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Abstract—In Part I of this two-part paper, we introduce several
possible methods for integrating wind power, price-responsive
demand and other distributed energy resources (DERs). These
methods differ with respect to information exchange requirements,
computational complexity, and physical implementability. A novel
look-ahead interactive dispatch that internalizes inter-temporal
constraints at the DERs level, and dispatches the results of
distributed decisions subject to spatial security constraints, is pro-
posed as a possible effective algorithm. This method requires only
the use of today’s static security-constrained economic dispatch
(SCED) by the system operators. The optimization accounting
for inter-temporal constraints, and ramping rates in particular, is
done by the DERs while they create their own supply and demand
functions. To implement this method, today’s supervisory control
and data acquisition (SCADA) needs to be transformed into a
multi-directional, multi-layered information exchange system.

Index Terms—Advanced metering infrastructure (AMI), con-
gestion-constrained look-ahead dispatch, dynamic monitoring and
decision-making systems (DYMONDS), intermittent resources,
look-ahead economic dispatch, model predictive control (MPC),
price-responsive demand, security-constrained economic dispatch
(SCED), security-constrained unit commitment (SCUC), supervi-
sory control and data acquisition (SCADA).

I. INTRODUCTION

T HIS paper is motivated by the need for better algorithms to
compensate for highly variable power imbalances through

the scheduling of conventional resources as well as through
price-responsive demand. The first contribution concerns sev-
eral new problem formulations which explicitly include wind
power. Notably, some of the formulations are the first to con-
sider wind power as an explicit decision variable. Not surpris-
ingly, these formulations show that the challenge of efficient
and reliable integration of intermittent resources and price-re-
sponsive demand is closely related to the technical problem of
dispatching diverse power plants with vastly different ramping
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rates connected to a potentially congested nonlinear transmis-
sion and distribution (T&D) system. Depending on the assump-
tions made, and on how the inter-temporal constraints are man-
aged and by whom (the system operator or the users), seem-
ingly indistinguishable formulations lead to qualitatively dif-
ferent algorithmic challenges. At present, a centralized secu-
rity-constrained look-ahead dispatch relies on wind forecast and
requires a complex unit commitment across all the power plants.
It is much harder to solve than our novel interactive look-ahead
dispatch based on distributed unit commitment by the system
users and the static security-constrained economic dispatch by
the system operator. In Part II of this paper, we compare the
several methods formulated in Part I. The recommendation is,
at least in the near term, to select the interactive look-ahead dis-
patch because, in addition to its computational efficiency, it does
not require in-depth knowledge of the different users’ abilities
to respond. The supply and demand functions are strictly static
after internalizing the unique temporal constraints by the system
users themselves.

In this paper, we take a step back to assess the feasibility of ac-
counting for wind power efficiently. Of particular interest is the
inter-dependence of information technology (IT) and the ability
to make the most out of distributed energy resources. In what
follows, we describe several qualitatively different algorithmic
approaches to integrating renewable resources. The taxonomy
introduced in Section II differentiates methods based on: 1) the
required spatial information flow between the end users and
the system operator; 2) the required temporal information flow
(static versus predictive); and 3) the required type of informa-
tion to be exchanged (bid functions versus specific (power-price
pointwise) specifications).

We introduce these algorithms in increasing order of com-
plexity. We first provide, in Section III, a mathematical formula-
tion of the static economic dispatch which treats wind power as
a negative load. The least generation cost problem is stated, and
this is followed by a generalized formulation which includes de-
mand-side management to optimize total surplus. This is done
for completeness and a consistent assessment of newly intro-
duced possible solutions in the remainder of this paper. In most
of the published literature, the solution to least-cost dispatch is
used as the benchmark for assessing the potential cost-benefit
analysis from wind power deployment [8], [9]. However, the re-
sults of these least-cost dispatch algorithms are not physically
implementable since the least-cost method does not take into
consideration the effects of ramping rates. To introduce a more
realistic benchmark, we formulate in Section IV a multi-tem-
poral static economic dispatch that is physically implementable.
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To ensure physical implementability, power plants are grouped
into slow- and fast-responding ones. The slow and fast plants
are dispatched each hour ahead statically since their dispatch is
feasible at this rate. The fast-responding plants are re-dispatched
every 10 min to compensate for load and wind power deviations
from their hourly forecast.

