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Abstract

We study the problem of universal quadratic forms, whose solution is given by the
recent paper of Bhargava and Hanke on the 15-Theorem and 290-Theorem. The main
purpose of this paper is to explicate Bhargava and Hanke’s proofs of the 15-Theorem
and 290-Theorem, basically following their methods throughout the paper. We provide
some details omitted in their original proof, and work out several examples to illustrate
the idea clearly.
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1 Introduction

A positive definite quadratic form is called universal if it represents all positive integers. In
1770, Lagrange proved his Four Squares Theorem which states that the form x2 +y2 +z2 + t2

is universal. Legendre showed later exactly which numbers are represented by x2 + y2 + z2

and which needs all four squares. Mathematicians such as Gauss, Eisenstein and Dirichlet
opened up a new venue for studying representability of various forms, by introducing the
notions of genus and p-adic numbers, and by developing an analytical approach to the theory.
However, the classification of universal quadratic forms had not been studied deeply until
the twentieth century.

In 1916, Ramanujan asserted which diagonal quaternary quadratic forms are universal
by giving a list of those forms. Although his list had some errors, it motivated the study
of finding the complete list of universal quaternary forms and universal forms of higher
dimensions. The universal quadratic form problem can be divided into two cases, depending
on the definition of an “integral” form. A quadratic form is said to be “classically integral”
or described with the term “integer-matrix” if the associated matrix has only integer entries,
and it is called “integer-valued” if all the values taken by the form are integers. Therefore,
an integer-valued form may have half-integers for off-diagonal elements of its associated
matrix. In 1993, J. H. Conway succeeded to solve the universal quadratic form problem for
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integer-matrix forms in his 15-theorem, and Manjul Bhargava and Jonathan Hanke solved
the problem for integer-valued quadratic forms in the 290-theorem.

The main purpose of this paper is to explicate Bhargava and Hanke’s proofs of the
15-Theorem and 290-Theorem, basically following their methods throughout the paper. In
order to convey the underlying idea thoroughly, I tried to provide sufficient details omitted in
their original proof, illustrating with examples worked out by myself. For example, using the
theory of modular forms, I give my own solution for finding the number of representations as
a sum of four squares, although the answer is well-known. I also concentrated on explaining
how the relevant theories are used to solve the universality problem, so that any reader with
a reasonable mathematical background could understand the result without much difficulty.

2 Statement of the 15-Theorem and 290-Theorem

We state the 15-theorem and 290-theorem from the papers [1] and [2]. The proofs will be
given in the subsequent sections.

2.1 The 15-Theorem

Theorem 2.1. (“The Fifteen Theorem”) If a positive-definite quadratic form having
integer-matrix represents the nine numbers 1, 2, 3, 5, 6, 7, 10, 14, and 15, then it represents
every positive integer.

We call the above nine numbers the critical integers for integer-matrix forms. These inte-
gers are indeed critical in the following sense.

Theorem 2.2. If t is any one of the above critical numbers, then there is a quaternary
diagonal form that fails to represent t, but represents every other positive integer.

This theorem shows that the Fifteen Theorem is the best possible statement for the uni-
versal quadratic form (with integer-matrix) problem. The following theorems show that the
number 15 is rather special.

Theorem 2.3. If a positive-definite quadratic form having integer-matrix represents every
number below 15, then it represents every number above 15.

Theorem 2.4. There are forms which miss infinitely many integers starting from any of
the eight critical numbers not equal to 15.

In the proof of the Fifteen Theorem, we eventually show the following result which gives a
complete solution to the universal integer-matrix form problem:

Theorem 2.5. There are exactly 204 universal quaternary forms having integer-matrix.
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2.2 The 290-Theorem

We now state the 290-Theorem, which is similar to the 15-Theorem except that we are con-
sidering integer-valued quadratic forms.

Theorem 2.6. (“The 290-Theorem”) If a positive-definite quadratic form with integer
coefficients represents the twenty-nine integers

1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23, 26,
29, 30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, and 290

then it represents all positive integers.

We call the integers listed in the theorem the critical integers for integer-valued forms.
Similarly to the 15-Theorem, we prove the following theorems:

Theorem 2.7. For each of the twenty-nine critical integer t, there exits a positive definite
quadratic form with integer coefficients which fails to represent t but represents every other
positive integer.

Theorem 2.8. If a positive-definite quadratic form with integer coefficients represents every
positive integer below 290, then it represents every integer above 290.

We conclude with the following theorem which gives the final answer for the universal
quadratic form problem:

Theorem 2.9. There are exactly 6436 universal quaternary forms.

Although the 290-Theorem seems similar to the 15-Theorem, the proof involved is much
more complex and requires analytical theories. We will prove the 15-Theorem first, and
present the proof of the 290-Theorem subsequently. Throughout the paper, the brief term
“a form” or “a quadratic form” means “a positive definite quadratic form.”

3 Lattices and P-adic numbers

3.1 Escalation of lattices

It is convenient to work in terms of lattices for proving the 15-Theorem and 290-Theorem.
There is a natural bijection between equivalence classes of integer coefficient quadratic forms
and lattices having integer norms. Namely, with a quadratic form representing an equivalence
class and having Minkowski-reduced Gram n×n matrix (aij), we associate the n-dimensional
lattice {Zei} with < ei, ej >= aij and vice versa.

As defined in the introduction, a quadratic form is said to be universal if it represents
every positive integer. If a form f is not universal, then we define the truant of f (or its
corresponding lattice L(f)) to be the smallest positive integer not represented by f . One of
the frequently used notions in the proofs of the 15-Theorem and 290-Theorem is “escalator
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lattices.” An escalation of a nonuniversal lattice L is defined to be any lattice which is
generated by L and a vector whose norm is equal to the truant of L. An escalator lattice
is a lattice obtained by a sequence of successive escalations of the zero-dimensional lattice.

3.2 P-adic numbers and genus

The representatibility of a number over the rings larger than Z sometimes give useful infor-
mation about its representability over Z. For a prime p, we define a valuation such that for
any r ∈ Q written as r = pρ u

v
, |r|p = p−ρ. For p = ∞, | |∞ is the absolute value norm.

We complete the rational numbers Q under a valuation | |p to get the p-adic field Qp, and
define the p-adic integers Zp by the numbers α ∈ Qp such that |α|p ≤ 1 (cf. [3]).

For a quadratic form Q in n variables, we say that a number m is locally represented
at p if it is represented by Q over Zp. We say that m is locally represented if it is locally
represented at p for all p including the ∞. In fact, we can reduce the problem of local
representatbility at p to certain modular conditions as shown in Hanke’s paper [5]. Before
stating the relevant theorem, we first make following definitions.

Definition. Let Q(x1, . . . , xn) be a positive definite quadratic form having integer coeffi-
cients. Let A be the n× n matrix

A =

(
∂2Q

∂xi∂xj

)
.

We define the level of Q to be the smallest positive integer N such that NA−1 is an even
matrix, that is, has integer entries with even integers on the diagonal.

If ~x ∈ Zn and P is a partition of {1, . . . , n}, then for each j ∈ P we let ~xj denote the
vector whose components are xi for all i ∈ j. Similarly, for any S ⊆ P we take ~xS to be
the vector whose components are xi for all i ∈

⋃
j∈S j. Then, we can prove that Q can be

written in the local normalized form

Q(~x) ∼=
∑
j

pvjQj(~xj) over Zp

with dim(Qj) ≤ 2 (cf. [5]).
We define

RQ(m) = {~x ∈ Zn | Q(~x) = m},
Rpk,Q(m) = {~x ∈ Zn/pkZn | Q(~x) ≡ m (mod pk)},

and we let rQ(m) = ]RQ(m), rpk,Q(m) = ]Rpk,Q(m). We say that ~x ∈ Rpk,Q(m) is of Zero

type if ~x ≡ ~0 mod p, of Good type if pvj~xj 6≡ ~0 mod p for some j, and of Bad type
otherwise.

Let ~x denote a general solution of a given type. We now describe reduction maps on each
type of soutions, allowing the possiblity that ~x satisfies additional congruence conditions
of the form ~xj ≡ ~0 or ~xj 6≡ ~0 (mod p) for each j so long as these extra conditions do
not contradict the reduction-type congruence conditions on ~x. If such conditions on ~xj are
allowed for all j ∈ S, then we denote them by ~xS ∈ C.
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By applying Hensel’s lemma (cf. [3]), it is shown in [5] that

Lemma 3.1.
rGoodpk+l,Q(m) = p(n−1)lrGoodpk,Q (m)

for all k ≥ 2 ordp(2) + 1.

For Good-type solutions, we have the map

RGood, ~x∈C
pk (m)

πG→ RGood, ~x∈C
pk−1 (m),

given by reducing ~x mod pk−1. By above lemma, this map is surjective with multiplicity pn−1,
so the number of Good-type solutions can be determined either from the mod p solutions (if
p - 2) or from the solutions mod 4p (if p | 2).

The Zero-type solutions are characterized by ~x ≡ ~0 mod p and therefore occur only when
p2 | m. We have the map

RZero
pk (m)

πZ→ Rpk−2

(
m

p2

)
defined by ~x 7→ ~x′′ = p−1~x mod pk−2. Note that this is well-defined since p−1~x is defined
modulo pk−1. The elements ~x′ mod pk−1 which reduce to a fixed ~x′′ are in one-to-one corre-
spondence with π−1

Z (~x′′) under ~x = p~x′, and there are pn such ~x′. Therefore, πZ is surjective
with multiplicity pn.

