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Abstract. Botnets such as Conficker and Torpig utilize high entropy domains for fluxing and evasion.
Bots may query a large number of domains, some of which may fail. In this paper, we present tech-
niques where the failed domain queries (NXDOMAIN) may be utilized for: (i) Speeding up the present
detection strategies which rely only on successful DNS domains. (ii) Detecting Command and Con-
trol (C&C) server addresses through features such as temporal correlation and information entropy
of both successful and failed domains. We apply our technique to a Tier-1 ISP dataset obtained from
South Asia, and a campus DNS trace, and thus validate our methods by detecting Conficker botnet IPs
and other anomalies with a false positive rate as low as 0.02%. Our technique can be applied at the
edge of an autonomous system for real-time detection.
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1 Introduction

Botnets have been used for spamming, phishing, DDoS (Distributed Denial of Service) attacks. Some bot-
nets such as Kraken/Bobax, Torpig [8], and Conficker [6] utilize fluxing techniques, where the domain
name of a C&C server changes rapidly (domain fluxing) or the IP address for a domain name is altered (IP
fluxing). To automate the domain name generation for fluxing, botnetowners rely on generating domain
names algorithmically. The domain names thus formed, comprise of alphanumeric characters chosen ran-
domly, and which thus exhibit highinformation entropy. As the domain names for the C&C servers are
short lived, and as only a fraction of this large set of domains may be used for actual DNS use, blacklisting
techniques prove ineffective in countering such fluxing botnets.

Reverse engineering of bot executables may yield the domainname generation algorithm and subse-
quently the domain names that a bot may query in the future. These domain names may be blacklisted
or pre-registered in advance by security researchers. Domain fluxing botnets overcome this vulnerability
by choosing to generate a large number of names, where only a few of them may host the C&C server.
The large number of domain names is expected to overwhelm thepre-registration by others and potentially
provide a cover for the actual name of the C&C server used by the botnet.

Botnets that employ domain fluxing can be characterized by the following two important features: (a)
The alphanumeric distribution or entropy of the domain names for C&C servers is considerably different
from human generated names. (b) The bots generate many failed DNS queries as many of the algorithmi-
cally generated domain names may not be registered or not available as C&C servers. We exploit these
two important properties to detect botnets with very low latency, where we define latency as the number of
domain names required for successful anomaly detection (orthe time taken to collect those domains).

With our approach, we analyze successful DNS queries, and the failed DNS queries within the vicinity
of the successful queries, thus exploiting their features to not only detect the C&C servers of those botnets
faster, but also simultaneously detect bots within the network. While our detection mechanism is designed
specifically to detect domain fluxing botnets by utilizing DNS failures, previous approaches relying only
on domain entropy analysis can still be used in the event thatthere are no DNS failures. By analyzing
the failed queries along with the successful queries, we increase the data available for analysis and hence
speed up the detection process. While our technique can be used online (or in real-time), we focus on a
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trace-driven evaluation methodology here to keep the explanation simpler. Additionally, our analysis is
based only on DNS network traffic, thereby reducing resourcerequirements, in comparison to techniques
relying on general network traffic analysis.

When individual clients/hosts query a resolver, the failedqueries can potentially be attributed to the
presence of bots on that client and the successful queries close to the failures can be assumed to be related
with high confidence. However, when queries are forwarded toa resolver from another local resolver or a
DNS query aggregator, the queries from many clients can be grouped together and relating failed queries
to other successful queries in the query stream becomes problematic. Our approach is cognizant of this
difficulty and is capable of producing accurate results in the presence of aggregated query streams.

The main contributions of this work are:

• We utilize the failures around successful DNS queries and the entropy of the domains belonging to such
queries, fordetectingbotnets with lower latency compared to previous techniques.

• We propose and evaluate aspeedingtechnique which correlates DNS domain query failures for faster
detection of domain fluxing botnets’ C&C server IPs. We utilize temporal correlation between DNS
queries and entropy-based correlation between domain names, for speedier detection.

• We show through a trace driven analysis that the proposed techniques can considerably speed up the
detection of botnets that generate many DNS query failures.This in turn will constrain the domain name
generation algorithms further if they want to evade detection by techniques such as proposed here.

