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Robust Blind Multiuser Detection Against Signature Waveform
Mismatch Based on Second-Order Cone Programming
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Abstract—Blind signal detection in multiuser code division
multiple access (CDMA) system is particularly attractive when
only the desired user signature is known to a given receiver.
A problem common to several existing blind multiuser CDMA
detectors is that the detection performance is very sensitive to
the signature waveform mismatch (SWM) which may be caused
by channel distortion. In this paper, we consider the design of a
blind multiuser CDMA detector that is robust to the SWM. We
present a convex formulation for this problem by using the second-
order cone (SOC) programming. The resulting SOC problem can
be solved efficiently using the recently developed interior point
methods. Computer simulations indicate that the performance of
our new robust blind multiuser detector is superior to those of
many existing methods.

Index Terms—Blind multiuser detection, robust multiuser de-
tection, second-order cone (SOC) programming.

I. INTRODUCTION

COMMONLY encountered problem in code division
multiple access (CDMA) systems is the so-called near—far
effect whereby weaker users are dominated by stronger users
(interferers). It is well known that in such circumstances, the
traditional matched filter single-user detection is not effective,
and multiuser detection should be used [1], [8], [9]. While
in a standard multiuser detector, all user signature and timing
information must be known [1] to the receiver; a recent work [2]
presented a simple blind near—far resistant “multiuser” detector
that requires only the desired users’ waveform. Some further
work along this line have been reported in [3], [4], [6], and [7].
A problem common to several existing blind multiuser
CDMA detectors is that their performance tend to be negatively
affected by the signature waveform mismatch (SWM) caused
by channel distortion. Since channel distortion exists in most
environments where CDMA is deployed (e.g., cellular mobile
telephony), it is essential for the blind multiuser receivers to
mitigate the SWM effect when we design a practical CDMA
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detector with near—far resistance [2], [10]. One possible ap-
proach to deal with the SWM problem is to allow the use of
training sequences during transmission such that the channel
distortion can be periodically estimated by the receiver. The
identified channel response (distortion) can be used to design
compensating measures against SWM. However, in a mobile
communication environment where channel distortion varies
quickly, training-based approaches may consume too much
channel capacity. An alternative means of mitigating SWM is
to design a blind multiuser detector that has strong robustness
to SWM. In [2] (see also [5]), a particular mechanism was
presented for the design of robust blind multiuser CDMA
detectors that call for the minimization of the detector’s output
energy. Moreover, two gradient descent algorithms (the sto-
chastic gradient (SG) algorithm and the least squares (LS) algo-
rithm) were proposed in [2] for achieving the minimum output
energy (MOE) under the constraint that the so-called “surplus
energy” created by SWM is bounded. However, constraining
the “surplus energy” is an indirect and heuristic way to achieve
receiver robustness. A more natural (and perhaps also more
desirable) formulation is to directly maximize the worst case
system performance given a specific bound of SWM. Such is
the approach taken in this paper. Another drawback of the two
iterative algorithms proposed in [2] is that they require some
data-dependent parameters that are not easy to select, and a
poor choice could lead to unacceptable performance. The con-
strained MOE (CMOE) method [6] first estimates the channel
blindly and then minimizes the channel output energy subject
to certain constraints aimed at protecting the desired signal that
has propagated through the estimated channel. However, the
channel identification phase of the CMOE method requires a
large number of samples and a high signal-to-noise ratio (SNR).
Moreover, it requires special techniques to resolve an intrinsic
unitary ambiguity matrix.

In this correspondence, we present a new formulation for
the design of robust blind multiuser CDMA detectors. Our
formulation is direct in the sense that it allows explicit control
of the amount of required robustness in the detector. More-
over, our optimization formulation is convex since it is based
on the second-order cone (SOC) programming. As such, this
new robust blind multiuser detector can be obtained using the
highly efficient interior point methods recently developed in the
optimization community. Computer simulations indicate that
the performance of our new robust blind multiuser detector,
when combined with a blind signal separation method (e.g.,
the JADE algorithm [13]), is superior to those that exist in
the literature for both nondispersive and dispersive propagation
environment, while the number of required samples is signifi-
cantly smaller.
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II. PROBLEM DESCRIPTION

Consider an antipodal K-user synchronous direct sequence
CDMA channel corrupted by some additive and white Gaussian
noise n(t). Our notation follows that of [2], where

o standard deviation of channel n(t);

si(t)  normalized signature waveform for the kth user

with [|sg(t)]] = 1;

{bi[7]} transmitted binary phase-shift keying (BPSK) data
bits;

T bit duration at the transmission rate of 1/7".

