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We present a survey of control-flow analysis of functional programs, which has been the subject
of extensive investigation throughout the past 30 years. Analyses of the control flow of functional
programs have been formulated in multiple settings and have led to many different approximations,
starting with the seminal works of Jones, Shivers, and Sestoft. In this paper, we survey control-flow
analysis of functional programs by structuring the multitude of formulations and approximations
and comparing them.
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ifying and Reasoning about Programs
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1. INTRODUCTION

Since the introduction of high-level languages and compilers, much work has been
devoted to approximating, at compile time, which values the variables of a given
program may denote at run time. The problem has been named data-flow analysis
or just flow analysis.

In a language without higher-order functions, the operator of a function call is
apparent from the text of the program: it is a lexically visible identifier and therefore
the called function is available at compile time. One can thus base an analysis for
such a language on the textual structure of the program, since it determines the
exact control flow of the program, e.g., as a flow chart. On the other hand, in a
language with higher-order functions, the operator of a function call may not be
apparent from the text of the program: it can be the result of a computation and
therefore the called function may not be available until run time. A control-flow
analysis approximates at compile time which functions may be applied at run time,
i.e., it determines an approximate control flow of a given program.

Prerequisites. We assume some familiarity with program analysis in general and
with control-flow analysis in particular. For a tutorial or an introduction to the area
we refer to Nielson et al. [1999]. We also assume familiarity with functional pro-
gramming and a basic acquaintance with continuation-passing style (CPS) [Steele
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Jr. 1978] and with recursive equations [O’Donnell 1977]. We furthermore as-
sume some knowledge about closures for representing functional values at run
time [Landin 1964], and with Reynolds’s defunctionalization [Reynolds 1972; Danvy
and Nielsen 2001].

1.1 History

Historically, Reynolds was the first to analyse LISP programs [Reynolds 1969]. In-
dependently of Reynolds, Schwartz [1975] developed value flow analysis for SETL,
an untyped first-order language based on set theory [Schwartz et al. 1986]. Also
independently of Reynolds, Jones and Muchnick analysed programs with Lisp-like
structured data [Jones and Muchnick 1979; 1982]. Jones was the first to analyse
lambda expressions and to use the term control-flow analysis [Jones 1981a; 1981b]
for the problem of approximating the control flow of higher-order programs. Rozas
[1984] since developed a flow analysis for Scheme as part of the Liar Scheme com-
piler. Independently, Shivers formulated control-flow analysis for Scheme, proved it
sound, and suggested a number of variations, improvements, and applications [Shiv-
ers 1988; 1991a]. Sestoft then developed a closure analysis for programs in direct
style [Sestoft 1988; 1989]. The latter was reformulated first by Bondorf [1991], and
later by Palsberg [1994], whose account is closest to how control-flow analysis is
presented in textbooks today [Nielson et al. 1999].

1.2 Terminology

1.2.1 Flow vs. closure analysis. Jones and Shivers named their analyses control-
flow analysis [Jones 1981a; 1981b; Shivers 1991a] whereas Sestoft [1988] named his
analysis closure analysis. Even though they are presented with different terminol-
ogy, all three analyses compute flow information, i.e., they approximate where a
given first-class function is applied and which first-class functions are applied at
a given call site. The term value flow analysis of Schwartz [1975] is also used to
refer to analyses computing such flow information [Henglein et al. 2005]. The term
‘control flow analysis’ was originally used by Allen [1970] to refer to the extraction
of properties of already given control-flow graphs.

A different line of analysis introduced by Steele in his MS thesis [Steele Jr. 1978] is
also referred to as closure analysis [Clinger and Hansen 1994; Serrano 1995]. These
analyses, on the other hand, are concerned with approximating which function calls
are known, and which functions need to be closed because they escape their scope.
A call to a known procedure can be implemented more efficiently than the closure-
based procedure-call convention, and a non-escaping function does not require a
heap-allocated closure [Kranz 1988].

1.2.2 Approximating allocation. In control-flow analysis one typically approxi-
mates a dynamically allocated closure by its code component, i.e., the lambda term,
representing its place of creation. The idea is well-known from analyses approxi-
mating other heap-allocated structures [Jones and Muchnick 1979; 1982; Andersen
1994; Cejtin et al. 2000], where it is named the token or birth-place approach. Con-
sel, for example, uses the approach in his work on binding-time analysis [Consel
1990].

More generally dynamic allocated storage can be represented by the (approxi-
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mate) state of the computation at allocation time [Jones and Muchnick 1982; Hudak
1987; Deutsch 1990] — an idea which has been named the birth-time, birth-date,
or time-stamp approach [Harrison III 1989; Harrison III and Ammarguellat 1993;
Venet 2002]. The state of the computation can be represented by the (approximate)
paths or traces leading to it. One such example is contours [Shivers 1991a], which
are finite string encodings approximating the calling context, i.e., the history of
function calls in the computation leading up to the current state. The term contour
was originally used to model block structure in programming languages [Johnston
1971].

1.2.3 Sensitivity. Established terminology from static analysis has been used to
characterize and compare the precision of analyses [Hind 2001]. Much of this termi-
nology has its roots in data-flow analysis, where one distinguishes intra-procedural
analyses, i.e., local analyses operating within procedure boundaries, from inter-
procedural analyses, i.e., global analyses operating across procedure calls and re-
turns. In a functional language based on expressions, such as Scheme or ML,
function calls and returns are omnipresent. As a consequence, the data-flow analy-
sis terminology does not fit as well. Throughout the rest of this paper we will use
the established terminology where appropriate.

A context-sensitive analysis distinguishes different calling contexts when analysing
expressions, whereas a context-insensitive analysis does not. Within the area of
control-flow analysis the terms polyvariant analysis and monovariant analysis are
used for the same distinction [Nielson et al. 1999]. A flow-sensitive analysis follows
the control-flow of the source program, whereas a flow-insensitive analysis more
crudely approximates the control-flow of the source program, by assuming that any
expression can be evaluated immediately after any other expression.

2. CONTEXT-INSENSITIVE FLOW ANALYSIS

In this section, we consider context-insensitive control-flow analyses. Starting from
the most crude approximation, we list increasingly precise approximations.

2.1 All functions

The initial, somewhat naive, approximation is that all lambda expressions in a pro-
gram can potentially occur at each application site. In his MS thesis [Sestoft 1988],
Sestoft suggested this approximation as safe but too approximate, which motivates
his introduction of a more precise closure analysis. This rough flow approxima-
tion also underlies the polymorphic defunctionalization suggested by Pottier and
Gauthier [2006]. Their transformation enumerates all source lambda expressions
(of varying type and arity), and represents them by injection into a single global
data type. The values of the data type are consumed by a single global apply func-
tion. This approach requires a heavier type machinery than is available in ML.
Their work illustrates that a resulting program can be type-checked using ‘guarded
algebraic data types’.

2.2 All functions of correct arity

Warren independently discovered defunctionalization in the context of logic pro-
gramming [Warren 1982]. He outlines how to extend Prolog to higher-order predi-
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cates. The extension works by defunctionalizing the predicates-as-parameters, with
one apply function per predicate-arity. The transformation effectively relies on an
underlying flow approximation which approximates an unknown function (predi-
cate) by all functions (predicates) of the correct arity.

This approximation is not safe for dynamically-typed languages, such as Scheme,
where arity mismatches can occur at run-time. On the other hand, the approx-
imation is safe for languages where arity checks are performed at compile time.
Ironically, the latter can be achieved by another control-flow analysis or a static
type system.

2.3 Escape analysis

A lightweight approach to compiling higher-order functions is the so-called escape
analysis [Appel 1992; Appel and Jim 1989]. The approach is based on a rough
flow approximation originally due to Steele [1978]. In its simplest formulation, the
analysis partitions the source lambda expressions into two groups: escaping func-
tions, i.e., functions that (potentially) escape their lexical scope by being returned,
passed as a parameter, stored in a pair, etc., and known functions, i.e., functions
that do not escape [Shao and Appel 1994]. The categorization can be formulated
as a simple mapping from source lambdas to a binary domain. In essence, this
analysis categorizes higher-order functions as ‘escaping’, whereas first-order func-
tions are categorized as ‘known’. In the Rabbit Scheme compiler [Steele Jr. 1978],
Steele used the analysis to decide whether to close lambda expressions, i.e., create
a closure, over their free variables or not.

A slightly better approximation supplements the above partition of source lamb-
das with a similar partition of function calls. Function calls are also partitioned
into two groups: known calls and unknown calls [Appel and Jim 1989]. This cate-
gorization can also be formulated as a simple mapping from call sites to a binary
domain. As a consequence, a source lambda can both escape and also be the oper-
ator of a known call. In the Orbit compiler [Kranz et al. 1986; Kranz 1988], Kranz
further distinguished between upward escaping and downward escaping variables
and lambda expressions, because closures in the latter category could be stack al-
located. Garbage collection was considered relatively expensive at the time and
Kranz’s motivation [Kranz 1988] was to show that Scheme could be compiled as
efficiently as, e.g., Pascal, which was designed to be stack-implementable.

