CATALOGUE OF HONG KONG TUNNELS
 (Up to February 2019)

Mainland East Division
Geotechnical Engineering Office
Civil Engineering and Development Department

FOREWORD

This document contains a catalogue of existing tunnels and tunnels currently under construction in Hong Kong. It is based on a literature review of published information as well as information obtained from various government departments, the MTR Corporation, the former Kowloon Canton Railway Corporation, the Airport Authority Hong Kong, Hongkong Electric Company Limited, CLP Power Hong Kong Limited, and The Hong Kong and China Gas Company Limited. This catalogue is a live document that will be updated from time to time as further information becomes available.

The main purpose of the catalogue is to disseminate available information on tunnels/caverns. A few significant cable duct and gas pipe crossings constructed using tunnelling methods such as horizontal directional drilling and pipe jacking have also been included. It is hoped that this catalogue and, in particular, the associated references, will prove to be a useful source of information for civil and geotechnical engineers when planning, investigating, designing and constructing new tunnel projects.

Staff from the Mainland East Division of this Office compiled the catalogue. Apart from other GEO colleagues, the project clients and the works agents, members of the Hong Kong Institution of Engineers Geotechnical Division Working Group on Cavern and Tunnel Engineering and other individuals have also provided useful information. All contributions are gratefully acknowledged.

The user of this catalogue is entirely responsible for verifying the accuracy and relevance of the information presented. If any information in this catalogue is found to be inaccurate or out-of-date, please contact the Chief Geotechnical Engineer/Mainland East of the Geotechnical Engineering Office, Civil Engineering and Development Department, 101 Princess Margaret Road, Ho Man Tin, Kowloon, Hong Kong.

Sammy P Y Cheung
Chief Geotechnical Engineer/Mainland East

February 2019

CONTENTS

Page

Title Page
FOREWORD
CONTENTS

Table 1: Road Tunnels 4
Table 2: Railway Tunnels (including associated underground facilities) - MTRC (including ex-KCRC) Tunnels 8
Table 3: Water Supply Tunnels 20
Table 4: Drainage and Sewage Tunnels 26
Table 5: Cable and Other Tunnels 35
REFERENCES 41

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Table 1 : Road Tunnels						
Route 1 - First Lion Rock Tunnel (dual 2-lane road, carrying 3 water mains)	1967	1.4 km	9.0 m span max. x 9.2 m high internally horseshoe shaped	Drill \& blast, with a five-drill jumbo, steel girder roof supports near the Kowloon Portal, concrete lining	Granite, with a maximum overburden of 258 m , fault breccias (fractured rocks, mylonites and gouge) up to 6 m wide (possibly associated with the injection of the Maryknoll ring dyke), minor water inflow, air temperature in tunnel 61-78 degrees F	Payne (1962), Davis (1963), Payne (1963), Phillips (1990)
Route 1 - Cross Harbour Tunnel (dual 2-lane, the first immersed tube tunnel in HK)	1972	1.9 km (twin tubes)	Twin circular section of approx. 10.5 m dia. connected with transverse steel diaphragms	Immersed tube (steel tube with reinforced concrete lining)	Tunnel section under the sea supported by a screed of crushed stone on the seabed and protected by a backfilled blanket of coarse stone	Asian Building \& Construction (1976), Pratt (1987), Yang et al (2006)
Route 1 - Second Lion Rock Tunnel (dual 2-lane road, carrying 2 water mains)	1978	1.4 km	9.0 m span max. x 9.5 m high internally horseshoe shaped	Drill \& blast, concrete lining	Similar to first Lion Rock Tunnel	Phillips (1990)
Route 1 - Aberdeen Tunnel (dual 2-lane)	1982	1.9 km (twin tubes)	10.0 m span x 11.0 m high horseshoe shaped	Drill \& blast (pilot tunnel constructed), lining 0.61 m thick min.	1.55 km weathered to fresh granite; 250 m volcanic rock including 50 m weathered quartz monzonite; groundwater problems near the ground surface at portal area	Chappell \& Tonge (1975; 1976), Twist \& Tonge (1979), Cochrane (1984)
Route 5 - Kai Tak Tunnel (dual 2lane)	1982	1.25 km	27.7 m x 14.6 m reinforced concrete box sections	Cut \& cover	Reclaimed land, with old seawall, groundwater level similar to tide level in the harbour	Tunnels \& Tunnelling (1972)
Route 2 - Eastern Harbour Crossing Tunnel (the only cross- harbour tunnel with road and rail, dual 2-lane road, 2 MTR tracks) (first concrete immersed tube tunnel in HK)	1989	2.25 km (1.86 km of immersed tube tunnel (15 nos of segments) and 0.39 km of cut \& cover approach tunnels)	35.45 m x 9.75 m high box sections	Immersed tube (concrete)	Tunnel sections on alluvial deposits or sand fill within a dredged trench in the seabed	$\begin{aligned} & \text { Matson (1987), Taylor (1990), } \\ & \text { Yang et al (2006) } \end{aligned}$

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Route 7 - Tseung Kwan O Tunnel (formerly known as Junk Bay Tunnel, dual 2-lane)	1990	0.9 km (twin tunnels)	10.85 m span x 7.59 m high horseshoe shaped twin tube	700 m drill \& blast, 200 m cut \& cover	Strong to very strong volcanic tuff with close to widely spaced joint, water head to tunnel $30-60 \mathrm{~m}$	Matson (1984), Matson \& Robinson (1984)
Route 9 - Shing Mun Tunnel (dual 2-lane)	1990	2.6 km (twin tunnels)	10 m span x 7.8 m high oval shaped	Drill \& blast	Grades I-V fine- to coarse-grained granite	Highways Department (1987), Bergfors \& Coates (1990), Larkin (1990), Torpey \& Larkin (1990), Torpey \& Hawley (1991)
Route 2 - Tate's Cairn Tunnel (dual 2-lane, the longest twin tube road tunnel in HK)	1991	4 km tunnel (0.54 km \& 0.38 km north \& south ventilation adits respectively) (twin tunnels)	11 m span x 8.5 m high horseshoe shaped twin tube tunnel	Drill \& blast	Medium- to coarse-grained granite, intrusive feldspar porphyries with faults, generally none to minor water inflow, cumulative flow at portals of about 480 $1 / \mathrm{min}$.	Martin (1989), World Tunnelling (1989), Matson \& Porter (1990), McFeat-Smith et al (1999)
Airport Authority Hong Kong Vehicular Tunnels	1996	0.7 km for east tunnel and 0.7 km for west tunnel	Rectangular triple tube tunnel (two tubes for vehicles, one for utilities), overall dimensions 25-26 m wide x 8 m high	Cut \& cover, cast in situ reinforced concrete, tunnel crown at approximately 2.5 m below ground level.	Reclaimed land comprising mainly fill of granitic origin, some areas in rockfill, groundwater at about 5 m below ground level	
Route 3 - Cheung Tsing Tunnel (formerly known as Cheung Ching Tunnel, the first dual 3-lane highway tunnel in HK)	1997	1.6 km (twin tunnels)	17 m span x 10 m high horseshoe shaped twin tube tunnel and rectangular cut \& cover end sections	1.5 km twin tube tunnel by drill \& blast (first time full-face blasting for a 3-lane road tunnel in HK), with two end sections of cut \& cover reinforced concrete tunnel at both portals	Approx. 300 m of grade II volcanics near the west portal, medium- to fine-grained grades I-IV granite for the remaining bore, with no or minor water inflow	Tunnels \& Tunnelling (1994), Wong (1994), McFeat-Smith (1996), McFeat-Smith et al (1999)
Route 3 - Western Harbour Crossing Tunnel (dual 3-lane)	1997	1.95 km comprising 1.34 km immersed tube tunnel (12 nos of segments) and 0.61 km cut \& cover approach tunnels	33.4 m x 8.02 m high box sections	Immersed tube (concrete)	Tunnel sections on alluvial deposits or sand fill within a dredged trench in the seabed	Silva et al (1998), Yang et al (2006)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Route 3 Country Park Section - Tai Lam Tunnel (dual 3-lane)	1998	3.8 km tunnel (0.9 km ventilation adits) (twin tunnels)	15.2 m span x 10.4 m high twin tube tunnel, 14.1 m span x 9.9 m high adits	Drill \& blast, computer-controlled drilling jumbos used for the first time in HK (Central Diaphragm Wall Method for soft ground excavation at north portal), only limited groundwater control carried out	Grades I-IV fine-grained granite (50 m grade V granite at north portal), encountered 20m faults (Ho Pui Reservoir Fault and Sham Tseng Fault) with highest water inflow of $400 \mathrm{l} / \mathrm{min}$.	$\begin{aligned} & \text { Endicott et al (2000), Sjostrom } \\ & \text { (2004), GEO (2007) } \end{aligned}$
Discovery Bay Tunnel (privately developed and operated)	2000	0.6 km	14 m span x 10 m high	Drill \& blast	Granite	
Ma On Shan Underpass (Trunk Road T7 Project)	2004	0.2 km (twin tunnels)	$\begin{aligned} & 12 \mathrm{~m} / 16 \mathrm{~m} \text { span x } 10 \mathrm{~m} \\ & \text { high } \end{aligned}$	Drill \& blast	Weak, altered and metamorphosed mudstone/siltstone, grades 1-III granite, natural stream courses above tunnel	Yang et al (2003), Ho \& Li (2006)
Route 8 - Eagle's Nest Tunnel (dual 3-lane)	2007	2.1 km (twin tunnels)	$17 \mathrm{~m} / 19 \mathrm{~m}$ span x 11 m high	Drill \& blast	Grades I-V granite, rhoyolite dykes	Green et al (2006), Leung et al (2006), Lo \& Cheuk (2006)
Route 8 - Sha Tin Heights Tunnel (dual 3-lane)	2007	0.9 km (twin tunnels)	17 m widened to 19 m x 11 m high horseshoeshaped tunnel	Drill \& blast	Granite, with occasional basalt dykes	Murfitt \& Siu (2006a \& b), Murfitt et al (2006a \& b), GEO (2007)
Route 8 - Nam Wan Tunnel (dual 3-lane)	2007	1.25 km (twin tunnels)	16 m span x 10 m high	Drill \& blast	Grades I-V granite, grades I-IV rhyolite	
Central-Wan Chai Bypass and Island Eastern Corridor Link	2018	3.7 km (single tunnel)	45 m span x 14 m high	Mined tunnel and cut \& cover tunnel with pipe piles wall and diaphragm wall	Mainly granite, groundwater level similar to tide level in the harbour	
Hong Kong-Zhuhai-Macao Bridge (HZMB) - Hong Kong Link Road	2018	1.2 km (twin tunnels)	$\begin{aligned} & 20 \mathrm{~m} \text { span x } 10 \mathrm{~m} \text { high } \\ & (16 \mathrm{~m} \text { span x } 10 \mathrm{~m} \\ & \text { high }) \end{aligned}$	Sub-horizontal pipe piles, Cut \& cover and non-blasting method (e.g. mechanical excavation)	Fine to medium-grained granite.	Quanke et al (2011), Olsen et al (2011)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Tuen Mun - Chek Lap Kok Link	Construction in progress*	5.7 km	12.4 m - 15.6 m dia.	TBM tunnelling, cut \& cover	Subsea tunnel through marine clay, alluvium, CDG and M/SDG	
Liantang / Heung Yuen Wai Crossboundary Check Point and Associated Connecting Roads in Hong Kong	Tunnelling works substantially completed*	2 twin tunnels namely Lung Shan and Cheung Shan tunnels with total length of about 5.6 km	14 m \& 17 m dia.	EPB TBM (14 m dia.) and drill \& blast (17 m dia.)	Volcanic rock, groundwater table at various depths	
Central Kowloon Route	Construction in progress*	3.9 km (twin tunnels)	15 m span	Drill \& blast, cut \& cover,	Granitic rock, groundwater table at various depths	
Tseung Kwan O - Lam Tin Tunnel	Construction in progress*	2.6 km	Twin 25 m wide elliptical	Drill \& blast	Volcanic rock, granitic rock, marine clay, alluvium	Tsang et al (2010), Tam et al (2012)
Kai Tak Development - Trunk Road T2	Construction in progress *	2.1 km (twin tunnels)	13.2 m dia.	Slurry TBM, cut \& cover	Alluvium, C/HDG and M/SDG	