We apply our techniques to two datasets. The first is a Tier-1 ISP dataset obtained from South Asia,
captured for a period of approximately one day. Additionally, we analyze a university campus DNS trace
captured over a month. The datasets consist of botnets validated through previous techniques applied to
the trace [11]. Based on our analysis, we detect the presenceof the recently discoveredConfickerbotnet.
Our experiments indicate a false positive rate as low as 0.02% with a high detection rate. Our evaluation
also yields how different features characterizing botnetscan be varied, to assist a network administrator in
tuning these parameters for their network(s).

The rest of this paper is organized as follows. Section 2 discusses the related work on botnet detection.
In section 3, we discuss our methodology fordetectionof domain-fluxing botnets, as well as propose an
alternate correlation criteria forspeedingthe state-of-the-art detection techniques. The results have been
outlined in section 4 followed by the discussion on the limitations and security loopholes that attackers
may exploit, in section 5. Finally, we draw the conclusions and highlight the future work in section 6.

2 Related Work

Alphabet entropy measures to detect algorithmically generated botnets by using successful domain name
queries mapping to IP addresses, are proposed in [11]. Jianget. al. [4] use DNS failures to determine sus-
picious activity within the local autonomous system. Theirtechnique analyzes bipartite graphs between
failed DNS domain names and querying clients, to determine connected components with anomalous ac-
tivity. Our approach, additionally, analyzes related successful queries and detects the botnet C&C servers
along with the bots. The authors in [13] analyze unproductive network traffic of multiple protocols to clas-
sify malicious hosts based on features such as rate of failedtraffic generation, entropy of ports used etc. In
our work, we do not require training of data, and only rely on DNS based features for botnet detection.

Botnet identification using DNS has been explored in [9] where the authors utilize query rates based
features of successful and failed DNS queries, to identify botnet anomalies. [10] detects new bots based on
the similarity in querying behavior for known malicious hosts. Our technique does not rely on query rates
and can detect botnets even if each bot queries for an independent botnet C&C server’s domain names.
Previous work on botnet detection has also examined the correlation of network activity between time and
space as exhibited by users within a network [3]. We, however, use only the DNS traffic for detecting
botnet activity, drastically reducing the resource requirements. Also, DNS security has been investigated in
a number of recent studies [12] which have focused on DNS indirection and cache poisoning prevention.
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3 Methodology

In this section, we describe our technique for detecting botnets through DNS traffic analysis using suc-
cessful and failed DNS queries. We also highlight correlating failed domains, for speedier detection of
malicious IP addresses. Our primary goal is to detect the IP address of a domain fluxing botnet’s C&C
server. As a consequence of our analysis, we obtain the bots within the local network, and the domain
names belonging to the botnet, thus exposing the botnet altogether. To discover anomalous IP address(es),
we exploit multiple features such as the botnet structure and the temporal correlation between DNS query
patterns of participating bots. Prior to analyzing the DNS traffic, we use a white-list for filtering out known
benign DNS queries (details in section 4), leveraging a moreaccurate analysis.

3.1 Filtering steps

Figure 1 demonstrates the steps involved in narrowing down the set of IP addresses that are returned in
DNS response packets (post white-listing), to a relativelysmaller list of anomalous IP addresses. With
each filter, we select a fraction of the input supplied by the previous filter, reducing the subsequent work.
In the following subsections, we describe each filter applied for a candidate C&C IP address (denoted
by cncip) resulting incncip being discarded as legitimate or subject to additional filters. The measures
employed by each filter, are either computed using select or all the time windows in which the candidate
IP address occurs. The typical time bin/window length used in our trace is subjective to the dataset in
consideration. For evaluation presented in section 4, we typically use a 128 sec window (64 sec symmetric
aboutcncip). The following subsections detail how each measure is computed.

Degree of an IP address (Dcncip): Domain fluxing is characterized by multiple domain names mapping
to an IP address. We define the degree of an IP address as the number of domain names that map to acncip.
As a first filter, we use the degree (F1 in Figure 1) to separate a set of IP addresses more likely to exhibit
botnet like domain fluxing. For a given IP address, this number may vary based on the length of the trace
analyzed. For instance, an IP address analyzed for an hour may have five domain names mapping to it.
However, if analyzed for two hours, eight domain names may map to it, which includes previously expired
domain names. While we consider the IPs which have a degree ofat least two, we varyDcncip to evaluate
how quickly we detect anomalies. For a typical analysis, we use a degree threshold of eight, independent
of the time for which a candidate IP address is analyzed. Thus, the filterF1 can be bypassed if an IP has
less than eight domain names mapping to it. However, this puts a constraint on the fluxing that a botnet
server can exhibit. It should be noted that, Content Distribution Networks (CDNs) also have a high degree.
However, CDNs get separated through additional filters as described ahead.