Escape analysis is a modular flow approximation, i.e., separate modules can be
analysed independently, as opposed to a whole-program flow analysis. The flow
approximation is useful for both closure-conversion [Steele Jr. 1978; Appel 1992]
and defunctionalization [Tolmach 1997]. Different terminology has been used to
name the approach, sometimes with unfortunate overlap. Steele used the term
binding analysis for the corresponding pass in his compiler [Steele Jr. 1978, ch.8].
Kranz refers to the distinction as escape analysis [Kranz 1988, ch.4]. Both Steele
and Kranz refer to their decision procedure for choosing closure representation
and layout as closure analysis [Steele Jr. 1978; Kranz 1988]. Clinger and Hansen
[1994] characterize escape analysis as a first-order closure analysis, to stress that it
detects first-order use of functions. Serrano referred to escape analysis as closure
analysis [Serrano 1995]. Cejtin et al. [2000] refer to escape analysis as a syntactic
heuristic.
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2.4 Simple closure analysis

Henglein first introduced simple closure analysis in an influential though not often
credited technical report [Henglein 1992]. The analysis is inspired by type infer-
ence, and as such it is based on emitting equality constraints that are then solved
by unification. The latter can be performed efficiently in almost linear time us-
ing a union-find data structure, as is well-known from type inference [Pierce 2002].
Another inspiration was a similar but somewhat more advanced binding-time anal-
ysis [Henglein 1991] performing two rounds of unification. Bondorf and Jørgensen
[1993] later documented an extension of Henglein’s approach in the context of a
partial evaluator, and Heintze gave a simple formulation in terms of equality con-
straints [Heintze 1995]. Tolmach and Oliva [1997; 1998] as well as Mossin [1997]
have since formulated (typed) variants of the approach.

Van Horn and Mairson [2008b] have recently re-investigated simple closure anal-
ysis. For linear lambda-calculus terms, i.e., terms in which variables occur exactly
once, they proved that simple closure analysis and evaluation are equivalent. They
furthermore proved that simple closure analysis is complete for polynomial time.

Henglein entitled the approach simple closure analysis. The analysis has later
been named equality-based flow analysis [Bondorf and Jørgensen 1993; Palsberg
1998] as well as control-flow analysis via equality [Heintze 1995]. The idea is also
referred to as unification-based [Cejtin et al. 2000; Das 2000; Hind 2001], or bi-
directional [Rehof and Fähndrich 2001; Hind 2001]. Aiken refers to the analysis as
based on term equations [Aiken 1999]. We shall sometimes refer to it as unification-
based analysis, when contrasting it with other analyses.

2.5 0-CFA

The textbook presentation [Nielson et al. 1999] of a zeroth-order control-flow anal-
ysis (0-CFA) computes a fixed-point over two global maps: (a) an abstract envi-
ronment that anticipates all the actual bindings that can occur at run-time, and
(b) an abstract cache that anticipates all the functional values that expressions
can evaluate to at run-time. In the words of Jones [1987], the analysis “neglects
all coordination among the variable bindings, and merges all bindings of the same
variable. (Nonetheless it seems to work well in practice.)”

Shivers developed the context-insensitive 0-CFA for Scheme [Shivers 1991a; 1988],
and suggested several context-sensitive flow analyses (see below). During his work
on globalization, i.e., statically determining which function parameters can be
turned into global variables, Sestoft had developed a similar flow analysis [Sestoft
1988; 1989], in order to handle higher-order programs.

Bondorf later simplified the equations of Sestoft’s analysis [Bondorf 1991] in order
to extend the Similix [Bondorf 1993] self-applicable partial evaluator to higher-
order functions. Palsberg then limited Bondorf’s equations to the pure lambda
calculus [Palsberg 1994; 1995]. He presented a simplified analysis as well as a
constraint-based formulation, and proved the equivalence of the three analyses.

Initially Shivers [1988; 1991a] did not analyze the time complexity of his ap-
proach. In his PhD thesis, Sestoft [1991] gave an O(n4) upper bound, which was
later refined to O(n3) [Oxhøj et al. 1992; Ayers 1992; Heintze 1994; Palsberg and
Schwartzbach 1995]. We discuss in Section 5.3.2 a recent O(n3/ logn) algorithm for
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the unit cost random-access memory model machine. Van Horn and Mairson [2007]
recently formulated 0-CFA as a decision problem, which they proved complete for
polynomial time. Their proof is based on linear lambda calculus programs, for
which analysis and evaluation coincides.

Serrano [1995] describes a variant of Shivers’s 0-CFA used in the Bigloo optimiz-
ing Scheme compiler. Serrano’s description is given as a functional program with
side-effects (assignments). Reppy [2006] later describes a refinement of Serrano’s
algorithm reformulated as a pure functional program. The analyses of Serrano and
Reppy do not infer control-flow information for all expressions, they infer control-
flow information only for variables, i.e., they compute an approximation of the
run-time environment.

As opposed to a unification-based control-flow analysis, 0-CFA is sometimes re-
ferred to as an inclusion-based [Bondorf and Jørgensen 1993], or subset-based [Pals-
berg 1998] control-flow analysis. In the terminology of pointer analysis, it is a (uni-)
directional flow analysis [Rehof and Fähndrich 2001; Hind 2001]. Variants of 0-CFA
are used within the Bigloo optimizing Scheme compiler [Serrano 1995] and within
the MLton whole-program optimizing SML compiler [Cejtin et al. 2000].

The term ‘control-flow analysis’ by itself has since become synonymous with 0-
CFA [Nielson et al. 1999].

2.6 Flow-sensitive 0-CFA

Though Shivers’s and Sestoft’s analyses were thought to be equivalent, Mossin
[1997] showed that Shivers’s analysis is flow-sensitive (or evaluation-order depen-
dent), contrary to Sestoft’s closure analysis. Indeed, both Sestoft’s analysis and the
textbook presentation of 0-CFA [Nielson et al. 1999] compute a fixed-point over a
global abstract environment, whereas a flow-sensitive 0-CFA [Ashley and Dybvig
1998] computes an abstract environment for each expression in the program. As
such, Shivers’s analysis depends on the order in which expressions occur in the
input program. By this terminology, Shivers’s original 0-CFA is not a 0-CFA but
rather a flow-sensitive 0-CFA.

In a language without references and assignment, computing an abstract envi-
ronment per expression is excessive. Consider, e.g., an application which is always
evaluated in the same environment as its two direct sub-expressions: the operator
and the operand. A less excessive alternative was suggested by Steckler and Wand
[1997] who developed a flow-sensitive 0-CFA with an abstract environment for each
distinct lexical scope of the program. Their flow analysis is only one part of a larger
analysis (further described in Section 6.2). Somewhat surprisingly, the worst-case
time complexity of their flow-sensitive analysis remains cubic.

Ashley and Dybvig [1998] note that adding flow-sensitivity to 0-CFA in itself does
not provide significantly more precision in a functional language such as Scheme
where assignments are relatively rare. However, the combination of flow-sensitivity
and other abstractions can provide such a precision boost (see Section 6.2).

3. CONTEXT-SENSITIVE FLOW ANALYSIS

In this section, we consider context-sensitive control-flow analyses. Starting from
polymorphic splitting, we describe a number of increasingly precise analyses.
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3.1 Polymorphic splitting

Polymorphic splitting is a context-sensitive flow analysis suggested by Wright and
Jagannathan [1998]. The analysis is inspired by type systems—in particular, Hindley-
Milner (Damas-Milner) let-bound polymorphism [Milner 1978], where each occur-
rence of a let-bound variable is type-checked separately. In the same spirit, poly-
morphic splitting analyzes each occurrence of a let-bound variable separately. The
analysis has an exponential worst-case time complexity, like that of the polymorphic
type inference that inspired it. However, as with the corresponding type inference,
the worst-case rarely seems to occur in practice [Wright and Jagannathan 1998].

One can view polymorphic splitting as a refinement of 0-CFA that partitions the
flow of values to expressions and variables according to their static context (scope)
in the program text. Polymorphic splitting is therefore referred to as approximating
the static link of a stack-based implementation [Nielson and Nielson 1997].

3.2 k-CFA

Call strings and their approximation up to a fixed maximum length have their roots
in data-flow analysis. Call strings were originally suggested by Sharir and Pnueli
[1981] as a means for improving the precision of interprocedural data-flow analyses.
Inspired by call strings, Shivers [1991a] formulated the context-sensitive first-order
control-flow analysis (1-CFA) and suggested the extension to kth-order control-flow
analysis (k-CFA) [Shivers 1991a, p.55] as a refined choice of contours. Since then,
Jagannathan and Weeks [1995] have suggested a polynomial-time 1-CFA, a more
approximate 1-CFA variant with better worst-case time complexity. Jagannathan
and Weeks achieve the speedup by restricting the environment component of an ab-
stract closure to a constant function mapping all variables to a contour representing
the most recent call-site. The uniform k-CFA is another k-CFA variant suggested
by Nielson and Nielson [1997; 1999]. It uses a uniform “contour distinction”, i.e.,
abstract caches and abstract environments partition the flow of values to expres-
sions and variables identically. The resulting analysis has a better worst-case time
complexity than the canonical k-CFA.

Van Horn and Mairson [2008a] recently proved k-CFA complete for EXPTIME
for any constant k > 0. The proof works by encoding an exponential time Turing
machine as a lambda term, for which the analysis will decide acceptance or rejec-
tion. The proof is developed for the uniform k-CFA variant. Might et al. [2010]
have recently investigated the apparent paradox in (1) the above completeness re-
sult, and (2) the existence of well-known, polynomial-time k-CFA algorithms for
object-oriented (OO) languages. In comparing a functional and an OO k-CFA, they
conclude that the subtle language differences between objects and closures allow for
the formulation of an equivalent, polynomial-time OO-analysis with no loss of pre-
cision. Based on this OO-analysis, they extract m-CFA: a hierarchy of functional,
polynomial-time, context-sensitive analyses. Their benchmarks show that m-CFA
(for m = 1) approaches the precision of 1-CFA, however with run-times comparable
to the polynomial-time 1-CFA of Jagannathan and Weeks [1995].

One can view k-CFA as a refinement of 0-CFA that partitions the flow of values to
expressions and variables according to their (approximate) dynamic calling context
in a program execution. Call strings are therefore referred to as approximating the
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dynamic link of a stack-based implementation [Nielson and Nielson 1997].