To obtain the reduction maps for Bad-type solutions, we divide into two cases. First, we
define

S0 = {j | vj = 0}, S1 = {j | vj = 1}, S2 = {j | vj ≥ 2}.

and let si =
∑
j∈Si

dim(Qj). Then, the Bad-type solutions are characterized by ~x 6≡ ~0 and

~xS0 ≡ ~0 (mod p). We have two reduction maps πB′ and πB′′ , which correspond to division
by p and p2 respectively. In the process, we introduce two auxiliary forms Q′ and Q′′, whose
data is denoted with a ′ or ′′, accordingly. For these we have Qj = Q′j = Q′′j for all j.

We perform division by p for the case S1 6= ∅ and ~xS1 6≡ ~0. We have

R
Bad, ~xS1 6≡~0, ~xS1∪S2∈C
pk,Q

(m)
πB′→ R

Good, ~xS1∪S2∈C
pk−1,Q′

(
m

p

)
,

defined for each index j by

~xj 7→ p−1~xj, v′j = vj + 1 if j ∈ S0,

~xj 7→ ~xj, v′j = vj − 1 if j 6∈ S0.

This map is surjective with multiplicity ps1+s2 , since we can freely choose lifts of the compo-
nents of the images at S1 ∪ S2.

We perform division by p2 for the remaining case where S1 = ∅ or ~xS1 ≡ ~0, which can
occur only if S2 6= ∅. For this case, we let

R
Bad, ~xS1≡~0, ~xS2∈C
pk,Q

(m)
πB′′→ R

~xS2 6≡~0, ~xS2∈C
pk−2,Q′

(
m

p2

)
,
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given by
~xj 7→ p−1~xj, v′′j = vj if j ∈ S0 ∪ S1,

~xj 7→ ~xj, v′′j = vj − 2 if j ∈ S2.

Note that the map is p-to-1 over the S0 ∪ S1 components by the same reasoning as for πZ ,
and is p2-to-1 over the S2 components since the inverse map corresponds to multiplication
by p2. Therefore, the map is surjective and has multiplicity p2n−s0−s1 .

We are now ready to state the following definition.

Definition. We define the depth of each type of solution of Rpk,Q(m) to be the maximal
difference k − k′ for any ~x ∈ Rpk,Q(m) to be mapped into Rpk′ ,Q̂(m̂) under consecutive ap-
plication of the maps πG, πZ , and πB∗ ∈ {πB′ , πB′′} described above of only that type (for
some Q̂ and m̂).

The following lemma is proven in [5].

Lemma 3.2. The Good-, Zero-, and Bad-type depths of Rpk,Q(m) are bounded above by
k − 1, ordp(m), and ordp(N) + 1 respectively, where N is the level of Q.

The lemma clearly implies the following corollary, which will be used frequently for check-
ing local conditions.

Corollary. When n ≥ 3 and p - N , every number m is locally represented at p (by Q). For
n | N , m is locally represented at p if and only if any of the quotients of m by a square factor
are represented mod pordp(4N)+2.

For example, consider the form Q(~x) = x2
1 + 2x2

2 + 2x2
3. The associated matrix A as in

the definition of the level is given by A =

(
2 0 0
0 4 0
0 0 4

)
, which gives A−1 =

(
1/2 0 0
0 1/4 0
0 0 1/4

)
.

We thus have N = 8, and it suffices to check the local condition for square-free integers
mod 2ord2(4N)+2, that is, mod 128. By direct computation, we can show that the sqaure-free
numbers which are represented mod 128 are precisely those not congruent to 7 (mod 8).
Since the square of an odd integer is congruent to 1 (mod 8) and 2 × 7 6≡ 7 (mod 8), an
integer m has a square-free divisor congruent to 7 (mod 8) if and only if m is of the form
2e(8k + 7) where e is even. Therefore, the numbers locally represented by Q are precisely
those not of the form 2e(8k + 7) with e even.

We now define a genus to be the set of Z-equivalence classes of forms which are equiva-
lent over Zp for all p including the infinity. The number of classes in a given genus is finite
(cf. [3]), and it is clear that even if a form f represents an integer a over Zp for all p, f does
not necessarily represent a over Z. However, such a is represented by some form in the same
genus as f , which is stated explicitly in the following theorems from Cassels’ book [3].

Theorem 3.3. Let rational integers n ≥ 1 and d 6= 0 be given. For each p 6= ∞, let fp(x)
be a Zp-integral form of determinant d in the variables x = (x1, . . . , xn). Suppose that there
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exists a rational form g(x) which is Qp-equivalent to fp(x) for each p. Then there is a Z-
integral form f(x) which is Zp-equivalent to fp(x) for each p and Q-equivalent to g.

Proof. First, note that by the corollary following Lemma 3.2, there is only one Zp-
equivalence class of forms of determinant d if p - 2d. Therefore, it suffices to prove the
existence of an integral form f(x) which is Zp-equivalent to fp(x) for each p | 2d, and
Q-equivalent to g.

If n = 1, then fp(x) = dx2
1 for all p and g(x) = dx2

1. Thus, we can simply let f(x) = dx2
1.

For n ≥ 2, we proceed with induction on n. The following lemma is useful:

Lemma 3.4. Let n ≥ 2 and suppose that the theorem holds for n − 1. Let d, fp(x), and
g(x) as in the hypothesis of the theorem for n, and let a 6= 0 be a rational integer represented
primitively by each fp over Zp and by g(x) over R∞ = Z. Then there exists an f(x) which
satisfies the properties in the theorem and which represents a primitively over Z.

Proof of Lemma. Replacing fp(x) for each p by a Zp-equivalent form if necessary, we may
assume without loss of generality that

fp(1, 0, . . . , 0) = 1 for all p.

By the Strong Hasse Principle (cf. [3]), the form g(x) represents a over Q. Replacing g(x)
by a Q-equivalent form if necessary, we may assume that

g(1, 0, . . . , 0) = a.

By completing the square, we have

afp(x) = (ax1 + b2px2 + . . .+ bnpxn)2 + f ∗p (x2, . . . , xn) (1)

for some b2p, . . . , bnp ∈ Zp, where f ∗p is a Zp-integral form in n−1 variables with determinant

d∗ = a(n−2)d.
Similarly,

ag(x) = (ax1 + c2x2 + . . .+ cnxn)2 + g∗(x2, . . . , xn) (2)

for some c2, . . . , cn ∈ Q and some rational form g∗ in n− 1 variables.
Since fp(x) and g(x) are Qp-equivalent, by (1) and (2), Witt’s lemma (cf. [3]) implies that

f ∗p (x2, . . . , xn) and g∗(x2, . . . , xn) are Qp-equivalent. Hence, by inductional hypothesis for f ∗p
with determinant d∗ and for g∗, there exists an integral form f ∗(x2, . . . , xn) of determinant
d∗ which is Zp-equivalent to all p and Q-equivalent to g∗.

There exists an integral form which is equivalent to f ∗ and arbitrarily close p-adically to
f ∗p for all p dividing 2ad (cf. [3]). We replace f ∗ by such an equivalent form. By Chinese
Remainder Theorem, we can find b2, . . . , bn ∈ Z which are arbitrarily close p-adically to
b2p, . . . , bnp respectively, for all p | 2ad. Let

f(x) = a−1(ax1 + b2x2 + · · ·+ bnxn)2 + a−1f ∗(x2, . . . , xn) (3)

Then, f(x) has determinant d and is arbitrarily close to fp(x) for all p | 2ad. Clearly, f(x)
has only rational coefficients. If f is chosen to be sufficiently close to fp for the p dividing
a, then the coefficients of f(x) will be integers, which we shall suppose.
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Since f is arbitrarily close to fp in the p-adic sense for p | 2d, we can ensure that f and
fp are Zp-equivalent for those p (cf. [3]). Thus, f and fp are Zp-equivalent for all p.

Since f ∗ and g∗ are Q-equivalent, by (2) and (3), f is Q-equivalent to g. By (3),
f(1, 0, . . . , 0) = a, so a is represented primitively by f , which proves the lemma.

Now, in order to prove the theorem, we suppose that the theorem holds for n−1. By the
lemma, it suffices to show that an integer a exists satisfying the conditions of the lemma.

Let b be a non-zero integer represented by g over Q, and let P be the set of primes dividing
2db. Since there is only one Zp-equivalence class for p ∈ P , b is primitively represented by fp
over Zp for such p’s. For p /∈ P , fp represents b over Qp because fp and g are Qp-equivalent.
If b = f(bp), bp ∈ Qn

p, we can choose β(p) ∈ Z so that pβ(p)bp is a primitive element in Zn
p .

Then, a = b
∏
p∈P

p2β(p) satisfies the conditions of the lemma. This completes the proof of

the theorem.

We further state the following theorem.

Theorem 3.5. Let f(x) be an integral form in n variables of determinant d 6= 0. Let a 6= 0
be an integer represented by f(x) over R and primitively represented by f(x) over Zp for all
p | 2d (if n ≥ 3), all p | 2ad (if n = 2). Then a is primitively represented over Z by some
form f ∗ in the same genus as f .

Proof. The proof of Theorem 3.3 shows that a is primitively represented by f over Zp for
all p. We apply Lemma 3.4 putting g(x) and fp(x) for all p in the lemma equal to the f(x)
of the present theorem. Then there exists an integral form f ∗(x) which is Zp-equivalent to
f(x) for all p, i.e., which is in the same genus as f , and represents a primitively.

Theorem 3.5 clearly implies the following corollary.

Corollary. If f in Theorem 3.5 is in a genus of one class, then f primitively represents a
over Z.

Note that the condition “primitively represented”in Theorem 3.5 and the corollary can be
replaced by “represented,” and we will directly use the replaced version of the corollary
throughout the paper.