Correlation metric (Corrcncip): As introduced earlier, bots generate burst of DNS queries, afraction of
which may fail. Thus, we exploit the temporal correlation between DNS successes and failures to identify
malicious behavior. On observing a time window of DNS queries for a bot, we may observe the presence
of failures, more frequently, than for legitimate clients.It is represented by filterF2 in Figure 1.

The correlation metric (Corrcncip) for a candidate IP address is computed as the probability ofobserv-
ing at least one failed DNS query in a time bin, given thatcncip was returned as an answer to a successful
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DNS query in the same bin. For detection, we heuristically choose the threshold as 0.5 implying that ma-
jority of windows in which acncip appears, should also have failures for it to be considered a meaningful
anomaly. In section 4, we study how the false positives decrease on increasing this threshold or when the
correlation metric changes upon restricting our analysis to windows with more failures.

We use the following equation to compute this metric:

Corrcncip =

∑
Time bins with(Scncip ∩ Fclient)

Time bins withScncip

(1)

whereScncip denotes the boolean condition of whethercncip occurs in a time bin.Fclient refers to the
boolean variable indicating the presence of at least one failure in the corresponding time bin for theclient.
The correlation metric is computed with the time series of all clients which receivecncip as the DNS
response address. This metric may not be sufficient in topologies comprising of DNS aggregators where
the temporal co-occurrence of DNS failures and successes ismore frequent. Further developed measures
limit the errors produced due to DNS aggregators.

Succeeding domain set entropy (SENcncip): We useedit distanceas a metric for determining the
similarity between a pair of domain names. Algorithmicallygenerated domains exhibit a high value for this
metric, owing to limited similarity between a given pair of domains. However, domain names observed for
a legitimate entity, frequently have repeated occurrence of certain characters, which lower the computed
normalized edit distance (or the entropy associated with the entity), as substantiated by [11]. For instance,
a pair of domain names such aswww.google.com, ns.google.comhave a lower normalized edit distance
than a pair likejswrts.ws, yvqcbtvztpm.cc, as observed for Conficker.

Edit distance is defined as an integral value indicating the number of transformations required to convert
a given string to the other. The type of eligible transformations include addition, deletion, and modification
of a character. We use the normalized edit distance measure computed as the Levenshtein edit distance [5]
between a pair of strings normalized by the length of the longer string. The entropy of domains mapping to
an IP address (and hence successful DNS queries),SENcncip, is determined by computing the normalized
edit distance between every pair of domains that map tocncip (taken from set with cardinality|Dcncip|),
and averaged over all such pairs. Therefore, the complexityof entropy calculation isO(n2) wheren is the
number of domain names successfully mapping to an IP addressover the duration of analysis. This duration
is defined either in terms of a pre-determined time, or the first few successful domains encountered for a
givencncip. OnceSENcncip is computed, if it exceeds a threshold (reserved for highly domain fluxing
entities), we consider it for further analysis. Our evaluation shows that while highSENcncip IPs may
be detected easily, even enitities with relatively low entropy are detected with small false positive rates,
making it difficult for botnet owners to improve their domaingeneration algorithm (DGA).

Failing domain set entropy (FENcncip): For a botnet, the domain name generation algorithm for failed
domain names is no different than the domain names successfully resolved. The features expressed through
alphanumeric characters composing the failed and successful DNS queries generated by a botnet, are there-
fore very similar. Thus, the failed domain names can help reduce the latency of analysis and improve de-
tection since many more names can be analyzed in a shorter period of time, when associated with the
succeeding queries.