3.3 Beyond the k-CFA hierarchy

An alternative context-sensitive flow analysis suggested by Agesen [1995] takes ar-
gument types of the calling context into account. The original formulation of his
Cartesian-product algorithm (CPA) was given as a type inference algorithm for
a dynamically-typed object-oriented programming language. As with much other
work within type systems, the basic idea extends to control-flow analysis. Ja-
gannathan and Weeks [1995] outline a control-flow analysis variant thereof, as do
Nielson et al. [1999, p.196]. One can view the resulting analysis as a refinement of
0-CFA that partitions the flow of values to expressions and variables according to
the actual argument types in their dynamic calling context.

The call string approach later inspired Harrison to suggest procedure strings [Har-
rison III 1989; Harrison III and Ammarguellat 1993] to capture both procedure calls
and returns in a compact format. Might and Shivers recently suggested a new
context-sensitive control-flow analysis [Might and Shivers 2006a] based on a vari-
ant of procedure strings called frame strings. Frame strings represent stack frame
operations, which are more informative in a functional language where proper tail
calls do not push a stack frame. Might and Shivers then approximate the frame
strings by regular expressions. From the result of running their analysis, they finally
extract an ‘environment analysis’ [Shivers 1991a], i.e., an analysis which statically
detects when two run-time environments agree on a variable.

An alternative path was taken by Sereni [2006; 2007] who developed a CFA based
on tree automata for programs in the form of curried, recursive equations. Tree
automata can capture the potentially unbounded tree structure of environments,
which is beyond the capabilities of the traditional depth k technique. The time
complexity of this analysis is exponential in the square of the program’s size. Sereni
applied his analysis to predict call graphs that drive a size-change termination
analysis of higher-order functional programs.

Recently Vardoulakis and Shivers [2010] have developed a context-free approach
to control-flow analysis. Their analysis combines two orthogonal ideas: first they
separate variables into stack-allocated variables and heap-allocated variables. The
separation allows them to precisely model bindings to stack-allocated variables in
the top-stack frame. Second, they develop a work-list algorithm extending the
summarization technique of Sharir and Pnueli [1981] to handle both higher-order
functions and tail calls. The resulting analysis provides precise, matching call-
return flow, thereby avoiding flow from one call-site to return through a different
call-site.

4. TYPE-BASED FLOW ANALYSIS

The range of untyped analyses mentioned up to here are all applicable to typed
programs as well. A parallel line of work has investigated control-flow analysis
of typed higher-order programs. The extra static information provided by types
suggests natural control-flow approximations. Alternatively, known type systems
operating on types enriched with flow information suggests new control-flow analy-
ses. In this section, we consider both kinds of type-based approximations. Starting
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from the simplest approximation, we consider increasingly precise type-based ap-
proximations.

4.1 Per function space (typed)

A naive approach approximates the application of a function by all the functions of
the same type. This context-insensitive approximation underlies Reynolds’s initial
presentation of defunctionalization [Reynolds 1972], where the function space of
the environment and the function space of expressible values in his definitional
interpreter were defunctionalized separately. Indeed, Reynolds recognized that his
defining language was typed in a later commentary [Reynolds 1998].

Tolmach [1997] realized that Reynolds’s defunctionalization was based on an
underlying control-flow approximation induced by the types, noting that “typing
obviously provides a good first cut at the analysis ‘for free’ ” [Tolmach 1997, p.2].
Tolmach and Oliva [1997; 1998] furthermore pointed out that unification-based
analysis can be viewed as a refinement to the function-space approximation: the
function-space approximation places two functions in the same partition when the
types of their argument and result match. On the other hand, a unification-based
analysis places functions in the same partition when the type unifier unifies their
types.

4.2 Linear-time subtransitive CFA (typed)

Heintze and McAllester [1997a] presented a linear-time algorithm for bounded-type
programs, that can answer a number of context-insensitive CFA-related questions.
Their algorithm builds a graph, whose full transitive closure can list all callees
for each call site in (optimal) quadratic time. By avoiding the computation of
the full transitive closure, they are able to answer some questions in linear time,
e.g., list up to k functions for each call site, otherwise “many”. Their linear time
complexity depends on bounded-type programs; for untyped or recursively typed
programs, their algorithm may not terminate [Heintze and McAllester 1997a]. Inde-
pendently, Mossin arrived at a quadratic-time analysis for simply-typed programs
with bounded types [Mossin 1997; 1998]. His analysis is based on flow graphs.
It is furthermore modular, i.e., different parts of the program may be analysed
separately.

Hankin et al. [2002] pointed out that both Mossin’s and Heintze and McAllester’s
sub-cubic algorithms operate on type structure and perform an implicit or explicit
eta-expansion of the program. Since the latter can incur an exponential blowup of
the program, both analyses need to assume bounds on the type of the program.
Recently, Van Horn and Mairson [2007] showed that 0-CFA for simply-typed, fully
eta-expanded programs is complete for LOGSPACE, thereby giving a complexity-
theoretic explanation of the sub-cubic breakthroughs.

Unpublished work by Saha et al. [1998] indicated that the above analyses do
not scale since real-world (functorized) programs do not always exhibit bounded
types. They therefore suggested a hybrid approach, where Heintze and McAllester’s
algorithm is combined with a complementary demand-driven algorithm.
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4.3 Context-sensitive type-based analysis (typed)

Mossin gave two context-sensitive analyses for a simply-typed programming lan-
guage [Mossin 1997]: one inspired by let-polymorphism and one inspired by poly-
morphic recursion. Rehof and Fähndrich [2001] later gave O(n3) algorithms for
the two, improving their earlier complexity bounds on O(n7) and O(n8), respec-
tively [Mossin 1997], with n being the size of the explicitly typed program.1 Rehof
and Fähndrich achieve the speed-up by avoiding copying constraints when they
are instantiated—instead, they remember the substitution in a separate instanti-
ation constraint, leaving the original constraints unmodified. The algorithm fur-
ther reduces the constraints to a context-free language reachability problem (see
Section 5.3.2) over a flow graph for which cubic-time algorithms exist. Gustavs-
son and Svenningsson [2001] independently formulated a constraint-based version
of Mossin’s polymorphic recursion-based analysis with identical time complexity.
Their analysis is developed as an application of a general constraint system with
constraint abstractions. Analysis then works by successive constraint rewritings
into atomic inclusion constraints, from which flow can be read off using standard
reachability methods.

In addition to the two type-based analyses above, Mossin developed a context-
sensitive control-flow analysis based on intersection types [Mossin 1997; 2003],
which he called exact : if the analysis predicts a redex, there exists a reduction
sequence that reduces it [Mossin 2003]. He showed the analysis to be decidable;
it is however non-elementary recursive. The following year, Møller Neergaard and
Mairson [2004] showed that type-inference and normalization for a type-system
with intersection types are equivalent and discussed the need for type inference
(and static analysis) to be faster and hence less precise than running the program.

5. FORMULATIONS

Control-flow analysis comes in numerous formulations. In this section, we describe
the many formulations encountered as well as the known equivalences and relation-
ships between them.

5.1 Grammar-based, constraint-based, and set-based analysis

A constraint-based analysis is a two-phase algorithm. The first phase emits con-
straints that a solution to an intended analysis needs to satisfy. The second phase
solves the constraints. Type inference [Wand 1987] is an example of a constraint-
based analysis that has inspired many later analyses [Henglein 1991; Tang and Jou-
velot 1992; Henglein 1992; Steensgaard 1996b; Hannan 1998; Mossin 1997]. The
idea of formulating program analyses in terms of constraints has its advantages:
the analysis presents itself in an intuitive form and it allows for reusable constraint
solving software, independent of a particular analysis. Aiken gives an introduction
to set-constraint based analysis [Aiken 1999]. Below we outline the developments
of constraint-based analysis relevant to CFA. For a more detailed account we refer
to Pacholski and Podelski [1997].

1However n itself may be exponential in the size of the implicitly typed program [Rehof and
Fähndrich 2001].
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Initially, Reynolds conceived the idea of formulating analyses in terms of recursive
set definitions [Reynolds 1969], which resembled context-free grammars [Reynolds
1969, p.456]. He extended them with suitable list constructors (e.g., cons) and
selectors (e.g., car and cdr) operating over sets. The analysis then eliminated
the selectors from the definitions. Independently, Jones and Muchnick later used
extended regular tree grammars, i.e., regular tree grammars extended with selectors,
to analyse programs with LISP-like structures [Jones and Muchnick 1979].

Heintze and Jaffar extended the idea of grammar-based analysis to handle pro-
jection (selectors) and intersection [Heintze and Jaffar 1990b; 1990a] originally in
the context of analysing logic programs, and introduced the term set constraints.
Aiken and Murphy [1991b] formulated a type-inference algorithm with types im-
plemented as regular tree expressions, and described their implementation [Aiken
and Murphy 1991a]. Aiken and Wimmers [1992] later gave an algorithm for solving
constraint systems over regular tree expressions — now under the name set con-
straints. As a follow-up, Aiken and Wimmers [1993] investigated set constraints
further extended with function types, and utilized them to formulate an inclusion-
based type-inference system for an extended lambda calculus.

Heintze coined the term set-based analysis [Heintze 1992] for the intuitive for-
malism of formulating program analyses as a series of constraints over set expres-
sions (extended with intersection and projection/selectors). He later formulated
a set-based analysis for ML [Heintze 1994]. Independently, Palsberg reformulated
Bondorf’s simplification of Sestoft’s control-flow analysis in terms of conditional
set constraints [Palsberg 1994; 1995].2 Heintze and McAllester [1997b] later gave
a unified presentation of set/constraint based analysis. Furthermore, they investi-
gated the computational complexity of flow analysis for a language with pattern
matching over undeclared data constructors.

