A SHORT PROOF OF THE WEDDERBURN-ARTIN THEOREM

W.K. NICHOLSON (Received December 1991)

Abstract. The Wedderburn-Artin theorem is of fundamental importance in noncommutative ring theory. A short self-contained proof is given which requires only elementary facts about rings.

Throughout this note R will denote an associative ring with unity $1 \neq 0$. If X and Y are additive subgroups of R, define their product by

$$XY = \left\{ \sum_{i=1}^{n} x_i y_i \mid n \ge 1, \ x_i \in X, \ y_i \in Y \right\}.$$

This is an associative operation. An additive subgroup K is called a left (right) *ideal* of R if $RK \subseteq K$, and K is called an *ideal* if it is both a left and right ideal. The ring R is called *semiprime* if $A^2 \neq 0$ for every nonzero ideal A, and R is called *left artinian* if it satisfies the descending chain condition on left ideals (equivalently, every nonempty family of left ideals has a minimal member).

The following theorem is a landmark in the theory of noncommutative rings.

Wedderburn-Artin Theorem. If R is a semiprime left artinian ring then

$$R \cong M_{n_1}(D_1) \times M_{n_2}(D_2) \times \ldots \times M_{n_r}(D_r)$$

where each D_i is a division ring and $M_n(D)$ denotes the ring of $n \times n$ matrices over D.

In this form the theorem was proved [1] in 1927 by Emil Artin (1898–1962) generalizing the original 1908 result [4] of Joseph Henry Maclagan Wedderburn (1882–1948) who proved it for finitely generated algebras over a field. The purpose of this note is to give a quick, self-contained proof of this theorem. A key result is the following observation [2] of Richard Brauer (1902–1977). Call a left ideal K minimal if $K \neq 0$ and the only left ideals contained in K are 0 and K.

Brauer's Lemma. Let K be a minimal left ideal of a ring R and assume $K^2 \neq 0$. Then K = Re where $e^2 = e \in R$ and eRe is a division ring.

Proof. Since $0 \neq K^2$, certainly $Ku \neq 0$ for some $u \in K$. Hence Ku = K by minimality, so eu = u for some $e \in K$. If $r \in K$, this implies re- $r \in L = \{a \in K \mid a \in K \}$ au = 0. Now L is a left ideal, $L \subseteq K$, and $L \neq K$ because $eu \neq 0$. So L = 0 and it follows that $e^2 = e$ and K = Re.

Now let $0 \neq b \in eRe$. Then $0 \neq Rb \subseteq Re$ so Rb = Re by minimality, say e = rb. Hence $(ere)b = er(eb) = erb = e^2 = e$, so b has a left inverse in eRe. It follows that eRe is a division ring.

The following consequence will be needed later.

¹⁹⁹¹ AMS Mathematics Subject Classification: 16P20

Corollary. Every nonzero left ideal in a semiprime, left artinian ring contains a nonzero idempotent.

Proof. If $L \neq 0$ is a left ideal of R, the left artinian condition gives a minimal left ideal $K \subseteq L$. Now $(KR)^2 \neq 0$ because R is semiprime, so $(KR)^2 = KRKR \subseteq K^2R$ shows that $K^2 \neq 0$. Hence Brauer's lemma applies.

A ring R is simple if R has no ideals other than 0 and R. Such a ring is necessarily semiprime. When R is simple the Wedderburn-Artin theorem is known as Wedderburn's Theorem and a short proof is well known (see Henderson [3]). Since this result is needed in the general case, we sketch the proof. The left artinian hypothesis is weakened to the existence of a minimal left ideal.

Wedderburn's Theorem. If R is a simple ring with a minimal left ideal, then $R \cong M_n(D)$ for some $n \ge 1$ and some division ring D.

Proof (Henderson). Let K be a minimal left ideal. Then KR = R (it is a nonzero ideal) so $R = R^2 = (KR)^2 = KRKR \subseteq K^2R$. Hence $K^2 \neq 0$ so, by Brauer's lemma, K = Re where $e^2 = e$ and D = eRe is a division ring. Then K is a right vector space over D and, if $r \in R$, the map $\alpha_r : K \to K$ given by $\alpha_r(k) = rk$ is a D-linear transformation. Hence $r \to \alpha_r$ is a ring homomorphism $R \to \text{end}_D K$, and it is one-to-one because $\alpha_r = 0$ implies rRe = 0 so 0 = rReR = rR (ReR = R because R is simple). To see that it is onto, write $1 \in ReR$ as $1 = \sum_{i=1}^{n} r_i es_i$. Given $\alpha \in \text{end}_D K$, let $a = \sum_i \alpha(r_i e) es_i$. Then the D-linearity of α gives

$$\alpha(re) = \alpha\left[\sum_{i} (r_i e s_i) re\right] = \sum_{i} \alpha(r_i e) (e s_i re) = a \cdot re = \alpha_a(re)$$

for all $r \in R$, so $\alpha = \alpha_a$. Thus $R \cong \text{end}_D K$ and it remains to show that K_D is finite dimensional (then $\text{end}_D K \cong M_n(D)$ where $n = \dim_D K$). But if $\dim_D K$ is infinite, the set $A = \{\alpha \in \text{end}_D K \mid \alpha(K) \text{ has finite dimension}\}$ is a proper ideal of $\text{end}_D K$, contrary to the simplicity of R.

It is worth noting that, if $e^2 = e \in R$ is such that ReR = R, the proof shows that $R \cong \operatorname{end}_D K$ where K = Re is regarded as a right module over D = eRe.

