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A SHORT PROOF OF THE WEDDERBURN-ARTIN THEOREM
W . K .  N i c h o l s o n
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Abstract. The Wedderburn-Artin theorem is of fundamental importance in non- 
commutative ring theory. A  short self-contained proof is given which requires only 
elementary facts about rings.

Throughout this note R  will denote an associative ring with unity 1 / 0 .  If X  
and Y  are additive subgroups of R, define their product by

f n

X Y  =  < Y^Xiyi | n > 1, Xi G X , yi G Y
U=i

This is an associative operation. An additive subgroup K  is called a left (right) 
ideal of R if R K  C K , and K  is called an ideal if it is both a left and right ideal. 
The ring R  is called semiprime if A 2 /  0 for every nonzero ideal A, and R  is called 
left artinian if it satisfies the descending chain condition on left ideals (equivalently, 
every nonempty family of left ideals has a minimal member).

The following theorem is a landmark in the theory of noncommutative rings.

Wedderburn-Artin Theorem. If R is a semiprime left artinian ring then

R ^ M ni{Di) x  M n2{D2) x  . . .  x  M nr(Dr)

where each Di is a division ring and M n(D ) denotes the ring of n x  n matrices 
over D.

In this form the theorem was proved [1] in 1927 by Emil Artin (1898-1962) 
generalizing the original 1908 result [4] of Joseph Henry Maclagan Wedderburn 
(1882-1948) who proved it for finitely generated algebras over a field. The purpose 
of this note is to give a quick, self-contained proof of this theorem. A key result 
is the following observation [2] of Richard Brauer (1902-1977). Call a left ideal K  
minimal if K  /  0 and the only left ideals contained in K  are 0 and K .

Brauer’s Lemma. Let K  be a minimal left ideal of a ring R and assume K 2 /  0. 
Then K  =  Re where e2 =  e G R and eRe is a division ring.

Proof. Since 0 /  K 2, certainly K u  /  0 for some u G K . Hence K u  =  K  by 
minimality, so eu =  u for some e G K . If r G K ,  this implies re-r G L =  {a G K  \ 
au =  0}. Now L is a left ideal, L C K , and L /  K  because eu ^  0. So L =  0 and 
it follows that e2 =  e and K  =  Re.

Now let 0 /  6 G eRe. Then 0 /  Rb C Re so Rb =  Re by minimality, say e =  rb. 
Hence (ere)b =  er(eb) =  erb — e2 =  e, so b has a left inverse in eRe. It follows 
that eRe is a division ring. I

The following consequence will be needed later.
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Corollary. Every nonzero left ideal in a semiprime, left artinian ring contains a 
nonzero idempotent.

Proof. If L ^  0 is a left ideal of R, the left artinian condition gives a minimal left 
ideal K  C  L. Now (K R )2 ^  0 because R  is semiprime, so (K R )2 =  K R K R  C  K 2R 
shows that K 2 ^  0. Hence Brauer’s lemma applies. |

A ring R  is simple if R has no ideals other than 0 and R. Such a ring is 
necessarily semiprime. When R  is simple the Wedderburn-Artin theorem is known 
as Wedderburn’s Theorem and a short proof is well known (see Henderson [3]). 
Since this result is needed in the general case, we sketch the proof. The left artinian 
hypothesis is weakened to the existence of a minimal left ideal.

Wedderburn’s Theorem. If R is a simple ring with a minimal left ideal, then 
R =  M n(D ) for some n >  1 and some division ring D.

Proof (Henderson). Let K  be a minimal left ideal. Then K R  — R (it is a 
nonzero ideal) so R =  R2 =  (K R )2 =  K R K R  C  K 2R. Hence K 2 ±  0 so, by 
Brauer’s lemma, K  =  Re where e2 =  e and D  =  eRe is a division ring. Then K  is 
a right vector space over D  and, if r E R, the map ar : K  —> K  given by ar(k) =  rk 
is a D-linear transformation. Hence r —> ar is a ring homomorphism R —> endd K , 
and it is one-to-one because ar =  0 implies rRe =  0 so 0 =  rReR — rR  (ReR =  R 
because R  is simple). To see that it is onto, write 1 G ReR  as 1 =
Given a G end d K , let a =  J2i ct(rie)eS{. Then the D-linearity o f a gives

a(re) =  a y X n e s i )r e =  a(rje)(esjre) =  a ■ re =  aa(re)

for all r £ R, so a =  aa. Thus R =  end d K  and it remains to show that K d  is 
finite dimensional (then end d K  =  M n(D) where n =  dim/p K ). But if dim^ K  is 
infinite, the set A  =  {a  G endq K  \ a (K )  has finite dimension} is a proper ideal of 
end d K , contrary to the simplicity of R. |

It is worth noting that, if e2 =  e G R is such that ReR =  R , the proof shows 
that R =  end d K  where K  — Re is regarded as a right module over D  =  eRe.