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Table 2 : Railway Tunnels (including associated underground facilities) - MTRC (including ex-KCRC) Tunnels						
$\begin{aligned} & \hline \text { KCR Beacon Hill Tunnel (First) } \\ & \text { (single lane tunnel of standard } \\ & \text { gauge) } \end{aligned}$	1910	2.2 km	5.2 m int. width x 5.8 m high above rail level horseshoe shaped	Drill \& blast, using gelatine and electric fuse firing, brick lining (portals and lining 30 m from the face at either end were built of granite in ashlar work), up to 427 m below ground surface	Granite, quartz felsite, felsite and diorite, water inflow up to $2,700 \mathrm{l} / \mathrm{min}$.	Eves (1908, 1911)
Modified Initial System Tunnels MTRC Contract 103: CrossHarbour Tunnel	1980	1.4 km	Immersed tube	Immersed tube	Fill, marine deposits, alluvium, grades I- V granite, with corestone	Yang et al (2006)
Modified Initial System Tunnels MTRC Contract 106: Central \& Admiralty	1980	0.8 km	-	Cut \& cover stations using diaphragm walling	Fill, marine deposits, alluvium, grades I- V granite, with corestone	Haswell \& Umney (1978), Edwards et al (1980)
Modified Initial System Tunnels MTRC Contract 107: Mong Kok to Yau Ma Tei \& Prince Edward to Mong Kok	1980	0.8 km	4.9-5.0 m ID SGI \& PCC, 11.6 m crossover chambers	Bored tunnels under compressed air with precast concrete segmental lining	Fill, marine deposits, alluvium, grades IV granite, with corestone	Endicott (1980), Haswell et al (1980), McIntosh et al (1980)
Modified Initial System Tunnels MTRC Contract 108: Yau Ma Tei to Jordan \& Jordon to TST	1980	1.2 km	4.9-5.0 m ID SGI \& PCC, 11.6 m crossover chambers	- bored tunnels - bored tunnels under compressed air with precast concrete segmental and in situ lining	Fill, marine deposits, alluvium, grades I- V granite, with corestone	Endicott (1980), Haswell et al (1980), McIntosh et al (1980)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Modified Initial System Tunnels MTRC Contract 109: Central to Admiralty and connections to Immersed tube at each side of harbour	1980	1.0 km	$\begin{array}{\|l\|} \hline 4.9-5.0 \mathrm{~m} \text { ID SGI \& } \\ \text { PCC, } 11.6 \mathrm{~m} \text { crossover } \end{array}$ chambers	- cut \& cover - bored tunnels - bored tunnels under compressed air with precast concrete segmental and in situ lining	Fill, marine deposits, alluvium, grades IV granite, with corestone	Endicott (1980), Haswell et al (1980), McIntosh et al (1980)
Modified Initial System Tunnels MTRC Contract 101: Prince Edward to Yau Ma Tei	1980	1.4 km	$\begin{array}{\|l\|} \hline 4.9-5.0 \mathrm{~m} \text { ID SGI \& } \\ \text { PCC, } 11.6 \mathrm{~m} \text { crossover } \\ \text { chambers } \end{array}$	Cut \& cover stations using: secant piling, sheet piling, packed-in-place piling	Fill, marine deposits, alluvium, grades IV granite, with corestones	Haswell \& Umney (1978), Edwards et al (1980), Endicott (1980), Haswell et al (1980), McIntosh et al (1980)
Modified Initial System Tunnels MTRC Contract 102: Jordon \& TST	1980	0.6 km	-	Cut \& cover stations using packed-in-place piles	Fill, marine deposits, alluvium, grades I- V granite, with corestones	Haswell \& Umney (1978), Edwards et al (1980), Endicott (1980), Haswell et al (1980), McIntosh et al (1980)
Modified Initial System Tunnels MTRC Contract 201: Lok Fu to Wong Tai Sin an Wong Tai Sin to Diamond Hill	1980	1.5 km	4.9-5.0 m ID SGI \& PCC, 11.6 m crossover chambers	Bored tunnels in free and compressed air with precast concrete lining. Station by cut \& cover using soldier piles	Fill, marine deposits, alluvium, grades IV granite, with corestone	Haswell \& Umney (1978), Edwards et al (1980), Endicott (1980), Haswell et al (1980), McIntosh et al (1980)
Modified Initial System Tunnels Contract 202: Prince Edward to Shek Kip Mei	1980	0.7 km	$\begin{array}{\|l\|} \hline 4.9-5.0 \mathrm{~m} \text { ID SGI \& } \\ \text { PCC, } 11.6 \mathrm{~m} \text { crossover } \\ \text { chambers } \end{array}$	Cut \& cover tunnels plus bored tunnels with precast and in situ concrete lining. Station by cut \& cover using soldier piles	Fill, marine deposits, alluvium, grades IV granite, with corestone	Haswell \& Umney (1978), Edwards et al (1980), Endicott (1980), Haswell et al (1980), McIntosh et al (1980)
Modified Initial System Tunnels MTRC Contract 203: Shek Kip Mei to Kowloon Tong and Kowloon Tong to Lok Fu	1980	1.7 km	$\begin{array}{\|l\|} \hline 4.9-5.0 \mathrm{~m} \text { ID SGI \& } \\ \text { PCC, } 11.6 \mathrm{~m} \text { crossover } \end{array}$ chambers	Bored tunnel with in situ concrete lining	Fill, marine deposits, alluvium, grades IV granite, with corestone	Haswell \& Umney (1978), Edwards et al (1980), Endicott (1980), Haswell et al (1980), McIntosh et al (1980)
Modified Initial System Tunnels MTRC Contract 205: Kowloon Tong	1980	0.3 km	Station box	Station by cut \& cover using diaphragm walling and soldier piles	Fill, marine deposits, alluvium, grades I- V granite, with corestone	Haswell \& Umney (1978), Edwards et al (1980), Endicott (1980), Haswell et al (1980), McIntosh et al (1980)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Modified Initial System Tunnels MTRC Contract 206: Choi Hung	1980	0.4 km	Station box	Station by cut \& cover using king piles	Fill, marine deposits, alluvium, grades IV granite, with corestone	Haswell \& Umney (1978), Edwards et al (1980), Endicott (1980), Haswell et al (1980), McIntosh et al (1980)
Modified Initial System Tunnels MTRC Contract 207: Diamond Hill	1980	0.3 km	Station box	Station by cut \& cover using king piles	Fill, marine deposits, alluvium, grades I- V granite, with corestone	Haswell \& Umney (1978), Edwards et al (1980), Endicott (1980), Haswell et al (1980), McIntosh et al (1980)
Modified Initial System Tunnels MTRC Contract 208: Choi Hung to Kowloon Bay	1980	0.7 km	4.9-5.0 m ID SGI \& PCC, 11.6 m crossover chambers	Bored tunnels with SGI and in situ lining	Fill, marine deposits, alluvium, grades IV granite, with corestone	Haswell \& Umney (1978), Edwards et al (1980), Endicott (1980), Haswell et al (1980), McIntosh et al (1980)
Modified Initial System Tunnels MTRC Contract 209: Diamond Hill to Choi Hung	1980	0.7 km	4.9-5.9 m ID SGI and in situ	Cut \& cover tunnel with sheet piles	Fill, marine deposits, alluvium, grades IV granite, with corestone	Haswell \& Umney (1978), Edwards et al (1980), Endicott (1980), Haswell et al (1980), McIntosh et al (1980)
KCR Beacon Hill Tunnel (Second) ($30-40 \mathrm{~m}$ to the side of the first KCR Beacon Hill Tunnel)	1981	2.3 km	11.1 m span x 9.0 m high horseshoe shaped	Drill \& blast, pilot method adopted (two side pilot tunnels of 3 mx 4 m were excavated, and fitted with steel arches and reinforced concrete walls up to 300-500 mm thick which later became part of the lining)Messer Method used to place steel ribs (being jacked forward in stages in soft ground at the faces before excavation), rock bolts used extensively	As above,with fractured zones and water inflow in places	Parrott (1980)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Tsuen Wan Extension Tunnels MTRC Contract 301: Prince Edward to Cheung Sha Wan	1982	1.7 km	5.1-6.4 m ID SGI \& PCC, 11.6 m crossover chambers	Tunnels: bored under compressed air with SGI and precast concrete segments hand-excavated within open shield, cut \& cover. Underground stations using cut \& cover via: pack-in-piling, diaphragm walling, sheet piling, secant piling	Fill, marine deposits, alluvium, grades I- V granite, with corestones	Cater et al (1984) MTRC asbuilt drawings
Tsuen Wan Extension Tunnels MTRC Contract 302: Cheung Sha Wan to Mei Foo	1982	2.1 km	5.1-6.4 m ID SGI \& PCC, 11.6 m crossover chambers	Tunnels: bored under compressed air with SGI and precast concrete segments hand-excavated within open shield, cut \& cover. Underground stations using cut \& cover via: pack-in-piling, diaphragm walling, sheet piling, secant piling	Fill, marine deposits, alluvium, grades IV granite, with corestones	Cater et al (1984) MTRC asbuilt drawings
Tsuen Wan Extension Tunnels MTRC Contract 303: Mei Foo to Lai King	1982	1.4 km	5.1-6.4 m ID SGI \& PCC, 11.6 m crossover chambers	Tunnels: bored under compressed air with SGI and precast concrete segments hand-excavated within open shield, cut \& cover. Underground stations using cut \& cover via: pack-in-piling, diaphragm walling, sheet piling, secant piling	Fill, marine deposits, alluvium, grades IV granite, with corestones	Cater et al (1984) MTRC asbuilt drawings
Tsuen Wan Extension Tunnels MTRC Contract 305: Kwai Hing to Tsuen Wan	1982	1.6 km	5.1-6.4 m ID SGI \& PCC, 11.6 m crossover chambers	Tunnels: bored under compressed air with SGI and precast concrete segments hand-excavated within open shield, cut \& cover. Underground stations using cut \& cover via: pack-in-piling, diaphragm walling, sheet piling, secant piling	Fill, marine deposits, alluvium, grades I- V granite, with corestones	Cater et al (1984) MTRC asbuilt drawings

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Tsuen Wan Extension Tunnels MTRC Contract 307 \& 308: Tsuen Wan and Tsuen Wan Depot	1982	0.3 km	5.1-6.4 m ID SGI \& PCC, 11.6 m crossover chambers	Tunnels: bored under compressed air with SGI and precast concrete segments hand-excavated within open shield, cut \& cover. Underground stations using cut \& cover via: pack-in-piling, diaphragm walling, sheet piling, secant piling	Fill, marine deposits, alluvium, grades I- V granite, with corestones	Cater et al (1984) MTRC asbuilt drawings
Island Line Tunnels Contract 401: Sheung Wan	1986	0.04 km		Cut \& cover using diaphragm walling	Fill, marine deposits, alluvium, grades IIV granite, with corestones, below old jetties and seawalls, near to many old buildings on timber piles (in one contract it was necessary to remove lower ends of piles)	Caiden et al (1986), Thorley et al (1986), Sharp at al (1986), GEO (2007)
Island Line Tunnels Contract 402: Sheung Wan \& overrun tunnels	1986	0.8 km	$\begin{aligned} & \text { 5.3-8.9 m ID SGI \& } \\ & \text { PCC } \end{aligned}$	Tunnels: bored tunnel using compressed air Station: diaphragm walling	Fill, marine deposits, alluvium, grades IIV granite, with corestones, below old jetties and seawalls, near to many old buildings on timber piles (in one contract it was necessary to remove lower ends of piles)	Caiden et al (1986), Thorley et al (1986), Sharp at al (1986), GEO (2007)
Island Line Tunnels Contract 403: Sheung Wan to Admiralty	1986	1.3 km	5.3-7.6 m ID SGI \& PCC	Tunnels: bored tunnel using compressed air using segmental lining Station: diaphragm walling	Fill, marine deposits, alluvium, grades IIV granite, with corestones, below old jetties and seawalls, near to many old buildings on timber piles (in one contract it was necessary to remove lower ends of piles)	Caiden et al (1986), Thorley et al (1986), Sharp at al (1986), GEO (2007)
Island Line Tunnels Contract 404: Admiralty to Causeway Bay	1986	2 km	$\begin{aligned} & \text { 5.1-7.6 m ID SGI \& } \\ & \text { PCC } \end{aligned}$	Tunnels: bored tunnel using compressed air using segmental lining Station: diaphragm walling	Fill, marine deposits, alluvium, grades IIV granite, with corestones, below old jetties and seawalls, near to many old buildings on timber piles (in one contract it was necessary to remove lower ends of piles)	Caiden et al (1986), Thorley et al (1986), Sharp at al (1986), GEO (2007)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Island Line Tunnels Contract 405: Causeway Bay to Tin Hau	1986	2 km	5.3-7.6 m ID SGI \& PCC	Tunnels: bored tunnel using compressed air using segmental and cast in situ lining Station: diaphragm and caisson walling	Fill, marine deposits, alluvium, grades IIV granite, with corestones, below old jetties and seawalls, near to many old buildings on timber piles (in one contract it was necessary to remove lower ends of piles)	Caiden et al (1986), Thorley et al (1986), Sharp at al (1986), GEO (2007)
Island Line Tunnels Contract 406: Tin Hau to North Point	1986	1.3 km	5.1-7.6 m ID in situ	Tunnels: bored tunnel and cast in situ lining Station: bored tunnel	Fill, marine deposits, alluvium, grades IIV granite, with corestones, below old jetties and seawalls, near to many old buildings on timber piles (in one contract it was necessary to remove lower ends of piles)	Caiden et al (1986), Thorley et al (1986), Sharp at al (1986), GEO (2007)
Island Line Tunnels Contract 407: North Point to Tai Koo	1986	1.8 km	5.1-7.6 m ID in situ	Tunnels: bored tunnel and cast in situ lining Station: cut \& cover \& bored	Fill, marine deposits, alluvium, grades IIV granite, with corestones, below old jetties and seawalls, near to many old buildings on timber piles (in one contract it was necessary to remove lower ends of piles)	Caiden et al (1986), Thorley et al (1986), Sharp at al (1986), GEO (2007)
Island Line Tunnels Contract 408: Tai Koo to Sai Wan Ho	1986	0.9 km	5.1-7.6 m ID in situ	Tunnels: bored tunnel and cast in situ lining Station: bored cavern	Fill, marine deposits, alluvium, grades IIV granite, with corestones, below old jetties and seawalls, near to many old buildings on timber piles (in one contract it was necessary to remove lower ends of piles)	Caiden et al (1986), Thorley et al (1986), Sharp at al (1986), GEO (2007)
Island Line Tunnels Contract 409: Sai Wan Ho to Shau Kei Wan	1986	0.5 km	5.1-7.6 m ID in situ	Cut \& cover using bored piles and hand-dug caissons	Fill, marine deposits, alluvium, grades IIV granite, with corestones, below old jetties and seawalls, near to many old buildings on timber piles (in one contract it was necessary to remove lower ends of piles)	Caiden et al (1986), Thorley et al (1986), Sharp at al (1986), GEO (2007)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Island Line Tunnels Contract 410: Shau Kei Wan to Heng Fa Chuen	1986	0.8 km	5.1-7.6 m ID in situ	Tunnels: bored tunnel and cast in situ lining	Fill, marine deposits, alluvium, grades IIV granite, with corestones, below old jetties and seawalls, near to many old buildings on timber piles (in one contract it was necessary to remove lower ends of piles)	Caiden et al (1986), Thorley et al (1986), Sharp at al (1986), GEO (2007)
Island Line Tunnels Contract 414: Sai Wan Ho to Shau Kei Wan	1986	1.0 km	5.1-7.6 m ID in situ	Tunnels: bored tunnel and cast in situ lining Station: diaphragm walling	Fill, marine deposits, alluvium, grades IIV granite, with corestones, below old jetties and seawalls, near to many old buildings on timber piles (in one contract it was necessary to remove lower ends of piles)	Caiden et al (1986), Thorley et al (1986), Sharp at al (1986), GEO (2007)
Island Line Tunnels Eastern Harbour Crossing \& Approach Tunnels (Contracts C1, C2 \& C3)	1989	3.6 km	5.1-7.6 m ID arch rail / road immersed tube	Drill \& blast, immersed tube		Yang et al (2006)
Island Line Tunnels Queensway Tunnel (Admiralty to Pacific Place)	1990	53 m	8.3 m dia. horseshoe shaped	Drill \& blast section from south sides and north side of Queensway via shafts sunk on footpath. Ribs and laggings main form of support together with shotcreteing and spot bolting		
Island Line Tunnels Quarry Bay Improvement Works	1997	Not available		Robbins vertical raise-borer and hand-excavation for passenger adits and staircases and chemical expansion grouts	Grades I-II granite	Law \& Keller (1999)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Lantau and Airport Railway Tunnels Contract No. 508: Lai King Tunnels	1998	0.9 km	5.4 m int. width horseshoe shaped, 1012 m wide x 6 m high box structure, 12.4 m wide x 7.7 m high	Drill \& blast, cast in situ lining, cut \& cover	Grades I-IV granite, rhyolite, tuff	Hardingham et al (1998), Morris et al (1992)
Lantau and Airport Railway Tunnels Contract No. 512: Tsing Yi Tunnels	1998	1.66 km	Horseshoe	Drill \& blast, shotcrete with rockbolts and steel arches and cast in situ lining	Grades I-IV volcanic rock with granodiorite dyke	Züblin (2007)
Lantau and Airport Railway Tunnels Contract No. 514: East Lantau Tunnels	1998	1.0 km	Horseshoe	Drill \& blast, shotcrete with rockbolts and steel arches and cast in situ lining	Grades I-IV granite, rhyolite, tuff	
Lantau and Airport Railway Tunnels Contract No. 501A: Central Subway	1998	265 m	$90 \mathrm{~m}^{2}$ box section	Pedestrian cut \& cover tunnels	Reclaimed land	Atkins (2007), Bayliss (1998)
Lantau and Airport Railway Tunnels Contract No. 502: Immersed Tube	1998	1.3 km	125 m x 12 m x 8 m	Twin bore immersed tube		Yang et al (2006)
Lantau and Airport Railway Tunnels Contract No. 503B \& 504: Cut \& cover sections	1998	$500 \mathrm{~m} ; 950 \mathrm{~m}$		4 cellular cut \& cover cast in situ box tunnel	Reclaimed land	
Quarry Bay Congestion Relief Tunnels	2001	Two 2.2 km twin running tunnels, two 0.3 km platform tunnels, cross-over cavern and 70 m deep shafts	6.2 m dia. running tunnels, 10 m span platform tunnels, 20 m span crossover cavern at Fortress Hill	Two hard rock Robbins TBMs, drill \& blast for platform, crossover and niches and hand-excavation for passenger adits and turnout chamber. Shotcrete and rock bolts, chemical expansion grouts and nonexplosive method (Sunburst, which involves use of small cartridges containing explosives and gas) for splitting the rock at vibrationsensitive areas	Grades I-III granite	Tam (1998), Cooper et al (2001), Tam (2001), Yang et al (2005), GEO (2007)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Tseung Kwan O Extension - Black Hill Tunnels	2002	8.0 km	6.3 m dia.	Drill \& blast, shotcrete, steel ribs to support weak zones, unreinforced cast in situ lining 250 mm thick min., small sections of cut \& cover (four single lane tunnels, from Yau Tong to Tiu Keng Leng)	Granite, some volcanic tuff, maximum depth of 180 m below ground level	Tunnels \& Tunnelling International (1999; 2002)
Tseung Kwan O Extension - Pak Shing Kok Tunnels	2002	6.4 km	6.3 m dia. Tunnels, 23 m span x 10 m high cavern	Drill \& blast, shotcrete, steel ribs, rockbolts, unreinforced cast in situ lining 250 mm thick min.	Strong volcanic tuff, highly fractured, low rock cover at fault zone, with highest water head above tunnel of 30 m	Tunnels \& Tunnelling International (1999), Lo et al $(2001 \mathrm{a})$, GEO (2007)
Tseung Kwan O Extension - Lam Tin to Eastern Harbour Crossing Tunnels	2002	1.2 km	6.3 m dia.	Drill \& blast, Cut \& cover for approach tunnels	Granite, Fill, marine clay, alluvium grades III-V tuff, 30 m from seawall in marine clay	$\begin{array}{\|l} \hline \text { Ho et al (2001), Pan et al } \\ (2001) \text {, Hill et al (2002), } \\ \text { Wightman \& Cheung (2002) } \end{array}$
West Rail Tunnels (ex-KCRC) Tai Lam Tunnel (single tube, twin/triple track tunnel with centre partition wall)	2003	(a) 5.5 km ; (b) 0.36 km	(a) 14-19 m wide x 9 11 m high horseshoe shaped; (b) 14.5 m x 8.8 m twin cell box	Drill \& blast, dowels and sprayed concrete temporary support, probing ahead when approaching the faults and pre-grouting, permanent unreinforced concrete lining predominantly $300-500 \mathrm{~mm}$ thick, with waterproofing membrane, incorporating drainage measures to collect and drain groundwater. Crushers together with a conveyor belt, which advanced with the blast face was used for mucking out - first of its kind in the world to have such a long (up to 3.5 km) conveyor belt system. Cut \& cover at portals	Volcanic tuff, intrusive granite, granodiorite, dacite, basalt dyke, rhyolite dyke, two major fault zones 1-8 m wide (Ho Pui Reservoir Fault and Sham Tseng Fault) with water inflow from probe holes of 240-400 l/min. at fault zone	Lo et al (2001b), Gould et al (2002), GEO (2007)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
West Rail Tunnels (ex-KCRC) Kwai Tsing Tunnels (Tsing Tsuen Tunnel)	2003	3.6 km	8.75 m dia. twin tube tunnel	1.8 km EPB TBM (first use of open \& closed compressed air mode EPB TBM in HK), 120 m cut \& cover	Residual soils, marine deposits, alluvium and reclamation fill	
West Rail Tunnels (ex-KCRC) (Ha Kwai Chung Tunnel)	2003	1.7 km	13 m wide x 9 m high	1.7 km drill \& blast, up to 180 m below ground surface	Loose marine sands/soft marine clays, granular alluvial deposits, granodiorite, granite with intrusions of rhyolite, basalt and quartz monzonite	Stenning et al (2001)
Disneyland Resort Line (Tai Yam Teng Tunnels)	2004	$\begin{aligned} & \text { (a) } 0.12 \mathrm{~km} \text {; (b) } 0.75 \\ & \mathrm{~km} \end{aligned}$	(a) 6.6 mx 6.1 m box section; (b) 6.1 m span x 6 m high horseshoe shaped	(a) Cut \& cover; (b) Drill \& blast	Grades I-III porphyritic rhyolite, grades I-IV granite, grades I-IV volcanic tuff	Salisbury et al (2006)
West Rail Tunnels (ex-KCRC) Tsim Sha Tsui Extension Tunnels (ex-KCRC), Signal Hill Tunnel (pedestrian subway)	2005	1 km	12 m wide x 9.5 m high	Cut \& cover with pipe pile wall supported by struts, working less than 0.5 m above Cross Harbour Tunnel, tunnel runs parallel to and just 10 m from Victoria Harbour at 18 m deep at the closet location.	Fill, marine deposits, alluvial deposits, grades I-V granite	Ng et al (2004)
West Rail Tunnels (ex-KCRC) Signal Hill Tunnel (pedestrian subway)	2005	945 m	8.8 m wide x 6-8.5 m high horseshoe shaped	843 m cut \& cover and 102 m drill \& blast	Fill, marine deposits, alluvial deposits, grades I-V granite	Ng et al (2004)
West Rail Tunnels (ex-KCRC) Lok Ma Chau Spurline Tunnels (exKCRC)	2007	(a) 3.2 km ; (b) 2 km	(a) 8.75 m dia. twin tube tunnel; (b) 20 m wide x 10 m high	(a) Mixshield EPB TBM; (b) Cut \& cover, (Ground freezing used for the construction of 5 m span cross passages below Long Valley)	Superficial deposits, grades I-V tuff, Fill, alluvial deposits, grade V tuff, with groundwater at 2-3 m below ground level	Storry et al (2006a), Storry et al (2006b), Martin, O. et al (2005a, b).