To prove the Wedderburn-Artin theorem, it is convenient to introduce a weak finiteness condition in a ring R. Let I denote the set of idempotents in R. Given e, f in I, write $e \leq f$ if ef = e = fe, that is if $eRe \subseteq fRf$. This is a partial ordering on I (with 0 and 1 as the least and greatest elements) and I is said to satisfy the maximum condition if every nonempty subset contains a maximal element, equivalently if $e_1 \leq e_2 \leq \ldots$ in I implies $e_n = e_{n+1} = \ldots$ for some $n \geq 1$. The minimum condition on I is defined analogously. A set of idempotents is called orthogonal if ef = 0 for all $e \neq f$ in the set.

Lemma 1. The following are equivalent for a ring R:

- (1) R has maximum condition on idempotents.
- (2) R has minimum condition on idempotents.
- (3) R has maximum condition on left ideals Re, $e^2 = e$ (on right ideals eR, $e^2 = e$).
- (4) R has minimum condition on left ideals Re, $e^2 = e$ (on right ideals eR, $e^2 = e$).
- (5) R contains no infinite orthogonal set of idempotents.

Proof. The verification that $(1) \Leftrightarrow (2), (3) \Leftrightarrow (4)$ and $(3) \Rightarrow (5) \Rightarrow (1)$ are routine, so we prove that $(1) \Rightarrow (3)$. If $Re_1 \subseteq Re_2 \subseteq \ldots$ where $e_i^2 = e_i$ for each i, then $e_ie_j = e_i$ for all $j \ge i$ so we inductively construct idempotents $f_1 \le f_2 \le \ldots$ as follows: Take $f_1 = e_1$ and, if f_i has been specified, take $f_{i+1} = f_i + e_{i+1} - e_{i+1}f_i$. An induction shows that $f_i \in Re_i$ for each i, whence $f_ie_k = f_i$ for all $k \ge i$. Using this one verifies that $f_i^2 = f_i$ and $f_i \le f_{i+1}$ hold for each $i \ge 1$. Thus (1) implies that $f_n = f_{n+1} = \ldots$ for some n and hence that $e_{i+1} = e_{i+1}f_i \in Re_i$ for all $i \ge n$. It follows that $Re_n = Re_{n+1} = \ldots$ The maximum condition on right ideals eR is proved similarly.

Call a ring R *I*-finite if it satisfies the conditions in Lemma 1. It is clear that every left (or right) artinian or noetherian ring is *I*-finite.

Proof of the Wedderburn-Artin Theorem. Let R be a semiprime, left artinian ring, let K be a minimal left ideal, let S = KR, and let $M = \{a \in R \mid Sa = 0\}$. Then S and M are ideals of R and we claim that

$$R = S \oplus M. \tag{(*)}$$

First $S \cap M = 0$ because R is semiprime and $(S \cap M)^2 \subseteq SM = 0$. Since R is *I*-finite, let e be a maximal idempotent in S. To show that R = S + M, it suffices to show $1 - e \in M$. If not, then $S(1 - e) \neq 0$ so (by the Corollary to Brauer's lemma) let $f \in S(1 - e)$ be a nonzero idempotent. Then fe = 0 and one verifies that g = e + f - ef is an idempotent in S and $e \leq g$. The maximality of e then gives e = g, so f = ef, whence $f = f^2 = fef = 0$, a contradiction. So $1 - e \in M$ and R = S + M, proving (*).

Hence S and M are rings (with unity) and they inherit the hypotheses on R because left ideals of S or M are left ideals of R by (*). Moreover, this shows that S is simple. Indeed, if $A \neq 0$ is an ideal of S then $A \cap K \neq 0$ (otherwise $A^2 \subseteq AKR \subseteq (A \cap K)R = 0$) so the minimality of K gives $K \subseteq A$, whence $S = KR \subseteq A$.

If M = 0 the proof is complete by Wedderburn's theorem. Otherwise, repeat the above with R replaced by M to get $R = S \oplus S_1 \oplus M_1$ where S_1 is simple. This cannot continue indefinitely by the artinian hypothesis (or *I*-finiteness), so Wedderburn's theorem completes the proof.

Remark 1. The converse to both these theorems is true.

Remark 2. These proofs actually yield the following: A ring R is semiprime and left artinian if and only if it satisfies the following condition.

R is I-finite and every nonzero left ideal contains a nonzero idempotent. (**)

W.K. NICHOLSON

The necessity of (**) follows from Lemma 1 and the Corollary to Brauer's lemma. Conversely, if R satisfies (**) then the proofs of both theorems go through virtually as written once the following is established: If E is a minimal nonzero idempotent, then Re is a minimal left ideal. But if $L \subseteq Re$ is a left ideal and $L \neq 0$, let $0 \neq f^2 = f \in L$. Then fe = f so $g = ef \in L$ is an idempotent, $g \neq 0$ (because f = fg) and $g \leq e$. Thus g = e by the minimality of e, whence L = Re.

References

- 1. E. Artin, Zur Theorie der hypercomplexen Zahlen, Abh. Math. Sem. Univ. Hamburg 5 (1927), 251-260.
- R. Brauer, On the nilpotency of the radical of a ring, Bull. Amer. Math. Soc. 48 (1942), 752–758.
- D.W. Henderson, A short proof of Wedderburn's theorem, Amer. Math. Monthly 72 (1965), 385-386.
- J.H.M. Wedderburn, On hypercomple numbers, Proc. London Math. Soc. 6 (1908), 77–117.

W.K. Nicholson University of Calgary Calgary Alberta CANADA T2N 1N4