Given the above notations, the received signal can be written as

K
y(t) = Y Apbesi(t) +n(t),  te[0,T]. (1)
k=1

When we sample the received signal waveform y(t) at the
chip rate 1/A, where A > 0 is the chip interval, we obtain the
following discrete version of (1):

K
y =) Abisi +n 6)
k=1
where
y(A) s(A) n(A)
y(2A) s(24) n(2A)
y = . Sk = : n= :
y(NA) s(NA) n(NA)

with N being the code spreading factor. Note that 7' = N A as
a result.

Without loss of generality, suppose that user 1 is our desired
user whose signature waveform is denoted as s;. Our goal in
receiver design is to select a vector ¢, which, upon correlating
with the received vector y and passing through a hard limiter,
will recover the data bits {b[i]} sent by user 1. The MOE-
based multiuser detector introduced in [2] can be described
as follows:

minimize E |{y,c1)|* = ¢cf Rey

subject to c?sl =1 3)
where c; is the vector to be determined, and R = E(yyT) €
RN>*N _In practice, we only have a finite number of snapshots
of the received data. Thus, we need to replace R in (3) with the
sample covariance matrix

where N, is the number of transmitted data bits and y[n]
is the nth received data vector. This leads to the following
implementable version of (3):

minimize c] Re;

subject to crlrsl =1. @)
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It is well known that the MOE solution to (4) is highly sensitive
to SWM and often leads to poor bit error rate (BER) perfor-
mance. To overcome this sensitivity to SWM, Honig et al. [2]
introduced the following energy-constrained version of MOE
detector:

minimize c]Rcy,

subjectto cis; =1

lex = s11* = x ®)
where  is called the surplus energy and is chosen by the user
a priori so that 1 < x < xs, with x and x g being the user-
selected lower and upper bounds on the surplus energy. Also,
an SG algorithm was proposed [2] to solve (5), but rigorous
convergence analysis was neither given nor known. In some
sense, (5) attempts to generate a robust solution to (4), which is
insensitive to SWM in s;. This robustness is achieved indirectly
by constraining the surplus energy. The main weakness of (5)
is its lack of convexity.

III. SOC ALGORITHM DEVELOPMENT

We now describe a more direct (and arguably a more natural)
way to construct a robust solution for the MOE formulation (4)
under SWM. It turns out that both the objective function and
constraints in this new formulation are convex so that a globally
optimal solution can be found efficiently.

We model the actual received signature waveform as
S = Ak(sk + eg), where ey, is the mismatch error vector and
Ay, is the channel gain. Notice that Ay, can be easily estimated
by matching the channel output power with ||s;||%. In this
way, we obtain the following normalized received signature
waveform:

S = Sk + ey. (6)

Clearly, ||ek|| is a measure of the magnitude of signal waveform
mismatch. The distortion can be due to asynchronism or multi-
path fading. For example, in the case of timing asynchronism,
we can use Taylor approximation to bound s(t + 7) — s(t),
where 7 is the timing offset. Hence, the SWM error is easily
bounded by |le|| =||§ —s|| < BN, where B is the upper
bound for the derivative of the continuous signature waveform
s(t), and N is the spreading factor. In a multipath environment
with an M -tap channel response h, the actual received signature
waveform is §; = s; ® h. Hence, we can obtain the following
bound on the mismatch error vector:

lell = lI8x —skll <llsk ® h — sy ||
< [Isk ® (h — hjgea)||
< VM| h — higeal| (7

where hjges denotes the ideal channel response (i.e., delta
function). If the channel has a main line of sight component and
small multipath components, then ||h — hjqea|| will be small.
We assume the distortion error e; in the desired signal
waveform can be bounded by some constant ¢ > 0, that is,
|le1|| < 9. The size of § can be estimated using, for example,
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(7). The actual received signal waveform §; can be described
as a vector in the set

51(8) = {81]81 =s1 + ey, [le1]| < 5} .