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
West Rail Tunnels (ex-KCRC) Queensway Subway	2007	0.35 km	7.15 m span widened to 17 m span x 11 m high (in rock)	Drill \& blast, probing ahead and pre-grouting for groundwater control as required (generally single-stage grouting with microfine cement); shotcrete, lattice girders, pre-support canopy and face reinforcement as temporary support for weak zones (mined in free air). Permanent cast in situ concrete or shotcrete lining	Grades II-V granite, groundwater at about 10 m above tunnel crown level	Desaintpaul \& Askew (2006)
Kowloon Southern Link (exKCRC) KDC 200 (Jordon Road via Canton Road to Salisbury Road)	2008	1.2 km	8 m dia. twin tube	Mixshield slurry TBM	Superficial deposits, grades I-V granite with groundwater at about +2.5 mPD	Lee et al (2008), Wong et al (2008), Frew et al (2009), Tam \& Howley (2009), Taylor (2009)
Kowloon Southern Link (exKCRC) KDB 300 (Jordon Road to Yau Ma Tei ventilation building)	2008	0.85 km	12.8 m wide x 8.5 m high reinforced concrete box, excavation to approx. 15 mPD	Cut \& cover	Fill, marine deposits, alluvium and decomposed granite	Lee et al (2008), Wong et al (2008), Frew et al (2009), Tam \& Howley (2009), Taylor (2009)
Kowloon Southern Link (exKCRC) KDB 400 (Yau Ma Tei ventilation building to Nam Cheong overrun tunnel)	2008	1.06 km	12.8 m wide x 8.5 m high reinforced concrete box, excavation to approx. 15 mPD	Cut \& cover	Fill, marine deposits, alluvium and decomposed granite	Lee et al (2008), Wong et al (2008), Frew et al (2009), Tam \& Howley (2009), Taylor (2009)
West Island Line	2014	3.3 km , plus 3 stations (2 caverns and passenger/ ventilation adits networking)	6.5 m span (tunnels); $5.5 \mathrm{~m}-8 \mathrm{~m}$ span (adits); and 22 m span (caverns)	Drill \& blast, cut \& cover station, Mined tunnelling with pre-support canopy, steel ribs and lattice girders and ground freezing	Fill, marine deposits, alluvium, colluvium, Granite and Tuffs, corestones; water inflows in places through fracture zones	Ground Engineering (2011), New Civil Engineering International (2011), Bolton (2011a), Bolton (2011c), Polycarpe et al (2012), Tsang et al (2012), Baribault et al (2012), Hamill et al (2013), Shimizu et al (2014)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
South Island Line (East)	2016	4.9 km tunnel	$\left.\begin{array}{\|l\|} \hline 12 \mathrm{~m}-19 \mathrm{~m} \text { span, } 6.5 \\ \mathrm{~m}-12 \mathrm{~m} \text { span (tunnels) } \\ \text { and } 22 \mathrm{~m} \text { span (cavern) } \end{array} \right\rvert\,$	Drill \& blast; cut \& cover station, underpinning with temporary rock pillars; mined tunnelling with presupport canopy, steel ribs and lattice girders	Granite and volcanic tuff with localized Monzonite. The alignment intersects a number of fault zones	Tam (2012a), Bolton (2011a), Steele \& Mackay (2013), Steele et al (2013)
Kwun Tong Line Extension	2016	2.6 km	$\begin{aligned} & 5.2 \mathrm{~m}-14.2 \mathrm{~m} \text { span } \\ & \text { (tunnels) and } 20.2 \mathrm{~m} \\ & \text { (cavern) } \end{aligned}$	Drill \& blast, cut \& cover and mined tunnelling	Granitic rock, groundwater table at various depths	
Express Rail Link: Guangzhou-Shenzhen-Hong Kong	2018	$\begin{aligned} & 26.0 \mathrm{~km} \text { (Hong Kong } \\ & \text { section) } \end{aligned}$	$\begin{aligned} & 8.7 \mathrm{~m}-9 \mathrm{~m} \text { dia. twin } \\ & \text { tunnels and } 30 \mathrm{~m} \text { cut } \\ & \text { and cover section } \end{aligned}$	Drill \& blast, cut \& cover, slurry TBM and EPB TBM tunnelling	Soft ground, mixed ground and hard rock with different weathering grades; fault zone encountered; groundwater table at various depths.	Bolton (2011a), Bolton (2011b), Chan \& Li (2012), So et al (2013a), So et al (2013b), Koungelis \& Lyall (2013), Leung et al 2013), Pollak et al (2013)
Shatin To Central Link	Construction in progress*	17 km (Tai Wai to Hung Hom section 11 km, Cross Harbour section - 6 km)	6-7 m span for Tai Wai to Hung Hom, and 7-8 m span for Cross Harbour	Drill \& blast, cut \& cover, TBM and mined tunnelling. Cross Harbour tunnel to be immersed tube	Fill, marine deposits, alluvium and grades II-V granite.	Bolton (2011a), Bolton (2011d)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References

Table 3 :Water Supply Tunnels

Pok Fu Lam Tunnel	1877	0.08 km	1.5 m dia.			
Tai Tam Tunnel (Tai Tam to Wong Nai Chung)	1887	2.2 km	1.5 m dia.	Drill \& blast (dynamite), unlined	Granite	Surveyor General (1884; 1885) Davis (1963)
Shing Mun Tunnels (North Conduit and South Conduct, Shing Mun to Shek Lei Pui)	1926	2.0 km	2.74 m dia.	Drill \& blast, concrete lined or unlined	Granite	Davis (1963), Woodward (1935)
Tai Tam Tuk East Tunnel	1934	0.03 km	4.3 m dia .			
Mount Parker Lower Catchwater Tunnel	1934	0.17 km	2.7 m dia.			
Tai Po Road WTW Raw Water Inlet Pipe Tunnel	1956	0.11 km	2.34 mdia .	Drill \& blast		
Tai Lam Chung Tunnels (Tai Lam Chung to Chai Wan Kok to Tsing Lung Tau)	1957-1974	24.45 km	$1.75-5.35 \mathrm{~m}$ dia.	Drill \& blast, up to 350 m approx. below ground surface	Granite, granodiorite	Davis (1963)
Tai Po Road S/R Outlet Pipe Tunnel	1958	0.26 km	2.34 m dia .	Drill \& blast		
Tunnel for Shek Pik Trunk Main	1962	0.12 km	2.7 m dia .			
Shek Pik Scheme Water Tunnels Tunnel A	1963	483 m	2.4 m dia.	Drill \& blast, concrete lined or unlined	Granite, rhyolites	Davis (1963)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Shek Pik Scheme Water Tunnels Tunnel B	1963	1.24 km	3.7 m dia.	Drill \& blast, concrete lined or unlined	Granite, rhyolites	Davis (1963)
Shek Pik Scheme Water Tunnels Tunnel C	1963	1.59 km	$\begin{aligned} & 3.7 \mathrm{~m} \& 5.3 \mathrm{~m} \text { dia.; } 3.8 \\ & \mathrm{~m} \& 5.3 \mathrm{~m} \text { dia. } \end{aligned}$	Drill \& blast, concrete lined or unlined	Granite, rhyolites	Davis (1963)
Shek Pik Scheme Water Tunnels Tunnel D	1963	1.85 km	1.5 m dia.	Drill \& blast, concrete lined or unlined	Granite, rhyolites	Davis (1963)
Shek Pik Scheme Water Tunnels Supply Tunnel (1)	1963	7.64 km	5.2 m dia.	Drill \& blast, concrete lined or unlined	Granite, rhyolites	Davis (1963)
Shek Pik Scheme Water Tunnels Supply Tunnel (2)	1963	1.45 km	1.5 m dia.	Drill \& blast, concrete lined or unlined	Granite, rhyolites	Davis (1963)
Shek Pik Scheme Water Tunnels Diversion Tunnel	1963	559 m	1.5 m dia.	Drill \& blast, concrete lined or unlined	Granite, rhyolites	Davis (1963)
Tung Chung Tunnel	1963	7.2 km	4.0-4.6 m dia.	Drill \& blast, concrete lined or unlined		
Plover Clove Stage I Tunnels (Tai Po to Pai Tau Hang)	1965-1971	20.2 km main tunnel, plus branch and access tunnels	1.75-6.7 m dia.	Drill \& blast, concrete lined or unlined	Granite, fine-grained rhyolitic tuff	Davis (1963), Garrod (1966)
Plover Clove Stage II Tunnels	1967	18.2 km main tunnel, plus branch and access tunnels	2.59-9.14 m dia.	Drill \& blast, (first reported use of NATM in HK), concrete lined or unlined	Fine-grained rhyolitic tuff, with severe weathering in some areas	Davis (1963), Ford \& Elliot (1965)
Aberdeen East Catchwater Tunnel	1969	0.12 km	1.98 m dia.	Drill \& blast, concrete lined		
High Island Water Tunnels	1976	40 km , plus 10 shafts	2.29-4.27 m dia.	Drill \& blast, sprayed concrete or steel rib temporary support, unlined, sprayed or cast in situ concrete permanent lining, up to 500 m below ground surface	Granite, rhyolites	Tunnels \& Tunnelling (1971), Don et al (1973), Vail et at (1976)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Sai Kung Tunnel	1982	0.85 km	2.5-2.8 m dia.			
Tai Po Tau to Shatin Aqueduct Tunnel	1983	2.25 km tunnel (in 3 sections)	2.7-3.3 m dia.	Drill \& blast, sprayed concrete or steel rib, and rock bolts as temporary support, steel, sprayed or cast in situ concrete permanent lining or unlined		
Top Hill to Lamb Hill, Ma Mei Ha to Nam Chung Tunnel	1983	5.3 km	3.3 m dia.	Drill \& blast, concrete lined or unlined		
Kornhill Tunnel	1983	0.19 km	3.0 m dia.			
Tsing Tam/Yau Kom Tau Tunnel	1985	5.2 km	2.5-3.45 m dia.	Drill \& blast, concrete lined or unlined		
Western Aqueduct Tunnels (Increase of Water Supply from China, Stage I Muk Wu/Au Tau/Tai Lam Chung Aqueduct)	1986	13.8 km	2.6-3.4 m dia.	Drill \& blast, concrete lined, steel lined or unlined	Granites, granodiorites, sedimentary rock, coarse ash tuffs, generally none to moderate water inflows, high inflow in shear zone in volcanic rocks and at fractured zones or open joints connecting the tunnels with a local reservoir	McFeat-Smith (1982), McFeatSmith et al (1999)
Ngau Tam Mei Aqueduct Tunnel	1986	0.39 km	2.6 m dia.	Drill \& blast, steel lined		