We now present the method of obtaining the genus of a given three-dimensional quadratic
form (which is due to the unpublished method by Conway), as it is frequently used in the
proof of the theorems. Let L3 be a given three-dimensional lattice whose genus we want to
find. We first embed L3 into Z6 which has class number 1, and obtain vectors v1,v2,v3 which
generate the lattice. Then, we find a basis of the orthogonal complement to span{v1,v2,v3}.
Denoting by L′3 the lattice generated by the basis, we embed L′3 into Z6 and get the orthogonal
complement lattices with the same procedure. Then, the lattices obtained at the end are in
the same genus as L3, and considering all possible ways to get the final lattices, we obtain
the complete list of the genus.
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To illustrate this method explicitly, we consider the lattice L3 having Gram matrix1 0 0
0 2 0
0 0 2

 . By embedding L3 into Z6, we get

v1 = (1, 0, 0, 0, 0, 0),v2 = (0, 1, 1, 0, 0, 0),v3 = (0, 0, 0, 1, 1, 0).

The orthogonal complement is {(0, a,−a, b,−b, c)}, which is spanned by

(0, 1,−1, 0, 0, 0), (0, 0, 0, 1,−1, 0), (0, 0, 0, 0, 0, 1).

The lattice generated by these vectors has the Gram matrix

1 0 0
0 2 0
0 0 2

, which is the same

as that of L3. Therefore, the only final lattice obtained through this process is L3, which
shows that L3 is unique in its genus.

4 Modular forms and theta functions

We define a group action of g =

(
a b
c d

)
∈ SL2(R) on the upper half complex plane H by

gz =
az + b

cz + d
; g∞ =

a

c
.

Letting Γ = SL2(Z), we define a subgroup

Γ(N) = {
(
a b
c d

)
∈ SL2(Z) | a ≡ d ≡ 1 (mod N), b ≡ c ≡ 0 (mod N)}.

for some positive integer N . A subgroup of Γ is called a congruence subgroup of level
N if it contains Γ(N). We further let

Γ0(N) = {
(
a b
c d

)
∈ Γ | c ≡ 0 (mod N)};

Γ1(N) = {
(
a b
c d

)
∈ Γ0(N) | a ≡ 1 (mod N)}.

Let f(z) be a function on H̄ = H ∪ Q ∪ {∞} with values in C ∪ {∞}, and let k ∈ Z. We
define

f(z)|[γ]k = (detγ)k/2(cz + d)−kf(γz) for γ =

(
a b
c d

)
∈ GL+

2 (Q).

Definition. Let f(z) be a meromorphic function on H, and let Γ
′ ⊂ Γ be a congruence

subgroup of level N , i.e., Γ
′ ⊃ Γ(N). Let k ∈ Z. We call f(z) a modular function of

weight k for Γ
′

if
f |[γ]k = f for all γ ∈ Γ

′
,
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and if, for any γ0 ∈ Γ = SL2(Z),

f |[γ0]k has the form
∑

anq
n
N with an = 0 for n� 0. (4)

where qN = e2πiz/N .

We call such an f(z) a modular form of weight k for Γ
′
, whose set is denoted by Mk(Γ

′
),

if it is holomorphic on H and if for all γ0 ∈ Γ we have an = 0 for all n < 0 in (4). We call a
modular form a cusp form if in addition a0 = 0 in (4) for all γ0 ∈ Γ, and denote the set of
cusp forms by Sk(Γ

′
).

We use the notation Mk(N,χ) with χ a Dirichlet character mod N to denote the subspace

of Mk(Γ1(N)) consisting of f(z) for which f |[γ]k = χ(d)f for γ =

(
a b
c d

)
∈ Γ0(N). It is

shown in [4] that Mk(Γ1(N)) = ⊕Mk(N,χ), where the sum is over all Dirichlet characters
modulo N .

Now, we define the theta function

Θ(z) =
∑
n∈Z

e2πizn2

=
∑
n∈Z

qn
2

for z ∈ H, q = e2πiz.

We can show that Θ2 ∈ M1(Γ1(4)) = M1(4, χ−1) where χ−1(d) = (−1)(d−1)/2. Then, by

multiplicativity, we have for k even Θk ∈Mk/2(4, χ
k/2
−1 ) (cf. [4]).

We now interpret modular functions as functions on lattices. We consider the congruence
subgroup Γ1(N) specifically, as it is sufficient for our purpose. Define a modular point for
Γ1(N) to be a pair (L, t) where L is a lattice in C and t ∈ C/L is a point of exact order N .

Let k ∈ Z. We consider complex-valued functions F on the set of modular points which
are of “weight k” in the following sense. For λ ∈ C∗, let λL = {λl | l ∈ L} and λt ∈ C/λL.
Then, F is defined to be of weight k if for all λ ∈ C∗, F (λL, λt) = λ−kF (L, t) for all modular
points (L, t).

Given a function F of weight k, we define two corresponding functions F̃ and f as follows.
F̃ (ω) is a complex-valued function on column vectors ω =

(
ω1
ω2

)
such that ω1/ω2 ∈ H. f(z)

is a function on the upper half-plane H. Let Lω be the lattice spanned by ω1 and ω2, and
let Lz be the lattice spanned by z and 1. Define F̃ (ω) = F (Lω, ω2/N), and f(z) = F̃

(
z
1

)
.

For γ ∈ SL2(Z), let γF̃ (ω) = F̃ (γω). The following proposition is shown in [4].

Proposition 4.1. The above association of F with F̃ and f gives a one-to-one correspon-
dence between the following sets of complex-valued functions: (1) F on modular points which
have weight k; (2) F̃ on column vectors ω which are invariant under γ for γ ∈ Γ1(N) and
satisfy F̃ (λω) = λ−kF̃ (ω); (3) f on H wihch are invariant under [γ]k for γ ∈ Γ.

We now discuss the Hecke operators acting on modular forms of weight k for Γ1(N).
Let L denote the Q-vector space of formal finite linear combinations of modular points, i.e.,
L = ⊕QeL,t is the direct sum of infinitely many one-dimensional spaces, one for each pair
(L, t), where L is any lattice in C and t ∈ C/L is any point of exact order N . For each
positive n, we define a linear map Tn : L → L by the following formula giving the image of
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the basis vector eL,t:

Tn(eL,t) =
1

n

∑
eL′,t

where the summation is over all lattice L′ containing L with index n such that (L′, t) is a
modular point. We have the following proposition from [4].

Proposition 4.2. (1) If g.c.d.(m,n) = 1, then Tmn = TmTn. In particular, Tm and Tn
commute.
(2) If p is a prime dividing N , then Tpl = T lp.

Furthermore, for d an integer prime to N , let [d] : L → L be the linear map defined on
basis elements by [d]eL,t = eL,dt (cf. [4]). Then, we have the following lemma proven in [4].

Lemma 4.3. Suppose that F (L, t) corresponds to a function f(z) on H which is in Mk(Γ1(N)).
Then [d]F and TnF also correspond to functions (denoted [d]f and Tnf) in Mk(Γ1(N)). If
f is a cusp form, the so are [d]F and TnF . Thus, [d] and Tn can be regarded as linear maps
on Mk(Γ1(N)) or on Sk(Γ1(N)). In this situation, let χ be a Dirichlet character modulo N .
Then, f ∈Mk(N,χ) if and only if [d]F = χ(d)F , i.e., if and only if

F (L, dt) = χ(d)F (L, t) for d ∈ (Z/NZ)∗ (5)

We saw before that a function f ∈ Mk(Γ1(N)) can be written as a sum of functions in
Mk(N,χ) for different Dirichlet characters χ. Thus, by one-to-one correspondence in Propo-
sition 4.1, we can write a modular form F (L, t) as a direct sum of F ′s satisfying the equation
(5) for various χ. Further, we have the following propositions shown in [4].

Proposition 4.4. The operators Tn commute with [d], and preserve the space of F (L, t) of
weight k which satisfy (5). Therefore, Tn preserves Mk(N,χ) and also Sk(N,χ)

Proposition 4.5. Let f(z) =
∞∑
n=0

anq
n, f ∈Mk(N,χ), and let Tpf(z) =

∑∞
n=0 bnq

n. Then,

bn = apn + χ(p)pk−1an/p

where we take χ(p) = 0 if p|N and an/p = 0 if n is not divisible by p.

Most of the important examples of modular forms turn out to be eigenvectors (“eigen-
forms”) for the action of all of the Tm on the given space of modular forms. If f ∈Mk(N,χ)
is such an eigenform, then we can conclude a lot of information about its q-expansion coef-
ficients, as shown in the following proposition (cf. [4]).

Proposion 4.6. Suppose that f ∈Mk(N,χ) is an eigenform for all of the operators Tm with

eigenvalues λm, m = 1, 2, . . .. Let f(z) =
∞∑
m=0

amq
m. Then am = λma1 for m = 1, 2, . . .. In
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addition, a1 6= 0 unless k = 0 and f is a constant function. Finally, if a0 6= 0, then λm is
given by the formula

λm =
∑
d|m

χ(d)dk−1.

If f is an eigenform as in Proposition 4.6 (with k 6= 0), then we can multiply it by a
suitable constant to get the coefficient of q equal to 1, i.e., a1 = 1. Such an eigenform is
called normalized.

Now, in order to extend our definition of Hecke operators for a large class of congruence
subgroups of Γ = SL2(Z), we make the following definitions. Let S+ be a nonzero additive
subgroup of the integers, i.e., S+ = MZ for some positive integer M . Let S× be a subgroup
of (Z/NZ)∗. We also use S× to denote the subset of Z whose image modulo N is in S× (If
N = 1, then we take S× = Z). Let n be a positive integer. Define

4n(N,S×, S+) = {integer matrices
(

a b
c d

)
| N |c, a ∈ S×, b ∈ S+, det

(
a b
c d

)
= n}.