In addition to the least generation cost algorithm, the total
market surplus maximization version of the algorithm is for-
mulated to enable the inclusion of price-responsive demand. In
Section V, we formulate a centralized model predictive con-
trol (MPC) look-ahead dispatch that optimizes system opera-
tion over the following 6 hours. The purpose of this look-ahead
6-hour optimization is to utilize the potential of slow-response
units for balancing short-term demand and wind power fluctua-
tions. Another lesser advantage of the look-ahead methods is the
ability to decide which portion of the predicted available wind
power should be sent to the grid in order to minimize the total
generation cost, while taking into account the ramping rates of
all units. The centralized MPC-based predictive dispatch is gen-
eralized in the same section to include price-responsive demand.
To overcome inherent computational complexity, we consider
next two other types of candidate methods. The first dispatch
uses a fully-distributed architecture introduced in Section VI.
This is an algorithm which lets DERs make their own decisions
locally on how much power to schedule without system-level
coordination.

Overcoming the dimensionality problem ingrained in the
centralized MPC-based dispatch or similar dynamic program-
ming (DP)-based economic dispatch approaches proposed
in the past is very difficult [15], [16], and a fully distributed
decision-making algorithm is fundamentally complex [17].
Therefore, we propose, in Section VII, a novel multi-direc-
tional interactive dynamic monitoring and decision-making
systems (DYMONDS) [29] algorithm to implement near-op-
timal predictive dispatch. We differentiate between the static
DYMONDS and the MPC-based DYMONDS algorithms. The
proposed approach requires information exchange in the func-
tion spaces, instead of point-wise (quantity, price) information
exchange. These two are qualitatively different methods since
the coordination is much more straightforward and non-iterative
at any point in time since the functions are used to communicate
users’ characteristics to the system operator [18] instead of only
communicating (quantity, price) data points [19]. We close in
Section VIII with a summary of recommendations for methods
capable of integrating large amounts of intermittent resources
and adaptive loads efficiently. Open questions are stated.

II. POSSIBLE TAXONOMY OF SCHEDULING METHODS

The following notation is used throughout the paper. The vari-
ables with a hat are expected values, used typically as parame-
ters. The variables with an underscore sign are vectors.

Set of all available generators.

Set of fast and slow conventional
generators.

Set of intermittent energy generators.

Set of load zones.

Expected demand at load zone z time step
.

Cost function of generator .

Supply bid function of unit .

Benefit function of load consuming
.

Minimum and maximum generation
output.

Expected minimum and maximum wind
generation output at time step .

Forecast of demand in zone .

Forecast of available generation for
generator .

Forecast of price in iteration stage .

Ramping rate of generator .

Number of samples in the optimization
period.

Demand quantity of an individual end
user at time step .

Temperature of the premise of an user .

Price of electricity at time step .

Minimum and maximum temperature
setpoint.

Outdoor weather temperature at time step
.

Factor of AIR inertia and thermal
conversion efficiency.

Vector of line flows and their limits.

In this section, we provide a classification of possible
methods for scheduling existing power plants, wind power, and
demand side response together. As discussed in the introduc-
tion, this problem is fundamentally the same as the problem
of coming up with computationally efficient algorithms that
take into consideration the ramping rates while accounting
for nonlinear real and reactive power network constraints.
This problem has remained a computational grand challenge
[1]–[3]. A security-constrained economic dispatch (SCED) that
accounts for ramping rates differs from a security-constrained
unit commitment (SCUC) because it only schedules units that
are already on, and it typically neglects start-up and shut-down
costs as well as the must-run times of the different units. The
full-blown SCUC that also decides on turning units on and
off is fundamentally a mixed-integer programming (MIP)
problem. The unit commitment problem was originally solved
by Lagrangian relaxation (LR) approaches which effectively
solve SCED that consider the ramping rates of the power plants
[4]. Recent advances in optimization and computing capa-
bilities have made solutions of branch and bound-based MIP
computationally tractable [5]. Many of the independent system
operators (ISOs) have begun to deploy MIP-based tools [2].
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TABLE I
TAXONOMY OF METHODS FOR INTEGRATING INTERMITTENT

RESOURCES AND PRICE-RESPONSIVE DEMAND

In parallel with these new efforts, a majority of the industry
has continued to rely on SCUC that iteratively solves: 1) unit
commitment, or economic dispatch subject to ramping rates,
without considering network constraints; and 2) DC power flow
equations to ensure that the power flows are within the thermal
line limits. It is often the case that a system operator must modify
the results from step 1) to ensure that there is no transmission
congestion in the system. Once a modified combination of units
is found which meets step 2), step 1) can be repeated to improve
the solution suggested by the operator. This process is prone
to convergence problems, and the results are hard to justify to
the market participants. Moreover, such solutions also result in
voltage violations and difficulties in balancing reactive power
[2], [3].

For several reasons, these inherent challenges to SCED and
SCUC software are likely to become even more complex with
the high penetration of unconventional resources for the fol-
lowing reasons: 1) the inter-temporal variations of the power
output are significant, not known ahead of time, and their power
output is not directly dispatchable; 2) the number of new small
resources is likely to be very large; 3) their characteristics are
not standardized, and system operators do not have ready-to-use
models and parameters; and 4) the large-scale deployment of
wind could create qualitatively different T&D line flow patterns.
This, altogether, requires very careful dispatch management of
1) the conventional plants by taking into account their ramping
rate constraints and utilizing the new DERs, and 2) different
congestion management approaches than the ones used today.