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Plover Cove Reservoir Harbour Island Raw Water Pumping Station Intake Tunnel	1987	0.775 km intake tunnel, 30 m and 70 m deep shafts	2.75-3.2 m dia.	Drill \& blast	Coarse ash tuff, rhyolites, sandstones, siltstones, quartzite	McMeekan \& Yue (1987)
Tolo Harbour Aqueduct Scheme Plover Cove Sai O to Pak Kong Water Tunnel	1988	5.4 km	2.7-3.0 m dia.	Drill \& blast, sprayed or cast in situ concrete with mesh reinforcement and rock bolts as temporary and permanent support, concrete lined, steel lined or unlined, up to 370 m below ground surface	Similar to above	McMeekan \& Yue (1987)
Ngau Tam Mei/Tai Po Tau Aqueduct	1988	6.1 km	2.5-3.1 m dia.	Drill \& blast, concrete lined, steel lined or unlined		
Pak Kong/Ho Chung, Ho Chung/Tseung Kwan O Tunnel	1989	6 km	2.0 m dia.	Drill \& blast, steel lined	Granites, volcanics, generally none to minor water inflow, very high initial inflows (3,600 l/min) at granite/volcanic interface reducing to 50%	McFeat-Smith (1998), McFeatSmith et al (1999)
Tai Po Tau No 4 Raw Water Pumping Station Tunnels	1992	$\begin{aligned} & 0.3 \mathrm{~km} \text { (4 sections), } 2 \\ & \text { shafts } \end{aligned}$	3.6-6.0 m dia.	160 m of existing 3.6 m dia. tunnel enlarged to up to 6 m dia., concrete lined		
Siu Ho Wan to Silvermine Bay Aqueduct Tunnel	1996	7 km	2.7-3.56 m dia.	Open TBM, concrete lined, steel lined or unlined	Granite with rhyolite dyke swarm, several zones of initially high water inflows at open joints, with cumulative outflow of $2,400 \mathrm{l} / \mathrm{min}$ reducing with time	McFeat Smith et al (1999)
Western Aqueduct Supply Tunnel to Siu Ho Wan Treatment Works	1996	0.2 km	3 m dia.	Drill \& blast, concrete lined or steel lined	Under the dam at Tai Lam Chung Reservoir	

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Tai Po to Butterfly Valley Fresh Water Tunnel (Tai Po Treatment Works Raw and Treated Water Aqueducts)	2001	14 km raw water tunnel, treated water tunnel and short tunnels, 2 shafts, 2x107 m (pipe jacking), 1.2 km raw water tunnel, 1.2 km treated water tunnel	$\begin{aligned} & \text { 2.7-4.9 m dia } \\ & 3.1 \mathrm{~m} \text { dia. } \\ & 2.7 \mathrm{~m} \text { dia } \\ & 3.8 \mathrm{~m} \text { dia. } \end{aligned}$	Two hard rock TBMs (greatest depth below ground surface in HK - up to 600 m), steel ribs and laggings as temporary support where weak/fractured rock was encountered, difficulties installing permanent lining due to very high water pressures, two pipe jacked mini-tunnels, two drill \& blast drives water main tunnel by pipe jacking; raw water tunnel - steel rigs and lagging, drill \& blast treated water tunnel - 2 TBMs and drill \& blast	Granodiorite, fine ash tuff, tuff-breccia, tuffite, granite, seven major faults and over 20 minor faults, low to moderate inflows in granite, extremely high inflows in volcanics up to $14,940 \mathrm{l} / \mathrm{min}$, water temperature $34-36^{\circ} \mathrm{C}$, high radon levels	McFeat-Smith (1998), World Tunnelling (1999), Arnold (1999), Sjostrom (2004)
Butterfly Valley Primary Service Reservoir	2001	Outlet: 295 m Inlet: 210 m	5.67-9.3m	Mechanical excavation, drill and blast	Granite	
Tan Kwai Tseun Tunnel	2002	0.18 km	2.8 m high x 4.8 m wide			
Ma Wan Water Main	2003	1.36 km	0.82 m dia. drillhole, 0.45 m dia. water pipe within 0.61 m dia. steel casing coated with fusion- bonded epoxy coating, with HDPE duct inside	Horizontal directional drilling (HDD) (first use of horizontal directional drilling in hard rock in HK), use of pilot drillholes of 0.33 m and 0.7 m diameter, enlarging to 0.82 m in diameter, 76 m below sea level, 38 m rock cover except in fault zones	Granite, volcanic tuff	Tam (2000), Loneragan \& Lukas (2003)
Gloucester Road Water Main	2003	0.019 km	1.0 m dia. with 1.4 m dia. steel sleeve	Open shield pipe jacking with manual excavation	Fill with cobbles and boulders, seawall blocks, marine and alluvial deposits, groundwater about 2.6 m below ground level	Swann et al (2003)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater
Underground Service Reservoir behind The University of Hong Kong Proposed Centennial Campus	2009	0.2 km	8 m to 15 m	Sub-horizontal pipe piles (for the first 20 maccess tunnel) and NATM (for the rock caverns)	The caverns were built in metasandstone and granite. Metasandstone: RQD 30- $70 \% ;$ MCS 20 to 65 MPa; locally damp condition and minor inflow were observed Granite: RQD 75-80\%; UCS above 20 MPa; the rock was dry

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Table 4 : Drainage and Sewage Tunnels						
Seymour Road/Robinson Road Drainage Tunnel (private)	1975	80 m	1.5 m wide $\times 2.0 \mathrm{~m}$ high horseshoe shaped tunnel			
Tseung Kwan O Sewer Tunnel	1986	1.82 km	2.4 m dia.	Drill \& blast, shotcrete, dowels, steel sets with laggings, concrete permanent lining	Lapilli tuff, rhyolite, fault, shear zones	
Fanling South Trunk Sewer Tunnel	1989	0.37 km	$\begin{aligned} & 1.35 \mathrm{~m} \text { ID (} 6-14 \mathrm{~m} \\ & \text { below ground level) } \end{aligned}$	Pipe jacked (3 m long 125 mm thick precast reinforced concrete pipes) slurry shield TBM (cutters with tungsten carbide bits), electromagnetic flowmeter for slurry (first sewer tunnel constructed using pipe jacked slurry shield TBM in HK)	Alluvial deposits, grades III-V volcanics with boulders, groundwater up to 7 m above tunnel soffit level	McFeat-Smith \& Woods (1990), McFeat-Smith \& Herath (1994)
NWNT Sewerage Tunnel	1992	9.1 km, (3.1 km 1.8 m dia. marine outfall pipeline)	3.0 m dia.	Drill \& blast, two-boom jumbo, concrete lining (longest tunnel in HK at the time)	Granite, no to minor water inflow	Construction \& Contract News (1992), McFeat-Smith et al (1999)
East Kowloon Sewer Tunnel	1993	0.1 km	$\begin{aligned} & 1.95 \mathrm{~m} \text { ID (} 9-11 \mathrm{~m} \\ & \text { below ground) } \end{aligned}$	Pipe jacked slurry shield TBM, with man access to tunnel face through machine chamber for removal of boulders	Fill with boulders, alluvial deposits, groundwater 3 m below ground level	McFeat-Smith (1994), McFeatSmith \& Herath (1994)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Hong Kong University of Science \& Technology Sewerage Tunnel	1993	1.5 km		Drill \& blast	Volcanic rocks, generally none to minor water inflows, but with high inflow ($2,800 \mathrm{l} / \mathrm{min}$) at fracture zones, reducing to 50% in one month and by 80% ultimately	McFeat-Smith et al (1999)
Stanley Sewerage Treatment Cavern	1994	130 m	17 m wide x 17 m high	Drill \& blast	Massive granite with widely spaced joints and 10 m wide fault zone	Oswell et al (1993), Chan \& Ng (2006)
Stanley, Tai Tam \& Redhill Sewage Tunnel	1994	0.75 km	$1.9 \mathrm{~m} \times 2.1 \mathrm{~m}$ high horseshoe shaped	Drill \& blast		
Tolo Harbour Effluent Export Scheme Tunnel	1996	$7.5 \mathrm{~km}, 18 \mathrm{~m}$ deep shaft at Diamond Hill	3.56 m dia. (2.5 m ID)	Double shield hard rock TBM (first hard rock TBM drive by HKSAR Government), water proof lining inside precast concrete segmental lining, tunnel crosses about 12 m below Tate's Cairn Tunnel and about 4 m above water supply tunnel from High Island Reservoir, steel lining provided to the latter tunnel	Fine- to coarse-grained granite occasionally intersected by porphyritic rhyolite (100-200 m grades III-V rock), syenite and dolerite dykes, granodiorite, with no to minor water inflow and occasional initial high inflow at fractured zones or open joints cumulating to 2,400 $1 /$ min	Morris et al (1992), McFeatSmith (1998), McFeat-Smith et al (1999)
Island West (Mount Davis, SG (1963)) Refuse Transfer Station	1997	(a) $66 \mathrm{~m} ;$ (b) 160 m	(a) 28 m wide x 12 m high (tripping hall); (b) 12.5 m wide x 7 m high (compactor hall)	Drill \& blast	Volcanic tuff of generally, good rock quality with a few fracture zones	Chan \& Ng (2006)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Central, Western and Wanchai West Trunk Sewer Tunnels	2000	5.0 km	$1.05-1.8 \mathrm{~m}$ dia. (up to 18 m deep)	Pipe jacked slurry shield TBM, free air/compressed air hand shield	Mixed ground in reclaimed area (fill, marine deposits and alluvium, with boulders and armour rock), groundwater about 2-4 m below ground level	Mok (2002)
HATS Stage 1 Tunnels (Strategic Sewage Disposal Scheme)	2001	4.8 km	3.2 m dia.	Tunnel AB: open hard rock TBM	Volcanic tuff, granite, fault	McFeat-Smith et al (1999), Chui \& Tai (2001), Grandori et al (2001), McLearie et al (2001), Pakianathan et al (2002), Tai \& Ho, (2002), Pakianathan et al (2004), Sjostrom (2004), GEO (2007), Maxwell \& Kite (2012)
HATS Stage 1 Tunnels (Strategic Sewage Disposal Scheme)	2001	5.3 km	4.23 m dia.	Tunnel C: open hard rock TBM	Volcanic tuff, granite, rhyolite, fault	McFeat-Smith et al (1999), Chui \& Tai (2001), Grandori et al (2001), McLearie et al (2001), Pakianathan et al (2002), Tai \& Ho, (2002), Pakianathan et al (2004), Sjostrom (2004), GEO (2007), Maxwell \& Kite (2012)
HATS Stage 1 Tunnels (Strategic Sewage Disposal Scheme)	2001	3.6 km	3.4 m dia.	Tunnel D: open hard rock TBM	Granite	McFeat-Smith et al (1999), Chui \& Tai (2001), Grandori et al (2001), McLearie et al (2001), Pakianathan et al (2002), Tai \& Ho, (2002), Pakianathan et al (2004), Sjostrom (2004), GEO (2007), Maxwell \& Kite (2012)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
HATS Stage 1 Tunnels (Strategic Sewage Disposal Scheme)	2001	5.5 km	4.3 m dia.	Tunnel E: open hard rock TBM	Granite	McFeat-Smith et al (1999), Chui \& Tai (2001), Grandori et al (2001), McLearie et al (2001), Pakianathan et al (2002), Tai \& Ho, (2002), Pakianathan et al (2004), Sjostrom (2004), GEO (2007), Maxwell \& Kite (2012)
HATS Stage 1 Tunnels (Strategic Sewage Disposal Scheme)	2001	3.6 km	3.35 m dia.	Tunnel F: open hard rock TBM	Granite, rhyolite dykes, faults	McFeat-Smith et al (1999), Chui \& Tai (2001), Grandori et al (2001), McLearie et al (2001), Pakianathan et al (2002), Tai \& Ho, (2002), Pakianathan et al (2004), Sjostrom (2004), GEO (2007), Maxwell \& Kite (2012)
HATS Stage 1 Tunnels (Strategic Sewage Disposal Scheme)	2001	0.8 km	3.0 m dia.	Tunnel G: drill \& blast	Granite	McFeat-Smith et al (1999), Chui \& Tai (2001), Grandori et al (2001), McLearie et al (2001), Pakianathan et al (2002), Tai \& Ho, (2002), Pakianathan et al (2004), Sjostrom (2004), GEO (2007), Maxwell \& Kite (2012)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
HATS Stage 1 Tunnels (Strategic Sewage Disposal Scheme)	2001	1.7 km	5.64 m dia., (finished diameter ranging from 1.2 m to 5.0 m)	Outfall tunnel: open hard rock TBM Pre-grouting using OPC, some UFC and MFC in-situ concrete lining for tunnels $\mathrm{A}, \mathrm{B}, \mathrm{C}$, F \& G, precast ($75-145$ m below sea level, unprecedented in HK) ground freezing used around the eye of a 1.8 m dia. pipe jacked tunnel between two shafts at Kwun Tong (75-145 m below sea level, unprecedented in HK)	Granite, (Predominantly hard volcanic tuff or granite, with fault zones and zones of deep weathering at isolated locations; water inflow through rock joints and other discontinuities under pressure of up to 15 bars)	McFeat-Smith et al (1999), Chui \& Tai (2001), Grandori et al (2001), McLearie et al (2001), Pakianathan et al (2002), Tai \& Ho, (2002), Pakianathan et al (2004), Sjostrom (2004), GEO (2007), Maxwell \& Kite (2012)
West Kowloon Drainage Improvement Stage 2 Phase 2 - Kai Tak Transfer Scheme Tunnel	2004	1.5 km tunnel, 6 shafts (up to 9.5 m dia.), 450 m long $4.8 \mathrm{~m} \times 2.5 \mathrm{~m}$ box culvert	4.4 m ID	5.17 m dia. mixshield slurry TBM (610 mm x 356 mm single cutters, 4 twin cutters for rock and 50 soft ground scraps), precast concrete segmental lining, two-part EPDM and hydrophilic strip inset gasket, up to 30 m below ground surface (first use of large diameter slurry TBM in HK). The TBM was turned 90 degrees through a shaft. A 90 m tunnel section was constructed using NATM	Fill, alluvial deposits (some with peat), grades II-V granite with corestones, a section with a highly weathered fault and a basalt dyke, very shallow cover (<0.75 tunnel dia.) at a location approaching a shaft, maximum hydrostatic head of 140 kPa at crown level, compressed air "bubble" behind top of cutterhead for TBM maintenance	Salisbury \& Hake (2004), Chu \& Wong (2009)
Wan Chai East and North Point Trunk Sewer Tunnels	2005	3.8 km	$\begin{aligned} & \hline 0.6-1.8 \mathrm{~m} \text { ID. (} 0.78- \\ & 2.15 \mathrm{~m} \text { outer dia.), } 27 \\ & \text { temporary shafts } \end{aligned}$	Four pipe jacked slurry shield TBMs with rock cutters, precast reinforced concrete pipes, 3.9-18 m below ground level, compressed air chamber for replacement of cutters (404 m long S-curve section is the first time achieved in HK)	Fill with cobbles and boulders, old seawalls, disused piles, marine and alluvial deposits, grades II-V granite with corestones, groundwater about 2-4 m below ground level	Mok (2006), Wang et al (2006), Wong (2006)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Stormwater Drain by the Hong Kong Airport Authority	2006	42.9 m	1.75 m dia. concrete pipe	Pile jacking	Fill material comprising coarse gravel, cobbles and boulders; the measured groundwater level is about 5.5 m below ground level	
Harbour Area Treatment Scheme Stage 2A - Upgrading of the Stonecutters Island Sewage Treatment Works and the Preliminary Treatment Works Interconnection Tunnel	2012	0.251 km	4.0 m dia. tunnel	TBM	The interconnection tunnel is underlying soil stratum of alluvium, marine deposit and fill and is embedded in alluvium and completely decomposed granite soil, where marine deposite and alluvium were encountered from CH. 0 to CH. 220 and CDG from CH. 221 to CH. 236. GWL varied from +1.07 mPD to +2.69 mPD , mainly related to the tidal effect.	Endicott \& Tattersall (2010), Tam (2011), Tai et al (2011), Cunningham et al (2012b), Leung et al (2012), Tsang et al (2012a), Tsang et al (2012b), Liu et al (2012), Cheung et al (2012), Chan et al (2012b), Garshol et al (2012a), Kwan et al (2012), Mui et al (2012a), Seit et al (2012), Tang et al (2012), Garshol et al (2014)
Lai Chi Kok Transfer Scheme	2012	1.2 km main tunnel plus 2.5 km branch tunnel and 270 m of connecting adits, total of 3.97 km	4.9 m dia.	Slurry TBM with permanent tunnel lining for tunnels, drill \& blast for adits	Grades I-III granite at branch tunnel and grades I-IV granite at main tunnel; groundwater varies from 1 to 2 m below ground level along the main tunnel and 0.5 to 35 m below ground along the branch tunnel	Ip et al (2009), Endicott et al (2012), Wong, E.K.L. (2012), Kan et al (2013

