5. СОЕДИНЕНИЯ НЕПТУНИЯ

В препаративной практике используется только нуклид 237 Np (атомная масса 237,05), производимый в промышленных масштабах ($T=2,14\cdot10^6$ лет, α -излучатель, удельная активность $6,9\cdot10^{-4}$ Ки/г; $1,52\cdot10^{-3}$ расп/(мин·мкг).

В Табл. 11 приведены данные о цвете, теплотах образования, кристаллической структуре, параметрах решётки и плотностях некоторых соединений нептуния.

Табл. 11. Малорастворимые соединения нептуния

Соединенне	Цвет	Состав раствора	Равновес- ная концент- рация, ме Np/л
Пероксид непту- ния (IV)	Пурпурный	2,5 M HNO ₃ + 6,5 M H ₂ O ₂ 2 M HNO ₃ + 4 M H ₂ O ₂ 0,8 M HNO ₃ + 3 M H ₂ O ₂	12 23 100
Np (OH) ₄	Рыжевато-корнч- невый или корнч- нево-зеленый	0.8 M NaOH + 0.8 M NasSOA	2 3—4
NpO₂OH	Бледно-зеленый или фиолетовый	1 M NH ₄ OH 1 M NaOH 2 M NaOH	180 17 14
(NH ₄) ₂ Np ₂ O ₇	Темно-корнчне- вый	1 M NH ₄ OH + 0,5 M (NH ₄) ₂ SO ₄ 6 M NH ₄ OH + 0,5 M (NH ₄) ₂ SO ₄	25 27 0
NpF ₃	Пурпурный	_	_
NpF4	Зеленый		_
NH ₄ NpF ₅	Светло-зеленый	1 M HF + 0,01 M NH4F	13
KNp₂F₃	Зеленый	4 M HF+1 M KF 2 M HF+0,05 M KF+ +0,5 M H ₂ SO ₄	11 1,7
Np (C ₂ O ₄) ₂	Зеленый	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5000 200 6 10 1,6 <u>+</u> 0,3
NaNpO ₂ (CH ₃ COO) ₈	Розовый	1 M NaC ₂ H ₃ O ₂ + +1 M HC ₂ H ₃ O ₂ + +0,5 M Na ₂ SO ₄ + +0,07 M NaNO ₃	100_
Np ($C_6H_5AsO_3$) ₂	Зеленоватый	$0.1 M C_6H_5AsO_3H_2 + 0.5 M HNO_3$	5
NpO ₂ C ₆ H ₅ AsO ₃	»	0,04 M C ₆ H ₅ AsO ₃ H ₂ + +0,05 M HNO ₃	14 0
K ₅ NpO ₂ (CO ₃₎₃	-	H ₂ O 0,2 <i>M</i> K ₂ CO ₃ 50%-иый p-p K ₂ CO ₃	10 23 38
Cs ₅ NpO ₂ (CO ₃) ₃	_	H ₂ O 0,2 M Cs ₂ CO ₃	23 88
Np (HPO4)2	Бледно-зеленый	1 M H ₃ PO ₄ + 1 M HNO ₃	56
[(CH ₃) ₂ (C ₆ H ₅ CH ₂) ₂ N] ₂ . ·Np (NO ₃) ₆	-	6-8 M HNO ₃	100
[(C ₂ H ₅) ₄ N] ₂ Np (NO ₃) ₆	_	8 M HNO ₃ + + 0,4 M (C ₂ H ₅) ₄ N·NO ₃	5
[(C ₂ H ₅) ₄ N] ₂ Np (NO ₃) ₆	_	$ \begin{array}{l} 0,5 \ M \ HNO_3 + \\ + \geqslant 5 \ M \ Ca \cdot (NO_3)_2 + \\ + 0,4 \ M \ (C_2H_6)_4N \cdot NO_3 \end{array} $	0,03
8-Оксихннолинат иеп- туння (IV)	_	pH 4—5	-
KNp (SO ₄) ₂	_	Насыщениый p-р K ₂ SO ₄	
K ₂ Np (SO ₄) ₃	-	Насыщениый p-р K ₂ SO ₄	1 —

Табл. 12. Растворимые соединения нептуния.

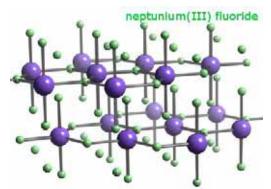
Соединение	Цвет в твердом состоянии	Состав водного раствора	равновесная концентра- цня, е Np/a
Хлорид нептуния (III) Хлорид нептуния (IV) Хлорид нептуноила Хлорид иептунила	Белый Красно-коричневый	1 M HCI 2 M HCI 1 M HCI 2 M HCI	>2 >96 >70 >5
Нитрат нептуния (IV) Нитрат нептуноила Нитрат нептунила Сульфат нептуния (IV) Сульфат нептуноила Сульфат нептунила	Серый Зеленый - — Вледно-зелений — —	5 M HNO ₃ 5 M HNO ₃	>300 >50 - 16 3 >2 >50
Перхлорат нептуння (IV) Перхлорат нептуноила Перхлорат нептунила	- - -	1 M HClO ₄ 1 M HClO ₄ 1 M HClO ₄	>1 >2 >2 >2
Иодат нептуния (IV) * Фторид нептуноила Фторид нептунила	Рыжевато-коричневый — Розовый	1 M HCl + 0,1 M HJO 1 M HCl + 1 M KJO ₈ — —	0,8 0,08 - >0,1
Трикарбонатонептунилат калия K₄NpO₂(CO₃)в	_	H ₂ O 0,2 M K ₂ CO ₃ 1 M K ₂ CO ₃ 50%-ный р-р K ₂ CO ₃	25 6 2 0,02
Бромид нептуния (III) Бромид нептуния (IV)	Зеленый Красно-коричневый		_
Оксалат нептуноила Оксалат иептунила			>1 >1
Ацетат нептуния (IV) Ацетат нептуноила	<u> </u>		>0,1 > 0,1 > 0,1
Фениларсонат иептуноил	a	_	1