Since §; can be any vector in S;(J), we must ensure that
the detector gain for all signals in S7(d) should be greater
than 1, that is, c18; > 1 for all vectors §; € S1(5). Such a
constraint ensures that we can extract the data bits from user
1 regardless of how its signature waveform is distorted, as long
as the distortion is bounded by §. Now suppose that this gain
constraint is enforced, then our goal remains to find a vector ¢
that minimizes cle{cl. Consequently, a robust version of (4)
can be described as follows:

minimize c?fﬁcl

subjectto cig; > 1, forall §; € S1(9) (8)
where ¢ is an upper bound on the norm of the signal mismatch
error vector.

For each choice of §; € S;(6), the condition c['8; > 1 rep-
resents a linear constraint on c;. Since there are an infinite
number of §; in S7(0), the constraints in (8) are semi-infinite
and linear. To facilitate the computation of optimal c;, we will
convert these semi-infinite linear constraints into a so-called
SOC constraint. This is achieved by considering the worst case
performance as follows. Note that the optimal solution of the
minimization problem

min cj §; or equivalently min c](s; + e;)
8.€51(6) leill<é
is given by
501

e = ——-.
el

This can be easily verified by Cauchy—Schwartz inequality.
Therefore, the constraint

cis; >1,  foralls; € S1(6)

can be equivalently described by

dc
cl (51 - ||Cll||> >1lorcls; —dcy|| > 1. )

Substituting (9) into (8), we obtain a new problem formulation

minimize ¢} Rec;

T

subjectto cys; — djci]| > 1. (10)

Notice that the constraint in (10) is of the form
IPci|| <pei+q

for some given P € RV*N p € RV, and ¢ € R, which is
called a SOC constraint.

Next we convert the quadratic objective function of (10) into
a linear one. To do so, we first notice that ¢ Re; = ||Ley ||?,
where LTL = R is the Cholesky factorization. Obviously, min-

1287

imizing the quadratic norm || Lcy ||? is equivalent to minimizing
|ILcy||. Introducing a new variable ¢ and a new constraint
|Lcy || < ¢, we can convert (10) into the following form:

minimize ¢

subjectto ||Lei| <t [|dcy] < sTep — 1. (11)

The above formulation (11) is now in the standard form of a
SOC programming [11] problem. This is because the objec-
tive function is linear and the two constraints are both SOC
constraints (which are convex). Such optimization problem can
be efficiently solved using the primal-dual potential reduction
method SeDuMi [14]. The total computational complexity for
solving (11) is O(N3°1log 1/e). This, plus the complexity of
accumulating the sample correlation matrix R and performing
its Cholesky factorization, gives the SOC approach an overall
complexity of O(N3-®log 1/e + N, N?), where Ny, is the total
number of transmitted data bits. The accuracy parameter € can
be either fixed (say, ¢ = 10~%) or chosen to vary inversely
proportional to the SNR.

IV. SIMULATIONS

We now compare the simulation performance of our new
SOC method with those of the existing blind linear CDMA
receivers, which include the classical matched filtering (MF)
method, the standard (nonrobust) MOE detector, the two ver-
sions of robust MOE methods proposed in [2] (one based on LS
approach and the other based on SG approach), as well as the
CMOE method [6]. Although time synchronism was assumed
throughout the algorithm development, we first test the perfor-
mance of our algorithm on asynchronous CDMA systems. Then
we consider multipath propagation CDMA systems.

A. SWM Timing Asynchronism Model

Timing asynchronism is modeled through the presence of
SWM as in (6), where e ~ N(0,02). We consider CDMA
systems using Gold codes of length N = 31 with the number
of users K = 7 and K = 30. For the system with K = 7 users
the interference-to-signal ratio (ISR) is set to be

A
ISR=201og(A’“> =20dB, k=2,... K
1

where A, denotes the received signal amplitude of the kth user.
For the other system with K = 30, ISR is taken to be

Ay
ISR = 20log (A") =10dB, k=2,...,K.
1

Both cases represent a severe near—far effect.

In our simulations, we test the systems with long sequences
of transmitted bits (N, = 100 and N, = 400) to ensure ade-
quate iterative convergence of both LS and SG methods, which
we shall compare with our SOC method. It is also needed to
ensure that the sample covariance matrix R is a close approx-
imation of the true covariance matrix R. At the /th run, a
random distortion with a norm no more than ¢ is added to every
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Fig. 1. BER versus SNR, comparison of SOC, LS, SG, MOE, and MF detec-

tors. ()  =0.4and § = 0.4. (b)) § = 0.4 and 6 = 0.6. (c) § = 0.4 and § =
0.2.
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signature waveform sy, to result in a mismatched waveform 8.