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Tsuen Wan Drainage Tunnel	2013	5.1 km plus 80 m connecting adit	6.5 m dia.	TBM for main tunnel and mechanical excavation for adits. Precast segmental lining by Design \& Build contractor (URS/Scott Wilson)	Mainly granodiorite and coarse ash crystal tuff	Ciamei \& Grandori (2011), Perlo et al (2012)
Hong Kong West Drainage Tunnel	2013	10.5 km plus 7.9 km of adits, total of 18.4 km	Tunnel 6.25 m \& 7.25 m dia., adits in horseshoe shape with max. $2.5 \mathrm{~m} \& 3.75 \mathrm{~m}$ width	TBM for tunnel, drill \& blast for adits	Mainly through granite/volcanic bedrock of HK Island with rock cover genrally more than 100 m for main tunnel and more than 50 m for adits ; groundwater expected at intersections with major faults.	Tam (2012b), Evans et al (2012),
Harbour Area Treatment Scheme Stage 2A (Conveyance System) Aberdeen to Ap Lei Chau	2014	Tunnels: Q 1.32 km	Twin circular 0.6 m dia. pipes	Two horizontal directional drill holes	Predominantly volcanic fine vitric tuff, with quartz monzonite intrusion associated with the major Aberdeen fault; groundwater similar to tide level in the harbour	Endicott \& Tattersall (2010), Tam (2011), Tai et al (2011), Cunningham et al (2012a), Cunningham et al (2012b), Endicott, et al (2012), Tattersall et al (2012), Garshol et al (2012), Chan et al (2012), Mui et al (2012a), Mui et al (2012b), Indelicato, A. (2012)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Harbour Area Treatment Scheme Stage 2A - Construction of Sewage Conveyance System from Aberdeen to Sai Ying Pun	2014	Tunnels: M $3.7 \mathrm{~km}, \mathrm{~N}$ 1.2 km, P 2.6 km	To accommodate oval pipes from 1 mx 1.9 m to 1.26 m x 2.16 m	Drill \& blast	Mainly granite and tuff, groundwater level at various depths	Endicott \& Tattersall (2010), Tam (2011), Tai et al (2011), Cunningham et al (2012a), Cunningham et al (2012b), Endicott, et al (2012), Tattersall et al (2012), Garshol et al (2012), Chan et al (2012), Mui et al (2012a), Mui et al (2012b), Indelicato, A. (2012)
Harbour Area Treatment Scheme Stage 2A - Construction of Sewage Conveyance System from North Point to Stonecutters Island	2014	Tunnels: J $3.2 \mathrm{~km}, \mathrm{~K}$ $4.3 \mathrm{~km}, \mathrm{~L} 4.6 \mathrm{~km}$	Excavated dia. from 3.9 m to 5.5 m to accommodate oval pipes from $1 \mathrm{~m} \times 2 \mathrm{~m}$ to 2 mx 3.6 m and circular 3 m dia. Pipe	Drill \& blast	Mainly granite, groundwater level similar to tide level in the harbour	Endicott \& Tattersall (2010), Tam (2011), Tai et al (2011), Cunningham et al (2012a), Cunningham et al (2012b), Endicott, et al (2012), Tattersall et al (2012), Garshol et al (2012), Chan et al (2012), Mui et al (2012a), Mui et al (2012b), Indelicato, A. (2012)
Harbour Area Treatment Scheme Stage 2A - Upgrading of the Stonecutters Island Sewage Treatment Works and the Preliminary Treatment Works Effluent Tunnel	2016	0.88 km	8.5 m dia. tunnel	Drill \& blast	The site is underlain by reclamation fill which overlies beach sand and marine sand of Hang Hau Formation. Saprolite of completely decomposed medium- to coarse-grained granite is present above the bedrock. The underlying bedrock generally comprises strong to moderately strong, slightly to moderately decomposed medium- to coarse-grained granite. The invert level of Effluent Tunnel varies from 92.8 m to 94.5 m below ground, which has a minimum 30 m thick bedrock cover. GWL varied from +0.33 mPD to +2.46 mPD and +1.23 mPD to +5.03 mPD at Riser Shaft and Drop Shaft respectively.	Endicott \& Tattersall (2010), Tam (2011), Tai et al (2011), Cunningham et al (2012b), Leung et al (2012), Liu et al (2012), Cheung et al (2012), Chan et al (2012b), Garshol et al (2012a), Kwan et al (2012), Mui et al (2012a), Seit et al (2012), Tang et al (2012), Garshol et al (2014)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Relocation of Sha Tin Sewerage Treatment Works to Caverns Investigation, Design and Construction	Construction in progress*	1.342 km (including main/secondary access tunnels and ventilation adit) \& the main cavern	Main access tunnel - 26 m span; secondary access tunnel - 14 m span; main cavern - 32 m span	Drill \& blast (except a small section of soft/mixed ground tunnel by mechanical excavation)	Mainly Grade III/II granite	

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Table 5 : Cable and Other Tunnels						
Disused Tunnels (94 such tunnels known as of January 2006, 62, 21 \& 11 in Hong Kong Island, Kowloon \& New Territories \& outlying islands respectively)	Air raid protection tunnels built during the Second World War, other tunnels built before or during the Japanese occupation of Hong Kong	Various	Various, sufficient for man-entry	Generally hand dug with minimal support. (Bunkers at Shouson Hill leased to a company as wine cellars, one network at Lei Yue Mun being used as part of the Hong Kong Museum of Coastal Defence, one network at Sai Ying Pun being used by the Hongkong Electric Co. Ltd for routing electric cables)	Various	GEO (2015)
Mining tunnels at: Lin Ma Hang, Needle Hill, Lin Fa Shan, Ma On Shan, West Brother Island, ShaLo Wan Mines	1915-1981	0.9 km, 3.4 km, 2.3 km, 23.5 km , extensive, 0.3 km	2.3-2.4 m dia.	Hand excavation picks and chisels) and drill \& blast	Various, at West Brother Island the mine workings had reached 90 m below sea level by 1964, with serious water inflow problems encountered (West Brother Island was flattened in the mid-1990's for a navigation facility for the Chek Lap Kok Airport)	Davis (1963), Roberts \& Strange (1991), Strange \& Woods (1991), Williams (1991), Woods \& Langford (1991)
Hongkong Bank Seawater Tunnel (private tunnel built within Government land under a short term tenancy)	1985	0.37 km	7.0 m dia.	Drill \& blast, probing ahead and pre-grouting (fan grouting and localised fissured grouting), rock bolts and shotcrete, 0.5 m cast in situ concrete lining after completion of tunnel excavation	Tunnel up to 75 m below ground, minimum rock cover of 10 m , mainly grade II granite with weak seams encountered, water inflow up to 540 $1 / \mathrm{min}$., drawdown up to 25 m at 100 m west of tunnel alignment, resulting in large settlements (up to 100 mm) and building damage	Cowland \& Thorley (1985), Archer \& Knight 1986), Troughton et al (1991), GEO (2007)
Crossings for seawater cooling pipes at Harcourt Road and Queensway (private)	1988	27 m (Harcourt Road crossing)	6 m wide $\times 2.5 \mathrm{~m}$ high	Horizontal mini-piles to form tunnel wall structure, pre-grouting (tube-à-manchette) prior to excavation	Reclaimed land, grade V granite	Owen \& Tam (1989)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
HEC Wah Fu to Bowen Road Cable Tunnel	1988	3.1 km	4.4 m wide x 3.7 m high horseshoe shaped tunnel	Drill \& blast, cast in situ permanent concrete lining	Mainly volcanic tuff	McFeat Smith et al (1999), HEC (2007)
HEC Nam Fung Road to Parker (Chaiwan Road) Cable Tunnel	1993	5.7 km	4.8 m dia.	Open hard rock TBM, with 32 single disc cutters of 483 mm in dia. and facilities for probing ahead (the first hard rock TBM drive in HK), some sections were widened by drill \& blast	Fine- to medium-grained granite with 17 m wide fault zone, 120 m of weathered quartz monzonite at portal, high initial water inflows (up to 2,400 l/min.) at fracture zones or open joints	McFeat Smith et al (1985), McFeat Smith (1992), McFeat Smith (1994), McFeat-Smith (1998), McFeat-Smith et al (1999), HEC (2007)
The Hong Kong and China Gas Co. Ltd Braemar Hill Tunnel	1994	2.6 km	3.35 m dia. manaccessible tunnel housing a 600 mm gas pipe	Open hard rock TBM (subsequently used for SSDS tunnel between Kwun Tong and Chai Wan)	Granite, significant fracture zone trending from Tai Hang to Tai Tam Tuk, up to 80 m wide and roughly vertical, none to minor water inflow	McFeat-Smith et al (1999)
The Hong Kong and China Gas Co. Ltd Pipe Crossing Underneath Seawall at Ta Pang Po, North Lantau	1995	0.45 km	$2 \times 500 \mathrm{~mm}$ dia. holes housing two 300 mm dia. steel gas pipes	HDD	Up to 15 m below sea level, marine deposits	
Kau Shat Wan Tunnel and Audits (Mines Division Lantau Island Explosives Magazine)	1997	1.42 km (comprising 1.15 km long main access tunnel and 10 nos 27 m long audits to the caverns), 20 m (caverns)	6.5 m span (arch roof of max. height of 5.5 m with a rectangular base of 4.0 m high), 13 m wide x 6.8 m high	Drill \& blast, unlined with rock bolts and shotcrete support	Medium-grained granite intruded by feldsparphyric rhyolite dykes (grade I/II) and approx. 200 m of grade IV/V rock at portals supported by reinforced concrete lining, generally high water inflow at several sheared zones or basalt dykes, covered by shotcrete	Chan \& Ng (2006)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
Tunnels for Glory Hole Construction for Rehabilitation of Anderson Road Quarries	1998	0.1 km and 0.08 km long tunnels, 3 shafts	5.5 m and 4.6 m span x 5.5 m high (enlarged to 12.5 m high) tunnels, 76-89 m deep 2.75 m dia. Shafts	Drill \& blast for tunnels, dowels and shotcrete, steel ribs for the first 20 m of one tunnel, raise boring techniques with the use of TBM for shaft construction	Grades I-II granite, shear zone encountered and grades I-II volcanic at the top 11 m of one of the shafts, no water inflow	Lam et al (2003)
HEC Tin Wan to Wah Fu Tunnel	1999	0.8 km tunnel, 14 m deep shaft	4.0 m wide and 3.7 m high horseshoe shaped tunnel	Drill \& blast, sprayed concrete permanent lining, up to 180 m below a rock mount	Volcanic tuff, generally none to minor water inflows	
CLP Lantau to Ma Wan Cable Crossing	2002	0.85 km	584 mm dia. drill hole	HDD	96 m below sea level, 40 m rock cover except in fault zones	Tam (2000), Hui et al (2002), Loneragan \& Lukas (2003)
CLP Sham Tseng to Ma Wan Cable Crossing	2002	1.3 km	584 mm dia. drill hole	HDD	96 m below sea level, 40 m rock cover except in fault zones	Tam (2000), Hui et al (2002), Loneragan \& Lukas (2003)
The Hong Kong and China Gas Co. Ltd Pipe Crossing at Tai Lam Marine Police Base near Tai Lam Offtake/ Pigging Station	2002	0.17 km	550 mm dia. backreamed hole housing a 400 mm dia. PE gas pipe	HDD	Various. Granite encountered in some sections and soft clay at other sections	
HEC Ap Lei Chau Cable Tunnels (for Ap Lei Chau Industrial Estate Zone Substation)	2003	0.42 km (twin tunnels)	1.8 m dia.	Slurry TBM, precast concrete segmental lining, up to 100 m below mountain	Grades I-III tuff	
HEC Cyberport to Wah Fu Cable Tunnel	2003	0.83 km	4.0 m wide x 3.7 m high horseshoe shaped tunnel, 8 m wide x 6.15 m high joint bays	Drill \& blast, plain or fibre reinforced sprayed concrete lining, rock dowels	Fine ash vitric tuff, eutaxite	

