter the candidate set of anomalous IP addressesonsider only those addresses with
FEN.ncip greater than a threshold. We choose a conservative thoeshaboid ignoring genuine anoma-
lies. To apply our hypothesis of the proximity 8 Ney,cip andF ENep.ip, We use the following inequality
to further eliminate false positives:

(SENcncip - 5) S FENcncip S (SENcncip + 6) (3)

whered represents a small bound or t@ximitywithin which FE N, andS E Ny, are expected
to lie. To choose an appropriafewe compute the standard deviati@mof entropy for domains belonging
to the known botnet IPs present in our dataset. Thereby, weseh as 3.

From the above description, the temporal correlation artipy related parameters are analyzed and
IPs satisfying the outlined malicious criteria, help innt&/ing bots within the network as well. In an
autonomous system, where the DNS queries are observed drahdlients and DNS aggregators, our
technique may be applied recursively at the aggregatddigigthe bots which use the aggregator as their
DNS recursive resolver.

3.2 Correlating failuresfor improved latency

Here, we present an alternate strategysjoeedingup the detection technique which relies only on suc-
cessful queries. The work in [11] emphasizes upon applytatissical techniques such as K-L divergence,
Jaccard Index, and Edit distance, to the set of successfuiths for acncip (SQcneip). Through evalu-
ation, it is shown that a large set improves the accuracy ofreaty detection. However, accumulating a
larger set requires a considerable amount of time. Thezgfee propose supplementing the €.,
with failed queries that occur within the vicinity of suceid DNS queries. The resulting set is accumu-
lated faster, decreasing the latency of analysis by an afdeagnitude.

The detection technique proposed in this work provides #séstfor associating the queries with suc-
cesses viz. temporally. In addition to temporal charasties, to improve the quality of failed domain name
set, we propose considering only those failing domainsiwitte time window, whose entropy character-
istics are similar to the successful domain set. Such diityilparameters for entropy can help identify
a DGA. Here, we explore supplementing)...., with these two main features. Additional features as
described for detection can also be used.

To realize the faster accumulation of relevant domains, evepute the entropy (normalized edit dis-
tance) between a failed domain name and each of the succBd¢Bidomain names discovered under
analysis. A domain yielding an entropy value close to theayeS EN (or the entropy of successful do-
mains) is considered relevant. The measure of closenessimed using eqn. 3 as described above. For
this particular experiment, we chooée= o. We note that such marginally expensive computation for
identifying relevant domains may improve lateraayd accuracy. We evaluate this correlation strategy for
Conficker's C&C server addresses in section 4. Note thatnladyais of discarded failed domain names



6 S. Yaday, A.L. Narasimha Reddy

Table 1. Trace description.

ISP trace Campustrace
Trace collection period Nov 03-04, 2009 Aug 22 - Sep 22, 2010
Total number of DNS sessions 1.61M 112.7M
White-listed sessions 770.23K 54.4M
Total number of failed DNS packets after white-listing 57.72K 1.28M
| P addr esses analyzed for maliciousness 9948 74.7 K (per segment avg.)
Number of clients (or aggregators) 8472 1735 (per segment avg|)

identifies irrelevant queries belonging to services likecomandask.comwhile few excluded domains
belong to Conficker, strengthening our confidence in the regw s

4 Resaults

We validate our technique using the DNS datasets describlesvbFor our analysis, we consider only
DNS type A records. Several DNS blacklist based servicdizautihe A record to verify whether an IP
address, domain name, or an executable (a feature used bfe®)da present in the blacklists. To exclude
these queries from analysis, we white-list a total of 31tedsecond-level domain names including several
blacklist services, Content Distribution Network serg¢such askamai.net, cloudfront.ngand popular
domains (such agoogle.com, facebook.cynThe white-list helps us focus on other potentially malics
domains, in addition to refining the failed domains set useamalysis. Additionally, we avoid processing
answers with RFC 1918 (private) addresses [7].