Cousot and Cousot [1995] clarified how grammar-based, constraint-based, and
set-based analyses are instances of the general theory of abstract interpretation.
They furthermore suggested advantages of an abstract interpretation formulation:
use of widening and easy integration with other non-grammar domains. Gallagher
and Peralta [2001] investigated such a regular tree language domain in the context
of partial evaluation.

As an extension to Heintze’s set-based analysis [Heintze 1992], Flanagan and
Felleisen [1997; 1999] suggested componential set-based analysis. Their analysis
works by extracting, simplifying, and serializing constraints separately for each
source program file. A later pass combines the serialized constraints into a global
solution. One advantage of the approach is avoiding the re-extraction of constraints
from an unmodified file upon later re-analysis. Flanagan used the analysis for a
static debugger [Flanagan 1997]. Meunier et al. [2005] later identified that selectors
complicated the analysis and suggested to use conditional constraints in the style
of Palsberg [1995] instead.

Henglein’s simple closure analysis [Henglein 1992] and Bondorf and Jørgensen’s
efficient closure analysis for partial evaluation [Bondorf and Jørgensen 1993] are
also based on constraints. However, they use a different form of constraints, namely

2Conditional constraints have since been shown to be equally expressive to a constraint system
with selectors [Aiken 1999] such as Heintze’s [1992].
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equality constraints, that can be solved by unification in almost linear time [Aiken
1999].

5.2 Type-based analysis

Type-based analysis is an ambiguous term. It is used to refer to analyses of typed
programs, as well as analyses expressed as “enriched type-systems”. Mossin [2003]
distinguishes the two, by referring to them as Church-style analysis and Curry-style
analysis, respectively. Mossin’s PhD thesis [Mossin 1997] provides a comprehensive
overview of type-based control-flow analysis, including typed versions of simple
closure analysis and 0-CFA, in addition to the already mentioned contributions.
The field of type-based analysis is big enough to deserve a separate treatment. We
refer to Palsberg [2001] and Jensen [2002] for general surveys of type-based analysis.

Banerjee et al. [2001] proved the correctness of two program transformations
based on control-flow analysis. Their analysis operates on a simply-typed language.
It is a type-based analysis with a sub-type relation on control-flow types. The
analysis resembles one of Heintze’s [1995] systems modulo Heintze’s super type for
handling otherwise untypable programs.

Recently, Reppy [2006] presented an analysis that utilizes the type abstraction of
ML to increase precision, by approximating arguments of an abstract type with ear-
lier computed results of the same abstract type. Whereas other analyses have relied
on the typing of programs, e.g., for simple approximations [Tolmach 1997; Tolmach
and Oliva 1998], or for termination or time complexity [Heintze and McAllester
1997a; Mossin 1997], Reppy exploits the static guarantees offered by the type sys-
tem to boost the precision of an existing analysis.

5.3 Equivalences

A line of work has investigated equivalences between type systems, analyses, parsing
techniques, and data-flow and context-free grammar reachability.

5.3.1 Equivalences between type systems and analyses. Palsberg and O’Keefe
[1995] showed a 0-CFA-based safety analysis (cf. Section 8.2) is equivalent to a
type system due to Amadio and Cardelli [1993] with subtyping and recursive types.
In a follow-up paper, Palsberg and Smith [1996] proved the same type system (and
consequently also the safety analysis) equivalent to a constrained type system with-
out universal quantification. Independently, Heintze showed a number of similar
equivalences [Heintze 1995] between equality-based and subset-based control-flow
analyses and their counterpart type systems with simple types and sub-typing,
including the above.

Palsberg later gave counter examples refuting Heintze’s claim that equality-based
flow analysis is equivalent to a type system with recursive types [Palsberg 1998].
He then showed a type system with recursive types and a very limited form of
subtyping, which is equivalent to equality-based flow analysis. His type system fur-
thermore includes top and bottom types to enable typability of otherwise untypable
terms.

Palsberg and Pavlopoulou [2001] have since formulated a framework for studying
equivalences between polyvariant flow analyses and type systems, and used it to
develop a flow-type system in the style of the Church group [Wells et al. 2002]. In
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a followup paper, Amtoft and Turbak [2000] formulated a framework for studying
translations between polyvariant flow analyses and type systems. The translations
between the two are faithful in that no information is lost by translating types to
flows and back again (and vice versa). The framework is furthermore able to express
both call-string polyvariance (such as Shivers’s k-CFA) as well as argument-based
polyvariance (such as Agesen’s CPA).

5.3.2 Equivalences and reductions between control-flow analysis problems and
other problems. The context-free language (CFL) reachability problems seek to
determine reachability between nodes of a directed, edge-labelled graph under the
condition that the labels on a path must belong to a given context-free grammar.
The problems come in variants with single or multiple source and target nodes.

Melski and Reps [2000] have shown how to convert in linear time a class of set con-
straints into a corresponding CFL reachability problem, and vice versa. They also
showed how to extend the result to Heintze’s class of ML set constraints [Heintze
1994], which can express closure analysis. In doing so, they proved both set con-
straint solving problems to be complete for polynomial time. Kodumal and Aiken
[2004] have shown a particularly simple reduction from a CFL reachability problem
to set constraints in the special case of Dyck context-free languages, i.e., languages
of matching parentheses.

Recently, Chaudhuri [2008] gave O(n3/ logn) unit cost RAM algorithms for CFL-
reachability and for the related problem of recursive state machine reachability. The
improvement is based on a known set compression technique [Rytter 1985]: instead
of operating over individual values the analysis operates over words each represent-
ing a subset of values for which the standard set operations can be pre-computed.
When combined with the equivalence result of Melski and Reps [2000], the two
constitute an (indirect) sub-cubic set-based analysis algorithm. The improved com-
plexity of CFL-reachability furthermore benefits the two type-based polymorphic
analysis algorithms of Rehof and Fähndrich [2001]. Midtgaard and Horn [2009]
provide a detailed explanation of the above algorithm and apply Rytter’s technique
directly to derive sub-cubic algorithms for three increasingly precise 0-CFA variants
incorporating reachability.

Heintze and McAllester [1997c] proved a number of problems to be 2NPDA-
complete including control-flow reachability, which is another formulation of 0-CFA
as a decision problem. Surprisingly, Rytter [1985] showed that every 2NPDA lan-
guage can be recognized in O(n3/ logn) time on a unit cost random-access machine.
However, Heintze and McAllester’s completeness results combined with Rytter’s
improvement, did not break the cubic-time boundary of 0-CFA, as their reduction
of control-flow reachability to 2NPDA incurs a logarithmic blow-up of the input
program.

In addition to the control-flow reachability problem, Heintze and McAllester
[1997c] proved two other problems to be 2NPDA-complete: data-flow reachabil-
ity (in a formulation equivalent to the set constraints of Melski and Reps) and the
complement of Amadio-Cardelli typability [Amadio and Cardelli 1993].

5.3.3 Equivalences between first-order CFA and LR parsing. After decades of
research, the expression control-flow analysis has become synonymous with stati-
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cally predicting the operators of call-sites. In the presence of tail-call optimization,
functions may not return to their callers at run time. As a consequence, the return-
flow may not be immediately apparent from the program text.

Debray and Proebsting [1997] have investigated control-flow analysis for a first-
order language with tail-call optimization. Their analysis determines to which point
control is returned upon procedure completion. They showed how to construct a
program-specific context-free grammar, on which traditional parsing techniques can
be used to extract the above property. In particular, they showed how follow sets
correspond to a first-order 0-CFA and how LR(1) items correspond to a first-order
1-CFA.

Midtgaard and Jensen [2009] recently derived a higher-order counterpart to the
above first-order 0-CFA by abstract interpretation of a simple stack-based abstract
machine. Their resulting CFA determines where function calls and returns transfer
control to, in the presence of first-class functions and tail-call optimization.

5.4 Linear logic, game semantics, and proof-nets

A line of papers have investigated analyses rooted in linear logic. Jensen and Mackie
[1996] develop analyses based on Girard’s Geometry of Interaction semantics. Start-
ing with a graph representation of lambda-terms and a path algebra, they derive
an abstract machine, from which they extract a set of analysis equations. From the
equations, they illustrate how to derive three analyses: strictness analysis, usage
analysis (an analysis that detects unused variables), and control-flow analysis.

Malacaria and Hankin [1998] presented a cubic time flow-analysis based on game
semantics. The analysis approximates ‘linear head reduction’ of (simply-typed)
PCF terms. Their algorithm, like Heintze and McAllester’s [1997a] sub-cubic al-
gorithm, is based on graph structure and requires an amount of eta-expansion. In
a later paper, Hankin et al. [2002] developed another cubic-time 0-CFA based on
game semantics in which terms are represented as proof-nets. Based on the seman-
tics, their analysis algorithm first extracts a graph, for which the dynamic transitive
closure is computed as a second step.

As mentioned in Section 2.5, Van Horn and Mairson [2007; 2008b] have used linear
lambda calculus terms repeatedly to prove lower bounds on the time complexity
of control-flow analyses. For an introduction to linear lambda calculus, proof-nets,
context semantics and their relations to linear logic and game semantics we refer
to Mairson [2002].

5.5 Specification-based

Nielson and Nielson have championed the specification approach to program anal-
ysis [Nielson and Nielson 1997; Gasser et al. 1997; Nielson and Nielson 1998; 1999].
A specification is formulated as a series of declarative demands that a valid analysis
result must fulfill. In effect, a specification-based analysis constitutes an acceptabil-
ity relation that verifies a solution as opposed to computing one. A corresponding
analysis can typically be staged in two parts: first the demands can be serialized
into a set of constraints, second the set of constraints can be solved iteratively.