To prove the Wedderburn-Artin theorem, it is convenient to introduce a weak 
finiteness condition in a ring R. Let I  denote the set of idempotents in R. Given 
e , /  in / ,  write e <  f  if e f  =  e =  fe , that is if eRe C f R f .  This is a partial 
ordering on I  (with 0 and 1 as the least and greatest elements) and I  is said 
to satisfy the maximum condition if every nonempty subset contains a maximal 
element, equivalently if e\ <  e2 <  . . .  in I  implies en =  en+i =  . . .  for some n >  1. 
The minimum condition on I  is defined analogously. A set of idempotents is called 
orthogonal if e f  =  0 for all e /  /  in the set.

Lemma 1. The following are equivalent for a ring R:
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(1) R has maximum condition on idempotents.

(2) R has minimum condition on idempotents.

(3) R has maximum condition on left ideals Re, e2 =  e (on right ideals eR, 
e2 =  e).

(4) R has minimum condition on left ideals Re, e2 =  e (on right ideals eR, 
e2 — e).

(5) R contains no infinite orthogonal set of idempotents.

P roof. The verification that (1) -o- (2), (3) <*=> (4) and (3) =>• (5) =$■ (1) are routine, 
so we prove that (1) =>• (3). If Re\ C Re2 C . . .  where e2 =  e* for each i, then 
e^ej =  el for all j  >  i so we inductively construct idempotents f\ <  fi  <  . . .  as 
follows: Take f\ =  e\ and, if fi has been specified, take fc+ i =  /* 4- e ^ i  — e ^ i f i .  
An induction shows that fi e Rei for each i, whence fiek =  fi for all k >  i. Using 
this one verifies that f 2 =  fi and fi <  f i+1 hold for each i >  1. Thus (1) implies 
that f n =  f n+1 =  . . .  for some n and hence that ei+1 =  e ^ i f i  6 Rei for all i >  n. 
It follows that Ren =  Ren+1 =  —  The maximum condition on right ideals eR  is 
proved similarly. |

Call a ring R I-finite if it satisfies the conditions in Lemma 1. It is clear that 
every left (or right) artinian or noetherian ring is /-finite.

P ro o f o f  the W edderburn-A rtin  Theorem . Let R  be a semiprime, left ar
tinian ring, let K  be a minimal left ideal, let S =  K R , and let M  =  {a e R \ Sa =  
0}. Then S and M  are ideals of R and we claim that

R =  S ® M . (*)
First 5  fl M  =  0 because R is semiprime and (S D M )2 C S M  =  0. Since R  is 
/-finite, let e be a maximal idempotent in S. To show that R =  S +  M , it suffices 
to show 1 — e € M . If not, then 5(1 — e) /  0 so (by the Corollary to Brauer’s 
lemma) let /  e 5(1 — e) be a nonzero idempotent. Then f e  =  0 and one verifies 
that g =  e +  /  — e f  is an idempotent in 5  and e <  g. The maximality of e then 
gives e =  g, so /  =  e f , whence f  =  f 2 — f e f  =  0, a contradiction. So 1 — e € M  
and R — S +  M , proving (*).

Hence 5  and M  are rings (with unity) and they inherit the hypotheses on R 
because left ideals of 5  or M  are left ideals of R by (*). Moreover, this shows 
that 5  is simple. Indeed, if A ^  0 is an ideal of 5  then A  D K  /  0 (otherwise 
4̂2 C A K R  C (A D K )R  =  0) so the minimality of K  gives K  C A, whence 

5 =  K R  C A.

If M  =  0 the proof is complete by Wedderburn’s theorem. Otherwise, repeat 
the above with R  replaced by M  to get R  =  5 ® 5i © M\ where S\ is simple. 
This cannot continue indefinitely by the artinian hypothesis (or /-finiteness), so 
Wedderburn’s theorem completes the proof. I

Rem ark 1. The converse to both these theorems is true.

Rem ark 2. These proofs actually yield the following: A ring R  is semiprime and 
left artinian if and only if it satisfies the following condition.

R is I-finite and every nonzero left ideal contains a nonzero idempotent. (**)
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The necessity of (**) follows from Lemma 1 and the Corollary to Brauer’s lemma. 
Conversely, if R  satisfies (**) then the proofs of both theorems go through virtually 
as written once the following is established: If E  is a minimal nonzero idempotent, 
then Re is a minimal left ideal. But if L C Re is a left ideal and L /  0, let
0 /  f 2 =  f  G L. Then /e  =  /  so <7 =  e /  € L is an idempotent, g ^  0 (because 
/  =  fg) and g < e. Thus g =  e by the minimality of e, whence L =  Re.
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