4.1 Data sets

Table 1 details the traces used for analysis. The 20-hogrlBR trace contains known malicious IPs be-
longing to the Conficker botnet. Using a blacklist, we obtaget of 100 odd IPs labelled malicious, which
we further verify manually by checking against exhaustistabases such asbtex.comandmywot.com
We believe that these two sources provide us with the mosintdnformation concerning the queried
domains or IP addresses. The 19 IPs obtained post verificatth the above sources, contain two IP ad-
dresses hosting adult websites. We disregard these asuamgfbehavior. One C&C address apparently
belongs to the domain-fluxing Kraken/Bobax botnet (basetherdomain names we see). However, the
Kraken C&C address has a degree of only two. The 16 remaifiadp&long to Conficker, some of which
are sinkhole servers [1]. Nonetheless, we consider thema@nalous as they help keep the botnet alive.
As aresult, we consider the remaining 9931 IPs as legitinNdiée that all IPs considered for ground truth
evaluation, have a degree of at least two.

We also use a DNS trace captured at a primary recursive ersoha university network. We divide
the month-long trace into approximately week-long segsmant present our results on randomly chosen
segments. Each segment contains an average of 295K IP sesgireturned as DNS responses (after white-
listing). As table 1 shows, approximately 75K IP addresse®llegre®..,,., > 2. For the campus trace,
we use the C&C server information from the ISP trace to ob28inP addresses (out of 75K), labelled
as malicious. Since the ground truth information for the t&fe is relatively old, we again verify this
set manually. As a result, we are left withur Conficker C&C addresses which are common with those
presentin the ISP trace.

4.2 Latency comparison

The latency of detection is expressed in terms of the numbsuecessful domain names required to
analyze and detect a rogue server accurately. Figure 2gajssthe gain obtained in terms of time taken to
collect a set of botnet domain names. The figure shows tweesasf botnet IPs that we observe. Class |
represents those C&C server addresses where domain fluligg both successful and failed queries.
However, for the C&C server in Class I, the bots issued naneeoy few failed DNS queries. In our ISP

trace with more than 50 domain names mapping to it, we findt&gC server addresses belonging to
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Fig. 3. (&) ROC curve for changing correlation thresholds. (b) Elation comparison for changing flux behavior.

Class | and two belonging to Class Il. Also, we observe tHdbal C&C addresses in the analyzed campus
trace segment belong to Class I.

Figure 2(a) shows the improved latency for the average takert by Class | or Il addresses. From the
figure, we observe that when failed domain names are cogtbleith successful DNS domains, the time
taken to collect 50, 100, 200 or 500 domain names is conditleraduced. Especially, for 500 domain
names, we see a gain of an order of magnitude when the timelettion reduces from approximately
54000 secs to only 4600 secs. With Class I, however, we dolmsgrve any gain since no failures help in
supplementing the set of successful botnet domains. Theigfer that in context of applying statistical
techniques for anomaly detection, the proposed corr@latiechanism can significantly reduce the time
to collect input required for analysis of Class | C&C addess$Note that we do not obtain 500 successful
domains for the Class Il address. The analysis with the carrpae follows analogous behavior. However,
we plot the latency observed when correlating failures sithcesses, using the criterion highlighted in
section 3.2. We also note a higher initial latency for donr&ime collection, owing to slower traffic seen
for a campus (Tier-4) as compared to a Tier-1 network tradofigh, the time of collection is reduced
considerably even with the campus trace. For instance, weree 100 domains are collected 10K seconds
faster than when using only successful DNS traffic.

While figure 2(a) shows average time taken for Class | anddhzalous entities, figure 2(b) shows the
pace at which those anomalies are detected, for the spea#fecaf 200 domain names. From the figure,
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we see that using the both successful and failed DNS doma@san detect more than 80% of the total
IP addresses, an order of magnitude faster than when uslgghmsuccessful ones. We note that the
cumulative detection reaches 100% because of the presé@tass Il address.