Nielson and Nielson coined the term flow logic for such a tight declarative format
describing analyses [Nielson and Nielson 1998]. They showed how such a specifica-
tion can be gradually transformed into a more verbose constraint-based formula-
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tion [Nielson and Nielson 1998]. Their gradual transformation towards constraints
involves formulations in terms of (extended) attribute grammars, which should be
compared to the above mentioned grammar/constraint correspondence.

Indeed, a specification-based analysis offers a constructive way of calculating a so-
lution. Cachera et al. [2005] have illustrated this point by formalizing a specification-
based analysis in constructive logic using the Coq proof assistant.

5.6 Abstract interpretation-based

As pointed out by Aiken [1999], the term abstract interpretation is used interchange-
ably to refer to both monotone analyses defined compositionally on the source
program, and to a formal program analysis methodology initiated by Cousot and
Cousot [1977a; 1992a], which suggests that analyses should be derived systemati-
cally from a formal semantics, e.g., through Galois connections. We refer here to
abstract interpretation in the latter meaning.

In his PhD thesis [Harrison III 1989], Harrison used abstract interpretation of
Scheme programs to automatically parallelize them. Harrison treats an impera-
tive Scheme core language with first-class continuations. His starting point is a
transition-system semantics based on procedure strings, in which functions in the
core language are represented as functions at the meta level. A second, refined
semantics represents functions as closures. This semantics is then gradually trans-
formed and abstracted into a computable analysis. The result serves as the starting
point for a number of parallelizing program transformations.

Shivers’s analysis [Shivers 1991a] is based on abstract interpretation. His analysis
is derived from a non-compositional denotational semantics based on closures. He
does not use Galois connections. Instead, his soundness proofs are based on lower
adjoints, i.e., abstraction functions mapping concrete objects to abstract counter-
parts.

Ayers also treated higher-order flow analysis based on abstract interpretation in
his PhD thesis [Ayers 1993]. His work is similar to Shivers in that his analysis works
on an untyped CPS-based core language. Ayers gradually transforms a denotational
continuation semantics of Scheme into a state transition system based on closures,
which is then approximated using Galois connections.

In a line of papers [Schmidt 1995; 1997; 1998], Schmidt has investigated abstract
interpretation in the context of operational semantics. Schmidt explains the traces
of a computation as paths or traces in the tree induced by the inference rules of an
operational semantics. A tree is then abstracted into an approximate regular tree
that safely models its concrete counterpart and is finitely representable.

5.7 Minimal function graphs and program-dependent domains

The function graph is a well-known formal characterization of a function as a set
of argument-result pairs. Characterizing a function for all arguments in a program
analysis can lead to a combinatorial explosion. The general idea of considering only
necessary arguments in an analysis was initially suggested by Cousot and Cousot
[1977b]. The idea of considering only necessary arguments in the context of function
graphs was suggested and named minimal function graphs by Jones and Mycroft
[1986].

Jones and Rosendahl [1997] formulated closure analysis in terms of minimal func-
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tion graphs. Their analysis is formulated for a system of curried recursive equations,
where all function abstractions are named and defined at the top level. Jones and
Rosendahl can thereby represent an abstract procedural value by the name of its
origin and a natural number indicating to how many arguments the function has
been partially applied.

Few control-flow analyses defined as functions on an expression-based language
give approximate characterizations for all possible expression arguments. Instead
analyses are often specified as finite partial functions or as total functions on a
program-dependent domain [Palsberg 1995; Nielson et al. 1999], which is finite for
any given (finite) program.

5.8 Frameworks

Jones provided the first CFA framework in his pioneering 1981 paper [Jones 1981b].
The framework approximates the reachable states of a call-by-name evaluating ab-
stract machine. The analysis is parameterized by a token set representing context
stacks. Jones illustrates the expressivity of the framework by providing three in-
stantiations: an exact execution with an infinite set of tokens, a precise analysis
reminiscent of a 1-CFA, and a less precise analysis reminiscent of a flow-sensitive
0-CFA.

Following Shivers’s presentation [Shivers 1988; 1991a], a line of work has inves-
tigated control-flow analysis frameworks in order to better understand the com-
monalities between different analyses. Stefanescu and Zhou [1994] developed one
such framework for expressing CFAs. Their framework is based on term-rewriting
sequences of a small closure-based core language. The analysis is given in the form
of a system of traditional data-flow equations, and their approximations are formu-
lated as static partitions based on the call sites. They suggest two such partitions:
the “unit” partition corresponding to 0-CFA and a finer partition corresponding to
Shivers’s 1-CFA [Shivers 1991a].

Jagannathan and Weeks [1995] developed a framework based on flow graphs and
instantiate it to 0-CFA, a polynomial-time 1-CFA, and an exponential-time 1-CFA.
Furthermore, Jagannathan and Weeks proved their 0-CFA instantiation equivalent
to Heintze’s set-based analysis [Heintze 1994]. In a later paper, Jagannathan et al.
[1997] developed a type-directed flow analysis framework for a subset of System
F. The framework is parameterized over “instances”, an abstraction reminiscent
of contours, each of which represents a set of evaluation contexts. Jagannathan
et al. instantiated the framework with a 0-CFA and a polyvariant analysis based
on explicit type applications. As the latter analysis is not guaranteed to terminate,
they considered three variations: a variant based on bounded types, a restriction of
the source language to core ML for which the analysis terminates, and a traditional
let-polymorphic CFA. Finally, they defined a preorder on instantiations for formally
ordering and comparing the individual analyses.

Nielson and Nielson [1997] developed a general non-compositional analysis frame-
work formulated as a co-inductive definition. They instantiate the framework with
a 0-CFA, k-CFA, a polymorphic splitting analysis, and a uniform k-CFA. In a
later paper [Nielson and Nielson 1999], Nielson and Nielson develop a framework
for control-flow analysis of a functional language with side-effects. The approach
incorporates ideas from interprocedural data-flow analysis. To illustrate the gen-
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erality of the framework, they instantiate it with k-CFA in the style of Shivers
[1991a], with call strings in the style of Sharir and Pnueli [1981], and with assump-
tion sets [Nielson et al. 1999].

Ashley and Dybvig [1998] developed an experimental flow analysis framework for
the Chez Scheme compiler. Their framework is flow-sensitive. It is furthermore
parameterized by an abstract allocation function and a ‘projection operator’. By
different instantiations they obtain a number of flow-sensitive analyses: a 0-CFA, a
1-CFA, a Cartesian-product variant, and a sub-0-CFA, the latter analysis being a
sub-cubic 0-CFA variant, that allows only a limited number of updates to each cache
entry. Their results showed that the sub-0-CFA instantiation enabled effectively the
same optimizations in the underlying compiler as the 0-CFA.

Smith and Wang [2000] developed a polyvariant flow-analysis framework based
on constrained types. Their framework differs from other frameworks in that a
function is not repeatedly analysed in different contexts. Instead they achieve poly-
variance by different instantiations of the function’s type scheme. They illustrate
the expressiveness of their framework by instantiating it with a k-CFA, a Cartesian
point algorithm in the style of Agesen [1995], and a new Cartesian point algorithm
incorporating data polymorphism.

6. EXTENSIONS

In this section, we consider a number of extensions and variations to the traditional
analyses mentioned so far.

6.1 Reachability

A standard control-flow analysis analyses all terms of a source program regardless
of whether they will be reached during execution or not. A line of work therefore
extend control-flow analysis with dead-code detection, which can be utilized to
minimize the execution time of a full analysis. The technique has been named
reachability [Ayers 1992; 1993] or demand-driven analysis [Biswas 1997].

Ayers [1992; 1993] illustrated how limiting the analysis to the live parts of the
program can yield a speed-up in analysis time. Palsberg and Schwartzbach [1995]
extended a constraint-based CFA with dead-code detection in their formulation of a
safety analysis. The abstract semantics of Jagannathan and Weeks’s framework [Ja-
gannathan and Weeks 1995] contains a ‘reachability predicate’ to minimize the size
of the generated flow graphs. Gasser et al. [1997] formulated a control-flow analy-
sis for Concurrent ML [Reppy 1999]. Starting with an abstract specification, they
incorporate reachability predicates, and finally show how to generate constraints
from the specified analysis. Reachability predicates were later used by Wand [2002]
to extend a constraint-based analysis to more closely reflect call-by-name and call-
by-value evaluation. Biswas [1997] augmented a set-based analysis in the style of
Heintze [1992] with boolean constraints to formulate a demand-driven flow anal-
ysis for detecting dead code in higher-order functional programs. Midtgaard and
Jensen [2008; 2009] recently calculated demand-driven 0-CFAs using abstract in-
terpretation. Both their analyses approximate the reachable states of an abstract
machine, and are calculated by composing well-known Galois connections.
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6.2 Must analysis and abstract cardinality

Whereas much work in control-flow analysis has focused on inferring may informa-
tion, Steckler and Wand [1997] developed a flow-sensitive must analysis [Nielson
et al. 1999] based on which they prove the correctness of lightweight closure con-
version. A first phase consists of a flow-sensitive CFA. In two subsequent phases,
their algorithm infers a common procedure invocation protocol between caller and
callee, as well as invariant sets, i.e., a set of variables whose value must agree across
the caller’s and callee’s environments. The worst case time complexity of the whole
analysis remains cubic.

Jagannathan et al. [1998] formulated a constraint-based must analysis for a
higher-order functional language. The algorithm repeatedly alternates between
computing approximate control-flow and cardinality information when given ap-
proximate reachability information and vice versa. Since the involved control-flow
analysis alone has cubic worst case time complexity, the entire analysis is quartic.
The analysis determines whether all bindings of a given variable reachable from
each program point refer to the same value — thereby enabling lightweight closure
conversion. Their analysis determines a related property for reference cells that
enables other optimizing transformations.