As the interest in deploying more wind power has rapidly
grown, many studies have been put forward concerning the
potential benefits from these new resources, and also possible
congestion problems and the need for transmission investments
to support wind power integration into the existing systems
[8]. This study deploys a highly simplified model of a power
grid, and it therefore does not account for realistic network
power flow constraints. This is yet another reflection of the lack
of large-scale software that would account for ramping rates
and the nonlinear real and reactive power flow constraints. Of
course, only physically implementable solutions, which take
into account the inter-temporal ramping constraints as well as
nonlinear power flow constraints, are realistic ones.

In this section, we introduce a possible taxonomy of the can-
didate algorithms in increasing order of complexity, as shown
in Table I. It can be seen that the methods are qualitatively dif-
ferent with respect to how they account for temporal and spatial
interdependencies within a complex power grid. For example,
there are qualitative differences between the so-called static dis-
patch methods which only rely on single snapshot optimization
at a time stamp (column 1 in the table). Similarly, recently con-
sidered multi-temporal look-ahead optimization by the leading

Fig. 1. Required information exchange for centralized dispatch.

ISOs [3], [7] as well as our mathematical formulations of Prob-
lems 3, 5, and 7 require forecasts and computing of data over
multiple future time horizons (column 2 in the table). Simi-
larly, there are qualitative differences between fully centralized,
fully-distributed and multi-layered interactive algorithms with
respect to their spatial complexity. In the following, mathemat-
ical formulations of the different algorithms shown in Table I
are introduced.

Finally, the type of information exchange required for imple-
menting the considered methods is sketched in Figs. 1–3. It can
be seen in Fig. 1, which depicts the required information ex-
change for centralized dispatch, that the system users must pro-
vide their cost and/or benefit functions , as well
as their ramping rates . The system operator implements a
centralized economic dispatch subject to the given ramping rates
and sends back the information on optimal dispatch quantities

and cleared prices . Similarly, Fig. 2 is the infor-
mation flow typical of fully-distributed static dispatch. System
users optimize their own objectives for projected prices ;
the projected price is best given by the system operator. System
users are not required to give information about their dispatch;
the operator, based on supervisory control and data acquisition
(SCADA), detects the total power imbalance de-
fined as and
posts new prices to give incentives to system users to bal-
ance the system.1 Two types of rules could be defined: first, the
adjustments are done until equilibrium is reached or second,
the adjustments are implemented sequentially over time, cre-
ating power imbalances. Finally, shown in Fig. 3 is our proposed
multi-layered interactive information exchange in support of
implementing DYMONDS. Based on the projected look-ahead
prices by the system operator, each (group
of) system users performs its look-ahead optimization to create
static supply and demand functions for

. The system operator, in turn, performs a static SCED
for each as information from the users becomes available. The
system operator returns the results of the system-level optimiza-
tion , , and .

1A particular case of this approach would require only a technical information
update about the system-wide power imbalance �� �� � �� by the system
operator. In this case, additional rules concerning the responsibilities of system
users need to be defined in order to allocate responsibilities for contributing to
�� �� � �� on the part of individual users.
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Fig. 2. Required information exchange for fully-distributed dispatch.

Fig. 3. Required information exchange for DYMONDS-based dispatch.

III. CENTRALIZED STATIC SCED WITH DERS INCLUDED

In this section, we extend the formulation of the currently
implemented static SCED without accounting for the ramping
rates of power plants to include the effects of DERs and price-re-
sponsive demand.2 The least generation cost problem is formu-
lated as Problem 1A by simply representing wind power as a
negative demand assuming wind predictions in a 10-min interval
known[13] in much the same way as the 10-min load predictions
are assumed to be known.

1) Problem 1A: The least generation cost centralized SCED
which includes wind power as negative loads:

(1)

(2)

(3)

(4)

(5)

(6)

The wind forecast function can be based on a finite im-
pulse response filter-based discrete Markov model introduced in
[13] or other appropriate methods. The load forecast functions

can be obtained from much load forecast literature, e.g.,
[21]. The inclusion of price-responsive demand is a straightfor-
ward extension of the Problem 1A formulation.

2We use the word “static” to stress that the optimization is done statically for
each given time �. This is different from the ”dynamic” algorithms which are
of the look-ahead nature and are capable of correlating actions in time.