From the figures, we conclude that considering failed domaimes assists in speeding up detection
of domain-fluxing botnet. While speeding up the detectiaotigh methods presented in [11], the worst
case detection latency is same as the original latency vamyelomains from5Q ..., are used. We also
transform botnet detection to a real-time detection apgrdharough the speeding mechanism presented
above, as well as through the detection strategy.

4.3 Effect of the correlation parameter

We evaluate the significance of using the correlation as afedor anomaly detection. Figure 3(a) rep-
resents the Receiver Operating Curve (ROC) curve for chgrtjresholds for correlation between DNS
successes and failures. The ROC curve shows a decreasseméalitive rate with a decreasing detection
rate, when increasing'orre,.i, thresholds. A higher threshold requirement would implyt fadures co-
incide with the successful queries more frequently. We waxpect benign IP addresses to have a low
correlation value. Hence, increasing the threshold resultiecreasing false positives. For this particular
experiment, we note detecting a maximum of 12 (out of 17 C&€) B the remaining IPs do not have
enough domain names for analysis (at least eight domairesal¥é note a maximum false positive rate of
only 0.6% which primarily comprises of legitimate IPs witHatively lower entropy than seen for fluxing
botnets and few failures within the window of analysis (ikaa correlation value just above the threshold).
In contrast, fluxing botnets usually have a high number dédadlomain names within the corresponding
bin. Note that the false positives include ISP’s intra-AS®idsolution queries where the hosts have been
assigned random-appearing domain names.

4.4 Correlation vs Number of DNSfailures

Through this experiment, we aim to study the behavior seem#dicious IPs, in terms of the number of
failed domain names generated. Figure 3(b) shows the atimelobserved for malicious and benign IPs.
We compute the correlation for three cases where we expédeasit one, two or four failures to occur
within the same window, as thewcip. The figure shows a decrease in correlation, for both bemgh a
legitimate IPs, though the correlation reduces only shgtar the malicious set. Such a study implies that
the correlation criteria may be adapted towards highly figihotnets while keeping fewer false positives.

4.5 Variation in entropy

We evaluate the impact of information entropy expressedbydbmains which map to a candidate:ip
(thatis,SE N.ncip). The effect of changing the entropy thresholds for cordideacncip is shown through
an ROC curve as in Figure 4. The figure shows an increase iretketibn rate and the false positive rate as
the threshold for entropy is decreased. This is in line withdbservation that for a low threshold, several
sets of domain names, and in particular those for CDNs gdtisffilters used for detection. Analogous to
the performance with varying correlation threshold, theximaim false positive rate observed is 0.52%.
Analysis of false positives reveals DNSBL servicesitondo), popular websitess{na.com.cnwvhich of-

fer multiple services), DNS and HTTP servers providing Eento multiple entities, blogging services
(blogspo} and CDN addresses. For instance, we obsmgeondorlPs labelled malicious when the en-
tropy thresholds are 0.35 or lower, indicating that everugtocorrelation may be high for this DNSBL
service, the entropy helps distinguish it from actual an@sawhen using higher thresholds. In section 5,
we discuss how botnets may attempt to fool our detectionagmprinto generating domains with low en-
tropy. Note that we determine the detection rate over theet@atiable botnet IPs, as discussed previously.

4.6 Sizeof timebin

The impact of varying the size of time bins is shown in TablénZall experiments, we observe that false
positives increase with larger time bins. The wider binevala higher possibility of inclusion of failures
within the correspondingncip bin, resulting in an increasedorre,.i, value. Thus, more candidate IP
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addresses meet the criteria set by filter(in figure 1) and the ones with high entropy may be incorrectly
labelled malicious. From the table, we also observe thatlemaindow sizes result in fewer IP addresses
being detected within the ISP trace. An inference of thisolettion is that bots spread their DNS queries
making temporal correlation between failures and suceediiécult. The false positive rate, however, is
less than 0.3% for ISP trace (and 0.75% for campus trace)lfexeriments making the choice of larger
windows possible. However, the marginal or no increase ted®n rate and false positive rate, for the
change in window size from 4 secs to 128 secs implies that dowiras small as 4 secs may be sufficient
for detecting a domain-fluxing botnet like Conficker. Notattthe false positives for the campus trace are
higher when compared to the ISP trace, as we frequently ob$#XSBL based NXDOMAIN failures
within the campus dataset. Such DNSBL failures affect threetation/entropy parameters resulting in
more benign IPs classified as malicious.