To compute the entropy of failed domain names (denoted asFENcncip), we analyze the failing queries
that occur in the vicinity of a successful DNS query. Our hypothesis is as follows.For a bot issuing a
burst of DNS queries to determine the C&C server address, theentropy of failed DNS queries present in
the burst, is of the same order as the entropy of the successful queries. We again use the normalized edit
distance for determining the entropy of failed domain namespresent in a time bin containing successful
query resolution. It is symmetric about the time instant wherecncip was observed. It is noteworthy that all
failed DNS queries present in the time bin, may not be relatedto the successful DNS query. Such queries
deviate the output. The noise is especially amplified at DNSaggregatorswhich query on behalf of several
individual local clients. Thus, choosing an appropriate time window length is critical for accurate analysis.
During evaluation, we show how changing window size affectsthe performance.
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To compute the failed domain entropy (FEN) for a candidate C&C IP address, we use the following
equation:

FENcncip =

∑
(FENclient)

Number of clients
(2)

whereFENclient is the FEN value computed by examiningclient’s time series of query generation,
with respect tocncip. To elaborate, the failed query entropy for a client is computed between pairs of
strings (failed domain names) present within every time window in whichcncip occurs. Subsequently, all
such FEN values are averaged thus givingFENcncip. The computation of this entropy requires at least two
failed domain names within the window of consideration. A higher number of failures increase the con-
fidence in the computedFEN value for that window implying that botnets are detected more accurately.
Alternately, individual failed queries can be directly compared with the candidate successful domain names
to compute the edit distance relevant to each failed domain name. We have evaluated both approaches and
obtained similar results. Owing to space constraints, we only report on one of the approaches.

To further filter the candidate set of anomalous IP addresses, we consider only those addresses with
FENcncip greater than a threshold. We choose a conservative threshold to avoid ignoring genuine anoma-
lies. To apply our hypothesis of the proximity ofSENcncip andFENcncip, we use the following inequality
to further eliminate false positives:

(SENcncip − δ) ≤ FENcncip ≤ (SENcncip + δ) (3)

whereδ represents a small bound or theproximitywithin whichFENcncip andSENcncip are expected
to lie. To choose an appropriateδ, we compute the standard deviationσ of entropy for domains belonging
to the known botnet IPs present in our dataset. Thereby, we chooseδ as 3σ.

From the above description, the temporal correlation and entropy related parameters are analyzed and
IPs satisfying the outlined malicious criteria, help in identifying bots within the network as well. In an
autonomous system, where the DNS queries are observed from local clients and DNS aggregators, our
technique may be applied recursively at the aggregator, yielding the bots which use the aggregator as their
DNS recursive resolver.

3.2 Correlating failures for improved latency

Here, we present an alternate strategy forspeedingup the detection technique which relies only on suc-
cessful queries. The work in [11] emphasizes upon applying statistical techniques such as K-L divergence,
Jaccard Index, and Edit distance, to the set of successful domains for acncip (SQcncip). Through evalu-
ation, it is shown that a large set improves the accuracy of anomaly detection. However, accumulating a
larger set requires a considerable amount of time. Therefore, we propose supplementing the setSQcncip

with failed queries that occur within the vicinity of successful DNS queries. The resulting set is accumu-
lated faster, decreasing the latency of analysis by an orderof magnitude.

The detection technique proposed in this work provides the basis for associating the queries with suc-
cesses viz. temporally. In addition to temporal characteristics, to improve the quality of failed domain name
set, we propose considering only those failing domains within the time window, whose entropy character-
istics are similar to the successful domain set. Such similarity parameters for entropy can help identify
a DGA. Here, we explore supplementingSQcncip with these two main features. Additional features as
described for detection can also be used.

To realize the faster accumulation of relevant domains, we compute the entropy (normalized edit dis-
tance) between a failed domain name and each of the successful DNS domain names discovered under
analysis. A domain yielding an entropy value close to the averageSEN (or the entropy of successful do-
mains) is considered relevant. The measure of closeness is defined using eqn. 3 as described above. For
this particular experiment, we chooseδ = σ. We note that such marginally expensive computation for
identifying relevant domains may improve latencyandaccuracy. We evaluate this correlation strategy for
Conficker’s C&C server addresses in section 4. Note that the analysis of discarded failed domain names
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Table 1. Trace description.

ISP trace Campus trace
Trace collection period Nov 03-04, 2009 Aug 22 - Sep 22, 2010
Total number of DNS sessions 1.61 M 112.7 M
White-listed sessions 770.23 K 54.4 M
Total number of failed DNS packets after white-listing 57.72 K 1.28 M
IP addresses analyzed for maliciousness 9948 74.7 K (per segment avg.)
Number of clients (or aggregators) 8472 1735 (per segment avg.)

identifies irrelevant queries belonging to services likeqq.comandask.comwhile few excluded domains
belong to Conficker, strengthening our confidence in the new set.