41(N,S×, S+) is clearly a congruence subgroup of Γ, since it contains Γ(N ′) where N ′ is
the least common multiple of M and N . We have, for example, Γ0(N) = 41(N, (Z/NZ)∗,Z).

Definition. Let Γ′ be a congruence subgroup of Γ, and let α ∈ GL+
2 (Q). Let Γ′′ =

Γ′ ∩ α−1Γ′α, and let d = [Γ′ : Γ′′], Γ′ = ∪dj=1Γ′′γ′j. Let f(z) be a function on H which is
invariant under [γ]k for γ ∈ Γ′. Then

f(z)|[Γ′αΓ′]k :=
d∑
j=1

f(z)|[αγ′j]k.

We then have the following proposition.

Proposition 4.7. f(z)|[Γ′αΓ′]k does not change if α is replaced by any other representative
α′ of the same double coset: Γ′α′Γ′ = Γ′αΓ′. Nor does it depend on the choice of represen-
tatives γ′j of Γ′ modulo Γ′′. If f ∈Mk(Γ

′), then f(z)|[Γ′αΓ′]k ∈Mk(Γ
′).

Now, we extend the definition of the Hecke operators.

Definition. Let Γ′ = 41(N,S×, S+), and let n be a positive integer. Let f ∈Mk(Γ
′). Then

Tnf := n(k/2)−1
∑

f |[Γ′αΓ′]k,

where the sum is over all double cosets of Γ′ in 4n(N,S×, S+).

By the above proposition, we have Tnf ∈Mk(Γ
′).

Equivalently, we can define

Tnf = n(k/2)−1
∑

f |[αj]k

13



where Γ′αj runs through the right cosets of Γ′ in 4n(N,S×, S+).
Our earlier definition of the Hecke operators can be shown to agree with the new defini-

tion, by applying the following proposition (cf. [4]).

Proposition 4.8. Let 4n = 4n(N, {1},Z). For each a ∈ (Z/NZ)∗ we fix σa ∈ Γ such that
σa ≡

(
1/a 0
0 a

)
mod N . We then have

4n =
⋃

disjoint

Γ1(N)σa

(
a b
0 d

)

where the disjoint union is taken over all postivie a dividing n and prime to N , and for each
such a we set d = n/a and take b = 0, 1, . . . , d− 1.

Equipped with these concepts, we prove the following theorem.

Theorem 4.9. Let n be a positive integer. The number of ways that n can be written as a
sum of four squares is given by:

an =

{
8σ1(n) for n odd;
24σ1(n0) for n = 2rn0 even, n0 odd.

where σ1(n) =
∑
d|n

d

Proof. We let F =
∑
n odd

σ1(n)qn, Θ4 =
∑
n

anq
n ∈ M2(Γ0(4)). an is then the number of

ways n can be written as a sum of four squares. By Proposition 4.5, since 2|4 and all the
coefficients of even powers of q for F are 0, we have

T2F = 0.

It is shown in [4] that Θ4 and F span M2(Γ0(4)). Thus, T2Θ4 = sΘ4+tF for some constants s

and t. By Proposition 4.5, letting T2Θ4 =
∑
n

bnq
n, we have b1 = a2 = 24 and b2 = a4 = 24.

This yields s = 1, t = 16, so
T2Θ4 = Θ4 + 16F.

Therefore, {F, 2
3
F + 1

24
Θ4} is a normalized eigenbasis for T2.

Consider the case n is odd. Tn commutes with T2 by Proposition 4.2. Thus, it preserves
each one-dimensional eigenspace obtained above, so F and 2

3
F + 1

24
Θ4 are eigenvectors of Tn.

For any n, n = 2rn0 for some r ≥ 0 and n0 odd. By Proposition 4.2, Tn = T r2Tn0 , so
2
3
F + 1

24
Θ4 is an eigenvector for Tn for all n = 1, 2, . . .. Let f = 2

3
F + 1

24
Θ4 and Tnf = λnf .

Denote the nth Fourier coefficient of f by cn. c0 = 1
24
a0 = 1

24
, which is nonzero. Writing

n = 2rn0 and applying Proposition 4.6, we then have

λn =
∑
d|n

χtriv(d)d2−1 =
∑
d|n,2-d

d = σ1(n0),
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and an = λn = σ1(n0) (which is equal to σ1(n) if n is odd).
If n is odd, then cn = 2

3
σ1(n) + 1

24
an = σ1(n), so an = 8σ1(n). Otherwise, n = 2rn0 with

r ≥ 1, so cn = 1
24
an = σ1(n0), which yields an = 24σ1(n0). This proves the desired result.

We have just seen that the study of the theta function Θk may give the exact answer
for the number of ways of writing an integer as a sum of k squares. More generally, given

a quadratic form
k∑

j,l=1

Ajlnjnl = [n]tA[n], where A = [Ajl] is a given symmetric matrix and

[n] is a column vector with k even, we can use
∑
n

q[n]tA[n] to construct modular forms of

weight k/2. The properties of modular forms are then useful in studying the number of
representations m = [n]tA[n]. Therefore, it is necessary to define modular forms of half
integer weight for the study of quadratic forms in odd number of variables.

First, we define

j(γ, z) ≡ Θ(γz)/Θ(z) =
( c
d

)
ε−1
d

√
cz + d for γ =

(
a b
c d

)
∈ Γ0(4), where εd =

√(
−1

d

)
,

Γ̃′ ≡ {(γ, j(γ, z))|γ ∈ Γ
′}, γ̃ ≡ (γ, j(γ, z)).

Definition. Let k be any integer, and let Γ
′ ⊂ Γ0(4) be a subgroup of finite index. Let f(z)

be a meromorphic function on the upper half-plane H which is invariant under [γ̃]k/2 for all

γ̃ ∈ Γ̃
′
. We say that f(z) is a modular function of weight k/2 for Γ̃

′
if f is meromorphic

at every cusp of Γ
′
. We say that such an f(z) is a modular form and write f ∈ Mk/2(Γ̃

′
),

if it is holomorphic on H and at every cusp. We say that a modular form f is a cusp form
and write f ∈ Sk/2(Γ̃

′
), if it vanishes at every cusp.

For a quadratic form Q in n variables, we define its theta function to be

ΘQ(z) =
∑
m∈Z

rQ(m)e2πimz

where rQ(m) is the number of representations of m by Q. It is shown in Shimura [6] that

Theorem 4.10. Let N be the level of Q. Then,

ΘQ ∈Mn/2(N,χd)

where d = det(A) if n ≡ 0 (mod 4), d = −det(A) if n ≡ 2 (mod 4), and d = det(A)/2 if n
is odd.

The study of such theta functions involves a special kind of modular form known as
“Eisenstein series.” The Eisenstein series for an even integer k ≥ 4 is defined to be

Ek(z) =
∑ 1

(mz + n)k
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where the sum is over m,n ∈ Z with g.c.d.(m,n) = 1 and only one pair taken from
(m,n), (m,−n). It is a modular form of weight k/2, and we can show as in [4] that

Ek(z) =
∑

γ∈Γ∞\Γ

j(γ, z)−k

This motivates us to have the following definition:

Definition. Let k be an odd integer, k ≥ 5.

Ek/2(z) =
∑

γ∈Γ∞\Γ0(4)

j(γ, z)−k.

Given a quadratic form Q in n variables with n > 4, its theta function can be written as

ΘQ(z) = E(z) + f(z)

as the sum of an Eisenstein series E(z) and a cusp form f(z) (cf. [7]). If the genus of the
form Q contains only one class, then due to Siegel, ΘQ(z) = E(z) and we can obtain the
exact formulas for the theta function coefficients, i.e., the number of representations n by
the form Q (cf. [7]). Otherwise, it is necessary to find the cusp form f(z). We can use this
method for the quadratic forms in n variables with n ≤ 4, by extending the definition of
Eisenstein series to the case n ≥ 2 as in Vepkhvadze [7].

5 The Proof of the 15-Theorem

5.1 Escalators of dimension 1, 2 and 3

The zero-dimensional lattice can be escalated uniquely to the lattice generated by a single
vector of norm 1. This one-dimensional escalator lattice corresponds to the form x2, or in
the matrix form, (1). This does not represent 2, so its escalator can be written in matrix
form that (

1 a
a 2

)
By Cauchy-Schwarz inequality, a2 ≤ 2, which implies a = 0,±1. The matrices with
a = ±1 are isometric, so the non-isometric Minkowski-reduced Gram matrices for the two-
dimensional escalators are: (

1 0
0 1

)
,

(
1 0
0 2

)
In the same manner, we obtain exactly 9 non-isometric three-dimensional escalators

whose Minkowski-reduced Gram matrices are given by:(
1 0 0
0 1 0
0 0 1

)
,

(
1 0 0
0 1 0
0 0 2

)
,

(
1 0 0
0 1 0
0 0 3

)
,

(
1 0 0
0 2 0
0 0 2

)
,

(
1 0 0
0 2 0
0 0 3

)
,(

1 0 0
0 2 1
0 1 4

)
,

(
1 0 0
0 2 0
0 0 4

)
,

(
1 0 0
0 2 1
0 1 5

)
,

(
1 0 0
0 2 0
0 0 5

)
.
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5.2 Four-dimensional Escalators

Escalating the nine three-dimensional escalators given in the previous section, we get exactly
207 non-isomorphic four-dimensional escalator lattices. All such lattices are of the form
(1)⊕ L, and the 207 values of L are listed in Table 3 of [1].