Dyndnss a service for generating customizable/random tempatamyain names. In the ISP trace, we
observe several random sub-domainsdgndnswhich exhibit high entropy characteristics, with several
failures belonging to this service. Our detection mecharmesignates these IP addresses as benign owing
to presence of temporally distant failures, reinforcing bypothesis of utilizing temporal correlation of
failed domains for anomaly detection through the use of ktimaé bins. We also limit our study to a
maximum bin size of 256 seconds as fast-fluxing botnets fmv@INS Time-To-Live (TTL) values.

5 Discussion

In this work, we detect Conficker C&C addresses which exlhitgih entropy owing to randomized distri-
bution of alphanumeric characters composing the domairesakiowever, to evade our detection mech-
anism, botnet owners may alter the way domain names are c@adpBor instance, our separate study
has observed combination of dictionary words being usechaadtarnate way of domain-fluxing. Some
example domain names that we observe for a botndtaireconomy.ru, greedycake.amdempirekey.ru
[2]. The information entropy computed for a set of such donma@mes indicates that owing to high edit
distance values, such domain names can still be distingdigtrough entropy analysis.

To validate the robustness of our approach, we artificiajlgat domain queries as observed above, with
some of them failing and some domain names successfully imgpp a reserved address. We randomly
choose clients to insert such DNS queries. Based on our,stgdstill detect the simulated anomalies with
similar experiment parameters as used previously for evial. Also, in future if botnet owners formulate
a DGA where the observed entropy is lower than that obsensdtliking botnet detected in this work, our
detection mechanism can detect them with low false positiae hinted by figure 4.

A direct weakness of our detection strategy is reliance dadalomain names. Our experiments are
based on analyzing the first few successful domain namesharsdcorrelating failures that are present
in their vicinity. In the event that no failures are presentfailures that occur right after the window of
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analysis, our detection strategy may fail in which caseaviitg to the algorithm for correlating failures to
supplementhe setSQ.n.;» would help. Thus, a combination of both the strategies pteskin this work
may be useful for fast anomaly detection. It is possible twegate DNS queries slowly such that the failed
gueries are outside the time window considered in our sch8awh an approach, however, will slow down
the bot in identifying its C&C server and hence constrairttrgbotnet writer again.

Our technique for detection can be mapped back to deteatichdil bots that issued the queries for a
maliciouscncip. For instance, with our campus trace analysis, we obseriiedt® within our AS querying
for three of the four C&C addresses, and 10 hosts (subsetdfalabove) querying for the remaining C&C
address. While the Tier-1 ISP trace may not have individliahts (we would mostly observe aggrega-
tors), the mechanism applied for a smaller-sized networkraan applied recursively, may result in more
accurate detection of anomalies and bots, owing to a bett& failure signal.

6 Conclusion

In this paper, we proposed methodologies for utilizinggditiomain names in the quest for rapid detection
of a fluxing botnet's C&C server, the bots within the localwetk, and the related domain names, and
thus revealing the botnet infrastructure. Utilizing onlB traffic, we reduce the resource requirement
for botnet detection. We also considerably reduce the ¢gteh detection when compared to previous
techniques. For faster detection, we utilize not only theagry of the domain names successfully mapping
to an IP address, but also that of the correlated failed DNSigsl occurring within the vicinity of the
succeeding DNS query. With our technique, we achieve a faiséive rate as low as 0.02% with a high
detection rate. As a future work, we plan to utilize SERVERIFARE based DNS failures, or failures
related to the name servers, as a means for detecting bathiets exhibit double fast flux.
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