In addition, new additive Gaussian noise vectors n’ as well as
anew data sequence {b } are generated.

To solve (11), we have used a Matlab-based tool called
SeDuMi [14], which is an efficient implementation of a primal-
dual interior point method for solving SOC problems. For the
LS and the SG methods, we have experimented with various
different values of y [the “surplus energy” in (5)] and have
chosen the one that gives the best averaged BER performance,
even though such a luxury is not practically affordable.

The results for K = 7 users are shown in Fig. 1. We test this
system with mismatch § = 0.4. Note that ¢ is the upper bound
on the SWM realization at each random run. We experimented
with different ¢ values and results seem to be the same quali-
tatively. Fig. 1 shows that the SOC method has the best BER
performance, followed by LS, SG, MOE, and MF. Fig. 1(a)
assumes that the value of  is known to the detector and we
use this value (5 =¢) in the SOC formulation (11). Fig. 1(b)
and (c) shows the performance of the SOC method when § is
overestimated and underestimated, respectively. It can be seen
that the SOC detector is robust to errors in estimating the SWM
bound. In all of above reported simulation results, we have
chosen the surplus energy x optimally (by trial and error) and
have plotted only the best results. It comes as no surprise that
the MF detector has a poor BER performance since it does not
deal with the presence of strong cochannel interferences. Notice
that the BER for the MOE detector worsens when the SNR
increases. This is the case for a nonrobust detector like the MOE
method because a part of the signal power will be contributing
towards the interference when SWM is present, leading to
larger interference power and worse BER performance as the
signal power increases.

Fig. 2 shows the results for heavily loaded system with
K = 30 users and severe interference with ISR set to be 10 dB.
Fig. 2(a) and (b) shows the comparison of SOC formulation,
LS and SG for data blocks of 100 and 400 bits, respectively. At
each run, a mismatch of norm § = 0.4 is added to signature
waveforms of all users, and § is assumed to be known to
the detector. Inaccuracy of estimating the mismatch does not
lead to the significant deterioration of the performance of the
SOC method, thus, in practice, an approximate estimate of §
will be enough. The simulations suggest that the robust SOC
formulation is superior to both LS and SG methods.

B. Multipath Propagation

We now test the performance of our algorithm in a multipath
propagation scenario. In our simulation, the dispersive channel
is modeled as a finite-impulse response filter with a tap-spacing
equal to the chip rate [12]. The spreading codes are again
chosen to be Gold sequences of length N = 31. The input
signal is a BPSK independent identically distributed sequence
for every user. Each user’s chip sequence is transmitted through
a randomly generated multipath fading channel of length ¢ +
1 = 3 chip periods. The user of interest is assumed to be the
weak user: The channel gains are scaled so that each inter-
fering user is 20 dB stronger than the user of interest. This
corresponds to a severe near—far situation.
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Fig. 2. BER versus SNR, 30 users, ISR = 10 dB, mismatch § = 0.4. (a) Data block 100 bits. (b) Data block 400 bits.
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Fig. 3.

Comparison of CMOE, SOC, and JADE Methods: Under
the above model, we compared the CMOE and SOC on a
CDMA system with K = 3 users. The other multiuser detectors
considered in the previous section showed a poor performance
under the given multipath propagation model.

Notice that a unitary ambiguity matrix exists in the blind
identification phase of the CMOE algorithm. Such ambiguity is
generic to the multiuser blind identification approaches based
on second-order statistics and cannot be resolved unless ad-
ditional information is available. In our simulation, we have
manually resolved this ambiguity using a (unrealistic) training
sequence prior to data transmission. Even with this ambiguity
removed, the CMOE algorithm still cannot recover the desired
(weak) user, regardless of the block size. The BER results,
averaged over 4000 Monte Carlo runs, are shown in Fig. 3,
with a curve “cmoe.” At each run, new data sequences of length
5000 bits (compared to 1000 bits for the other algorithms), new

JADE, K = 3, block = 1000, ISR = 20 dB, SNR = 6 dB
T

T T T T T T

Number of Random Runs

. . L L L L —
100 150 200 250 300 350 400 450 500
Number of Bits

JADE-SOC

Number of Random Runs
s o 8
(=3 (=3 o
=3 o o

@
S
S

L 1 L I | L
50 100 150 200 250 300 350 400 450 500
Number of Bits

(®)