2) Problem 1B: The maximum total market surplus central-
ized SCED that includes wind power as negative loads. This
formulation assumes that static demand functions are given in-
stead of specifying the load [22]. Instead of minimizing total
generation cost, the total surplus is maximized subject to both
generation and load dispatch, as follows:

(7)

(8)

(9)

(10)

(11)

(12)

The result of solving Problem 1A is the optimized power gen-
eration of each dispatchable generation unit
and the locational marginal prices (LMPs). This is similar to
the results of the static SCED currently used in control centers.
Also, the results of solving Problem 1B are the optimized power
generation of a dispatchable generation unit
and the dispatchable load , as well as the LMPs at all
system nodes. However, as pointed out in our introductory re-
marks, the dispatch obtained by solving Problems 1A or 1B is
not physically implementable since it disregards the ramping
rates of all units. Nevertheless, the solutions to Problems 1A
and 1B are generally used as the theoretical benchmarks when
assessing the potential of wind power and price-responsive de-
mand. For consistency, we will compare the results of physically
implementable algorithms we obtain in this paper to this theo-
retical benchmark.

The remainder of this paper concerns only physically imple-
mentable algorithms. The complexity of the introduced algo-
rithms greatly depends on how the ramping rate-related inter-
temporal dependencies are accounted for.

IV. MULTI-TEMPORAL STATIC DISPATCH

In this section, a simple static dispatch problem that is phys-
ically implementable is formulated as Problem 2. This algo-
rithm reflects the present practice that treats intermittent re-
sources as negative loads. Slow dispatchable power plants such
as large coal and nuclear units are dispatched hour-ahead for
the predicted load and wind generation. This way, no explicit
ramping rate exists and only SCED is carried out. Consequently,
within an hour, it becomes necessary to re-dispatch only fast-re-
sponding conventional units (oil and gas, typically) in order
to balance supply and demand in response to temporal devia-
tions in wind and load. This requires expensive fuel-consump-
tion and sometimes the turning off of power plants that are hard
to re-start, or the spilling of hydro resources. Moreover, the wind
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and load prediction accuracy will determine the amount of reg-
ulation reserve needed to balance the supply and demand devia-
tions from the predicted values. The mathematical formulation
of Problem 2 is as follows.

1) Problem 2A: Physically implementable static dis-
patch with inelastic demand: At each hour , solve the
problem stated in (1)–(6). The result of this optimization is

.
Then at each 10-min interval , the ISO updates the wind

power forecast and re-runs optimizations (1)–(6) assuming the
slow generator units’ output will stay the same within that hour.

2) Problem 2B: Physically implementable static dispatch
with elastic demand

At each hour , solve the problem stated in (7)–(12).
The result of this optimization is

.
Then at each 10-min interval , the ISO updates the wind

power forecast and solves (7)–(12) assuming the slow units’ out-
puts stay unchanged within that hour . This approach to eco-
nomic dispatch is suboptimal relative to a full-blown SCUC be-
cause it somewhat arbitrarily decomposes a single problem into
two subproblems. In the remainder of this paper, we introduce
MPC-based methods which optimize over the entire look-ahead
time horizon in order to better account for the ramping rate
constraints. The MPC-based calculations are repeated at each
stage by optimizing over all stages , given the best infor-
mation about the future. It will be shown in this paper that the
MPC-based approach greatly contributes to smoother genera-
tion scheduling and lower overall generation costs.

V. CENTRALIZED MPC-BASED DISPATCH

In this section, we introduce an MPC-based economic dis-
patch that takes into consideration the ramping rates of dis-
patchable power plants by optimizing the total cost over the
look-ahead time horizon; this method is a further extension of
the work in [10]. A Markov model from [13] is used to repre-
sent a 10-min wind prediction of minimum and maximum wind
power output. A similar model is used for the 10-min load pre-
diction. Based on these models, a mathematical formulation of
the MPC-based economic dispatch from [10] is restated here for
completeness as follows.

1) Problem 3A: Centralized MPC-based dispatch with in-
elastic demand:

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

Here, instead of representing wind generation outputs as neg-
ative loads, the wind generation outputs are considered
as decision variables. A look-ahead moving horizon consisting
of samples is chosen over which all generation outputs are
optimized. Inter-temporal constraints such as ramping rates are
explicitly modeled in this formulation, therefore eliminating the
need for the two-step optimization stated above in Problem 2.
Similarly, with price-responsive demand, the generation cost
minimization problem becomes a market surplus maximization
problem. This is stated as Problem 3B next.

2) Problem 3B: Centralized MPC-based dispatch with
elastic load:

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

This problem formulation is a quadratic programming (QP)
problem and not a mixed-integer programming problem of
a full-blown unit commitment. As such, its computational
complexity is of the order , where is the number
of decision stages on a selected look-ahead horizon, and
is the number of decision variables per stage [11]. The QP
problem (22)–(30) without wind included has
number of generators over which the decisions are being made.
In this formulation, the decision variables are ,

. This increases the complexity accordingly. It is
important to recognize that a full-blown unit commitment has
a combinatorial search space over discrete variables
[12]. This is a huge combinatorial problem typically solved by
using approximate methods only.3 When increases due to
the presence of dispatchable wind, this complexity increases
significantly.