We now show that 201 of these 207 escalators are universal and cannot be escalated
more. For each four-dimensional escalator lattice L4, we find three-dimensional sub-lattice
L3 which represents a large set of integers. We typically achieve this by choosing L3 to be
unique in its genus, in which case L3 represents all integers it represents locally. We let
the Gram matrix of the orthogonal complement of L3 in L4 be (m), so that the direct sum
L3 ⊕ (m) lies in L4. Then, the direct sum can be shown to represent all sufficiently large
integers n ≥ N . By a direct check of the representability of numbers less than N by L4, we
get the desired result.

For example, we consider escalator lattices (denoted L4) of the three-dimensional escala-
tor lattice L3 having the Gram matrix:1 0 0

0 2 0
0 0 2

 (labelled (4) of Table 1, [1])

As we checked in Section 3.2, L3 is unique in its genus, and represents all numbers except
those of the form 2e(8k + 7) where e is even. Suppose L4 is not universal, and let u be the
least positive integer not represented by L4. Since the direct sum L3⊕ (m) lies in L4, u must
be of the form 2e(8k + 7). Moreover, u is square-free (Otherwise, u = rt2 with t > 1, and r
is not represented by L4 and less than u). Thus, u ≡ 7 (mod 8).

If m 6≡ 0, 3, or 7 (mod 8), then clearly u−m is not of the form 2e(8k+ 7). If m ≡ 3 or 7
(mod 8), then u− 4m is not of the form 2e(8k + 7). Thus, if m 6≡ 0 (mod 8), either u−m
or u − 4m is represented by L3, hence u is represented by L4. This shows that in the case
m 6≡ 0 (mod 8), L4 represents all numbers ≥ 4m.

By direct calcualtion, it is easy to see that m ≤ 28 for all the 26 escalations. For

example, one of the escalations has Gram matrix

1 0 0 0
0 2 0 0
0 0 2 1
0 0 1 7

, and contains the lattice

with the associate matrix

1 0 0 0
0 2 0 0
0 0 2 2
0 0 2 28

 which is isometric to

1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 26

, so m = 26

in this case. The explicit computation up to 4 × 28 = 112 reveals that L4 is universal for
the case m 6≡ 0 (mod 8). We call the escalations for which m happens to be a multiple of
8 “exceptional.” It turns out that exactly two of the 26 escalations of L3 are exceptional.
For these lattices, we find new sub-lattices L3 which are unique in their genus, and apply
the exactly same argument. For example, we consider the lattice with the Gram matrix1 0 0 2

0 2 0 1
0 0 2 1
2 1 1 7

. We note that L3 having the Gram matrix

(
1 0 0
0 2 1
0 1 3

)
lies in L4 and is unique

in its genus. A local check shows that L3 represents all numbers except those of the form
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5du+ (where d is odd and u+ denotes a number which is a quadratic residue modulo 5), so
denoting u to be first integer not represented by L4, u is of this form. Since we get m = 40,
either u −m or u − 4m is not of the form 5du+. A direct check up to 160 shows that the
lattice is indeed universal.

All of the 3-dimensional escalator lattices in Table 1 of [1] except the one labeled (6),

which has the Gram matrix

(
1 0 0
0 2 1
0 1 4

)
, can be easily shown to be unique in their genus,

and the same argument works for the most of their escalations with a few exceptions. The

escalator (6) contains the lattice

(
1 0 0
0 4 2
0 2 8

)
, which is unique in its genus, and the lattices(

2 −2 2
−2 5 2
2 2 8

)
and

(
3 0 0
0 5 4
0 4 5

)
, which together form a genus. A local check shows that the

first genus represents all numbers which are 6≡ 2 or 3 (mod 4), and that the second genus
represents all numbers 6≡ 1 (mod 3). Therefore, the lattice (6) represents all positive inte-
gers 6≡ 7 or 10 (mod 12). We now can apply the identical method as above to prove the
universality of non-exceptional four-dimensional escalators of the lattice (6). The details are
summarized in Table 1 in [1].

“Exceptional” lattices arise only from the lattices labeled (4), (6), and (7) in Table 1 of
[1]. Two arise for escalator (4). Four exceptional ones arise for escalator (6), but two of them
are non-exceptional escalations of (1) and (8) respectively, which are proven to be universal.
Similarly, two arise for escalator (7), and one of them is a non-exceptional escalation of (9).
Therefore, we need to consider only five exceptional escalators, and these can be handled
similarly as the exceptional case for (4) shown earlier. Namely, we find new sub-lattice L3

unique in its genus and apply the identical argument. The relevant details are illustrated in
Table 2 in [1]. This proves the universality of the 201 four-dimensional escalators.

5.3 Five-dimensional Escalators

The remaining six nonuniversal four-dimensional lattices are italicized in Table 3 of [1]. They
go through all the arguments in the second paragraph of the previous section, except for the
final check. The final check reveals that they represent all numbers except a single integer
as given in Table 4, [1]. Therefore, the five-dimensional lattices escalated from these six
escalators are universal. By explicit calculation, we obtain 1630 five-dimensional universal
escalators.

In summary, there are only a finite number of escalators for quadratic forms having integer
matrices: 1 of dimension zero, 1 of dimension one, 2 of dimension two, 9 of dimension three,
207 of dimension four, and 1630 of dimension five, for a total of 1850.

5.4 The Proof of the Fifteen Theorem

The analysis done in previous sections essentially proves the Fifteen Theorem. It is obvious
that
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Theorem 5.1 Any universal lattice L contains a universal sub-lattice of dimension at most
five.

This is true since there exists an escalator sequence 0 = L0 ⊆ L1 ⊆ . . . within L, and by
Section 5.2 and 5.3, either L4 or (when defined) L5 gives a universal escalator sub-lattice of
L.

Since only the critical integers defined in the Fifteen Theorem arise as truants of escalator
lattices, Theorem 2.1 clearly holds. Furthermore, it can be shown that for each critical
number t, there is a quaternary diagonal form that fails to represent t, but represents every
other positive integer. Nine such forms of minimal determinant are [2, 2, 3, 4] with truant
1, [1, 3, 3, 5] with truant 2, [1, 1, 4, 6] with truant 3, [1, 2, 6, 6] with truant 5, [1, 1, 3, 7] with
truant 6, [1, 1, 1, 9] with truant 7, [1, 2, 3, 11] with truant 10, [1, 1, 2, 15] with truant 14, and
[1, 2, 5, 5] with truant 15 (here, [a, b, c, d] denotes the form ax2 +by2 +cz2 +dw2). This proves
Theorem 2.2.

We find that there are only four escalator lattices having truant 15. As shown in Sec-
tion 5.3, each of these four escalators represents every integer greater than 15, from which
Theorem 2.3 follows. For each critical number t less than 15, we can find a form which fails
to represent infinitely many integers including t. This proves Theorem 2.4. Lastly, Theorem
2.5 follows from Section 5.2. The list of the 204 universal quaternary forms is given in Table
5, [1].

6 The Proof of the 290-Theorem

Although proving the Fifteen Theorem was rather simple, the proof of the 290-Theorem
involves much more complicated methods using modular forms. As in the previous section,
we first consider small-dimensional escalators for quadratic forms with integer coefficients.

6.1 Escalators of dimension 1, 2, and 3

The zero-dimensional lattice can be escalated uniquely to the lattice generated by a single
vector of norm 1. This one-dimensional escalator lattice corresponds to the form x2, or in
the matrix form, (1). This does not represent 2, so its escalator can be written in matrix
form that (

1 a
a 2

)
By Cauchy-Schwarz inequality, a2 ≤ 2, which implies a = 0,±1/2 or ±1. The matrices with
a = ±1/2 are isometric, and so do the matrices with a = ±1. Therefore, we have exactly
three non-isometric two-dimensional escalators having Gram matrices:(

1 0
0 1

)
,

(
1 1/2

1/2 2

) (
1 0
0 2

)
.

The truants of these escalators are 3, 3, and 5 respectively. In the same manner, we
escalate each of these to obtain precisely 34 non-isometric three-dimensional escalators with
Gram matrices:
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(
1 1/2 0

1/2 1 1/2
0 1/2 1

)
,

(
1 0 0
0 1 0
0 0 1

)
,

(
1 1/2 0

1/2 1 1/2
0 1/2 2

)
,

(
1 1/2 0

1/2 1 0
0 0 2

)
,

(
1 0 0
0 1 1/2
0 1/2 2

)
,

(
1 0 0
0 1 0
0 0 2

)
,

(
1 0 1/2
0 1 1/2

1/2 1/2 3

)
,

(
1 1/2 1/2

1/2 2 −1/2
1/2 −1/2 2

)
,

(
1 0 1/2
0 1 0

1/2 0 3

)
,

(
1 0 0
0 1 0
0 0 3

)
,

(
1 1/2 1/2

1/2 2 1/2
1/2 1/2 2

)
,

(
1 1/2 0

1/2 2 1/2
0 1/2 2

)
,

(
1 1/2 0

1/2 2 0
0 0 2

)
,

(
1 0 0
0 2 1/2
0 1/2 2

)
,

(
1 0 0
0 2 0
0 0 2

)
,

(
1 1/2 −1/2

1/2 2 1/2
−1/2 1/2 3

)
,

(
1 0 1/2
0 2 1

1/2 1 3

)
,

(
1 1/2 1/2

1/2 2 0
1/2 0 3

)
,

(
1 1/2 0

1/2 2 1/2
0 1/2 3

)
,

(
1 1/2 0

1/2 2 0
0 0 3

)
,

(
1 0 1/2
0 2 1/2

1/2 1/2 3

)
,

(
1 0 1/2
0 2 0

1/2 0 3

)
,

(
1 0 0
0 2 1/2
0 1/2 3

)
,

(
1 0 0
0 2 0
0 0 3

)
,

(
1 0 0
0 2 1
0 1 4

)
,

(
1 0 1/2
0 2 1/2

1/2 1/2 4

)
,

(
1 0 0
0 2 1/2
0 1/2 4

)
,

(
1 0 0
0 2 0
0 0 4

)
,

(
1 0 1/2
0 2 1

1/2 1 5

)
,

(
1 0 1/2
0 2 1/2

1/2 1/2 5

)
,

(
1 0 1/2
0 2 0

1/2 0 5

)
,

(
1 0 0
0 2 1/2
0 1/2 5

)
,

(
1 0 1/2
0 2 1

1/2 1 5

)
,

(
1 0 0
0 2 0
0 0 5

)
.