Табл. 13. Методы получения и растворимость некоторых соединений нептуния

Ион нептуния	Соединение	Цвет	Метод получения	Растворимость нептуния в литре раствора
	$NpO_4 \cdot 2H_2O$ $Np(OH)_4 \cdot . \cdot .$ $Np(SO_4)_2 \cdot . \cdot .$	Красно-коричневый. Бесцветный.	NH ₄ ⁺ + F ⁻ K ⁺ + F ⁻ JO ₃ ⁻ H ₂ O ₂ + H ⁺ OH ⁻ Выпаривание Н ₃ PO ₄	13 мг [0.01 м. (NH ₄) ₂ F — 1 м. HF] 11 мг [1 м. KF—4 м. HF] 0.8 г (1 м. HCl—0.1 м. HJO ₃) 100 мг (0.8 м. HNO ₃ —3.1 м. H ₂ O ₂) 2.9 мг [0.5 м. (NH ₄) ₂ SO ₄ —NH ₄ OH] 16 г (1.0 м. H ₂ SO ₄), 3 г (18 м. H ₂ SO ₄) 56 мг (1м. HCl—0.5 м. H ₃ PO ₄)
NpO ₂ ⁺		От бледно-зеленого до лилового.	С ₂ О ₄ ²⁻ ОН-	200 мг (0.8 м. HNO ₃ —0.1 м. H ₂ C ₂ O ₄) 0.02 г (1 м. NaOH)
NpO_2^{2+}	\times H ₂ O NaNpO ₂ (C ₂ H ₃ O ₂₎₃	Темно-коричневый. Розовый.	$\begin{array}{c} \mathrm{NH_4^+} + \mathrm{OH}^- \\ \mathrm{Na}^+ + \mathrm{C_2H_3O_2^-} \end{array}$	270 мг [0.5 м. (NH ₄) ₂ SO ₄ —6 м. NH ₄ OH] 100 мг (0.5 м. H ₂ SO ₄ —0.07 м. NaNO ₃ — — 2 м. NaC ₂ H ₃ O ₂)

Табл. 14. Параметры элементарной ячейки бинарных соединений нептуния кубической сингонии.

Соединение	Структурный тип или пространствен - ная группа	a, Å
NpO ₂	Fm3m	5,425
NpH_2	Fm3m	5,343
NpN	Fm3m	4,899
NpC _{0.94}	Fm3m	5.003
Np_2C_3	I43d	8,102
NpAl ₂	Fd3m	7,785
NpAl ₃	Pm3m	4,262
NpBe ₁₃	Fm3c	10,266
NpB_6	Pm3m	4,113
NpCd ₆	CeCd ₆	15,614
NpCd ₁₁	BaHg ₁₁	9,288
NpPd ₃	Pm3m	4,069


Табл. 15. Кристаллическая структура и другие свойства некоторых соединений нептуния.

			Кристаллическая структура						
Соединение	Цвет	Теплота обра- зования,		тип	пара	Плот- ность, г/см ³			
		ккал. • моль-	сингония	структуры	a	b	c	r/cm³	
NnH. e . e	Черный.	_	_	-	_		_	_	
NpH _{3.6—3.8} NpF ₃ NpF ₄	Пурпурный.	-360	Гексагональная.	_	4.108	_	7.273	9.12	
NpF4	Зеленый.	-428	Моноклинная.	_	12.67	10.62	8.31	6.8	
NpF_6	Коричневый.	-463 (ras.)	Ромбическая.	Pnma	9.91	8.97	5.21	5.00	
NpO_2F_2	Розовый.		Гексагональная.		4.170	_	15.77	6.40	
KNp_2F_9	Зеленый.	_	Ромбическая.	Pnma	8.63	7.01	11.43	6.54	
$NpCl_3$	Белый	-216	Гексагональная.	$C6_3/m$	7.405	_	4.273	5.58	
$NpCl_4$	Красно-ко-	-273	Тетрагональная.	14/amd	8.25	_	7.46	4.92	
-	ричневый.		_						
α -NpBr $_3$	Зеленый.	-174	Гексагональная.	$C6_3/m$	7.917		4.382	6.62	
β-NpBr ₃	»	<u>-120</u>	Ромбическая.	Ccmm	12.65	4.11	9.15	6.62	
$NpJ_3 \dots$	Коричневый.	_	»	Ccmm	14.00	4.29	9.93	6.82	
NpO	_	_	Кубическая	_	5.00		_	13.35	
			гранецентриро-						
			ванная.		- 40-				
NpO_2	Яблочно-зе-	_	Кубическая	Флюорит	5.425	_		11.11	
	леный.			N. 61	5001				
Np_3O_8	Коричневый.	_	» »	NaCl	5.004	40.0	2.05	-	
Np_2S_3	Черный.	_	Ромбическая.	D//	10.3	10.6	3.85	8.9	
NpOS	, »	_	Гетрагональная.	P4/nmm	3.817	_	6.641	9.71	
NpN		_	Кубическая.	_	4.887	_	_	14.19	
NpC_2	Металличе-	_	_	_	_	_	_	_	
N - C:	ский.		T	Allama	3.96		13.67	9.03	
$NpSi_2$	Металличе-	_	Тетрагональная.	14/amd	5.90	_	13.07	9.03	
No No O	ский.		L'areannaire a	pp 2	10.659			2.556	
$NaNpO_2 \times (CH, COO)$	Розовый.	-	Кубическая.	P2 , 3	10.059	_	_	2.000	
$\times (CH_3COO)_3$	3								

5.1 Гидриды и галогениды нептуния

5.1.1 Гидриды

При нагревании нептуния в атмосфере водорода образуются гидриды переменного состава NpH_{2+x} (x = 0-0,7), гранецентрированная кубическая структура типа CaF_2 , а также NpH_3 (гексагональная структура,

изоструктурна PuH_3) черные кристаллы с металлическим блеском, пироморфны, чувствительны по отношению к воздуху, работать с ними нужно в сухой камере с инертным газом. Отметим, что металлический нептуний при комнатной температуре не взаимодействует с водородом, но при 50° энергично поглощает водород с образованием гидрида нептуния, отвечающего формуле $NpH_{3.7}$.