Even greater computational complexity arises when the net-
work flow constraints are taken into account. This must be done

3We note that now the system operators solve this problem using mixed-in-
teger linear programming (MILP), usually having a finite duality gap.
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in order to compute a dispatch that is within the transmission
congestion limits. Unfortunately, even in the case of relatively
small systems, the computing time becomes prohibitively long
when attempting to arrive at a centralized MPC-based economic
dispatch that accounts for the line flow constraints. This clearly
stresses the fundamental complexity of centralized optimization
which must account for both inter-temporal and spatial con-
straints when attempting to integrate new resources. Such cen-
tralized network optimization will present a major challenge in
the years to come in the design of large-scale computing al-
gorithms necessary for optimizing dispatch with a high pene-
tration of intermittent resources in spatially vast electric power
grids. Given this major roadblock to computing optimal cen-
tralized dispatch, we assess in the next section another extreme:
fully-distributed dispatch by the power plants themselves.

VI. FULLY DISTRIBUTED ECONOMIC DISPATCH

In what follows, we provide a mathematical formulation
for self-dispatch. The only coupling variable is the electricity
market price estimate, which is used by both power producers
and consumers when deciding how much to commit to sell
and/or purchase and at which price. The distributed system
users (power plants, demand) optimize their own sub-objec-
tives given the market price estimate, and self-dispatch. There
is neither centralized market clearing mechanism nor direct
interaction with the system operator. This method rests on the
idea of the invisible hand in markets, and it is known to have the
same equilibrium as the centralized market assuming convex
costs, no ramping rates, no system congestion, and no delivery
losses [22]. Most of the general literature does not concern the
dynamics of arriving at this equilibrium. However, in electric
power systems without storage, the time needed for decisions
to converge to a system-wide equilibrium is important since
the system must balance almost instantaneously.4 Here we
consider particularly the effect of ramping rates on the time
needed for self-dispatch to settle a market equilibrium in an
entirely distributed way by adjusting to changes in the market
price in a manner that reflects the system-wide supply- demand
imbalance. More recently, this self-dispatch has been referred
to as a plug-and-play interpretation of distributed power pro-
ducers and end users.

Consider first the decision-making in a system without con-
gestion. Self-dispatch can be posed as either a static optimiza-
tion problem or a look-ahead distributed optimization problem
by each power plant and/or end user. Problems 4 and 5 are for-
mulations of these two approaches, respectively.

1) Problem 4A: Fully-distributed static self-dispatch with in-
elastic demand

At time , the system operator provides price forecast
to the distributed decision makers (generators).5 Each generator

solves the following distributed optimization problem:

(31)

(32)

4If storage is taken into account, the system equilibrium may not have to be
calculated instantaneously because storage can compensate for small imbal-
ances of the system. However, how storage should automatically respond to
system imbalances still remains an open question.

5This information could be also based on historic prices.

Each generator maximizes its expected profit given a price
prediction . The optimization results obtained by generator

are therefore the output levels . It is important to ob-
serve that the system supply-demand energy balance equation
is not an explicit constraint in this problem formulation. There-
fore, the self-dispatch of individual generators generally results
in system supply-demand imbalance.

Similarly, when both generators and end users self-dispatch,
the system imbalance is a result of not explicitly imposing the
supply-demand constraint. The decisions of both generators and
end users are formulated as follows.

2) Problem 4B: Fully-distributed static self-dispatch with
elastic demand

At time , the system operator provides price forecast
and this information is used by all distributed decision makers
(generators and loads). Each generator solves the dis-
tributed decision-making problem as formulated in Problem 4A.
Similarly, each load solves the following distributed op-
timization problem:

(33)

(34)

The process repeats at time , and with this new in-
formation, the self-dispatch is recomputed. The imbalance of
generation and demand at time

(35)

is generally non-zero and it takes several iterations for the deci-
sion makers to converge to an equilibrium in which

.
Shown in Fig. 4 is a typical iterative process based on top-

down price information by the system operator to the system
users. At step , the announced price is 50 $/MWh; opti-
mizations in (31)–(32) by the generator, and (33)–(34) by the
load zones, lead to a power shortage of approximately 2000
MW. At time step , the system operator, not knowing what
individual system users have scheduled, observes this shortage
and increases the price to give incentive to generators to pro-
duce more. System users, in turn, respond to this new price and
adjust according to their own optimization goals. This process
ultimately converges to , which is the true market
equilibrium. The sequential balancing of supply and demand be-
comes much more complex when suppliers and users are asked
to trade within the system congestion limits. For a more de-
tailed example of these iterative distributed adjustments within
the system congestion constraints, see [23].