4 Results

We validate our technique using the DNS datasets described below. For our analysis, we consider only
DNS type A records. Several DNS blacklist based services utilize the A record to verify whether an IP
address, domain name, or an executable (a feature used by McAfee) is present in the blacklists. To exclude
these queries from analysis, we white-list a total of 31 trusted second-level domain names including several
blacklist services, Content Distribution Network services (such asakamai.net, cloudfront.net) and popular
domains (such asgoogle.com, facebook.com). The white-list helps us focus on other potentially malicious
domains, in addition to refining the failed domains set used for analysis. Additionally, we avoid processing
answers with RFC 1918 (private) addresses [7].

4.1 Data sets

Table 1 details the traces used for analysis. The 20-hour long ISP trace contains known malicious IPs be-
longing to the Conficker botnet. Using a blacklist, we obtaina set of 100 odd IPs labelled malicious, which
we further verify manually by checking against exhaustive databases such asrobtex.comandmywot.com.
We believe that these two sources provide us with the most recent information concerning the queried
domains or IP addresses. The 19 IPs obtained post verification with the above sources, contain two IP ad-
dresses hosting adult websites. We disregard these as non-fluxing behavior. One C&C address apparently
belongs to the domain-fluxing Kraken/Bobax botnet (based onthe domain names we see). However, the
Kraken C&C address has a degree of only two. The 16 remaining IPs belong to Conficker, some of which
are sinkhole servers [1]. Nonetheless, we consider them as anomalous as they help keep the botnet alive.
As a result, we consider the remaining 9931 IPs as legitimate. Note that all IPs considered for ground truth
evaluation, have a degree of at least two.

We also use a DNS trace captured at a primary recursive resolver of a university network. We divide
the month-long trace into approximately week-long segments and present our results on randomly chosen
segments. Each segment contains an average of 295K IP addresses returned as DNS responses (after white-
listing). As table 1 shows, approximately 75K IP addresses have degreeDcncip > 2. For the campus trace,
we use the C&C server information from the ISP trace to obtain29 IP addresses (out of 75K), labelled
as malicious. Since the ground truth information for the ISPtrace is relatively old, we again verify this
set manually. As a result, we are left withfour Conficker C&C addresses which are common with those
present in the ISP trace.

4.2 Latency comparison

The latency of detection is expressed in terms of the number of successful domain names required to
analyze and detect a rogue server accurately. Figure 2(a) shows the gain obtained in terms of time taken to
collect a set of botnet domain names. The figure shows two classes of botnet IPs that we observe. Class I
represents those C&C server addresses where domain fluxing yielded both successful and failed queries.
However, for the C&C server in Class II, the bots issued none or very few failed DNS queries. In our ISP
trace with more than 50 domain names mapping to it, we find eight C&C server addresses belonging to
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Fig. 3. (a) ROC curve for changing correlation thresholds. (b) Correlation comparison for changing flux behavior.

Class I and two belonging to Class II. Also, we observe that all four C&C addresses in the analyzed campus
trace segment belong to Class I.

Figure 2(a) shows the improved latency for the average time taken by Class I or II addresses. From the
figure, we observe that when failed domain names are correlated with successful DNS domains, the time
taken to collect 50, 100, 200 or 500 domain names is considerably reduced. Especially, for 500 domain
names, we see a gain of an order of magnitude when the time of collection reduces from approximately
54000 secs to only 4600 secs. With Class II, however, we do notobserve any gain since no failures help in
supplementing the set of successful botnet domains. Thus, we infer that in context of applying statistical
techniques for anomaly detection, the proposed correlation mechanism can significantly reduce the time
to collect input required for analysis of Class I C&C addresses. Note that we do not obtain 500 successful
domains for the Class II address. The analysis with the campus trace follows analogous behavior. However,
we plot the latency observed when correlating failures withsuccesses, using the criterion highlighted in
section 3.2. We also note a higher initial latency for domainname collection, owing to slower traffic seen
for a campus (Tier-4) as compared to a Tier-1 network trace. Although, the time of collection is reduced
considerably even with the campus trace. For instance, we observe 100 domains are collected 10K seconds
faster than when using only successful DNS traffic.