Рис. 6. Кристаллическая структура гидрида нептуния.

5.1.2 Фториды нептуния

Трифторид NpF₃ и трихлорид NpCl₃ синтезируют взаимодействием NpO₂ соответственно с эквимолярной смесью H_2 с HF (при 500°) и H_2 с CCl₄ (при 350°); трибромид NpBr₃ и трийодид NpJ₃-р-цией NpO₂ с избытком смеси Al соответственно с AlBr₃ при 350-400° или AlJ₃ при 500°. Нагреванием NpO₂ в токе HF при 500°, CCl₄ при 450-530°C или взаимодействием NpO₂ с AlBr₃ при 350° получают соответствующие тетрагалогениды NpX₄ (X = F, Cl, Br).

трифторида нептуния (9 coordinate: tricapped trigonal prismatic).

Табл. 16. Некоторые галогениды нептуния.

талот оппды	J		Параметры решетки, А или град					
Соединение	Окраска	Симметрия решетки	а	b	c	β		
NpF ₃	Пурпур.	Тригон.	7,129		7,288			
NpF ₄	Зел.	Моноклин.	12,68	10,66	8,34	126,3		
NpF ₅	Голуббел.	Тетрагон.	6,53		4,45			
NpF ₆	Оранж.	Ромбич.	9,909	8,997	5,202			
NpOF ₃	Зел.	Ромбоэдрич.	4,185	-	15,799			
NpO_2F_2	Pos.	Ромбоэдрич.	4,185		15,790			
NpOF ₄	Коричн.	Гексагон.	13,17		5,70			
NpCl ₃	Зел.	Гексагон.	7,413		4,282			
NpCl ₄	Красно-оранж.	Тетрагон.	8,266		7,475			
NpOCl ₂	Оранж.	Ромбич.	15,209	17,670	3,948			
NpBr ₃	Зел.	Гексагон.	7,919	, ,	4,392			
NpBr ₃	Зел.	Ромбич.	4,109	12,618	9,153			
NpBr ₄	Темно-красн.	Моноклин.	10,89	8,74	7,05	94,19		
NpI ₃	Коричн.	Ромбич.	4,30	14,03	9,95	,		
NpOI	?	Тетрагон.	4,051	,	9,193			

Табл. 17. Кристаллографические характеристики комплексных фторидов нептуния.

		Параметры решетки, А			
Соединение	Симметрия а решетки	a	b	с	
LiNpF ₅	Тетрагон.	14,80		6,516	
Na ₂ NpF ₆	Гексагон.	6,074		7,167	
α - K_2 NpF ₆	Кубич.	5,905		,	
Rb ₂ NpF ₆	Ромбич.	6,986	12,068	7.628	
CaNpF ₆	Гексагон.	6,918	,,	7,100	
SrNpF ₆	Гексагон.	7,093		7,242	
BaNpF ₆	Гексагон.	7,374		7,450	
$PbNpF_6$	Гексагон.	7,212		7,360	

а Все соединения окрашены в зеленый цвет.

Фиолетовый трифторид нептуния, NpF_3 , получается при действии смеси водорода (0,5 атм) и фтористого водорода (0,5 атм) на высушенную при 70° гидроокись нептуния:

$$NpO_2 + 0.5H_2 + 3HF \xrightarrow{500^{\circ}} NpF_{3\kappa puc} + 2H_2O_{\epsilon a3},$$

Реакция происходит при температуре 500° в течение 1,5 час. Точка кипения 2223° . Трифторид нептуния – вещество красно-фиолетового цвета, кристаллическая структура гексагональная изоморфен LaF₃, UF₃ и AmF₃, в воде практически не растворим, $T_{пл}=1425^{\circ}$, $\Delta P^{\circ}_{298}=-1507,0$ кДж/моль.

Светло-зелёный тетрафторид нептуния NpF4 получается согласно реакции

$$NpF_3 + 0.25O_2 + HF \rightarrow NpF_{4\kappa pucm} + O.5H_2O_{eas}$$
,

которая протекает при 500° в течение 1 часа.

Табл. 18. Некоторые комплексные фториды нептуния (V) и (VI)

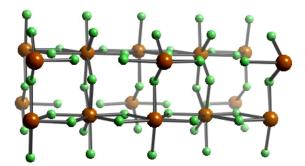
		Симметрия решетки	Параметры решетки, А или гра			
Соединение	Окраска		a	ь	с	у гол
CsNpF ₆	Розфиол.	Гексагон.	8,017		8,386	
Rb_2NpF_7	Зел.	Моноклин.	6,26	13,42	8,90	$\beta = 90.0$
Na ₃ NpF ₈	Сирен.	Тетрагон.	5,443	,	10,837	, ,
$KNpO_2F_2$	•	Ромбоэдрич.	6,80		,	$\alpha = 36,32$
$RbNpO_2F_2$	Серо-зел.	Ромбоэдрич.	6,814			$\alpha = 36,18$
$K_3NpO_2F_5$	Зел.	Тетрагон.	9,12		18,12	,

Тетрафторид нептуния может быть получен также при взаимодействии диоксида нептуния и фтористого водорода при температуре 600° в течение 10 час. Продукт получается в виде лёгкого зелёного порошка. Вместо диоксида можно использовать оксид, карбонат, оксалат, нитрат нептуния и нитрат нептонила. Тетрафторид нептуния — светло-зелёные кристаллы, не растворяется в воде, в азотной кислоте при

 70° , и органических растворителях кристаллическая структура моноклинная, изоморфен с UF₄, ThF₄, PuF₄, ZrF₄, CeF₄. Т_{возг}=613-816°. Тетрафторид нептуния восстанавливается при 500° до трифторида нептуния водородом с добавкой фтористого водорода, с F₂ выше 250° образует NpF₆ (в парообразном состоянии бесцветный).