There are at least two possible ways to deal with the time
needed to converge. First, the price resulting from the dis-
patched resources is posted, and the decision makers adjust to
it until no further changes in price are observed; only then is
the self-dispatch implemented. Second, power plants and loads
respond locally to frequency deviations seen at their location
and increase their output as frequency decreases, and vice
versa. This is effectively the idea of homeostatic control [14].
Both approaches require time for the adjustments to settle and
one may run the risk of cumulatively increasing supply and
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Fig. 4. Conceptual comparison of point-wise self-dispatch and DYMONDS-
based dispatch.

demand imbalances as the power generated by the intermittent
resources gets intertwined with the imbalances due to lack of
coordination [24].

A more realistic approach is based on the observation that
the distributed decision makers would optimize their expected
profit not in a static way but in some look-ahead manner. A
mathematical formulation of such self-dispatch is as follows.

3) Problem 5A: MPC-based self-dispatch with inelastic de-
mand

For a given vector of prices defined as

(36)

(37)

(38)

(39)

(40)

The outcome of the above optimization procedure
is a vector of quantities scheduled defined as

.
4) Problem 5B: MPC-based self-dispatch with elastic de-

mand
Generators dispatch by solving Problem 5A. Similarly, when

loads self-dispatch, they must consider their internal dynamics.
This can be done by introducing an equivalent to the rate-of-
response limit for loads. This rate-of-response limit is a con-
sequence of internal load characteristics and dynamics. To il-
lustrate this, consider a thermal load whose temperature must
be maintained within the thermal limits. We model the ther-
modynamics of an end-user’s premise [28] and relate it to the
electric energy consumption for each hour. The objective of an
end-user is to minimize energy cost given the expected set of
prices for the next 24 h without
violating the temperature comfort level. This comfort level is
preset by each end-user as the lower and upper temperature
limits and allowed. Therefore, this decision-making

process will take the different needs of each end-user into ac-
count and dispatch accordingly. Ideally, this is done according
to the following optimization:

(41)

(42)

(43)

The MPC-based self-dispatch is computationally simple when
compared to the centralized MPC-based dispatch, if one as-
sumes price predictions to be given. The MPC-based method
generally results in less volatile prices and fewer system imbal-
ances (even without any additional price updates) when com-
pared with fully-distributed self-dispatch.6

Related proposed approaches require a pointwise informa-
tion exchange between the distributed decision makers and a
transmission provider concerning distribution factors, conges-
tion charges , or the proximity to line limit information by
the transmission providers [22], [25]. Again as in the case of
any pointwise information exchange in the supply-demand bal-
ancing processes, instabilities may occur and/or the time re-
quired to settle may be longer than the rate at which the output
of intermittent resources vary. Also, the duality gap between the
solution of Problem 5B and Problem 1B may be significant; this
reflects the cost of decentralization.

In closing, fully-distributed pointwise self-dispatch is prone
to slow settling times and/or genuine instabilities. These are two
major issues which require further investigation before seriously
considering self-dispatch as an option in the changing energy in-
dustry.7 The role and value of storage become essential if such
a method is to be adapted. Important open questions concern
the tradeoff between information complexity and the cost of
storage.

VII. DYMONDS-BASED ECONOMIC DISPATCH

Keeping in mind the subtle differences between the methods
assessed above, we propose a new method for economic dis-
patch that: 1) is computationally feasible at the 10-min rate even
for very large power systems; 2) generally comes very close
to the efficiency (the values of the objective functions) of cen-
tralized MPC-based economic dispatch (theoretically the most
efficient physically implementable dispatch); 3) allows for au-
tonomous adaptation by the generators and loads to changing
system conditions; and 4) empowers the system operator with
the ability to balance the system almost instantaneously within
the system congestion limits. We refer to this economic dis-
patch as DYMONDS-based, since it requires a more interactive
multi-layered IT architecture than today’s SCADA. We think

6Only risk-free dispatch is considered here. There are methods for accounting
for the tradeoff between the expected profit and value, but this becomes compu-
tationally more challenging even at the distributed level [24].

7The adjustment process by a typical number of power plants is a very dif-
ferent process from the one of many small actors adjusting at the distributed
level within the distribution network, where the law of large numbers may en-
sure more stable processes.
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of it as the next generation of SCADA. The DYMONDS-based
economic dispatch requires specific information to be given by
the distributed decision makers to the system operators in terms
of bid and demand functions. These are created by each dis-
tributed decision maker as a result of its own objective optimiza-
tion function in an MPC look-ahead manner. For the predicted
price and the range of price variations, the distributed decision
maker (generator or load) provides a sensitivity function of price
with respect to the quantity at which it is willing to sell or pur-
chase. The demand and supply functions are simply sensitivities
of the Lagrangian coefficients associated with around
prices given by the operator.