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
CLP Kwai Chung Cable Tunnel	2005	1.1 km	3.8 m dia.	Drill \& blast	Grades I-III granite, average depth of 35 m	Hui et al (2002), Chan et al (2009)
CLP Tuen Mun Cable Tunnel	2005	0.28 km	3.3 m dia.	Air plenum shield	Rock fill, marine deposits, grade V volcanic	
CLP Pui O Beach, Chi Ma Wan, Cable Crossing	2005	Not available	Twin 600 mm dia. boreholes with 7×163 mm ID ducts in borehole A, 3×163 mm ID ducts and 3 x 127 mm ducts in borehole B	HDD	Marine sediments, marine deposits, highly fractured grades III-V granite, grade II granite with closely spaced joints, maximum depth at -40 mPD	
CLP Tze Wan Shan Cable Tunnel	2005	0.65 km	3.3 m dia.	Air plenum shield	Colluvium with boulders, grade V granite	Hui et al (2002), Chan et al (2009)
HEC Headland Road to Chung Hom Kok Road Cable Duct Crossings	2005	0.27 km	$4 \times 350 \mathrm{~mm}$ dia., with 4 nos of. 315 mm dia. cable ducts	HDD, 330 m in radius	Mainly grades II-III tuff	
CLP Chi Ma Wan Cable Tunnel	2006	3.2 km	3.2 m dia.	Open face hard rock TBM 13.5 m long 4.75 dia., drill \& blast and steel segmental rings to form joint bays and dismantling chamber at Pui O portal	Grades I-II granite, feldsparphyric rhyolite, 4-9 m thick debris flow deposits at portals	Hui et al (2002), Chan et al (2009)
HEC Pak Kok Tsui Cable Tunnel	2006	0.13 km	2.5 m wide x 3.2 m high horseshoe shaped tunnel	Drill \& split (both mechanical splitter and chemical expanders were used), manual excavation for soft ground, sprayed concrete lining	50\% of tunnel length in grade II fine- to medium-grained granite and 50% in grade V granite	

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
The Hong Kong and China Gas Co. Ltd Pipe Crossing Underneath Fanling Highway	2006	0.04 km	450 mm dia. casing housing a 400 mm dia. PE gas pipe	Pipe ramming. Open-ended steel casing pushed horizontally from a launch pit to a receiving pit by a pneumatic hammer. Soil inside casing removed and gas pipe inserted into casing	Generally clay with some cobbles	
CLP Cable Tunnel at KCRC Hung Hom Freight Yard	2006	0.32 km	3 m dia.	EPB TBM and cut \& cover	Reclamation fill, marine deposits, grades I-V granite, with groundwater 2-3 m below ground surface, encountered rubble mound beneath an old seawall (for the reclamation in 1963-1967)	Wong \& Wong (2012)
The Hong Kong and China Gas Co Ltd Pipe Crossing Underneath Tai Wan Stream, Sai Kung	2006	0.03 km	1.1 m dia. concrete sleeve pipe housing a 750 mm dia. steel gas pipe	Pipe jacking	Mainly boulders	
Jordan Valley Pedestrian Tunnel	2006	100 m	5 m wide $\times 3.5 \mathrm{~m}$ high	Drill \& blast	Grades I \& II granite, occasional grade III	
HEC Lamma Power Station to Yung Shue Wan South Cable Tunnel	2006	0.22 km	2.5 m wide x 3.2 m high horseshoe shaped tunnels	Drill \& split (both mechanical splitter and chemical expanders were used), mini-jumbo used, plain sprayed concrete lining	Grade II fine- to medium-grained granite	
CLP Cable Duct at West Kowloon Highway	2008	0.2 km	1.95 m dia.	TBM with precast concrete segmental lining	Reclaimed land in fill and marine deposits	Lam (2008)

Project Title	Year of Completion	Length Details	Cross Section Details	Method of Construction	Geology and Groundwater	References
CLP Cable Tunnel, Yeung Uk Road, Tsuen Wan	2008	65 m	Twin section with 1.6 m \& 1.2 m diameters	TBM	Fill, groundwater at about 3.5 mPD .	
HEC Bowen Road to Kennedy Road Cable Tunnel and Cable Duct Crossings	2008	0.23 km tunnel and 0.11 km cable ducts, 2 shafts	2.5 m wide x 2.8 m high horseshoe shaped tunnel with 14nos. of 300 mm dia. cable ducts	Drill \& split for tunnel, HDD for cable ducts cable ducts	Mainly grades II-III volcanic tuff, part of the tunnel is in colluvium	
CLP Castle Peak Cable Tunnel	2009	4.5 km	4.5 m dia.	TBM, precast concrete segmental lining being considered	Grades I-II porphyritic fine- to mediumgrained granite, Tuen Mun Formation comprising andesite, tuffs and sedimentary rocks such as sandstone near the Tuen Mun shaft	Chan et al (2009)
Ocean Park Funicular Tunnel	2009	1.3 km	6 m dia.	Drill \& blast	Eutaxitic fine ash vitric tuff	Pan et al (2011)
Landslide Preventive Works at Po Shan Road, Mid-levels	2009	Twin tunnels 0.18 km and 0.26 km long	3.5 m dia.	Retractable TBM, cast in situ concrete lining	Mainly grade II coarse to fine ash crystal tuff	Ho et al (2008), Solomon et al (2008), Lo et al (2009), Chau et al (2011), AECOM (2010), Lo et al (2010), Lo et al (2011) \& Chau et al (2011)
Contract 3801 Automated People Mover (APM) and Baggage Handling System (BHS) Tunnels on Existing Airport Island	Construction in progress*	0.45 km	6 m to 7 m span x 13 m high for APM Tunnel ; 8 m span x 12 m high for BHS Tunnel	Cut \& cover tunnel; jacked box tunnel under the portion of the Airport Express Line	Sand fill, rockfill, marine deposits, alluvium	
Re-provisioning of Victoria Public Mortuary: Cavern Enchancement Works and Natural Terrain Hazard Mitigation Works	Detailed design completed*	0.33 km	5.5 m	Drill \& blast (former MTRCL WIL Project's temporary underground magazine)	Granitic rock, groundwater level at various depths	

*Remark: Readers could visit the respective project websites for the anticipated completion dates of the on-going projects.

REFERENCES

AECOM (2010). An Innovative Approach to Landslide Prevention: The Po Shan Tunnel Landslide Preventive Works Project. The Tunnels and Tunnelling Magazine, Hong Kong.

Archer, F.H. \& Knight, D.W.M. (1986). Managing the construction of the new Hong Kong Bank Headquarters. Hong Kong Engineer, vol. 14, no. 11, pp 25-38.

Arnold, D.C. (1999). The Tai Po to Butterfly Valley aqueduct in Hong Kong. Proceedings of the 1999 Rapid Excavation and Tunneling Conference, Orlando, Florida, June 21-23, 1999, ed. Hilton, D.E. \& Samuelson, K., Section 2, pp 45-71.

Asian Building \& Construction (1976). Direct link to Cross Harbour Tunnel. Asian Building \& Construction, June 1976, pp 11-13.

Atkins (2007). Atkins China web site. http://www.atkins.com.cn/hongkong/services/projects/tunnels\&ground_pedestrian.htm (1 June 2007).

Baribault, M., Knight, M. \& Chow, W. S. (2012). Risk Management and Construction of Drill and Blast Tunnel in Shallow Rock Cover. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 159-167. http://hkieged.org/geodiv/annualseminar.aspx

Bayliss, R.F. (1998). The Hong Kong airport railway - Central subway management urban constraints. Tunnels \& Metropolises, ed A. Negro \& A.A. Ferreira, (Proceedings of the World Tunnel Congress '98 on Tunnels and Metropolises, Sao Paulo, Brazil), A.A. Balkema, Rotterdam, pp 1103-1109.

Bergfors, A. \& Coates, R. (1990). Shotcreting innovations in the Shing Mun tunnels (Hong Kong). Tunnels and Tunnelling, vol. 22, no. 4, pp 41-44.

Bolton, A. (2011a). Making a Mega Metro. New Civil Engineer International, United Kingdom, 04/2011, pp 8-9.

Bolton, A. (2011b). High speed to Hong Kong. New Civil Engineer International, United Kingdom, 04/2011, pp 10-11.

Bolton, A. (2011c). Blasting in the heart of the city. New Civil Engineer International, United Kingdom, 04/2011, pp 12-14.

Bolton, A. (2011d). Straight to the heart. New Civil Engineer International, United Kingdom, 04/2011, pp 16-17.

REFERENCES

Caiden, D., Haines, P. \& Turner, V.D. (1986). Construction and design of 'Island Line' rock tunnels for the Hong Kong Mass Transit Railway. Proceedings of the Conference on Rock Engineering and Excavation in an Urban Environment, Hong Kong, pp 49-64. (Discussion, p 542 and pp 544-545).

Cater, R.W., Shirlaw, J.N., Sullivan, C.A. \& Chan, W.T. (1984). Tunnels constructed for the Hong Kong Mass Transit Railway. Hong Kong Engineer, vol. 12, no. 10, pp 37-49.

Chan, A. C. W.\& Li, A. H. S. (2012). 26 km of Geotechnical Challenges. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 29-34. http://hkieged.org/geodiv/annualseminar.aspx

Chan, A.,Choi, R., Ho, S. \& Creally, D. (2009). Key Design Features and Considerations for CLPP Cable Tunnels. Proceedings of the Hong Kong Tunnelling Conference 2009, pp 237-244.
Chan, F. W. C., Shek, L. M. P., Cheuk, H. C. K. \& Tang, D. D. S. (2012a). Construction of Deep Circular Shaft within Urban Area. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 177-181. http://hkieged.org/geodiv/annualseminar.aspx

Chan, F. W. C., Shek, L. M. P., Cheuk, H. C. K., Tang, D. D. S., Law, W. C. W., Chan, H. P. C., Wan, A. W. L. \& Lee, T.H. (2012b). Deep diaphragm wall construction within urban area - a case review.

Chan, R.K.S. \& Ng, K.C. (2006). Are we prepared for cavern development in Hong Kong? Proceedings of the HKIE Geotechnical Division 26th Annual Seminar, Hong Kong, pp 53-63.

Chappell, B.A. \& Tonge, B. (1976). Design parameters for Aberdeen tunnel, Hong Kong. Proceedings of the Symposium on Exploration for Rock Engineering, Johannesburg, vol. 1, pp 181-188.

Chappell, B.A. \& Tonge, W.A. (1975). Investigations for the Aberdeen Tunnel. Tunnels \& Tunnelling, vol. 7, no. 6, pp 52-54.

Chau, S. F., Lo, J. Y.C. \& Cheuk, J. C. Y. (2011). Upward drilling of sub-vertical drains inside the Po Shan Drainage Tunnel. Proceedings of the 14th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering Hong Kong, China 23-27 May 2011, HKGES and Hong Kong Polytechnic University, May 2011 , pp 437.

Chau, S.F., Cheuk, J.C.Y. \& Lo, J.Y.C. (2011b). Innovative approach for landslide prevention - a tunnel and sub-vertical drain system. HKIE-Geotechnical Division 31st Annual Seminar - Landslide Risk Reduction through Works: Thirty-five Years of Landslip Preventative Measures Programme and Beyond, Hong Kong, pp 105-112.

Cheung, A., Tsang, L., Liu, A. \& Chan, W. L. (2012). A case study of soft ground tunnel construction and adjacent pile responses. Proceedings of the IEM-CIE-HKIE Tripartite Geotechnical Seminar, Kuala Lumpur, Malaysia, October 2012.

REFERENCES

Chui, W.W., Tai, R.W.M. (2001). Hong Kong Harbour Area Treatment Scheme. International Conference on Construction, Hong Kong, vol. 2, pp 300-320.

Ciamei, A. \& Grandori, R. (2011). Tsuen Wan drainage project - Hong Kong challenges of TBM excavation in difficult ground conditions and narrow working spaces. World Tunnel Congress Scandinavian Way 2011: Underground Spaces in the Service of a Sustainable Society, ITA-AITES World Tunnel Congress and 37th General Assembly, Helsinki, Finland, pp 358.

Cochrane, R.A. (1984). Ground problems at Hong Kong's Aberdeen Tunnel. (Report by O. Bevan of British Tunnelling Society Meeting, 24 November 1983). Tunnels \& Tunnelling, vol. 16, no. 5, pp 33-34. (Discussion, pp 34-36).

Construction \& Contract News (1992). NWNT sewerage tunnel: Constructing the superlong tunnel. Construction \& Contract News (Hong Kong), March/April 1992, pp 48-51.

Cooper, J., Hui, W. \& Ireland, J. (2001). Benefits of geotechnical instrumentation in Mass Transit Railway Corporation Tunnels and the importance of interpretation. Proceedings of the HKIE Geotechnical Division 20th Annual Seminar, Hong Kong, pp 111-119.

Cowland, J.W. \& Thorley, C.B.B. (1984). Ground and building settlement associated with adjacent slurry trench excavation. Proceedings of the 3rd International Conference on Ground Movements and Structures, Cardiff, pp 723-738. (Discussion, 873-876).

Cunningham, B., Tam, J. K. W., Tattersall, J. W. \& Seit, R. K. F. (2012a). Horizontal Directional Coring (HDC) and Groundwater Inflow Testing for Deep Subsea Tunnels. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 67-71. http://hkieged.org/geodiv/annualseminar.aspx

Cunningham, B., Tam, J. K. W., Tattersall, J. W., Nip, G. C. Y. \& Seit, R. K. F. (2012b). Planning of horizontal directional coring for deep subsea tunnel.

Davis, S.G. (1963). The geology and structure of the Lion Rock Tunnel, Hong Kong. Proceedings of the Engineering Society of Hong Kong, vol. 16, pp 6.1-6.33.

Desaintpaul, F. \& Askew, I. (2006). Temporary support design for a shallow driven tunnel on Hong Kong Island. Proceedings of the HKIE Geotechnical Division 26th Annual Seminar, Hong Kong, pp 317-328.

Don, J.S., Townsend, M.I., Vail, A.J. \& Aspden, J.A.T. (1973). Some design considerations of the High Island Water Scheme. Journal of the Engineering Society of Hong Kong, vol. 1, no. 2, pp 39-46.

REFERENCES

Edwards, J.T., Coulson, C.R. \& Chaning Pearce, R.A. (1980). Hong Kong Mass Transit Railway Modified Initial System: System planning and multi-contract procedures. Proceedings of the Institution of Civil Engineers, vol. 68, pp 571-598. (Discussion, vol. 72, 1982, pp 87-98).

Endicott, L. J., Ip, W. C. \& Plummer, M. (2012). Geotechnical Aspects of the Main Tunnel for Lai Chi Kok Drainage Tunnel. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 35-40. http://hkieged.org/geodiv/annualseminar.aspx

Endicott, L. J., Ng, A. K. L. \& Chau, H. K. M. (2012). Hydrogeological Assessment for Tunnels in the Harbour Area Treatment Scheme Stage 2A Sewage Conveyance System. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 75-80. http://hkieged.org/geodiv/annualseminar.aspx

Endicott, L.J. \& Tattersall, J.W. (2010). Managing geotechnical risk in deep tunnels in Hong Kong. Extended Abstracts to the Proceeding of the 11th Congress of the IAEG - Geologically Active, Auckland, New Zealand, pp 391.

Endicott, L.J. (1980). Aspects of design of underground railway structures to suit local soil conditions in Hong Kong. Hong Kong Engineer, vol. 8, no. 3, pp 29-38.

Endicott, L.J., Ashley, J.J. \& Tattersall, J.W. (2000). Design of tunnel portals and initial drives for the Route 3 Tai Lam Highway Tunnels, Hong Kong. Proceedings of the International Conference on Geotechnical \& Geological Engineering, GeoEng 2000, Melbourne, Australia.

Evans,R. A., Wong, L. C. T., Cheung, C., Pong F. F. K. \& Lee, L. S. Y. (2012). Hong Kong West Drainage Tunnel - Review of Key Geotechnical Aspects. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 41-46. http://hkieged.org/geodiv/annualseminar.aspx

Eves, G.W. (1908). Progress Report on the Construction of the British Section of the Hong Kong - Canton Railway to 31 December 1907. Session Paper No. 4/1908, Legislative Council, Hong Kong, pp 31-39.