While figure 2(a) shows average time taken for Class I and II anomalous entities, figure 2(b) shows the
pace at which those anomalies are detected, for the specific case of 200 domain names. From the figure,
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we see that using the both successful and failed DNS domains,we can detect more than 80% of the total
IP addresses, an order of magnitude faster than when using only the successful ones. We note that the
cumulative detection reaches 100% because of the presence of Class II address.

From the figures, we conclude that considering failed domainnames assists in speeding up detection
of domain-fluxing botnet. While speeding up the detection through methods presented in [11], the worst
case detection latency is same as the original latency whereonly domains fromSQcncip are used. We also
transform botnet detection to a real-time detection approach through the speeding mechanism presented
above, as well as through the detection strategy.

4.3 Effect of the correlation parameter

We evaluate the significance of using the correlation as a feature for anomaly detection. Figure 3(a) rep-
resents the Receiver Operating Curve (ROC) curve for changing thresholds for correlation between DNS
successes and failures. The ROC curve shows a decrease in false positive rate with a decreasing detection
rate, when increasingCorrcncip thresholds. A higher threshold requirement would imply that failures co-
incide with the successful queries more frequently. We would expect benign IP addresses to have a low
correlation value. Hence, increasing the threshold results in decreasing false positives. For this particular
experiment, we note detecting a maximum of 12 (out of 17 C&C IPs) as the remaining IPs do not have
enough domain names for analysis (at least eight domains). We also note a maximum false positive rate of
only 0.6% which primarily comprises of legitimate IPs with relatively lower entropy than seen for fluxing
botnets and few failures within the window of analysis (thatis, a correlation value just above the threshold).
In contrast, fluxing botnets usually have a high number of failed domain names within the corresponding
bin. Note that the false positives include ISP’s intra-AS DNS resolution queries where the hosts have been
assigned random-appearing domain names.

4.4 Correlation vs Number of DNS failures

Through this experiment, we aim to study the behavior seen for malicious IPs, in terms of the number of
failed domain names generated. Figure 3(b) shows the correlation observed for malicious and benign IPs.
We compute the correlation for three cases where we expect atleast one, two or four failures to occur
within the same window, as thecncip. The figure shows a decrease in correlation, for both benign and
legitimate IPs, though the correlation reduces only slightly for the malicious set. Such a study implies that
the correlation criteria may be adapted towards highly fluxing botnets while keeping fewer false positives.

4.5 Variation in entropy

We evaluate the impact of information entropy expressed by the domains which map to a candidatecncip

(that is,SENcncip). The effect of changing the entropy thresholds for considering acncip is shown through
an ROC curve as in Figure 4. The figure shows an increase in the detection rate and the false positive rate as
the threshold for entropy is decreased. This is in line with the observation that for a low threshold, several
sets of domain names, and in particular those for CDNs satisfy the filters used for detection. Analogous to
the performance with varying correlation threshold, the maximum false positive rate observed is 0.52%.
Analysis of false positives reveals DNSBL services (redcondor), popular websites (sina.com.cnwhich of-
fer multiple services), DNS and HTTP servers providing service to multiple entities, blogging services
(blogspot) and CDN addresses. For instance, we observeredcondorIPs labelled malicious when the en-
tropy thresholds are 0.35 or lower, indicating that even though correlation may be high for this DNSBL
service, the entropy helps distinguish it from actual anomalies, when using higher thresholds. In section 5,
we discuss how botnets may attempt to fool our detection approach into generating domains with low en-
tropy. Note that we determine the detection rate over the 12 detectable botnet IPs, as discussed previously.

4.6 Size of time bin

The impact of varying the size of time bins is shown in Table 2.In all experiments, we observe that false
positives increase with larger time bins. The wider bins allow a higher possibility of inclusion of failures
within the correspondingcncip bin, resulting in an increasedCorrcncip value. Thus, more candidate IP
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Table 2. Impact of changing time bin size.