Двойной фторид KNp_2F_9 получается при взаимодействии раствора четырёхвалентного нептуния в 1M растворе HCl, насыщенном сернистым газом, с плавиковой кислотой (4M) в присутствии фторида калия (1M). KNp_2F_2 изоморфен с KUF_9 и с $NH_4Np_2F_9$. При добавлении плавиковой кислоты к нептунию IV в 0,01M растворе фторида аммония получается NH_4NpF_5 . Из кислых растворов эквивалентных количеств La^{3+} и Np^{4+} при прибавлении плавиковой кислоты образуется осадок двойного фторида лантана и нептуния $La_2NpF_{10}\cdot xH_2O$.

Оранжевый гексафторид нептуния NpF₆ образуется по реакции


$$2NpF_3 + 3F_2 \xrightarrow{600-700^0} 2NpF_6.$$

С NpF₆ можно работать в абсолютно сухих стеклянных или кварцевых сосудах. Это блестящее, оранжевое кристаллическое вещество; сублимируется с образованием бесцветного пара. Крайне чувствительно к влаге и свету. В стеклянных и кварцевых сосудах может разлагаться даже под действием искусственного освещения. Тройная точка $55,1^{\circ}$, $T_{\text{пл}}=54,7^{\circ}$, $T_{\text{кип}}=55,18^{\circ}$ (в точке кипения разлагается), $\Delta \text{H}^{\circ}_{293}=-1937,2\,$ кДж/моль, давление пара 27 кПа (273К), 167 кПа (298К). Кристаллическая структура ромбическая. По своей летучести NpF₆ занимает промежуточное положение между UF₆ и PuF₆. Твёрдый NpF₆ устойчив при комнатной температуре, бурно реагирует с водой.

При действии безводного фтористого водорода на натрийнептунилтриацетат при 325° образуется фторид нептунила NpO_2F_2 :

$$NaNpO_2(CH_3COO)_3 + 3HF \rightarrow NaF + 3CH_3COOH + NpO_2F_2$$
.

neptunium(IV) chloride

Рис. 7. Кристаллическая структура тетрахлорида нептуния (8 coordinate: dodecahedral).

5.1.3 Хлориды нептуния

Трихлорид нептуния получают восстановлением тетрахлорида нептуния водородом (450°) или аммиаком ($350-400^{\circ}$). Температура плавления 800° , температура кипения 1527° ; NpCl₃ сублимируется при температуре 750° . При нагреве до 450° во влажном воздухе происходит гидролиз NpCl₃ с образованием

оксихлорида нептуния NpOCl тетрагональной формы. Гидролиз может протекать при $450-800^{\circ}$ до NpO₂.

Тетрахлорид нептуния получается по реакции

$$NpO_2 + CCl_4 \xrightarrow{500^0} NpCl_4 + CO_2$$

Его можно получить также при взаимодействии оксалата нептуния с парами четырёххлористого углерода. Тетрахлорид нептуния возгоняется при 500° , температура плавления 538° . NpCl₄ изоморфен с ThCl₄ и UCl₄, однако более летуч, чем UCl₄. Из водных солянокислых растворов при давлении 10^{-3} рт. ст. выделяются твёрдые, жёлтого цвета кристаллы, которые весьма гигроскопичны, состава NpCl₄·хH₂O.

Оксихлорид нептуния (IV) образуется при нагревании тетрахлорида до 450° в вакууме в запаянном капилляре. Кристаллики NpOCl₂ в виде жёлтых игл возгоняются при 550°.

5.1.4 Бромиды и йодиды нептуния

Трибромид нептуния получен нагреванием диоксида нептуния с избытком алюминия и трибромида алюминия в микробомбе типа капилляра при 350-400° в течение 12 час:

$$2AlBr_3 + 3NpO_2 + Al \rightarrow 3NpBr_3 + 2Al_2O_3 + 2Al_2O_3 \cdot AlBr_3$$

При дальнейшем нагреве до 800о наблюдалась возгонка трёхбромистого нептуния. Трибромид нептуния может быть получен и при термическом разложении тетрабромида нептуния:

$$2NpBr_4 \rightarrow 2NpBr_3 + Br_2$$
.

Эта реакция протекает при температуре ниже 500°. Температура кипения NpBr₃ 1800°.

Трёхйодистый нептуний образуется по реакции, аналогичной реакции образования трибромида нептуния. NpJ_3 изоморфен с UJ_3 и PuJ_3 , возгоняется в высоком вакууме при 800° . Стабилен до 2200° . Температура плавления 970° .

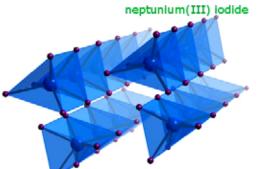

neptunium(III) bromide

Рис. 8. Трибромид нептуния (9 coordinate: tricapped trigonal prismatic).

Четырёхбромистый нептуний получается при нагреве диоксида нептуния с избытком трибромида алюминия при 350° в течение 12 час, сублимируется при 500° , при более высокой температуре (800°) происходит термическая диссоциация с отщеплением брома. Температура плавления $NpBr_4$ 470° .

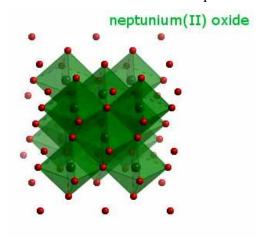
Прочность соединений нептуния в состоянии высших валентностей с галогенами по мере перехода от фтора к йоду убывает. Поэтому если

нептуний (III) даёт безводные соединения со всеми четырьмя галогенами (F, Cl, Br, J), то нептуний (IV) уже не лаёт соли NpJ₄, а нептуний (VI) лаёт только NpF₆ – соединение с

не даёт соли NpJ_4 , а нептуний (VI) даёт только NpF_6 — соединение с точкой плавления 53° , весьма летучее и по свойствам похожее на гексафторид урана.

Рис. 9. Кристаллическая структура трийодида нептуния (8 coordinate: bicapped trigonal prismatic).