These are all nonuniversal, having truants respectively:

14, 7, 5, 10, 21,

14, 6, 10, 22, 6,

6, 13, 5, 10, 7,

17, 14, 10, 5,

6, 7, 10, 23, 10,

7, 29, 31, 14, 10,

7, 29, 10, 13, 10.

6.2 The Basic four-dimensional escalators

Escalating each of the above 34 three-dimensional escalators, we obtain exactly 6560 non-
isometric four-dimensional escalator lattices. We call these the basic four-dimensional es-
calators. Other four-dimensional escalators can be obtained by a sequence of escalations
of the basic escalators. Since most of the basic escalators turn out to be either universal
or represent a large set of numbers, we essentially need to study only these escalators. To
determine precisely which numbers are represented by these lattices, we adopt two methods.
One is the arithmetic method as we did in the proof of the Fifteen Theorem, and another is
the analytic method invoking modular forms.
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6.3 Arithmetic methods

We apply the almost identical arguments used in Section 5.2, now for quadratic forms with
integer coefficients. Of the 34 three-dimensional escalators lattices, 20 of them are unique
in their genus and therefore represent all numbers they represent locally. Most of the four-
dimensional escalators of the 20 lattices can be handled similarly as in Section 5.2. The
exactly same procedure used for the form x2 + 2y2 + 2x2 can be applied to the escalations of
the 17 of the 20 escalators, which are ]1-8, 10-12, 17, 19, 21, 22, 24, and 34 listed in Section 6.1.
This determines what integers are represented by 1658 of the 6560 basic four-dimensional
escalators.

However, the arithmetic method does not work for the most of the escalations of other
L3’s. Direct calculation shows that more than 2300 of the 6560 escalators contain no three-
dimensional form of class number one. Thus, an alternative method is necessary to deal with
the remaining four-dimensional escalators.

6.4 Analytic methods

In order to determine what numbers are represented by the four-dimensional escalators which
could not be dealt with the arithmetic method in the previous section, we invoke the theory
of modular forms. For a positive definite integer-valued quadratic form Q in n variables, the
theta function

ΘQ(z) =
∑
m∈Z

rQ(m)e2πimz

is a modular form of weight n/2 for some congruence subgroup Γ0(N) ⊆ SL(2,Z) where N
is the level of the form Q and rQ(m) is the number of representations of m by Q. As in
Section 4, we write

ΘQ(z) = E(z) + f(z)

as the sum of an Eisenstein series E(z) and a cusp form f(z).
We say that a prime p is anistropic for Q if for every vector ~x ∈ Qn

p with Q(~x) = 0, we
have ~x = 0. If this is not so, we say that a prime p is isotropic for Q. By local consideration,
all of the basic four-dimensional escalators can be shown to have no anistropic primes.

Then, we can obtain a bound for each basic escalator Q such that if m is locally repre-
sented by Q and greater than the bound, then m is represented by Q. The Fourier coefficients
of its Eisenstein series and cusp form have different growth rates as m→∞. The Eisenstein
coefficients aE(m) are always non-negative and grow more quickly than the cusp form coef-
ficients af (m). We will determine an effective lower bound for aE(m) and an effective upper

bound for |af (m)|. From those bounds, we can obtain a bound for m to ensure aE(m)
|af (m)| > 0,

which implies rQ(m) > 0 so that m is represented by Q.
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6.4.1 Eisenstein coefficients aE(m)

Due to Siegel, we have the Eisenstein coefficients of a quadratic form Q in n variables as
weighted averages over the genus of Q denoted by Gen(Q):

aE(m) =

∑
Q′∈Gen(Q)

rQ′ (m)

|Aut(Q′)|∑
Q′∈Gen(Q)

1

|Aut(Q′)|

as shown in [5].
On the other hand, we define the local representation density βv(m) at a place v of

Q by

βv(m) = lim
U→ {m}

Vol(Q−1(U))

Vol(U)
,

where U is an open neighborhood of m in Qv, the completion v of Q. We use the usual
measure on R, and the Haar measure on Qp normalized so that Vol(Zp) = 1. The βv(m)
gives a measure of the number of local representations of m over Qv. The real local density
at β∞(m) can be computed as the volume of the real ellipsoid Q(x) = m, while the local
density at each prime p is given by reduction mod pr as

βp(m) = lim
r→∞

]{~x ∈ (Z/prZ)n|Q(~x) ≡ m (mod pr)}
p(n−1)(r−1)

This counts roughly the normalized number of representations of m by Q over Zp.
When n ≥ 3, due to Siegel, we have that

aE(m) =
∏
v

βv(m)

where the product runs over all places v of Q (cf. [5]).
The effective lower bound for aE(m) will therefore follow from reasonable lower bounds

for each of the local densities βv(m). Before stating the theorem giving a lower bound for
the case n = 4, we make some relevant definitions.

Definition. We define a number m to be p-stable if m is locally represented at p, and for
all k � 1, the quantity rGood

pk (p2vm) + rBad
pk (p2vm) is constant for all v ≥ 1.

When n ≥ 4, for each T ∈ Z we let Stable(T ) be the set of all primes p such that T is
p-stable.

We say that an integer m ∈ Z is supported on some set S of primes if |m|p = 1 for all
p /∈ S. Let J to be a finite union of square classes t(Z)2 with t ∈ Z and ordp(t) ≤ 1 at all
primes p. We denote BJ ⊂ J be a minimal finite subset such that any locally represented
m ∈ J can be written as m = T ′(m′)2 with T ′ ∈ BJ and m′ ∈ Z supported on Stable(T ′).

Without loss of generality, we can assume that
∏
v

|T ′|v = 1 for all T ′ ∈ BJ (cf. [5]).

We further denote the quadratic Dirichlet character Φn(·) =
(

(−1)n/2D
·

)
(when n is even)

where D is the determinant of a given quadratic form.

22



Theorem 6.1. When n = 4 and m is locally represented by Q which is a basic four-
dimensional escalator form with level N and determinant D, we have the lower bound

aE(m) ≥ CEm
∏

p|m, p-N, χ(p)=−1

p− 1

p+ 1

where

CE = min
T ′∈BJ

{2ω4D
−1/2

L(2, χ)

∏
p|N

βp(T
′)

1− χ(p)/p2

∏
p∈Stable(T ′), p|N

C ′p(T
′)}.

Proof. We first note that Q has no anistropic prime. Let T
′ ∈ Z with ordp(T

′) ≤ 1 for all
p - N and

∏
v |T ′|v = 1. Consider m = T ′(m′)2 ∈ T ′Z2 with m′ supported on Stable(T ′).

Denoting the volumn of 4-dimensional sphere in R4 by ω4, we know from Siegel’s theory
that

βv(m) =
4

2
ω4D

−1/2m
4−2
2 = 2ω4D

−1/2m

at a real valuation v | ∞ (cf. [5]).
Let

Cp(T
′) =

p2

p2 − 1

βGood∪Badp (p2T ′)

βp(T ′)
.

Then, by applying reduction maps, we can show that when m is p-stable,

aE(mp2v)

pv
→ Cp(m)aE(m) monotonically as v →∞,

which implies βp(m) ≥ C ′p(T
′)βp(T

′) where C ′p(T
′) = min{1, Cp(T ′)} (cf. [5]).

Using these, we can show by applying reduction maps as in [5] that

aE(m) ≥ aE(T ′)(m′)2
∏

p∈Stable(T ′)

C ′p(T
′).

It is clear that the quadratic character Φ4 (associated to Q) is independent of m. Since
ordp(T

′) ≤ 1 for all p - N , by Table 1 in [5],∏
p-N

βp(T
′) =

∏
p-NT ′

(
1− Φ4(p)

p4/2

) ∏
p|T ′, p-N

(p(4−2)/2 + Φ4(p))(p4/2 − Φ4(p))

p4−1

=
∏
p-N

(
1− Φ4(p)

p2

) ∏
p|T ′, p-N

(p+ Φ4(p))(p2 − Φ4(p))

p(p2 − Φ4(p))

≥
∏
p-N

(
1− Φ4(p)

p2

) ∏
p|T ′, p-N, Φ4(p)=−1

(
1− 1

p

)
.

This implies

aE(T ′) ≥ T ′

L(2, χ)

∏
p|N

βp(T
′)

1− χ(p)/p2

∏
v|∞

βv(1)
∏

p|T ′, p-N, χ(p)=−1

(
1− 1

p

)
.
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By Table 2 of [5], C ′p(T
′) = 1 unless p - T ′ and Φ4(p) = −1, in which case C ′p(T

′) is the
local factor at p of ζ(4− 2)/ζ((4− 2)/2) = ζ(2)/ζ(1). We thus have

aE(m) ≥ m(2ω4D
−1/2)

L(2, χ)

∏
p|N

βp(T
′)

1− χ(p)/p2

∏
p∈Stable(T ′), p|N

C ′p(T
′)

×
∏

p|T ′, p-N, χ(p)=−1

(
1− 1

p

) ∏
p|m′, p-N, χ(p)=−1

(
1 +

1

p

)−1

.