We stress that the DYMONDS approach requires informa-
tion exchange in a function space. Shown in Fig. 4 is a sketch of
the conceptual advantage provided by supply and demand sen-
sitivity functions as opposed to pointwise single (price, quan-
tity) point data. It can be seen that, for given supply and demand
functions, an equilibrium is found in one step, not
iteratively. This is in contrast to the point-wise information dis-
covery through iterations which leads to equilibrium. The iter-
ations can be very time-consuming and unacceptable in power
systems without storage. Ensuring that system feasibility can
be maintained is simply a matter of finding a solution to a static
optimal power flow for which supply and demand functions are
given. In the case of DC OPF, it is known that a solution exists if
the total benefit and total cost functions are concave and convex,
respectively.

Given this observation, we propose a DYMONDS-based
multi-directional multi-layered information exchange in which
distributed decision makers are required to provide their bids
in the function space. These are in turn optimized non-it-
eratively by the entity in charge of balancing supply and
demand-the system operator in particular. Moreover, inter-tem-
poral complexity is managed in the look-ahead MPC-based
distributed decision-making process over a finite time horizon
by the system users themselves, resulting in a set of static
bid functions for the entire look-ahead interval. These are in
turn communicated to the balancing authority, which carries
out a static optimization only. This way the computational
complexity at the system level is overcome.

1) Problem 6A: DYMONDS-based static dispatch with in-
elastic demand

Given the price vector , each generator solves the
problem posed in 5A above to obtain optimum power .
Then, by varying the price uniformly up and down by the
generator obtains a set of optimal points corresponding to these
perturbed prices by re-solving the same problem 5A. These so-
lutions are used to create a price sensitivity-based supply vector
function around the assumed electricity price.
All generators are required to submit their supply functions
to the system operator and the market clears the bids, which
are the lowest generation cost bids needed to balance supply
and demand at time . Problem formulation 6A resembles the
basic day-ahead spot market clearing process. It is known to
work well, except for not being able to account for the ramping
rates-related inter-temporal dependencies between clearing

times . Variations of this approach can be found in literature
related to multilateral energy markets [18], [25].

2) Problem 6B: DYMONDS-based static dispatch with
elastic demand

In addition to generators creating their own supply functions
as described in 6A, groups of end users optimize their own ben-
efits for given by solving Problem 5B above to obtain op-
timal . Next they create sensitivity-based demand func-
tions by varying the given price by up and down and finding
the corresponding optimal demand. The proof-of-concept for
such static dispatch that relies on the exchange of bids in a func-
tion space subject to congestion limits can be found in [18].

For the purposes of this paper, it is important to assess the du-
ality gap between the results obtainable using centralized MPC-
based economic dispatch and the results obtainable using the
DYMONDS-based approach. There are several reasons for this
gap and the resulting sub-optimality. The main causes are: 1) the
non-convexity of the cost functions; 2) the non-concavity of the
benefit functions; 3) temporal inter-dependencies; and 4) inter-
active information exchange-related uncertainties. It has been
shown that under certain convexity conditions and assuming
no inter-temporal dependencies (no ramping rate-related con-
straints), there exists a unique equilibrium which can be reached
interactively using a static DYMONDS-based economic dis-
patch [26]. However, given the significant inter-temporal de-
pendencies related with the ramping rates on the power pro-
ducers’ side, and the load dynamics and uncertainties at the end
users’ level, it is no longer sufficient to rely on static equilib-
rium thinking. Instead, it becomes essential to introduce a DY-
MONDS-based MPC interactive dispatch capable of managing
the inter-temporal dependencies more efficiently than the DY-
MONDS-based static dispatch. A mathematical formulation of
this approach is introduced next.

3) Problem 7A: DYMONDS-based MPC dispatch with in-
elastic demand

In the DYMONDS-based MPC dispatch formulation, a
two-layer8 information exchange scheme provides an inter-
active optimization procedure between the system operator,
on the one hand, and an individual power producer and the
consumer layers, on the other. For expected power price vector

, each power producer maximizes its expected profits by
internalizing the rate of response of the available generation,
as well as the inter-temporal ramping constraints. One vector
of expected price corresponds to one vector of optimum
vector generation outputs . By perturbing the price
vector around the nominal value, power producers are able
to generate a set of optimum generation output vectors. The
pairs of price and optimum generation output vectors are
submitted to the system operator as the supply functions for
the next 24 h, for example. The calculation of the generator’s
supply function that accounts for temporal interdependencies