Eves, G.W. (1911). The Beacon Hill Tunnel, Kowloon-Canton Railway. The Engineer, vol. 111, pp 428-431.

Ford, S.E.H. \& Elliott, S.G. (1965). Investigation and design of the Plover Cove Water Scheme. Proceedings of the Institution of Civil Engineers, vol. 32, pp 255-293. (Discussion, vol. 35, 1966, pp 342-358).

Frew, B., Ng, N.W.H. \& Chau, I.P.W. (2009). Overview of the Operation of a Large Diameter TBM for the Kowloon Southern Link. Proceedings of the Hong Kong Tunnelling Conference 2009, pp 333-342.

Garrod, A.D. (1966). Some aspects of Stage II of the Plover Cove Water Scheme: Tunnels and intakes between Plover Cove \& Tai Po Tau. Proceedings of the Engineering Society of Hong Kong, vol. 20, pp 3.27-3.38 (plus 3 drgs).

REFERENCES

Garshol, K. F., Tam, J. K. W., Chau, H. K. M. \& Lau, K. C. K. (2012a). High Pressure Grouting for Groundwater Ingress Control in Rock Tunnels and Caverns. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 105-110. http://hkieged.org/geodiv/annualseminar.aspx

Garshol, K. F., Tam, J. K. W. \& Chau, H. K. M. (2012b). Groundwater ingress control for deep subsea tunnels under urban area.

Garshol, K. F., Tam, J. K. W., Chau, H. K. M. \& Lau, K. C. K. (2014). Excavation of dry subsea rock tunnels in Hong Kong using micro-fine cement and colloidal silica for groundwater control. Proceedings of the World Tunnel Congress 2014: Tunnels for a Better Life. Foz do Iguaçu, Brazil, May 2014.

GEO (2007). Engineering Geological Practice in Hong Kong. GEO Publication No. 1/2007. Geotechnical Engineering Office, Civil Engineering and Development Department, Hong Kong, 278p.

GEO (2015). GEO Information Note 5/2015. Disused Tunnels. Geotechnical Engineering Office, Civil Engineering and Development Department, Hong Kong, 2p.

Gould, R., Endicott, J. \& Lo, J.Y.C. (2002). KCRC West Rail Phase 1, Contract DB350 Tai Lam Tunnel Hong Kong SAR. Proceedings of the Second International Conference (Tunnel Management International) 2002.

Grandori, R., Concilia, M. \& Nardone, P. (2001). Hong Kong Strategic Disposal Scheme (SSDS) TBM tunnelling beneath seabed and urban areas. Proceedings of the Rapid Excavation and Tunnelling Conference 2001, Santiago, USA, pp 743-754.

Green, T., Maxwell. A. \& Pugh, D. (2006). Large span tunnel construction with low cover: Eagle’s Nest Tunnel, Hong Kong. Proceedings of the HKIE Geotechnical Division 26th Annual Seminar, Hong Kong, pp 365-379.

Ground Engineering (2011). Hong Kong at Full Blast. Ground Engineering, April 2011, pp 20-21.

Hamill, S., Murfitt, K. \& Lee, J.T.K. (2013). West Island Line.

Hardingham, A.D., Sharp, J.C., Sekula, J., Bandis, S.C. \& Sin, S. (1998). Lai King rock tunnel rail complex. Proceedings of the HKIE Geotechnical Division Seminar on Geotechnical Aspects of the Airport Core Projects, Hong Kong, pp 1-18.

Haswell, C.K. \& Umney, A.R. (1978). Trial tunnels for the Hong Kong Mass Transit Railway. Hong Kong Engineer, vol. 6, no. 2, pp 15-23. (Discussion, vol. 6, no. 3, pp 45-46).

REFERENCES

Haswell, C.K., Umney, A.R., Hall, P., Hansen, F.J., Storey, F.G., Archer, G.O. \& Langfield, R.A. (1980). Hong Kong Mass Transit Railway Modified Initial System: Design and construction of the driven tunnels and the immersed tube. Proceedings of the Institution of Civil Engineers, vol. 68, pp 627-655. (Discussion, vol. 72, 1982, pp 87-98).
HEC (2007). Hong Kong Electric web site. http://www.hec.com.hk/hehWeb/AboutUs/Publications/CableTunnels/Index en.htm (1 June 2007).

Highways Department (1987). Route 5 - Sha Tin to Tsuen Wan: Shing Mun Section. Highways Department, Hong Kong, 21 p.

Hill, J., Lo, S.K. \& Lam, L. (2002). Tseung Kwan O Station and Tunnels. Transactions, Hong Kong Institution of Engineers, Hong Kong, vol. 9, no. 1, pp 7-13.

Ho, J., Lam, Y. C. \& Lo, J. Y. C. (2008). Innovative design in Po Shan Tunnel Project. Proceedings of the HKIE Geotechnical Division 28th Annual Seminar, Hong Kong, pp 107-114.

Ho, J.K.N., Pappin, J.W., Hope, S. \& Blair, C. (2001). Buried concrete prop for Tseung Kwan O Station and Tunnels. Proceedings of the HKIE Geotechnical Division 20th Annual Seminar, Hong Kong, pp 48-57.

Ho, R.C.M. (2012). Innovative use of high strength rock socketed steel H-pile and elemex drilling method in foundation design of Hua Tai Hotel Development.

Ho, S.H.Y. and Li, E.S.F. (2006). Construction of two road underpasses at Ma On Shan. Proceedings of the HKIE Geotechnical Division 26th Annual Seminar, Hong Kong, pp 337-351.

Hui, B.H.C., Hui, T.C.S. \& Lau, T.W.K. (2002). Trenchless transmission cable installation methods adopted by CLP Power. Proceedings of the Conference of the Electric Power Supply Industry, Japan, pp 218-223.

Indelicato, A. (2012). Management \& Mitigation of Groundwater within Deep Shaft Excavations - the HATS 2A Project Experience. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 111-117. http://hkieged.org/geodiv/annualseminar.aspx

Ip, A.W.C., Lam, E.W.C. \& Cheung, P.C.W. (2009). Design and planning of Lai Chi Kok Transfer Scheme, Hong Kong.

Kan, H.S., Frew, B., Lai, S., Westmoreland, A.J. \& Cheung, P.K. (2013). Pushing the limits - hyperbaric manoeuvring with a rock TBM through mixed ground for the Lai Chi Kok Drainage Tunnel, Hong Kong. Proceedings of the World Tunnel Congress 2013: Underground - The Way to the Future. Geneva, Switzerland, 31 May - 5 June 2013, pp 1895-1902.

REFERENCES

Koungelis, D.K. \& Lyall, R. (2013). Numerical analysis of a crossover cavern excavated in a complex rock mass as part of the Hong Kong Express Rail Link Project. Engineering Geology for Society and Territory, Volume 6, pp 799-804.

Kwan, C.T., Sia, E.S.P., Lam, D.P.Y., Chan, C.F. \& Chan, L.L.T. (2012). Integrating infrastructure development with community life.

Kwong, A.K.L. \& Wong, B.M.L. (2013). An assessment of in-situ rock stress ratio in Hong Kong. HKIE Transactions, 20:1, 52-61.

Lam, T.S.K. (2008). Performance review of a pipe jacking project in Hong Kong. The 6th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Shanghai, China, pp 430-435.

Lam, Y. C., Tam J. K. W. \& Lo, J. Y. C. (2008). Ground investigation for tunnel works. Proceedings of the HKIE Geotechnical Division 28th Annual Seminar, Hong Kong, pp 135-144.

Lam, Y.C., Sum, B. \& Lo, J. (2003). Conventional and mechanical rock excavation methods exercised at the Anderson Road Quarries. Proceedings of the HKIE Geotechnical Division 23rd Annual Seminar, Hong Kong, pp 153-164.

Larkin, K.F. (1990). Shing Mun, Hong Kong. World Tunnelling, vol. 3, pp 180-184.

Law, R. \& Keller, R. (1999). Blasting in Hong Kong - A visual presentation. Journal of Explosives Engineering, vol. 16, no. 1, pp 8-19.

Lee, W., Chung, S.S. Roberts, K.J. \& Pang, P.L.R. (2008). Geotechnical control of a major railway project involving tunnel works in Hong Kong. The 6th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Shanghai, China, pp 436-440.

Leung, R. K. Y., Ko, K. K. Y., Hu, H. B., Cheung, A. K. K. \& Chan, W. L. (2012). Artificial Ground Freezing for TBM Break-through - Design Considerations. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 119-124. http://hkieged.org/geodiv/annualseminar.aspx

Leung, T., Poon, P., Cummingham, B. \& Lo, J. (2006). Monitoring during excavation of Route 8 Eagle’s Nest Tunnel. Proceedings of the HKIE Geotechnical Division 26th Annual Seminar, Hong Kong, pp 119-131.

Leung, Y.F.,Cheuk, J.C.Y. \& So, A.K.O. (2013). Interpretation of Inclinometer Readings for Deep Excavation. Proceedings of the HKIE Geotechnical Division Annual Seminar 2013, Hong Kong, May 2013, pp 145-150, 6 p. (Express Rail Link).

REFERENCES

Liu, Y. T., Cheung, A. \& Chan, W.L. (2012). Instrumentation Monitoring of TBM Tunnelling Effects to Adjacent Pile Foundation for HATS 2A Project. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 281-286. http://hkieged.org/geodiv/annualseminar.aspx

Lo, J. Y.C., Chau, S. F. \& Cheuk, J. C. Y. (2011). Performance of a Drainage Tunnel and Sub-vertical Drain System. Proceedings of the 14th Australasian Tunnelling Conference 2011, New Zealand, March 2011.

Lo, J., Yang, W. W. \& Baring, C. (2001a). Ground movements associated with soft ground tunnel excavation in Hong Kong volcanics. Proceedings of the HKIE Geotechnical Division 20th Annual Seminar, Hong Kong, pp 97-107.

Lo, J.Y.C. \& Cheuk, J.C.Y. (2006). Water inflow characteristics in rock tunnels. Proceedings of the HKIE Geotechnical Division 26th Annual Seminar, Hong Kong, pp 169-176.

Lo, J.Y.C., Chau, S.F., Lau, D.T.W. \& Li, E.S.F. (2009). Design and Construction of Shotcrete Lining at Tunnel Intersection of Po Shan Road Drainage Tunnels. Proceedings of the Hong Kong Tunnelling Conference 2009, pp 279-289

Lo, J.Y.C., Mo, C.C. \& Luk, W.K. (2001b). Deformation associated with underpinning works for Chai Wan Kok Bridge and its mitigation work. Proceedings of the HKIE Geotechnical Division 20th Annual Seminar, Hong Kong, pp145-156.

Lo, Y.C., Chau, S.F. \& Cheuk, C.Y. (2010). Water inflow during ground investigation and construction at Po Shan Drainage Tunnels. The HKIE Transactions, Hong Kong Institution of Engineers, Hong Kong, vol. 17, no. 2, pp 41-46.

Loneragan, S. \& Lukas, A. (2003). HDD success in Hong Kong. Trenchless Technology International, January 2003, pp 14-15.

Mackay, A.D., Steele, D.J., Chan, T., \& Chow, W. (2009). Proceedings of the Hong Kong Tunnelling Conference 2009 (IOM3), pp 169-177

Martin, D. (1989). Tate’s Cairn takes care of Kowloon congestion. Tunnels \& Tunnelling, vol. 21, no. 9, pp 18-24.

Martin, O., Storry, R., Harris, D. \& Pegon, J.L. (2005b). Ground freezing in Hong Kong for mining cross-passages under sensitive ecological area. Underground Construction, London 12p.

Martin, O., Storry, R., Harris, D., Hasle, R. \& Pavone, A. (2005a). Artificial ground freezing in Hong Kong to cross a sensitive ecological area. AFTES Congress, 2005, Chambéry.

REFERENCES

Matson, C.R. \& Porter, J. (1990). A franchised tollway - the design, financing and management of the Tate’s Cairn Tunnel, Hong Kong. Proceedings of the 6th Australian Tunnelling Conference, Sydney.
Matson, C.R. \& Robinson, S.A. (1984). Investigation and design of the Junk Bay road tunnel, Hong Kong. Proceedings of the 5th Australian Tunnelling Conference, Sydney, pp 11-15. (Published as Institution of Engineers Australia. Publication no. 84/8, 1984).

Matson, C.R. (1984). Site investigation for the Junk Bay Road Tunnel. Proceedings of the Conference on Geological Aspects of Site Investigation, Hong Kong, pp 167173. (Published as Geological Society of Hong Kong, Bulletin no. 2, edited by I. McFeat-Smith, 1985).

Matson, C.R. (1987). Rock tunnel driving close to existing tunnels - recent case histories, including Quarry Bay Station, Eastern Harbour Crossing, Hong Kong. Proceedings of the 4th Australian Tunnelling Conference (Tunnelling Australia 1987), Melbourne.

Maxwell, A. \& Kite, G. (2012). Settlement due to Under-drainage: Transient Characteristics and Control Measures. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 227-235. http://hkieged.org/geodiv/annualseminar.aspx

McFeat-Smith, I. \& Herath, P.S. (1994). Construction of large sized sewers by slurry machines in Hong Kong’s bouldery soils. Proceedings of the International Congress on Tunnelling and Ground Conditions, Cairo, pp 41-47.

McFeat-Smith, I. \& Woods, E.S. (1990). Trenchless technology in Hong Kong. Proceedings of the 6th International Conference on Trenchless Construction for Utilities (No-Dig ‘90), Osaka, pp I.4.1-I.4.7.

McFeat-Smith, I. (1982). Geotechnical feasibility study and site investigation for the Western Aqueduct Tunnels, Hong Kong. Proceedings of the 7th Southeast Asian Geotechnical Conference, Hong Kong, vol. 1, pp 171-187.

McFeat-Smith, I. (1992). Hard rock TBMs achieved high speed tunnelling at lower costs in Hong Kong. Hong Kong Engineer, December 1992, pp 53-55.

McFeat-Smith, I. (1994). Construction of Hong Kong's first TBM driven tunnels. Proceedings of the International Symposium on New Development in Rock Mechanics and Engineering, Shenyang, China, pp 208-213.

McFeat-Smith, I. (1996). Design and construction of Hong Kong’s first three lane highway tunnels. Proceedings of the 9th Australian Tunnelling Conference, Sydney, pp 419-426.

McFeat-Smith, I. (1998). Mechanised Tunnelling for Asia. Workshop Manual, 93 p.

REFERENCES

McFeat-Smith, I., Mackean, R. \& Woldmo, O. (1999). Water inflows in bored tunnels driven in Hong Kong: Prediction, construction issues and control measures. Proceedings of the International Conference on Urban Ground Engineering, Hong Kong, the Institution of Civil Engineers, pp 25-39.

McFeat-Smith, I., Turner, V.D. \& Bracegirdle, D.R. (1985). Tunnelling conditions in Hong Kong. Hong Kong Engineer, vol. 13, no. 6, pp 13-25.

McIntosh, D.F., Walker, A.J.R., Eastwood, D.J., Imamura, M. \& Doherty, H. (1980). Hong Kong Mass Transit Railway Modified Initial System: Design and construction of underground stations and cut-and-cover tunnels. Proceedings of the Institution of Civil Engineers, vol. 68, pp 599-626. (Discussion, vol. 72, 1980, pp 87-98).