Window size 4 8 16 32 64 128 256(sec)
ISP trace

FPR (%) 0.022 0.043 0.043 0.097 0.173 0.259 0.302
TPR (%) 75.0 75.0 75.0 75.0 75.0 83.33 83.33

Campus trace
FPR (%) 0.021 0.039 0.084 0.120 0.209 0.434 0.752
TPR (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0

addresses meet the criteria set by filterF2 (in figure 1) and the ones with high entropy may be incorrectly
labelled malicious. From the table, we also observe that smaller window sizes result in fewer IP addresses
being detected within the ISP trace. An inference of this observation is that bots spread their DNS queries
making temporal correlation between failures and successes difficult. The false positive rate, however, is
less than 0.3% for ISP trace (and 0.75% for campus trace) for all experiments making the choice of larger
windows possible. However, the marginal or no increase in detection rate and false positive rate, for the
change in window size from 4 secs to 128 secs implies that a window as small as 4 secs may be sufficient
for detecting a domain-fluxing botnet like Conficker. Note that the false positives for the campus trace are
higher when compared to the ISP trace, as we frequently observe DNSBL based NXDOMAIN failures
within the campus dataset. Such DNSBL failures affect the correlation/entropy parameters resulting in
more benign IPs classified as malicious.

Dyndnsis a service for generating customizable/random temporarydomain names. In the ISP trace, we
observe several random sub-domains fordyndnswhich exhibit high entropy characteristics, with several
failures belonging to this service. Our detection mechanism designates these IP addresses as benign owing
to presence of temporally distant failures, reinforcing our hypothesis of utilizing temporal correlation of
failed domains for anomaly detection through the use of small time bins. We also limit our study to a
maximum bin size of 256 seconds as fast-fluxing botnets have low DNS Time-To-Live (TTL) values.

5 Discussion

In this work, we detect Conficker C&C addresses which exhibithigh entropy owing to randomized distri-
bution of alphanumeric characters composing the domain names. However, to evade our detection mech-
anism, botnet owners may alter the way domain names are composed. For instance, our separate study
has observed combination of dictionary words being used as an alternate way of domain-fluxing. Some
example domain names that we observe for a botnet arehaireconomy.ru, greedycake.ruandempirekey.ru
[2]. The information entropy computed for a set of such domain names indicates that owing to high edit
distance values, such domain names can still be distinguished through entropy analysis.

To validate the robustness of our approach, we artificially inject domain queries as observed above, with
some of them failing and some domain names successfully mapping to a reserved address. We randomly
choose clients to insert such DNS queries. Based on our study, we still detect the simulated anomalies with
similar experiment parameters as used previously for evaluation. Also, in future if botnet owners formulate
a DGA where the observed entropy is lower than that observed for fluxing botnet detected in this work, our
detection mechanism can detect them with low false positives, as hinted by figure 4.

A direct weakness of our detection strategy is reliance on failed domain names. Our experiments are
based on analyzing the first few successful domain names and thus correlating failures that are present
in their vicinity. In the event that no failures are present,or failures that occur right after the window of
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analysis, our detection strategy may fail in which case switching to the algorithm for correlating failures to
supplementthe setSQcncip would help. Thus, a combination of both the strategies presented in this work
may be useful for fast anomaly detection. It is possible to generate DNS queries slowly such that the failed
queries are outside the time window considered in our scheme. Such an approach, however, will slow down
the bot in identifying its C&C server and hence constrainingthe botnet writer again.

Our technique for detection can be mapped back to detect individual bots that issued the queries for a
maliciouscncip. For instance, with our campus trace analysis, we observe 12hosts within our AS querying
for three of the four C&C addresses, and 10 hosts (subset of the 12 above) querying for the remaining C&C
address. While the Tier-1 ISP trace may not have individual clients (we would mostly observe aggrega-
tors), the mechanism applied for a smaller-sized network orwhen applied recursively, may result in more
accurate detection of anomalies and bots, owing to a better DNS failure signal.

6 Conclusion

In this paper, we proposed methodologies for utilizing failed domain names in the quest for rapid detection
of a fluxing botnet’s C&C server, the bots within the local network, and the related domain names, and
thus revealing the botnet infrastructure. Utilizing only DNS traffic, we reduce the resource requirement
for botnet detection. We also considerably reduce the latency of detection when compared to previous
techniques. For faster detection, we utilize not only the entropy of the domain names successfully mapping
to an IP address, but also that of the correlated failed DNS queries occurring within the vicinity of the
succeeding DNS query. With our technique, we achieve a falsepositive rate as low as 0.02% with a high
detection rate. As a future work, we plan to utilize SERVER FAILURE based DNS failures, or failures
related to the name servers, as a means for detecting botnetswhich exhibit double fast flux.
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