Might and Shivers [2006b] formulated ‘abstract reachability’ and ‘abstract car-
dinality’ as separate extensions to off-the-shelf control-flow analyses. The former
improves precision of analyses by performing an abstract ‘garbage collection’ of
any unreachable abstract bindings. The latter helps to infer equalities of concrete
values, thereby enabling environment analysis and, e.g., lightweight closure con-
version. They observe that the increased precision actually speeds up the running
time of the analysis, but they do not report the time complexity of the analysis.

Inspired by advances in shape analysis of imperative programs, Might [2010]
has recently developed a CFA enriched with anodization, which is an enhancement
technique to boost precision of a coarse, collapsing analysis. Anodization works
by separately tracking bindings that represent only one concrete binding. The
resulting analysis is useful for determining equality among concrete bindings based
on equality of their abstract counterparts. Might considers a range of use cases
of such equalities, e.g., inlining functions in the presence of (potentially differently
bound) free variables. He further extends the analysis approach by incorporating
binding invariants, i.e., a form of relational analysis over predicates. The extended
analysis can be used for ‘generalized environment analysis’, i.e., determining when
two different run-time environments agree on two different bindings.

6.3 Modular and separate analysis

Traditionally, control-flow analysis is considered a whole-program analysis, i.e., it
assumes the entire program text is available. A line of work has investigated mod-
ular or separate control-flow analyses. Shivers [1988; 1991a] initially addressed the
issue by over-approximating the calls to external procedures as well as later exter-
nal calls to any escaping procedures. A similar approach was taken by Ashley and
Dybvig [1998].

Tang and Jouvelot [1994] combined a type and effect system with a control-flow
analysis in the style of Shivers’s 1-CFA [Shivers 1991a] to achieve separate abstract
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interpretation. Their approach is separated into two phases. First, the control-flow
effect system approximates the initial contour and value environments. Second,
the output is translated into starting points for re-analysis using the more precise
1-CFA. The approach extends earlier work that formulated a control-flow effect
system [Tang and Jouvelot 1992]. In addition to Mossin’s modular quadratic-time
analysis, both of his type-based formulations of simple-closure analysis and 0-CFA
enjoy the principal typing property of their corresponding type-system and are
hence modular [Mossin 1997].

Faxén [1997] presented a polymorphic constraint-based analysis for untyped pro-
grams inspired by type-systems and type-inference—in particular, recursive types,
union-types, sub-typing, and System-F polymorphism. As type inference for such
a system is known to be undecidable, his analysis algorithm is sound but not com-
plete. Contrary to standard CFA’s, the analysis propagates flow variables and
solves contraints incrementally. As a consequence, the analysis is modular. The
analysis is however preliminary and as such Faxén provides no correctness proof.

Banerjee [1997] developed a modular and polyvariant control-flow and type-
inference system that can type a superset of all ML programs. The analysis is
formulated as an instrumentation of the rank 2 intersection type system and it
relies on the principal typing property hereof [Jim 1996]. It is therefore able to
analyse code fragments containing free variables. The analysis works by generating
and reducing flow constraints underway in a modular manner. In a follow-up pa-
per, Banerjee and Jensen [2003] formulated a modular and polyvariant control-flow
analysis based on rank 2 intersection types for simply-typed programs with recur-
sive function definitions. Both analyses are compositional and modular in that
the analysis of an expression can be calculated by combining the analyses of its
sub-expressions using intersection types without re-analysis of any sub-expressions.
The already mentioned componential set-based analysis of Flanagan and Felleisen
[1999] is not modular by this definition as it involves computing a global analy-
sis over pre-processed constraints. Flanagan and Felleisen’s analysis furthermore
differs from the above in that it is based on first-order constraints with selectors,
whereas the analyses of Banerjee and Jensen are higher-order (with function types).

Lee et al. [2002] describe a modularized 0-CFA. The analysis is polyvariant in the
modules of the program, for which the authors coin the term module-variant. Mod-
ules are analysed “bottom-up”, e.g., separately in topological order of their (acyclic)
dependencies. The resulting analysis is more precise than a 0-CFA, because of the
module-variance.

Meunier et al. [2006] presented a set-based analysis for modules with contracts,
i.e., a form of assertions regarding the input-output behavior of functions. The
analysis is structured in three parts. The first part labels the sub-expressions of the
program. The second part lifts nested contracts out of sub-expressions. Finally,
the third part generates and solves conditional constraints in the style of Palsberg
[1995]. By construction, the analysis is inherently a whole-program analysis, since
conditional constraints consider all abstraction-application pairs in the program,
but Meunier et al. argue that a module can be (whole-program) lifted and analysed
separately. The worst-case complexity of the analysis is O(n6), partly because the
contract lifting may duplicate code in order to analyse each module reference in
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isolation. Confusingly, they use the term modular analysis to mean “analysis of a
module”, rather than separate or compositional analysis.

7. FORMULATION ISSUES

7.1 Evaluation-order dependence

Flow-sensitive analyses of functional languages can potentially model evaluation
order and strategy, e.g., a flow-sensitive analysis for a call-by-value language with
left-to-right evaluation could potentially model the directed program flow through
operator to operand for an application. Most often, the effect is achieved by first
sequentializing the program. A flow-insensitive analysis approximates all evaluation
orders and strategies.

Reynolds’s seminal paper [Reynolds 1969] inspired Jones to develop control-flow
analyses for lambda expressions under both call-by-value [Jones 1981a] and call-
by-name [Jones 1981b] evaluation. Shivers formulated and proved his analysis
sound for a CPS language, which by nature is evaluation-order independent. Ses-
toft proved his closure analysis sound with respect to a strict call-by-value seman-
tics [Sestoft 1988] and a lazy call-by-name semantics [Sestoft 1991]. Palsberg [1995]
then claimed the soundness of closure analysis with respect to general β-reduction.
A flaw in his proof was later pointed out and corrected by Wand and Williamson
[2002]. Faxén [1995] took a more operational route by formulating a polymorphic
type-based flow analysis of lazy functional programs with explicitly forced evalu-
ation and delayed computation (thunks). In an unpublished report [Wand 2002],
Wand then compared prior soundness results with respect to different semantics.

7.2 Prior term transformation

A number of analyses operate on a normalized core language, such as CPS or
recursive equations, in the same way as a number of algorithms over matrices or
polynomials operate on normal forms.

Jones [1987] simplified his earlier analysis approach by limiting his input to re-
cursive equations as obtained, e.g., by lambda lifting [Johnsson 1985]. An ex-
tended version of Jones’s chapter with correctness proofs has recently been pub-
lished [Jones and Andersen 2007]. Sestoft’s analysis was also specified for recursive
equations [Sestoft 1988; 1989]. Shivers argued that in CPS lambda expressions
capture all control flow in one unifying construct. As a consequence, he formu-
lated his original analyses for sequentialized source programs in CPS [Shivers 1988;
1991a] and continues to do so [Might and Shivers 2006a]. Ayers’s analysis was also
formulated for a core language in CPS [Ayers 1993]. The flow analysis of Ashley
and Dybvig operates on sequentialized source programs in a variant of CPS [Ashley
and Dybvig 1998].

Consel and Danvy [1991] pointed out that CPS transforming a program could im-
prove the outcome of a binding-time analysis, and Muylaert-Filho and Burn [1993]
showed a similar result for strictness analysis. Sabry and Felleisen [1994] then gave
examples showing that prior CPS transformation could either increase or decrease
precision when comparing the output of two constant-propagation analyses. They
attributed increased precision to the duplication of continuations and decreased
precision to the confusion of return points. It was later pointed out [Damian and

ACM Computing Surveys, Vol. V, No. N, 20YY.



Control-flow analysis of functional programs · 21

Danvy 2003b; Palsberg and Wand 2003], however, that Sabry and Felleisen were
comparing a flow-sensitive analysis to a flow-insensitive analysis.

Damian and Danvy [2003b] proved that a non-duplicating CPS transforma-
tion does not affect the precision of a flow-insensitive textbook 0-CFA. They also
proved that CPS transformation can improve and does not degrade the precision
of binding-time analysis. Independently, Palsberg and Wand [2003] proved that a
non-duplicating Plotkin-style CPS transformation [Plotkin 1975; Danvy and Filin-
ski 1992] does not change the precision of a standard constraint-based 0-CFA, a
result that Damian and Danvy [2003a] extended to a ‘one-pass’ CPS transforma-
tion that performs administrative reductions. Midtgaard and Jensen [2009] recently
compared two CFAs with reachability: one operating over programs in CPS and one
operating over programs in direct style. They relate reachability, calls, and returns
across the two analyses, and prove that the analysis of a direct-style program and
the analysis of its (non-duplicating) CPS transformed counterpart operate in lock
step. In conclusion, a duplicating CPS transformation may improve the precision
of a 0-CFA and a non-duplicating CPS transformation does not affect its precision.

7.3 Cache-based analysis and iteration order

Hudak and Young [1991] introduced the idea of cache-based collecting semantics,
in which the domain of answers of the analysis equations is not an abstract answer,
but rather a function mapping (labeled) expressions to abstract answers. As a
result, a cache is passed to and returned from all equations of the analysis, which
yields an answer mapping all sub-expressions to abstract values. The advantage of
this approach is that the specification of the analysis itself is already close to an
implementation.

Shivers’s analysis is cache-based [Shivers 1991a]. His implementation [Shivers
1991a], however, has a global cache which is updated through assignments — a
well known alternative to threading a value through a program. The cache-based
formulation has since influenced many subsequent analyses [Bondorf 1991; Palsberg
1995; Nielson and Nielson 1997].

In a cache-based analysis, the iteration-strategy is mixed with the equations of
the analysis. In the words of Schmidt, many closure analyses “mix implementation
optimizations with specifications and leave unclear exactly what closures analysis
is” [Schmidt 1995]. The alternative is to separate the equations of the analysis
from the iteration strategy for solving them. The advantage of separating them is
that one can develop and calculate an analysis focusing on soundness of the analysis,
and later experiment with different iteration strategies for calculating a solution.