Comparison of SOC, CMOE, JADE, and JADE-SOC. (a) Probability of error versus SNR. (b) Histogram.

additive white Gaussian noise vectors, as well as new channel
realizations, are generated. We have experimented with longer
data sequences (10 000-20 000 bits), but the results appear the
same qualitatively. We also tested the CMOE algorithm on a
CDMA system in which all users had the same power (ISR =
0 dB), and those results are shown with a curve “cmoe0.” Our
simulation results suggest that the performance of the CMOE
is seriously affected by the presence of noise and other users
in the system. It should be also recognized that in scenarios
when the channel length is unknown and has to be estimated,
the performance of the CMOE would further degrade.

We have also compared our SOC method to the JADE [13] al-
gorithm. The curves “SOC6” and “SOC7” represent our method
when & parameter is set to be §=0.6andé = 0.7, respectively.
The curve “jade” represents the JADE algorithm. For the SOC
algorithm, we have used the desired user’s Gold code sequence
as the nominal signature waveform §; in (8). We can see in
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Fig. 3(a) that this choice of nominal signature waveform is not
appropriate, i.e., the actual received signature waveforms do not
lie in the & vicinity of the chosen nominal signature waveforms.
In other words, the norm-bounded channel distortion model
is appropriate for communication systems with a strong line
of sight and small multipath components, as derived in (7).
For systems with severe presence of multipath components, we
propose the algorithm discussed in Section IV-C.

C. JADE-SOC Methods

It is possible to combine JADE and SOC methods to achieve
a better performance than what is possible by either method
individually. Indeed, when operating alone, the JADE method
may not identify the channel accurately due to the combined
effect of noise, multiuser interference, and short sample size,
while the SOC method may suffer from a poor choice of
nominal signature waveform. However, when operating in tan-
dem (JADE followed by SOC), the robustness of the SOC
method can be used to mitigate the estimation error found in
the estimates of the JADE method.

We have tested this combined approach: We first use the
JADE algorithm to estimate the received signature waveform
of the desired user, and then use it as the nominal signature
waveform §; in our formulation (8) of the SOC method.
This combined approach (named JADE-SOC algorithm) out-
performs the JADE, as shown by the curves “jade—soc015”
and “jade—soc025” (corresponding to 6 =0.15 and § = 0.25,
respectively) in Fig. 3. This suggests that the robust SOC blind
multiuser detector is able to correct the estimation errors caused
by the JADE algorithm.

We can see in Fig. 3(b) that in most of the random runs,
the received blocks in JADE-SOC algorithm had less than
25 corrupted bits per block. In particular, nearly 2500 blocks
were successfully (error free) decoded. This is not true for the
JADE algorithm. The given histogram [Fig. 3(b)] compares the
performance of JADE-SOC to the JADE when SNR is set to
6 dB. Similar results have been obtained for other SNR values.
If we set SNR to 24 dB, we can see in Fig. 4 that the JADE-SOC
algorithm is able to successfully decode even those blocks for
which the JADE algorithm has a BER of up to 40%. This
clearly demonstrates the added value of our new robust blind
multiuser detector. In contrast, the CMOE algorithm has a poor
performance [see Fig. 4(a)].

We point out that the SOC method can be used in con-
junction with any channel identification method (not just the
JADE method), blind or nonblind. The extra robustness of the
SOC method can be expected to partially mitigate the errors
found in the channel estimates, thus leading to improved BER
performance.

Finally, we remark that, in our simulations, solving each SOC
problem (11) with the MATLAB tool SeDuMi [14] takes less
than a second on a 600-MHz Pentium III PC.

V. CONCLUSION

In this correspondence, we have proposed a new robust blind
multiuser detector for synchronous CDMA in the presence of
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SWM. Our method is based on a robust formulation of the
MOE detector using the SOC programming technique. The
SOC formulation (11) is convex and can be efficiently solved
by the recently developed interior point methods. Computer
simulations indicate that the new SOC detector has a much
better performance when compared to the existing multiuser
detectors (robust or otherwise). Simulation results also show
that the SOC detector can be used effectively in the dispersive
propagation environment, provided that a reasonable estimate
of the received signature waveform for the desired user
is available.
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