Taking the minimum over all T ′ ∈ BJ , we have the desired inequality.

The actual computation of CE involves calculations of all possible local densities βp(m) at
all primes. When p | 2det(2Q) this is accomplished using the explicit reduction maps with
congruence conditions as described in [5], while for p = 2, we additionally need to count
points on certain ellipsoids (with congruence conditions) over Z/8Z.

6.4.2 The cusp form coefficients af (m)

For the cusp form f(z) appearing in the theta function ΘQ(z), we write

f(z) =
r∑
i=1

γifi(z) for some γi ∈ C

as a linear combination of the Hecke eigenforms fi(z) normalized so that their first nonzero
Fourier coefficients ai(m) = 1. By the theory of new forms and Deligne’s bound on Hecke
eigenvalues, we have

|af (m)| ≤ Cfτ(m)
√
m

where Cf =
∑
|γi| and τ(m) is the number of positive divisors ofm (cf. [5]). To find the γi’s,

we write the new part fnew(z) of f(z) as a sum over Galois-conjugate newforms fj(z). Since
all af (m) are rational, γi′ = γσi if fi′ = fσi for some embedding σ : Kj := Q(ai(m)) → Q̄,
and we have that

f(z) =
∑
j

∑
σ:Kj→Q̄

(γjfj(z))σ =
∑
m>0

∑
j

TrKj/Q(γjaj(m)).

By regarding both γj and aj(m) as vectors over Q in the basis given by powers of some αj
such that Kj = Q(αj), and by finding the rational trace matrix for this basis, we can exactly
determine the γi’s by simultaneously solving these rational linear equations for sufficiently
many m. By repeating this procedure to solve for the components of f−fnew in Span{fj(dz)}
for each possible d | N , we can completely decompose f into its Galois-conjugate components.
Then, Cf can be obtained by summing the absolute values of all embeddings γσi over all
possible d.
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6.4.3 The explicit bound for representability

Combining the bounds for aE(m) and af (m) yields that if m is locally represented by Q and
satisfies √

m

τ(m)

∏
p-N,p|m,χ(p)=−1

p− 1

p+ 1
>
Cf
CE

(6)

then m is represented by Q.

Lemma 6.2. Let

B(m) =

√
m

τ(m)

∏
p-N,p|m,χ(p)=−1

p− 1

p+ 1
.

Then B(m) is a multiplicative function and for any prime p, we have

B(mpv) > B(m)

when either p ≥ 11 and v ≥ 1, p = 7 or 5 and v ≥ 2, p = 3 and v ≥ 5, or p = 2 and v ≥ 11.

Proof. B(ab) = B(a)B(b) trivially when gcd(a, b) = 1, so B(m) is multiplicative.
Now, write m = m1p

v1 where p - m1. Then,

B(mpv) =
pv/2
√
m1pv1

(1 + v1 + v)τ(m1)

∏
p′-N,p′|mp,χ(p′)=−1

p′ − 1

p′ + 1

≥ pv/2(p− 1)

p+ 1

1 + v1

1 + v1 + v
B(m)

≥ pv/2(p− 1)

p+ 1

1

1 + v
B(m).

We note that if either p or v is sufficiently large, then

pv/2(p− 1)

p+ 1

1

1 + v
> 1.

By direct calculation, we see that the above inequality is satisfied when either p ≥ 11 and
v ≥ 1, p = 7 or 5 and v ≥ 2, p = 3 and v ≥ 5, or p = 2 and v ≥ 11.

The lemma implies that we need to check the representability for only finitely many
numbers.

In general, the size of the Eisenstein bound CE is small whereas the cusp form bound
Cf is large, which makes it difficult to check the representability of numbers not satisfying

the inequality. For example, of the 6560 quaternary escalator forms, the largest bound
Cf

CE

arises from Q(~x) = x2 + 2y2 + 4z2 + 31w2 + yz − yw + 3zw, which has level N = 3744 and
χ(·) = (104

· ). For this form, we can compute CE = 36
125

and Cf ≈ 2331.99 < 2332.99, giving

the overall bound
Cf

CE
< 8100.65.
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6.5 Computational methods

We call an integer m eligible for a quaternary quadratic form Q if m is locally represented
by Q but (6) does not hold. There are only finitely many eligible numbers as shown in the
previous section, and we now present the computational methods to quickly determine which
of them are represented by Q.

6.5.1 Generating eligible numbers

We let B(m) denote the left side of (6). It is clear that B(m) is multiplicative (from Lemma
6.2) and B(p) > 1 for all primes p > 7. Therefore, all prime divisors p of an eligible number
m satisfy

B(p) <
Cf/CE

B(2)B(3)B(5)B(7)

This gives an explicit set of possible prime divisors of m. We call such primes p eligible
primes, although they may not themselves be eligible numbers. We also reorder the eligible
primes so that their “size” refers to the size of their B(p).

We then take the product of the smallest eligible primes pi and check how many primes
are needed to ensure that p1 · · · ps+1 is not eligible. This determines the maximum possible
number of distinct prime divisors in any eligible number m, and we can efficiently generate
all eligible numbers as products of at most s eligible primes.

The process of generating the list of square-free eligible numbers t = p1 · · · pr arising as
products of r eligible distinct primes is as follows. We first take the pi’s to be the smallest r
eligible primes, and increase pr until t is no longer eligible. When this happens, we increment
pr−1 to the next eligible prime, and set pr to be the first eligible primes > pr−1. If this t
is eligible, then we keep increasing pr as before, but if not, then we increment pr−2 and set
pr−1 and pr equal to the next two eligible primes greater than pr−2. Repeating this step for
each r ≤ s, we produce all square-free eligible numbers t.

Since it is time-consuming to compute the exact value of B(p) for all eligible primes p, we

only compute this for all p < 104 and approximate B(p) ≈
√
p

2

(
1− 1

p

)
< B(p), for p > 104.

6.5.2 Checking eligible numbers

After generating a set of eligible numbers m, we need to find a method to quickly check
if m is represented by Q. We exactly follow Bhargava’s method for the computation here.
Theoretically, by computing the first m+ 1 Fourier coefficients of the theta function of Q by
finding the lengths of all vectors in some large ellipsoid, we can check whether the coefficient
rQ(m) = 0 for each m. However, this way is not practical, since computing the theta function

up to precision X takes time ≈ Xdim(Q)/2 = X2, which is slow for large precisions, and the
precision we need may be too large to reasonably store.

We resolve this problem by reducing the required theta function precision by finding a
split local cover for each quaternary Q, by which we mean a sublattice of L on which the
form Q splits as Q′ = dx2 ⊕ T for some d ∈ N and some ternary form T , with Q and Q′

representing the same numbers locally. We choose a split local cover for which d is minimal,
and calculate whether each m is represented by Q′ (hence by Q), and then determine the
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representability by Q of the remaining set of possible exceptions of Q′. Bhargava did this
calculation for the quadratic forms by computing ΘQ(z) up to precision 10, 000, which suffices
for all possible exceptions that arise.

Given a split local cover Q′, we check if Q′ represents m by finding the largest value of
dx2

0 less than m and checking if m− dx2
0 is represented by T . If not, then we decrement x0

and repeat the step, until either we find that Q′ represents m or we exceed the precomputed
precision Y of the ternary theta function ΘT (z). To ensure m − dx2

0 < Y , we must have
ternary precision Y ≈ 2d

√
X. Bhargava computed the ΘT (z) to precision ≈ 10d

√
X, which

allowed him at least 5 attempts for each eligible number m to verify rQ′(m) > 0.
The time needed to compute the ternary theta function ΘT (z) up to precision Y is

≈ Y
3
2 . In order to decrease the time, we instead compute an approximate Boolean

theta function, which keeps a single bit describing whether T (~y) = m has a solution in an
appropriately chosen small rectangular cylinder in the ellipsoid T (~y) ≤ Y . It can be shown
that the eligible numbers we are considering are primitively represented by the spinor genus
of T , which means they have a bounded divisibility at the anisotropic primes, and we avoid
the certain numbers in finitely many “spinor square classes” (cf. [2]). Therefore, by the
equidistribution results of Duke and Shulze-Pillot, the intersection of the cylinder with the
ellipsoid T (x) = m has a roughly constant number of integer points (cf. [2]). This implies
that we need to check about

√
Y vectors. By choosing the short dimensions of the cylinder

to be large enough, we can find most of the numbers represented by T , although a few may
be missed. These few omissions are not important because we make several attempts to
verify the representability of each m.

The combined use of a split local cover and an approximate Boolean theta function to
check representability of all m < X by Q requires us to store

√
X bits and takes O(X

1
4 )

time, which is good enough.

6.5.3 Error checking and precision issues

In this section, we consider the errors that can possibly occur during the computation and
the related precisions, which is entirely due to Bhargava’s computer programming codes.
Bhargava wrote the code for this computation in Magma for escalations and embeddings
and in C++ for the analytic method. Its source can be found at Bhargava and Hanke’s
website [8].

Local density and lower bound accuracy checking - The local density computations
for finding the Eisenstein constant CE are complicated when p | 2det(2Q), hence prone to
subtle errors. For each form Q and all m < 100, Bhargava verified Siegel’s formula by
computing the infinite product of local densities in C++ and checking that this agrees with
E(z) computed as the weighted average of theta functions over all classes in the genus of Q
(in Magma).