Тетрайодат нептуния $Np(JO_3)_4$ получается при осаждении из 1M раствора HCl 0,1M раствором HJO₃.


5.1.5 Оксогалогениды нептуния, фтор- и хлорнептунаты

Синтезированы оксогалогениды нептуния: оксодихлорид NpOCl₂-желто-оранжевые кристаллы с орторомбической решеткой (a=1,5209 нм, b=1,7670 нм, c=0,3948 нм); оксодибромид NpOBr₂ получают при взаимодействии Sb₂O₃ с NpBr₄ при 150°; диоксофторид NpO₂F-кристаллы с тетрагональной решеткой (a=0,8341 нм, c=0,7193 нм); оксотрифторид NpOF₃-кристаллы с ромбоэдрической решеткой (a=0,4185 нм, c=1,5799 нм), образуется при взаимодействии Np₂O₅ с безводным HF при 50-60°; диоксодифторид NpO₂F₂-кристаллы с гексагональной решеткой (a=0,4185 нм, c=1,5790 нм), получают взаимодействием NpO₃•H₂O с жидким BrF₃ при комнатной температуре, с HF при 300° или F₂ при 230°.

Известны фторонептунаты: Li[NpF₅], M₂[NpF₆], где M=Na, K, Rb; M[NpF₆], где M=Ca, Ba, Pb(II); M₇[Np₆F₃₁], где M=Na, K, Rb; Na₃[NpF₈]- сиреневые кристаллы с тетрагональной решеткой (a=0,5410 нм, с = 1,089 нм); Pb[NpF₇]-розово-фиолетовые кристаллы с моноклинной решеткой (a=0,626 нм, b=1,342 нм, с = 0,890 нм); Cs[NpF₆]-розово-фиолетовые кристаллы с ромбоэдрич. решеткой (a=0,8017 нм, с = 0,8386 нм); Rb[NpO₂F₂] и Cs[NpO₂F₃] кристаллизуются при испарении концентрированного раствора HF, содержащего эквимолярные количества CsF и NpO₃·H₂O. Известны хлоронептунаты(IV) M₂[N_PCl₆], где M=Cs, (CH₃)₄N⁺, (C₂H₅)₄N⁺, оксихлоро-нептунаты(V, VI).

5.2 Оксиды нептуния

Диоксид NpO_2 получают прокаливанием на воздухе гидроксида, нитрата, оксалата, ацетат, пероксида в любой степени окисления при $600-800^{\circ}$, окислением нептуния на воздухе при $800-1000^{\circ}$ (за исключением

фосфатов и соединений с труднолетучим анионом) или восстановлением высших оксидов нептуния оксидом углерода. Он осаждается из раствора нептуния (V) в расплаве нитратов лития и калия при 380° .

Рис. 10. Кристаллическая структура оксида нептуния, NpO.

Обычно диоксид NpO_2 получают прокаливанием гидроксида пятивалентного нептуния при $700-800^{\circ}$. Он получается также путём термического разложения гидрооксида или нитрата четырёх- и пятивалентного нептуния. Обычно его получают по реакции:

$$Np(C_2O_4)$$
, $\cdot 6H_2O \rightarrow NpO_2 + 2CO_2 + 6H_2O$

По этому способу получается тёмный оливково-зелёный

кристаллический тяжёлый порошок.

Табл. 19. Простые оксиды и гидроксиды нептуния.

		Парам	етры реп	цетки, A	или град
Соединение	Симметрия решетки	а	ь	c	β
NpO ₂ Np ₂ O ₅ NpO ₃ H ₂ O NpO ₃ 2H ₂ O	Кубич. Моноклин. Ромбич.	5,425 4,183 5,607	6,584 6,270	4,086 9,956	90,32

Монокристаллы чёрного цвета, блестящие или негигроскопический порошок жёлтоватого или коричневого цвета. Кристаллизуется в кубической гранецентрированной решётке типа флюорита. Плотность $11,1\,$ г/см 3 . NpO $_2$ изоструктурен с диоксидами других актинидов и при низких температурах сохраняет ГЦК решётку. В отличие от оксида урана оксид нептуния при нагревании до 400° и под давлением 28 атм не реагирует с кислородом; в этих условиях UO $_2$ переходит в U $_3$ O $_8$ и затем в UO $_3$. Практически не растворим в воде, трудно растворим как в разбавленной, так и концентрированной азотной кислоте, медленно растворяется в горячей концентрированной серной кислоте и легче в 3-10М H $_2$ SO $_4$, содержащей 0,1М KBrO $_4$. Может быть растворён в концентрированных кислотах при нагревании до 100° . Молярная энтропия при 25° равна $19,19\,$ кал/град и энтальпия $2770\,$ кал.

Np O O

Рис. 11. Кристаллическая структура диоксида нептуния.

Замечание. Диоксид нептуния NpO_2 при относительно простой кристаллической решетке обладает чрезвычайно необычными электронными и магнитными свойствами. Связано это со сложной электронной оболочкой нептуния, который, как, впрочем, любой актинид, - элемент с f-электронами на внешней оболочке. Из-за этого в его соединениях возможны самые необычные коллективные явления. В частности, в диоксиде нептуния имеет место совершенно экзотический, никогда не встречавшийся

ранее тип магнетизма. Магнетизма в NpO_2 вызван не дипольным, не квадрупольным и даже не октупольным магнитным взаимодействием, а взаимодействием через *мультиполь пятого порядка* (его называют *триаконтадиполь*).

Т.е. магнетизм диоксида нептуния – коллективное явление, вызванное мультиполем необычайно высокого порядка.

Рис. 12. Диоксид нептуния.

Диоксид устойчив на воздухе при 1000° , а в атмосфере водорода — при 600° . Оксиды нептуния в твердом состоянии реагируют с оксидами щелочных и щелочно-земельных металлов, образуя нептунаты (IV, V, VI, VII), напр. Na_2NpO_4 , Li_5NpO_6 .