Cousot and Cousot [1995] have noted that several analyses using regular tree
grammars incorporate an implicit widening operator to ensure convergence. Their
point also applies to the equivalent cache-based constraint analyses [Palsberg 1995]:
the joining of consecutive “cache iterates” constitutes a widening. To keep an analy-
sis as precise as possible one should instead widen explicitly, placing a minimal num-
ber of widening operators to still ensure convergence [Bourdoncle 1993]. Deutsch
[1997] and Blanchet [1998] have used this approach in the context of escape anal-
yses. Bourdoncle [1993] suggested different iteration strategies, some of which are
applicable to analysing higher-order programs. He concluded more work is needed
in the higher-order case.
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7.4 Compositionality

Keeping an analysis compositional prevents it from diverging by recursively analys-
ing the same terms repeatedly (it may however still diverge for other reasons).
Furthermore, one can reason about a compositional analysis by structural induc-
tion. Different means have been used to prevent non-compositional analyses from
repeatedly analysing the same terms: in an unpublished technical report [Young
and Hudak 1986], Young and Hudak invented pending analysis, of which Shivers’s
time-stamps are a variant [Shivers 1991b; 1991a]; and Ashley and Dybvig [1998]
use a similar concept which they name pending sets. A related technique is the
worklist algorithm from data-flow analysis [Kildall 1973; Nielson et al. 1999].

The original formulation of 0-CFA in Shivers’s PhD thesis [Shivers 1991a, p.32]
is not compositional. The formulation in the later paper proving the soundness of
the approximation is however compositional [Shivers 1991b, p.196]. Shivers’s im-
plementation [Shivers 1991a] used a time-stamping approach to ensure convergence
on recursive programs. The formal correctness of time-stamping was later estab-
lished by Damian [2001]. Neither Serrano’s nor Reppy’s 0-CFA formulations are
compositional [Serrano 1995; Reppy 2006]. In order to avoid re-analysing function
bodies (or looping on recursive functions), Reppy’s analysis passes around a cache
of function-result approximations.

Initially, Nielson and Nielson’s specifications were non-compositional and defined
by co-induction [Nielson and Nielson 1997; Gasser et al. 1997], but later they were
reformulated compositionally [Nielson and Nielson 1998; 1999] (in which case in-
duction and co-induction coincide [Nielson et al. 1999]).

The context-sensitive analyses — the k-CFA formulation of Shivers [1991a], the
polymorphic splitting formulation of Wright and Jagannathan [1998], and the uni-
form k-CFA formulation of Nielson, Nielson and Hankin [1997; 1999] are non-
compositional. The analysis framework of Nielson and Nielson’s later paper on
higher-order flow analysis supporting side-effects [Nielson and Nielson 1999] is how-
ever compositional, as is Rehof and Fähndrich’s [2001] context-sensitive flow anal-
ysis of typed higher-order programs.

7.5 Abstract compilation and partial evaluation of CFA

Boucher and Feeley [1996] illustrated two approaches to eliminate the interpretive
overhead of an analysis. They group these two approaches under the name abstract
compilation. Their first approach serializes the program-specific analysis textually
in a file, that is later interpreted, e.g., using the Scheme eval -function. Their second
approach avoids the interpretive overhead and the I/O of the above serialization by
utilizing the closures of the host language. Ashley and Dybvig [1998] noted that the
prototype implementation of their analysis is staged. In their own words [Ashley
and Dybvig 1998, p.857], “code is compiled to closures”, i.e., they are effectively
performing abstract compilation.

Boucher and Feeley [1996] suggested two optimizations, namely η-reduction and
static look-up of constants and lambda-expressions. They noted abstract compi-
lation can be seen as a form of partial evaluation, where the analysis is a curried
function of two arguments, of which the static (known) argument is the source
program to be analyzed.
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Damian [1999] implemented an interpreter for a small imperative language, in
which he encodes a variant of Shivers’s 0-CFA. He then specializes the interpreter
with respect to the analysis and a source program, and reports relative speedups
on par with Boucher and Feeley’s results [Boucher and Feeley 1996].

In a related technical report [Amtoft 1999], Amtoft partially evaluates two con-
straint interpreters with respect to a set of (program specific) CFA constraints (on
the same set of benchmarks [Boucher and Feeley 1996]). He compares the two to
their un-specialized counterparts and reports of unmanageable residual code-size
in the one case and smaller speedups in the other. When reading his results one
should keep in mind that a constraint-based analysis has already eliminated the
(repeated) interpretive overhead of the original source program. As such Amtoft’s
results do not contradict the results of Boucher, Feeley, and Damian.

An interesting question is how the effectiveness of abstract compilation using clo-
sures (and their suggested optimizations) compares to an off-the-shelf constraint-
based analysis, as the latter also incurs a certain overhead due to the serialization
into a list of constraints and their later iterative interpretation. Such a comparison
would however be relative, as the outcome would depend heavily on the implemen-
tation of closures in the host language.

The choice between the compositional interpreting analysis, the serialized/con-
straint interpreting analysis, and the compiled program analysis strongly echoes the
choice between standard approaches to implementing programming languages: the
compositional interpreter, the serialized/byte-code interpreter, and the compiled
program.

8. APPLICATIONS AND RELATED ANALYSES

8.1 CFA in compilers

With his flow analysis for the Liar Scheme compiler [Rozas 1984; 1992], Rozas was
among the very first to implement a higher-order flow analysis. Though developed
independently of Shivers, his analysis is “essentially the same as Olin Shivers’s
0-CFA” [Rozas 1992]. His analysis formulation is graph-based, with edges repre-
senting inclusion between program variables, and the analysis consists of computing
the (dynamic) transitive closure hereof.

In an unpublished report [Siskind 1999], Siskind documents a precise flow analysis
framework for his optimizing Scheme compiler, Stalin. The framework combines
flow analysis with several other analyses, including reachability, must-alias analysis,
and escape analysis. His results indicate that the combined analysis enables an
impressive amount of optimization; however he does not report the time complexity
of the approach.

The flow analysis of the MLton Standard ML compiler operates on simply typed
programs [Cejtin et al. 2000], i.e., after functors and polymorphism have been
eliminated. Both eliminating transformations are realized through code duplica-
tion, thereby increasing the size of source programs. Cejtin et al. use a standard
constraint-based CFA with a few modifications: inclusions in datatype elimination
and inclusions in tuple introduction and elimination are substituted with equali-
ties, which are then solved by unification [Weeks 2006]. Apparently the resulting
analysis does not exhibit cubic time behavior [Weeks 2006], which seems consistent
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with linear-time CFA on bounded-type programs [Heintze and McAllester 1997a;
Mossin 1998].

Wells et al. [2002] have investigated a type-based intermediate language with
intersection and union flow types. Their focus has been type-based compilation,
rather than flow analysis [Wells et al. 2002]. As such, they have inferred control-
flow information using known flow analyses, and afterwards decorated the flow types
with the inferred flow information [Dimock et al. 2001; Banerjee and Jensen 2003].

8.2 Safety analysis

Safety analysis is another analysis of untyped functional programs related to control-
flow analysis. The basic goal is shared with that of type inference, i.e., to statically
guarantee the absence of run-time errors, such as applying the successor function
to a lambda abstraction. Static type systems give such guarantees, however, at the
price of ruling out otherwise useful untypable programs.

Palsberg and Schwartzbach [1995] coined the term safety analysis for such an
analysis. Their analysis is based on a constraint-based CFA. It accepts strictly more
programs than type inference (for simple types). Palsberg and Schwartzbach proved
the analysis sound wrt. both call-by-value and call-by-name evaluation. Thiemann
[1993] had earlier used the term safety analysis for an unrelated analysis for func-
tional programs that detects when in-place updating is safe, i.e., when it does not
affect the outcome of programs.

8.3 Pointer analysis

A related field of control-flow analysis is that of pointer analysis. However the body
of research within pointer analysis is so big that it deserves an independent survey
to do it justice. We refer to Hind [2001] for such a survey.

Pointer analysis in a language with function pointers shares some of the issues of
higher-order functions, in that the operator of a function call may not be apparent
from the program text. As a consequence, such pointer analyses are sometimes
said to support higher-order functions [Fähndrich et al. 2000]. However, one should
note that even the formal semantics of a language with pointers, representing an
ideal (uncomputable) analysis, already constitutes a crude approximation of the
semantics of a higher-order language because it approximates closures with mere
function pointers.

Two very significant contributions within the field bear a strong resemblance
to control-flow analysis and deserve mentioning: Andersen’s subset-based pointer
analysis [Andersen 1994] and Steensgaard’s equality-based pointer analysis [Steens-
gaard 1996b; 1996a]. Andersen’s pointer analysis was formulated in terms of
subset-inclusion constraints [Andersen 1994], whereas Steensgaard’s pointer analy-
sis was formulated as a type system with a non-standard set of types and unifica-
tion [Steensgaard 1996b].

Andersen’s pointer analysis [Andersen 1994] was conceived simultaneously with
Palsberg’s control-flow analysis in constraint form [Palsberg 1994] and Heintze’s
set-based analysis [Heintze 1994]. On the other hand, Steensgaard’s pointer analy-
sis [Steensgaard 1996b] postdates Henglein’s technical report on closure analysis by
type inference [Henglein 1992] by four years, and indeed Steensgaard [1996b] cites
Henglein [1991] as a source of inspiration for his unification-based pointer analysis.
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More recently, Das [2000] has suggested a compromise between Andersen’s and
Steensgaard’s algorithms. The pointer analysis is (like Steensgaard’s) formulated
as a type system. The type-system allows only subtyping (containment) at the
top-level, as opposed to arbitrary subtyping (containment). Elsewhere, flow is
propagated by unification. As a result, the algorithm has a quadratic worst-case
time complexity.