Furthermore, the lower bound CE is checked for accuracy by comparing it with the naive
constant satisfied by the first 10, 000 coefficients of E(z). In all cases, this naive constant is
turned out to be ≥ CE, and their difference is less than 10−3.

Roundoff error tolerance - All C++ integer computations with the potential to be
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large have used the GMP arbitrary precision integer type mpz class, and all local densities
and Eisenstein coefficients are computed exactly with the corresponding rational number
type mpq class. The cuspidal constants Cf were computed exactly over Q in MAGMA
until the very last step, where the complex embeddings were found. Although the accuracy
of the embedding appears to be valid to at least 150 decimal places, Bhargava used instead
the more permissive bound Cf + 1 to ensure accuracy. When the degree of the coefficient
fields Kj are > 100, it is time-consuming to solve for the exact coefficients in Kj. Bhargava
used the approximate cuspidal constants provided by William Stein with an accuracy of 3
decimal places.

6.5.4 The largest example

We present here the specific computation done by Bhargava for the locally universal form
(Form ]6414 in [2]) Q(~x) = x2 + 2y2 + 4z2 + 31w2 + yz − yw + 3zw. This has the largest

overall bound
Cf

CE
< 8100.65. By direct computation, we see that this form has 36, 795, 947

eligible primes and its squarefree eiligible numbers m can have at most 14 prime factors.
It is clear that Q′ = x2 ⊕ T where T = 2y2 + 4z2 + 31w2 + yz − yw + 3zw is a minimal
split local cover. We estimate the largest eligible m to be < 8.17× 1016 by solving for m in
(7). Then, we compute an approximate Boolean theta function of T to precision 5.14× 109

by performing LLL-reduction on T , which in this case leaves T unchanged, and finding the
lengths of all vectors ~v = (y, z, w) in the rectangular cylinder 0 ≤ y, z ≤ 800 and w ≥ 0
inside the ellipsoid T (~v) < 5.14× 109.

We generate the 28 billion eligible squarefree numbers m and check that some m − x2

is represented by T , which verified that there are no square-free exceptions. Therefore, Q
represents all non-negative integers.

6.5.5 The Kneser form

Another example we consider is the Kneser form Q(~x) = x2 + 3y2 + 5z2 + 7w2 for which
the computations are due to Hanke [5]. This form has level N = 420 and χ = (105

· ). By

direct computation, we obtain the bound
Cf

CE
< 177.03. We find that this form has 11,765

eligible primes, which leads to 4, 265, 930 square-free numbers to check. The largest of these
is 2·3·5·7·11 · · · 31 ≈ 2×1011. The split local cover is Q′ = 5x2⊕T where T = y2+3z2+7w2.
By computing the first 107 coefficients of the ternary theta function, we find that the Kneser
form represents all positive integers except 2 and 22.

6.6 Types of escalator lattices

From the arithmetic, analytic, and computational methods, we can determine precisely which
integers are represented by each of the basic four-dimensional escalators. It follows that these
6560 escalator lattices L can be divided into three types:

• Type I: L is universal.
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• Type II: L is not universal but does not represent at most three positive integers, each of
which appears on the critical integers list.

• Type III: L is not locally universal, but is regular, and represents all integers not of the
form 4a(16k + 14).

Of the 6560 basic four-dimensional escalators, 6402 of them are of Type I, 153 are of
Type II, and 5 are of Type III.

6.7 Higher dimensional escalators

6.7.1 Higher escalator

We call any escalator resulting from a sequence of escalations of some basic four-dimensional
escalator a higher escalator. We note that any basic escalator of Type II will become
universal in at most three escalations steps. Therefore, we need to consider only the higher
escalators from the basic quaternary escalators of Type III, whose Gram matrices are: 1 0 1/2 −3

0 2 1 0
−1/2 1 5 1
−3 0 1 10

 ,

 1 0 −1/2 −2
0 2 1 −2
−1/2 1 5 3
−2 −2 3 10

 ,

 1 0 −1/2 −2
0 2 1 −2
−1/2 1 5 1
−2 −2 1 10

 ,

 1 0 −1/2 −1
0 2 1 0
−1/2 1 5 3
−1 0 3 10

 ,

 1 0 −1/2 −1
0 2 1 0
−1/2 1 5 1
−1 0 2 10

 .

Each of these forms has truant 14, and arises as an escalation of the three dimensional

escalator L3 given by

 1 0 1/2
0 2 1

1/2 1 5

 which has truant 10.

The escalations of these five basic escalators lead to 14221 higher escalators, each of
which has dimension four or five. Each of these escalators are obtained by escalating L3 first
by a vector of norm 10 and then by a vector of norm 14. These two operations commute
clearly, and we consider switching the order of the operations (“10-14 switch”). The lattices
generated by L3 and a vector of norm 14 are 330 quaternary forms in total, which we call the
auxiliary quaternaries. Any of the 14221 higher escalators mentioned above must contain
one of these 330 auxiliary quaternaries.

It turns out that 226 of the 330 auxiliary quaternary forms already occurred among the
6555 basic four-dimensional escalators of Type I or II. For the remaining 104 auxiliary qua-
ternaries, we apply the analytic method discussed in Section 6.4 and find that each of the
104 forms L is either of Type I, Type II, or of

• Type IV: L represents all integers except perhaps for those of the form 10n2 and 13n2.
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6.7.2 Summary

It can be concluded that it is not possible to escalate the zero lattice more than seven times.

Proposition 6.3. The zero lattice can be escalated at most seven times, and therefore there
is no escalator of dimension greater than seven.

Since any lattice will have at most finitely many escalations by Cauchy-Schwartz inequal-
ity, there are only finitely many escalator lattices. Investigating the list of possible integers
not represented by the basic quaternary escalators and by the auxiliary quaternaries shows
that any escalator has a truant contained in the set of 29 critical integers. Therefore, we
have the following proposition:

Proposition 6.4. There are only finitely many escalator lattices, each of which is either
universal, or has truant which is contained in the list of 29 critical integers.

6.8 The Proof of the 290-Theorem

Proof of Theorem 2.6. We first claim that
(i) Any universal lattice L must contain a universal escalator,
(ii) The truant of a nonuniversal lattice L must be the truant of some nonuniversal escalator.

If L is universal, then we can construct within L a sequence of escalation {0} ⊂ L1 ⊂
L2 ⊂ · · · . In at most seven steps, we get a universal escalator by Proposition 6.3. This
proves (i). Similarly, given a nonuniversal lattice L, by constructing a maximal escalation
sequence {0} ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Lk (k ≤ 7) within L, we see that truant(L) = truant(Lk).
This proves (ii).

Now the theorem follows by Proposition 6.4.

Proof of Theorem 2.7. We first show that for every critical integer t, there exists an escala-
tor lattice L such that truant(L) = t. The truant 1 occurs for the zero lattice, the truant 2 for
the one-dimensional escalator, and each of the truant 3 and 5 arises in one of the three two-
dimensional escalators. The truants that occur for the 34 three-dimensional escalators are
5, 6, 7, 10, 13, 14, 17, 21, 22, 23, 29, 31, and the truants that arise for the basic four-dimensional
escalators are 10, 13, 14, 15, 19, 21, 23, 26, 30, 34, 35, 37, 42, 58, 93, 110, and 145.

The five-dimensional escalator lattice 1 0 −1/2
0 2 −1/2
−1/2 −1/2 4

⊕ (29)⊕ (145)

has truant 290. Let

L145 :=

 1 0 −1/2
0 2 −1/2
−1/2 −1/2 4

⊕ (29)

The only square multiples of 58 less than 209 are 0 and 58, and L145 represents neither 203
nor 145. Therefore, L203 := L145 ⊕ (58) does not represent 203. Since L145 has truant 145,
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L203 represents {0, . . . , 144} ∪ {0 + 58, . . . , 144 + 58} = {0, . . . , 202}. Thus, L203 has truant
203.

L203 contains a vector ~v of norm 145. Thus, the lattice L′203 generated by L145 and ~v in
L203 is an escalator with truant 203. Thus, every critical integer t occurs as the truant of
some escalator.

Now, given any critical integer t, let L be an escalator with truant t. Consider the lattice
L′ := L⊕ (t+ 1)⊕4⊕ (2t+ 1). L′ does not represent t clearly, and by universality of the form
x2 + y2 + z2 +w2, it represents all multiples of (t+ 1). Since t+ (t+ 1) = 2t+ 1, all numbers
greater than t is represented by L′ by the division algorithm (dividing by t + 1). Thus, L′

represents all positive integers except for t, which proves the theorem.

Proof of Theorem 2.8. Any escalator lattice L having truant 290 must arise by a sequence
of escalations of the escalator L145, which fails to represent only the three integers 145, 203,
and 290. Any such L having truant 290 represents every positive integer greater than 290,
and the theorem is proved.

Proof of Theorem 2.9. From the discussion in the proof of Theorem 2.7, we note that
a universal quaternary form must have successive minima that are smaller than 1, 2, 5, and
31 respectively. Applying the 290-Theorem to all Minkowski-reduced quaternary quadratic
forms having such successive minima, we get the desired result.

7 Conclusion

The 15-Theorem and 290-Theorem give the complete answer for the universal quadratic
form problem. For any given quadratic form, we can apply either the 15-theorem or the
290-theorem (depending on whether the form has integer-matrix or it is integer-valued)
to determine whether it is universal. The two theorems further give the complete list of
universal quaternary forms, which concludes the study of the universal quadratic forms.
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