Закись-окись нептуния Np_3O_8 получается при окислении четырёх-, пяти- и шестивалентных гидроксидов нептуния диоксидом азота при $300\text{-}450^\circ$. Например, нагреванием гидроксида $NpO_2OH \cdot H_2O$ в токе O_2 при $300\text{-}450^\circ$ или по реакции:

$$3Np(OH)_4 + 2NO_2 \rightarrow Np_3O_8 + 6H_2O + 2NO$$

Оптимальные результаты получаются при окислении гидроксида пятивалентного нептуния диоксидом азота при 300° в течение 2 час. Изоморфна U_3O_8 , легко растворима в азотной кислоте. При 600° происходит разложение Np_3O_8 до $NpO_2 \cdot Np_3O_8$. В то время, как при хлорировании U_3O_8 с помощью четырёххлористого углерода образуется смесь продуктов, состоящих из UCl_4 , UCl_5 и UCl_6 , при тех же условиях Np_3O_8 даёт только $NpCl_4$. Np_3O_8 — мелкокристаллическое вещество шоколодно-коричневого цвета с ромбической кристаллической структурой.

Оксид нептуния (VI) существует только в гидратированной форме, $NpO_3 \cdot nH_2O$, при дегидратации разлагается. В ходе его синтеза раствор нитрата Np(V) вместе с эвтектической смесью $LiNO_3$ - KNO_3 (25:75 масс.%) упаривают досуха, осадок сплавляют в кварцевом стакане. Доводят температуру до 1500 и пропускают через расплав поток озона. После охлаждения плав обрабатывают водой. Раствор зелёного цвета сливают. Коричневый осадок $NpO_3 \cdot nH_2O$ сушат в сушильном шкафу при $90 - 105^\circ$. Оксид легко растворяется в минеральных кислотах и может быть использован для получения солей нептуния (VI).

Табл. 20. Сложные оксиды нептуния.

			Γ	Параметры решетки, A или град.				
	Симметрия	Пространственна	Я	a	ь	с	Угол	
Соединение	решетки	группа	Z					
Np(vII)								
Li ₅ NpO ₆	Гексагон.	R3(?)	3	5,21		14,61		
Ba ₂ LiNpO ₆	ГЦК	Fm3m	4	8,367				
Np(vi)								
$Cs_2Np_3O_{10}$	Ромбич.			15,77	7,600	14,34	1, 1	
Cs ₄ Np ₅ O ₁₇	Ромбич.	Pbcn		18,64	7,023	14,86		
$Na_2Np_2O_7$	Ромбич. (?)		3	3,91	7,27	17,11		
$Rb_2Np_2O_7$	Гексагон. (?)	$R\overline{3}m(?)$	1.5	(?) 3,990		20,76		
$Cs_2Np_2O_7$	Моноклин.	C2/m	2	14,30	4,330	7,400	$\beta = 113,78$	
Li ₂ NpO ₄	Ромбич.	Pnma	4	10,48	6,018	5,121	. 1	
α-Na ₂ NpO ₄	Ромбич.	Cmmm	2	9,685	5,705	3,455		
β -Na ₂ NpO ₄	Ромбич.	Fmmm	4	5,936		11,652		
K ₂ NpO ₄	Тетрагон.	I4/mmm		4,299	,	13,15		
Rb ₂ NpO ₄	Тетрагон.	I4/mmm	2	4,325		13,85		
Cs ₂ NpO ₄	Тетрагон.	I4/mmm	2	4,367		14,78		
Li ₄ NpO ₅	Тетрагон.	I4/m	2	6,698		4,432		
α-Na ₄ NpO ₅	гцк	Fm3m(?)	1	4,739		,,		
β-Na ₄ NpO ₅	Тетрагон.	I4/m	2	7,515		4,597		
Li ₆ NpO ₆	Гексагон.	R3(?)	3	5,217		14,70		
Na ₆ NpO ₆	Гексагон.	R3 (?)	3	5,78		16,0		
CaNpO ₄	Ромбоэдрич.	$R\overline{3}m$	1	6,245		7.7	$\alpha = 35,68$	
SrNpO ₄	Ромбоэдрич		i	6,522			$\alpha = 35,66$	
BaNpO ₄	Ромбич.	Pbcm	4		8,089	8,167	,	
Ba ₃ NpO ₆	Псевдо-ГЦК		4	8,860	0,007	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Ba ₂ MgNpO ₆	ГЦК	Fm3m	4	8,350				
Ba ₂ SrNpO ₆	ГЦК	1 ///5///	4	8,799				
BaSr ₂ NpO ₆	Кубич.		4	8,735				
Np(v)	1 3 4 1 1 1 1			. 1				
Li ₃ NpO ₄	Тетрагон.		2	4,485		8,390		
Na ₃ NpO ₄	2		-	4,403		0,070		
Li ₇ NpO ₆	Ромбоэдрич		3	6,16			$\alpha = 53,40$	
Np(iv)								
BaNpO ₃	Кубич. (?)	Pm3m(?)	1	4,384				

5.3 Перекиси нептуния, гидроксиды и нептунаты

Перекись нептуния осаждается из разбавленных кислых растворов четырёхвалентного нептуния перекисью водорода в виде хлопьевидной массы состава $NpO_4\cdot 2H_2O$. Достаточно полное осаждение происходит в случае действия на водный раствор четырёхвалентного нептуния газообразного аммиака или едкого натра.

Если с помощью нитрата натрия (0,5M) восстановить шестивалентный нептуний в азотнокислом растворе (0,5M) до пятивалентного состояния и полученный раствор насытить аммиаком, то выпадает осадок состава NpO₂OH·xH₂O. После растворения осадка в 1M HNO₃ и вторичного переосаждения аммиака выпадает бледно-зелёный осадок, который после растворения в 2M HNO₃ даёт раствор пятивалентного нептуния голубовато-зелёного цвета. Из полученного раствора можно с помощью аммиака или едкого натра получить осадки различного вида. Кристаллические осадки получаются зелёного цвета, хлопьевидные – голубоватосерого.