8.4 Escape analysis and stackability

Control-flow analysis is concerned with flows-from information, i.e., inferring the
origin of function values that may occur at a given expression. Escape analysis on
the other hand is concerned with flows-to information, i.e., inferring where function
values originating at a given lambda expression may occur.

The escape analysis of Section 2.3 provides a fast and practical static approxima-
tion that determines whether a function may escape its static scope. The analysis
does so at the expense of crudely approximating higher-order programs. The basic
idea applies to less crude approximations and to other data types as well, e.g., a
heap-allocated cons cell may be stack allocated if an analysis can infer that it will
not escape its static scope.

Park and Goldberg [1992] devised an escape analysis for higher-order programs.
Their initial analysis handled constants and procedural values [Goldberg and Park
1990]. It was later extended to handle lists [Park and Goldberg 1992]. The anal-
ysis was formulated as a forward analysis requiring exponential time even in the
first-order case. Deutsch [1997] later gave an equally precise backwards analysis for
first-order programs requiring only O(n log2 n) time. Deutsch furthermore proved
that any equally precise analysis on second-order functions is EXPTIME-hard, sug-
gesting that an extension to higher-order functions would demand further approx-
imation. Blanchet [1998] extended Deutsch’s backwards escape analysis [Deutsch
1997] to a higher-order ML-like core language incorporating further approximation
to ensure rapid termination.

Banerjee and Schmidt [1998] developed a static stackability criterion for simply-
typed call-by-value λ-calculus terms, i.e., a static analysis that determines whether
it is safe to evaluate a given λ-term with stack-allocated bindings. In order to do
so, the analysis has to guarantee that bindings will not escape their static scope
by being among the free variables of a returned closure. Their analysis is based
on Sestoft’s closure analysis. It is developed as a gradual transformation of an
uncomputable specification into a computable specification.

Tang and Jouvelot [1992] formulated a control-flow effect system that infers
control-flow information. The system infers both which function a given expres-
sion may evaluate to, and which functions may be evaluated during the evaluation
of a given expression. Tang and Jouvelot applied their analysis to infer escape
information for procedures.

Hannan [1998] suggested a type-based escape analysis that detects whether vari-
able bindings will escape their scope. The analysis is formulated as a type-directed
translation from a simply-typed source language into a target language where bind-
ing and look-up of stack variables are explicitly marked.

Serrano and Feeley [1996] presented a storage use analysis. Their analysis is
an extension of Shivers’s 0-CFA with modules and general data storage. They
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presented two applications of the analysis: stack allocation and unboxing.
Mohnen [1995] gave an (worst-case) quadratic time algorithm for inheritance

analysis for higher-order recursive equations with (monomorphic) data structures.
His analysis can calculate whether functional arguments to a function, i.e., closures,
are inherited in the result, which is then encoded as a binary domain. When no
inheritance is detected the closures can be stack allocated. He also gave a measure
for determining whether a closure will only have one active activation at a time
during execution, in which case he suggested static allocation. Mohnen’s work
extends earlier work by Hughes [1992], who formulated an inheritance analysis for
lists in higher-order programs. Hughes’s main application was compile-time garbage
collection.

9. DISCUSSION

In this section, we discuss the systematic application of abstract interpretation
techniques to control-flow analysis and their relevance to verification of higher-order
programs.

9.1 Towards abstract-interpretation analyses

Most CFA-approaches have been bottom up in the sense that researchers have
started with a given computable approximation, and tried to improve it: Shiv-
ers refined 0-CFA into 1-CFA, 2-CFA and k-CFA [Shivers 1991a]. Wright and
Jagannathan refined 0-CFA into polymorphic splitting [Wright and Jagannathan
1998], and Nielson and Nielson reformulated k-CFA into a uniform k-CFA [Nielson
and Nielson 1997]. In contrast, the traditional abstract interpretation approach is
top-down [Cousot and Cousot 1992a]. The starting point is here the (collecting)
semantics, which is the most precise (and hence not computable) analysis. Through
Galois connections or other approximations, the analysis is then gradually refined
into something computable.

Much work in the field of semantics-based control-flow analysis has focused on
ensuring that the proposed analyses compute safe approximations of the seman-
tics [Palsberg 1995; Nielson and Nielson 1997]. In contrast, abstract interpretation
offers best approximations [Cousot and Cousot 1992a] in the form of abstraction
functions. Together with a companion concretization function, the two can form a
Galois connection [Cousot and Cousot 1992a]. Few papers investigating control-flow
analysis relate them by Galois connections [Ayers 1993; Stefanescu and Zhou 1994;
Nielson and Nielson 1999]. Ayers’s work on Galois connections is available only in
his PhD thesis. Nielson and Nielson’s work on the other hand focuses on proving
three analyses correct with respect to a general specification (an uncomputable col-
lecting semantics) in the context of a functional language with side-effects, rather
than relating the individual analyses. Nielson and Nielson earlier formulated the
open question of how “to exploit Galois connections and widenings to systematically
coarsen” [Nielson and Nielson 1997] control-flow analyses.

9.2 Finite and infinite domains

There continues to be some confusion about the applicability of infinite domains
within the area of constraint-based analysis and the general area of abstract inter-
pretation [Heintze 1992; Cousot and Cousot 1995; Aiken 1999]. The data represen-
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tation of constraints (or the equivalent regular-tree grammar [Cousot and Cousot
1995]) is a finite representative on a potentially infinite domain. An abstract in-
terpretation can always “inherit” that finite representation and their corresponding
convergence guarantee [Aiken 1999, p.106] to yield a terminating analysis. To em-
phasize the point, Cousot and Cousot develop a finitary grammar domain [Cousot
and Cousot 1995], thereby expressing constraint-based analysis as an instance of
abstract interpretation. A lesson from abstract interpretation is that an infinite
domain with widening and narrowing operators can offer more precision than a
finite domain [Cousot and Cousot 1992b].

9.3 CFA with widening

Few control-flow analyses have been formulated with an explicit widening operator.
Steensgaard and Marquard [1994] included a dynamic widening operator in their
(unpublished) analysis to ensure convergence in an infinite domain. Correspond-
ingly, Ashley and Dybvig [1998] included in their framework a projection operator
similar to a widening operator to ensure rapid termination.

Schmidt [1998] outlined an alternative closure analysis that approximates envi-
ronments less crudely. To still ensure termination of his analysis he suggested to
index environments by numbers: closure environments bound inside the environ-
ment of another closure have an index one less than their outer binding environment;
and environments of index 0 are simply joined. Even though not completely formu-
lated as such, Schmidt’s approach can be interpreted as an indexed widening, as is
well-known [Cousot and Cousot 1992a] in abstract interpretation. The k-bounded
CFA of Sereni and Jones [2005; 2006; 2007] is based on the same idea of cutting off
nested environments at depth k. The complexity of the analysis is however doubly
exponential in k, hence only practically feasible for k ≤ 2 [Sereni 2006].

There is a clear line of research headed towards more precise modeling of con-
texts [Shivers 1991a; Nielson and Nielson 1997; Wright and Jagannathan 1998;
Might and Shivers 2006a]. However, one will not get full benefit of a very precise
context representation if code and environment components of closures are analysed
separately as independent attributes [Jones and Muchnick 1981]. The key to precise
control-flow analysis may be to keep the code and its environment together in ab-
stract closures, thereby obtaining a relational analysis [Jones and Muchnick 1981]
as in the above mentioned work by Steensgaard, Marquard, and Schmidt. Since
closures can contain closures ad infinitum, one would need to introduce widening
in order to ensure convergence of a fixed-point computation operating on such a
domain.

9.4 Relevance

Serrano questioned [Serrano 1995, p.122] the usefulness of the additional context
component in a 1-CFA for an optimizing compiler, compared to a 0-CFA. A possible
answer is as follows. One is not interested in context per se, i.e., the analysis
uses context as a refinement (to increase precision), but it is not essential in the
result. Any compiler pass utilizing CFA information should therefore benefit from
it, just as they would benefit from substituting an escape analysis with a 0-CFA.
As a consequence, contexts should not necessarily be abstracted symbolically as is
traditional in CFA. Alternatively, contexts could be approximated numerically, in
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order to distinguish them and still gain precision (as in the abstract interpretation
analyses of Deutsch [1997], of Blanchet [1998], and of Venet [2002]).

Research by Waddell and Dybvig [1997] indicates that for a functional program-
ming-language implementation, a rough CFA approximation backed up by a well-
tuned inliner is sufficient for an effective compiler. However with the advances in
formal verification (and very precise analyses), e.g., ASTRÉE [Cousot et al. 2005],
one will still need precise control-flow analyses in order to bring the advances to
verification of higher-order programs.

10. CONCLUSION

Over 30 years after Jones’s initial flow analysis of lambda expressions [Jones 1981b],
control-flow analysis has been the subject of a considerable amount of research. A
range of useful analyses have been designed for programs with first-class functions,
all of which differ in their precision and in their time and space complexity. As a
result, analyses now come in many formulations. Some of them are available only
as technical reports, and others not at all.

We have surveyed the field in an attempt to put structure to this body of research.
In doing so, we have assembled context-sensitive and context-insensitive approxi-
mations from both theory and practice, and we have classified analyzes according
to their formulation.

As Nielson and Nielson pointed out [Nielson and Nielson 1997], a simple and
systematic development of control-flow analyses utilizing the tools of abstract in-
terpretation remains to be found. In two recent papers [Midtgaard and Jensen 2008;
2009], we have taken the first steps towards remedying this situation. Such a devel-
opment may provide the insight to extend recent developments in the verification
of first-order programs to verifying higher-order programs.
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