8Depending on the granularity of aggregation, there may be multiple layers.
For example, the lowest layer will be a single power producer, the secondary
layer is a portfolio manager, and the third layer is a system operator. Similarly,
for managing loads adaptively, the primary level is comprised of individual end
users, the secondary layer of load serving entities, and the tertiary level is the
system operator [27].
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can be obtained in the following way. For a given vector of

(44)

(45)

(46)

(47)

(48)

For generator , there are no (45) and (46) constraints.
The outcome of the above optimization is a vector of power

quantities . By varying the price vector uniformly up and
down , one obtains a desired power output and price pairs
shown as

(49)

(50)

One then constructs the vector supply function for generator
at time , , using the results of (49) and (50). The

reason for perturbing up and down uniformly on the price vector
is that the search space is reduced from to . Given that
the MPC is a moving horizon optimization, the uniform search
will result in much faster computation.9

At the system operator level, only static SCED is performed,
formulated as Problem 1A. Therefore, the computational burden
compared with that of fully-centralized MPC dispatch is sig-
nificantly reduced. At the system level, the ISO simply solves
Problem 1A by replacing with .

4) Problem 7B: DYMONDS-based MPC dispatch with
elastic demand

Similarly, by introducing price-responsive demand, the
DYMONDS-based MPC dispatch can be formulated as a total
market surplus maximization problem at the system operator
level. For a given price vector

(51)

(52)

(53)

Then the demand function is obtained by perturbing the
price vector around the price vector originally anticipated
by the system prediction. The demand functions are ob-
tained by curve-fitting different prices for each hour and the
corresponding optimal energy usages. Linear least squares
estimation is used to calculate the demand curve and obtain the
slopes and y-axis intercepts of the hourly demand functions.
These demand functions are expected to show a certain level

9Based on the experiments in Part II of this paper, searching the price vector
in� does not yield too much optimality degradation compared to searching in
� . Analysis of the suboptimality of uniformly perturbing the price vector is
an open research problem.

of price elasticity during some hours each day. Some more
insights concerning the benefit and demand functions can be
found in the Appendix of Part II of this paper.

The outcome of the above optimization procedure is a de-
mand vector defined as .
After calculating these optimal demands at each time step, we
perturb the expected price vector (e.g., by ) to obtain
optimal energy consuming points for a different price vector, as
at the individual end-users’ level. At each time step, these dif-
ferent price and optimal demand vectors are curve-fitted to form
system demand functions. These demand functions carry infor-
mation about the end-users’ economic value of electricity. To-
gether with the supply functions, the demand functions are col-
lected by the system operator, and cleared by solving Problem
1B for each time step.

VIII. CONCLUSIONS

In this paper, we present several possible approaches to inte-
grating wind power and assess their strengths and weaknesses.
We conclude that the three key factors to successful wind inte-
gration are: 1) demand response, 2) the use of predictive wind
power models, and 3) the use of a physically implementable
dynamic model-predictive dispatch of responsive demand,
wind power, and conventional power plants. A physically
implementable dispatch takes into consideration the ramping
rates of equipment and at the same time ensures that the power
can be delivered by the grid within its congestion limits. We
first formulate a centralized model-predictive dispatch, and
we argue that it is the most efficient physically implementable
solution possible. However, we suggest that such a solution
would require major breakthroughs to go beyond the computing
algorithms currently used for SCED. Such algorithms present
a grand challenge in computer science and are not likely to
be available any time soon for use in electric power systems.
Given this, we next formulate a computationally manageable
alternative, which is referred to as DYMONDS. An implemen-
tation of DYMONDS-based dispatch will require transforming
today’s SCADA system to enable online multi-directional,
multi-layered information exchange between the centralized
scheduler and the energy resources. Based on the algorithmic
formulation, we conclude that DYMONDS protocols must
provide certain online information exchanges: 1) demand and
supply functions from the energy resources ahead of time to the
scheduler; and 2) statically optimized schedules and electricity
prices using today’s SCED from the central dispatcher back to
the resources.
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Marija D. Ilić (M’80–SM’86–F’99) is currently a Professor at Carnegie Mellon
University, Pittsburgh, PA, with a joint appointment in the Electrical and Com-
puter Engineering and Engineering and Public Policy Departments. She is also
the Honorary Chaired Professor for Control of Future Electricity Network Op-
erations at Delft University of Technology in Delft, The Netherlands. Her main
interest is in the systems aspects of operations, planning, and economics of the
electric power industry. Most recently, she became the Director of the Electric
Energy Systems Group at Carnegie Mellon University (http://www.eesg.ece.
cmu.edu); the group does extensive research on mathematical modeling, anal-
ysis, and decision-making algorithms for future energy systems. She is leading
the quest for transforming today’s electric power grid into an enabler of efficient,
reliable, secure, and sustainable integration of many novel energy resources. She
has co-authored several books in her field of interest.
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