Существует моногидрат динептуната аммония коричневого цвета $(NH_4)_2Np_2O_7\cdot H_2O$, получаемый при действии аммиака на раствор шестивалентного нептуния в 1M растворе $HClO_4$. При осаждении едким натром получается коричневый $Na_2Np_2O_7\cdot H_2O$.

5.4 Соединения нептуния с серой

Сесквисульфид нептуния Np_2S_3 получается при взаимодействии двуокиси плутония с газообразной смесью сероводорода и сероуглерода при температуре 1000° в течение 2 час. В начале реакции образуется оксисульфид нептуния NpOS, который при продолжительном взаимодействии с H_2S в течение 12 час восстанавливается до чёрного NpS_3 (плотность 8.9 г/см^3).

Рис. 13. Кристаллическая структура динептуниумтрисульфида, Np₂S₃.

Оксисульфид нептуния имеет форму NpOS аналогично оксисульфиду урана UOS в отличие от этого оксисульфид плутония имеет формулу Pu_2O_2S . При осаждении четурёхвалентного нептуния из горячей серной кислоты получают кристаллический ярко-зелёный осадок гидрата сульфата нептуния $Np(SO_4)_2 \cdot H_2O$. Описан гидрат сульфита нептунила(V) $(NpO_2)_2SO_4 \cdot xH_2O$. Гидрат сульфата нептунила (VI) $NpO_2S)_4 \cdot H_2O$ известен только в растворе, который окрашен в жёлтозелёный цвет. Эти растворы могут быть получены как при взаимодействии динептуната с серной кислотой, так и путём окисления

(NpO₂)₂SO₄ броматом.

Четырёх- и шестивалентный нептуний образуют с сульфатными ионами прочные комплексы, причём тенденция к образованию этих комплексов сильно возрастает в последовательности: ClO_4 -Cl- NO_3 - SO_4 -.

5.5 Соединения с азотом и фосфором

Нитрид нептуния NpN является продуктом реакции гидрида нептуния с аммиаком при 800°:

$$NpH_3 + NH_3 \xrightarrow{800^{\circ}} NpN + 3H_2.$$

Нитрид нептуния — чёрный порошок, нерастворимый в воде, но растворимый в соляной и азотной кислоте. Np изоморфен с UN и PuN. Кристаллическая структура типа NaCl. При сильном нагревании разлагается.

neptunium(III) nitride

Рис. 14. Кристаллическая структура нитрида нептуния.

Твёрдые нитраты нептуния не выделены и известны лишь в виде водных растворов. Нитрат трёхвалентного нептуния не удаётся получить ввиду окислительного действия нитратного иона на Np^{3+} . Жёлто-зелёные растворы нитрата нептуния (IV) $Np(NO_3)_4$ могут быть получены из соответствующей гидроокиси при взаимодействии с азотной кислотой: на холоду эти растворы переходят в зелёно-синие растворы нитрата нептунила (V) $NpO_2(NO_3)_2 \cdot xH_2O$.

Растворы нитрата нептунила (V) могут быть получены: нагреванием раствора нитрата нептуния (IV) в азотной кислоте при 90° в течение нескольких минут, растворением NpO₂OH в азотной кислоте, восстановлением растворов соединений нептуния (VI) в разбавленной азотной кислоте сернистым ангидридом, перекисью водорода, нитритом натрия, 0,2M раствором сернокислого гидроксиламина в 0,5M растворе азотной кислоты.

Зелёные растворы нитрата нептунила (VI) $NpO_2(NO_3)_2 \cdot xH_2O$ получаются при растворении динептуната в азотной кислоте. При действии сернистого ангидрида, перекиси водорода, нитрита натрия растворы нитрата нептунила легко восстанавливаются до валентного состояния нептуния (V).

Фосфид нептуния NpP получается при взаимодействии металлического нептуния с избытком красного фосфора с избытком красного фосфора при 750° в течение 16 час в запаянном кварцевом сосуде. Фосфид нептуния изоморфен с Th_3P_4 . Фосфид нептуния NpP не растворяется в воде, но растворим в 6M растворе соляной кислоты. При добавлении фосфорной кислоты к раствору четырёхвалентного нептуния в 1M растворе соляной или азотной кислот выделяется гелеобразный труднорастворимый осадок травянистозелёного цвета – гидрат двузамещённого фосфата нептуния (IV) Np(HPO₄) $_2$ ·H₂O.

5.6 Соединения с углеродом и кремнием

В системе Np-C существует соединение Np_2C_3 и фаза NpC с областью гомогенности $NpC_{0,82}$ - $NpC_{0,96}$. Монокарбид нептуния получают по реакции:

$$NpH_{2+x} + C \rightarrow NpC + \frac{2+x}{2}H_2$$

Кристаллическая структура NpC типа NaCl.

Дикарбид нептуния NpC_2 образуется при нагревании двуокиси нептуния в графитовом тигле в течение 5 мин при температуре $2660\text{-}2800^\circ$. Реакция металлического нептуния с графитом при 1200° приводит к образованию смеси NpC и Np_2C_3 в отношении 5:1. Кристаллическая структура Np_2C_3 — кубическая, соединение изоструктурно U_2C_3 Pu_2C_3 .

И.Н.Бекман НЕПТУНИЙ Учебное пособие Глава 5 http://profbeckman.narod.ru/Neptun.htm

Силицид нептуния NpSi₂ получается по реакции:

$$4NpF_3 + 11Si \xrightarrow{1500^{\circ}} 4NpSi_2 + 3SiF_6.$$

Дисилицид нептуния – твёрдое металлообразное вещество, бурно реагирующее с 6M раствором соляной кислоты с выделением силанов; силицид нептуния (IV) изоморфен с ThSi₂.

5.7 Соли нептуния

Диоксид нептуния реагирует с оксидами многих элементов, образуя в зависимости от условий и природы реагентов сложные оксиды или окисные фазы нептуния (IV), (V), (VI) и (VII) – нептунаты. Большинство двойных и полиоксидов содержит Np(IV) или Np(VI).

5.7.1 Нептуний (IV)

Гексагидрат оксалата нептуния (IV) $Np(C_2O_4)_2 \cdot 6H_2O$ зелёного цвета, легко осаждается из раствора состава $0.1M\ H_2C_2O_4 - 0.8M\ HNO_3$, содержащего четырёхвалентный нептуний. Для получения оксалата нептуния (V) $(NpO_2)_2C_2O_4 \cdot 2H_2O$ гидроокись нептуния растворяют в 0.01M растворе HCl, через раствор при 80° пропускают хлор, восстанавливают нептуний солянокислым гидроксидамином до пятивалентного состояния и осаждают аммиаком гидроксид пятивалентного нептуния.

Натрийнептунилтриацетат $Na[NpO_2(CH_3COO)_3]$ – труднорастворимая соль, которая может быть получена из кислых водных растворов нептуния после окисления хлором или броматом калия и добавления 8M раствора уксуснокислого натрия. Натрийнептунилтриацетат – кристаллический осадок розового цвета в проходящем свете и бледно- зелёный в отражённом свете. Кристаллы кубической сингонии изоморфны соответствующим солям урана и плутония.

Трифенкарбонилтрифторацетат нептуния (IV) $Np(SC_4H_3CHCOF_3)_4$ выделяется на поверхности раздела фаз – вода в том случае, если к 0,1M водному раствору четырёхвалентного нептуния добавить 0,1M раствор тиофенкарбонилтрифторацетона в бензоле.

Перхлораты нептуния известны лишь в водных растворах. Раствор перхлората трёхвалентного нептуния предположительного состава Np(ClO₄)₃·хH₂O образуется при глубоком восстановлении раствора перхлората пятивалентного нептуния водородом на платиновом катализаторе. Полученный раствор неустойчив на воздухе и быстро переходит в зелёный раствор перхлората четырёхвалентного нептуния $Np(ClO_4)_4 \cdot xH_2O$. Раствор $Np(ClO_4)_4 \cdot xH_2O$ можно получить путём растворения гидроксида четырёхвалентного нептуния в хлорной кислоте. Процесс растворения ускоряется нагреванием, но при этом большое количество четырёхвалентного нептуния окисляется до пятивалентного состояния. Перхлорат пятивалентного нептуния $NpO_2(ClO_4)_2 \cdot xH_2O$ получается при растворении динептуната В хлорной кислоте электролитического окисления NpO₂ClO₄. Растворы перхлората нептунила окрашены в розовый цвет. В растворах не образуются комплексные соединения, а только имеются ионы Np^{3+} , Np^{4+} , $[NpO_2]^+$, $[NpO_2]^{2+}$.

Табл. 21. Характеристика соединений нептуния

Соединение	Цвет	Сингония	Параметры решетки			
			а, нм	<i>b</i> , нм	с, нм	угол, град
NpO	-	Кубич. гране- центрирован-	0,501	_	_	1-
NpO ₂	Зеленовато-коричневый	ная Кубич. гране-	0.5424			
Np2O,	Темно-коричневый	центрированная	0,5434 0,4183	0.6504	0,4086	90,32
Np ₃ O ₈	Темно-коричневый	Моноклинная Ромбич.	0,6584	0,6584 0,4086	0,4080	70,32
NpF ₃	Пурпурный	Гексагон.	0,7129	0,4086	0,7288	_
NpCl ₃	Зеленовато-коричневый	Гексагон.	0,7413	_	0,4282	_
α-NpBr ₃	Зеленый	Гексагон.	0,7936	_	0,4438	_
β-NpBr ₃	Зеленый.	Ромбич.	0,12618	0,4109	0,9153	-
NpI ₃	Коричневый	Ромбич.	0,1398	0,4326	0,998	_
NpF ₄	Светло-зеленый	Моноклинная	0,1267	0,1062	0,841	126,10
NpCl ₄	Красно-коричневый	Тетрагон.	0,825	-,	0,746	-
NpBr ₄	Красно-коричневый	Моноклинная	0,1089	0.874	0,705	95,19
NpF ₆	Оранжевый	Ромбич.	0.9910	0.8970	0,5210	-
Np_2S_3	Черный	Ромбич.	1,03	1.06	0,385	-
NpS ₃	Черный	Моноклинная	0,536	0,387	1,810	99,30
NpOS	Черный	Тетрагон.	0,383	_	0,665	-
NpN	Черный	Кубич.	0,4887	-	-	-
NpC ₂	С металлич. блеском	Тетрагон.	-		-	-
NpSi ₂	С металлич. блеском	Тетрагон.	0,396	-	1,367	-

5.7.2 Нептуний (VI)

Оксонептуаты (VI) щёлочных и щелочноземельных металлов — окрашенные соединения. Их состав соответствует формулам M_6NpO_6 , M_4NpO_5 , M_2NpO_4 , $M_2Np_2O_7$ для щелочных металлов и M_3NpO_6 , $MNpO_4$ — для щёлочноземельных.

5.7.3 Нептуний (VII)

Нептуний (VII) был впервые обнаружен в растворе в 1967. Вскоре при нагревании смеси Li_2O и NpO_2 (VII) (при молярном соотношении 6:1) в потоке кислорода при 400° в течение 16 час было получено первое соединения нептуния (VII) - гексагональный Li_5NpO_6 .

В жёстких условиях нептуний можно окислить до семивалентного состояния и выделить устойчивые соединения Np(VII) – оксонептунаты (VII) металлов - в твёрдом виде. В качестве примеров получения таких веществ можно привести реакции:

$$2,5Li_{2}O_{23} + NpO_{3} \cdot H_{2}O \xrightarrow{400^{\circ}, 24 \text{ uac}} Li_{5}NpO_{6} + H_{2}O$$

$$2Na_{2}O_{2} + NpO_{3} \cdot H_{2}O \xrightarrow{O_{2}, 500-600^{\circ}, 24 \text{ xfc}} Na_{5}NpO_{6} + H_{2}O$$

Продукт – тёмно-зелёное вещество. Соединения лития и натрия хорошо растворяются в воде с образованием тёмно-зелёных растворов.