McLearie, D.D., Foreman, W., Hansmire, W.H. \& Tong, E.K.H. (2001). Hong Kong Strategic Disposal Scheme Stage I deep tunnels. Proceedings of the Rapid Excavation and Tunnelling Conference 2001, Santiago, USA, pp 487-498.

McMeekin, J.F. \& Yue, K.P. (1987). Pumping stations at Plover Cove Reservoir and Tolo Channel Aqueduct, Hong Kong. Proceedings of the Institution of Civil Engineers, vol. 82, pp 1089-1119. (Discussion, vol. 84, 1988, pp 1289-1306).

Mok, W.W.S. (2002). Performance of trenchless techniques for sewer construction in Hong Kong. Transactions, Hong Kong Institution of Engineers, vol. 9, no. 1, pp 5156.

Mok, W.W.S. (2006). Straight or curved sewers? Pipe-jacking options in Hong Kong. Proceedings of the HKIE Geotechnical Division 26th Annual Seminar, Hong Kong, pp 213-228.

Morris, A., Jarman, J. \& Caiden, D. (1992). Tolo Harbour Effluent Export Scheme. Hong Kong Engineer, May 1992, pp 34-39.

Mui, S. W. B., Wong, S. W. K., Choy, C. S. M. \& Seit, R. K. F. (2012a). Implementation of Comprehensive Geotechnical Monitoring Programme against Ground Displacement before and during Construction of the HATS Project in Hong Kong. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 273-280. http://hkieged.org/geodiv/annualseminar.aspx

Mui, S. W. B., Tam, S. L. C., Shing, G. P. H., Cheung, K. W. \& Wan, R. P. K. (2012b). The use of electronic detonators in vibration control for blasting.

Murfitt, J.K. \& Siu, B. (2006a). Vibrations from blasting for a road tunnel - A statistical review of scaling laws. Proceedings of the HKIE Geotechnical Division 26th Annual Seminar, Hong Kong, pp 195-212.

REFERENCES

Murfitt, J.K. \& Siu, B. (2006b). Evaluation of site-specific pseudo-velocity response spectra from tunnel blasts in granite. Proceedings of the HKIE Geotechnical Division 26th Annual Seminar, Hong Kong, pp 229-246.

Murfitt, J.K., Chin, C., Siu, B. \& Chan, C.H. (2006a). A review of factors affecting excavation cycle times. Proceedings of the HKIE Geotechnical Division 26th Annual Seminar, Hong Kong, pp 287-304.

Murfitt, J.K., Tattersall, J.W. \& Siu, B. (2006b). A review of the parameters governing predicted and actual RQD evaluation in Shatin Heights Tunnels. Proceedings of the HKIE Geotechnical Division 26th Annual Seminar, Hong Kong, pp 261-274.

New Civil Engineering International (2011). Blasting in the Heart of the City. New Civil Engineering International, April 2011, pp 12-14.

Ng, C.W.W., Lee, K.M. \& Tang, D.K.W. (2004). Three-dimensional numerical investigations of new Austrian tunnelling method (NATM) twin tunnel interactions. Canadian Geotechnical Journal, vol. 41, no. 3, pp 523-539.

Olsen, T., Tonnesen, M., Yue, C., Zhou, L.H. \& Xiaoqi, X. (2011). Selection of immersed tunnel type for Hong Kong - Zhuhai - Macao fixed link. World Tunnel Congress Scandinavian Way 2011: Underground Spaces in the Service of a Sustainable Society, ITA-AITES World Tunnel Congress and 37th General Assembly, Helsinki, Finland, pp 346-347.

Oswell, M.A., Farmer, I.W. \& Mak, B.W.L. (1993). Stanley sewage treatment plant - design, construction and support of underground caverns. Proceedings of the HKIE Geotechnical Division Seminar on Geotechnics and the Environment, Hong Kong, pp 59-75.

Owen, E.K. \& Tam, J.Y.C. (1989). Cooling seawater supply to buildings in Queensway - civil works. Hong Kong Engineer, vol. 17, no. 6, pp 15-23.

Pakianathan, L.J., Kwong, A., McLearie, D.D. \& Chan, W.L. (2002). Pipe jacking: case study on overcoming ground difficulties in Hong Kong SAR Harbour Area Treatment Scheme. Trenchless Asia 2002, 12-14 November, Hong Kong.

Pakianathan, L.J., Kwong, A., McLearie, D.D. \& Ng, W.K. (2004). Design and construction of deep shafts in Hong Kong Special Administrative Region (SAR), China. ITA - AITES 2004, World Tunnel Congress and 30th ITA General Assembly, 19(4-5): pp 487-497.

Pan, J.K.L., Ip, P. \& Im, C. (2011). Cofferdam excavation using soil nail tie-backs for Ocean Park funicular tunnel portal. Proceedings of the 14th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, China (Published under the title Soil Mechanics and Geotechnical Engineering: Challenges and Solutions), pp 265.

REFERENCES

Pan, J.K.L., Pappin, J.W., Cowan, S. \& Lam, L.W.Y. (2001). An application of the Observational Method at Tseung Kwan O Station and Tunnels. Proceedings of the HKIE Geotechnical Division 20th Annual Seminar, Hong Kong, pp 59-72.

Parrott, N. (1980). Breakthrough in Beacon Hill Tunnel - a major Hong Kong rail route. Asian Building \& Construction, July 1980, pp 10-13.

Payne, J.C. \& Walker, D.W. (1962). The Lion Rock Tunnel. Proceedings of the Engineering Society of Hong Kong, vol. 16, pp 6b.3-6b. 34 (plus 4 drgs).
Payne, J.C. (1963). Lion Rock Tunnel will carry both roadway \& water. The Far East Engineer, vol. 4, no. 1, pp 40-53.

Perlo, R., Swales, M., Kane, T., Louie, H. C. K. \& Poon, F. H. T. (2012). Tunnelling in Difficult Ground: How the Geotechnical Baseline Report Helps. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 53-60. http://hkieged.org/geodiv/annualseminar.aspx

Phillip, R.J. (1990). Kowloon-Canton Railway (British Section): A History. Urban Council, Hong Kong, 183 p.

Pollak, S., Choi, K., Diemont, K. \& Kwok, D. (2013). Design and construction of a massive tunnel junction for Hong Kong's Express Rail Link Project. Proceedings of the World Tunnel Congress 2013: Underground - The Way to the Future. Geneva, Switzerland, 31 May - 5 June 2013, pp 2140-2147.

Polycarpe, S., Ng, P. L. \& Barrett, T.N. D. R. (2012). Construction Risk Mitigation of the Tunnel to Station Connection Using Artificial Ground Freezing in the MTRCL West Island Line Contract 703. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 137-146.
http://hkieged.org/geodiv/annualseminar.aspx
Pratt, M. (1987). Second cross harbour tunnel - diaphragm wall. Asian Architect \& Contractor, vol. 17, no. 7, pp 38-39.

Quanke, S., Yue, C., Li, Y. \& de Wit, J.C.W.M. (2011). Hong Kong Zhuhai Macao Bridge Link in China stretching the limits of immersed tunnelling. World Tunnel Congress Scandinavian Way 2011: Underground Spaces in the Service of a Sustainable Society, ITA-AITES World Tunnel Congress and 37th General Assembly, Helsinki, Finland, pp 106-107.

Roberts, K.J. \& Strange, P.J. (1991). The geology and exploitation of the Needle Hill wolframite deposit. Geological Society of Hong Kong Newsletter, vol. 9, no. 3, pp 29-40.

Salisbury, D. \& Hake, D. (2004). First use of a large diameter slurry tunnel boring machine in Hong Kong. Proceedings of the HKIE Geotechnical Division 24th Annual Seminar, Hong Kong, pp 199-215.

REFERENCES

Salisbury, D., Taylor, J. \& Wong, O. (2006). Design and construction of the Disneyland Resort Line Tai Tam Teng Tunnel. Proceedings of the HKIE Geotechnical Division 26th Annual Seminar, Hong Kong, pp 393-402.

Seit, R.K.F., Lam, Y.C., Mui, S.W.B. \& Tang, E.S.K. (2012). Trenchless excavation by horizontal directional drilling (HDD).

Sharp, J.C., Smith, M.C.F., Thoms, I.M. \& Turner, V.D. (1986). Tai Koo cavern, Hong Kong - performance of a large metro excavation in a partially weathered rock mass. Proceedings of the International Symposium on Large Rock Caverns, Helsinki, vol. 1, pp 403-423.

Shimizu, T., Saito, T., Tam, C.K., Lee, M.C.K., Cook, R.J., Mackay, A.D. \& Tang, A.Y.S. (2014). Artificial ground freezing for an adit construction for the Hong Kong MTR Corporation West Island Line. Underground Singapore 2014.

Silva, S.D., Cheung, C.T. \& Endicott, L.J. (1998). Geotechnical aspects of the Western Harbour Crossing Project. Proceedings of the HKIE Geotechnical Division Seminar on Geotechnical Aspects of the Airport Core Projects, Hong Kong, pp 187-209.

Sjostrom, O.A. (2004). Ground treatment for submerged tunnels. Proceedings of the Seminar on Ground Treatment, Hong Kong, pp 27-39.

So, A.K.O., Choi, M.Y.N. \& Ko, P.W.L. (2013a). Pumping Test For The Construction of the West Kowloon Terminus of the Express Rail Link. Proceedings of the HKIE Geotechnical Division Annual Seminar 2013, Hong Kong, May 2013, pp 103-109.

So, A.K.O., Ko, P.W.L. \& Man, V.K.W. (2013b). Geotechnical instrumentation monitoring for the construction of the West Kowloon Terminus of the Express Rail Link. Proceedings of the Fourth International Symposium on Geotechnical Safety and Risk - 4th ISGSR, Hong Kong, 4-6 December 2013, pp 551-557.

Solomon, I. J., Chan, W. M., Westmoreland, A. J. \& Tang, E. (2008). Automated wireless groundwater monitoring system at Po Shan Road. Proceedings of the HKIE Geotechnical Division 28th Annual Seminar, Hong Kong, pp 251-262.

Steele, D.J. \& Mackay, A.D. (2013). The Use of Ground Improvement Techniques at the Nam Fung Portal, South Island Line (East), Hong Kong. The Proceedings of the HKIE Geotechnical Division Annual Seminar 2013, Hong Kong, May 2013, pp 95-102.

Steele, D.J., Wu, K.K., Ishii, M., Mackey, A.D. \& Kameyama, K. (2013). The use of advanced percussive drilling techniques to predict ground conditions ahead of subsurface excavations.

Stenning, A.S., Storry, R.B. \& Hardingham, A.D. (2001). Ground movements associated with the construction of the KCRC West Rail Contract DB320 Kwai Tsing Tunnels. Proceedings of the HKIE Geotechnical Division 20th Annual Seminar, Hong Kong, pp 87-96.

REFERENCES

Storry, R., Kitzis, B., Martin, O., Harris, D. \& Stenning, A. (2006a). Ground freezing for cross passage construction beneath an environmentally sensitive area. Proceedings of the HKIE Geotechnical Division 26th Annual Seminar, Hong Kong, pp 161-168.

Storry, R., Scott, R. Altier, D., Pan, J. \& Plumbridge, G. (2006b). Construction of a cut and cover tunnel adjacent to an operating railway in Hong Kong. Proceedings of the HKIE Geotechnical Division 26th Annual Seminar, Hong Kong, pp 329-336.

Strange, P.J. \& Woods, N.W. (1991). The geology and exploitation of the Ma On Shan magnetite deposit. Geological Society of Hong Kong Newsletter, vol. 9, no. 1, pp 3-15.

Surveyor General (1884). Report of the Surveyor-General on the progress and present position of the Tytam Water Works, 25 June 1884. Session paper presented to the Legislative Council, Hong Kong, 3 p.

Surveyor General (1885). Surveyor-General’s Report on the Tytam Water-Works. Session Paper No. 7, presented to the Legislative Council, Hong Kong, 15 p.

Swann, L., Ng, A., Mackey, A.D. \& Ueda, Y. (2013). The use of glass fibre reinforced polymer bars as soil nails to permit future housing development, Hong Kong Special Administrative Region. Proceedings of the HKIE Geotechnical Division Annual Seminar 2013, Hong Kong, pp 165-171.

Swann, L., Wang, J.B., Lok, C.C. \& Fung, P.K. (2003). The impacts of pipe-jacking across Gloucester Road. Proceedings of the HKIE Geotechnical Division 23rd Annual Seminar, Hong Kong, pp 224-233.

Tai, R.W.M \& Ho, L.K.M (2002). Hong Kong Harbour Area Treatment Scheme Stage I, Deep Tunnel System for Sewage Conveyance. International Conference on Wastewater Management \& Technologies for Highly Urbanized Coastal Cities 2002, Hong Kong, pp 234-246.

Tam, A. (1998). Quarry Bay Congestion Relief Works. Asia Engineer, Hong Kong, pp 7-8.

Tam, A. (2000). Horizontal directional drilling for Ma Wan water main installation. Hong Kong Engineer, vol. 28, no. 11, pp 20-21.

Tam, A. (2001). Relief from the long and winding road. Asia Engineer, Hong Kong, pp 9-13.

REFERENCES

Tam, A. (2011). Bringing the fragance back to Victoria Harbour. Hong Kong Engineer, Hong Kong, September 2011, pp 9-12. ((HATS Stage 2A)).

Tam, A. (2012a). Bringing Southern District into the loop. Hong Kong Engineer, Hong Kong, January 2012, pp 10-15. (South Island Line).

Tam, A. (2012b). Tunnelling fraternity hails breakthrough approach to stormwater drainage. Hong Kong Engineer, Hong Kong, April 2012, pp 8-10. (HKWDT).

Tam, J. K. W., Nip, G. C. Y. \& Sum, B. P. T. (2012). Multi-stages Ground Investigation for the Alignment Selection of TKO-LT Tunnel. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 61-66. http://hkieged.org/geodiv/annualseminar.aspx

Tam, R.L.F. \& Howley, C.M. (2009). Kowloon Southern Link - A Geotechnical Review of Tunnelling Work Using Mixshield TBM. Proceedings of the Hong Kong Tunnelling Conference 2009, pp 361-369.

Tang, E.S.W., Shiu, P.Y.M., Lim, H.K., Mo, K.W. \& Law, R.S.C. (2012). Horizontal directional drilling (HDD) technique for undersea microtunnelling.

Tattersall, J. W., Tam, J. K.W., Garshol, K. F.\& Lau, K. C.K. (2012). Engineering Geological Approach for Assessment of Quantities and Programme for Deep Tunnels in Hong Kong. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 81-87. http://hkieged.org/geodiv/annualseminar.aspx

Taylor, J.P. (2009). Risk Management at Kowloon Southern Link. Proceedings of the Hong Kong Tunnelling Conference 2009, pp 159-168.

Taylor, R.L. (1990). The civil engineering design of the Eastern Harbour Crossing, Hong Kong. Proceedings of the Second Symposium on Strait Crossings, Trondheim, Norway, pp 621-628.

Thorley, C.B.B., Forth, R. A. \& Lam, B.M.T. (1986). Building settlement due to tunnelling in weathered granite. Proceedings of the International Symposium on Engineering in Complex Rock Formations, Beijing, pp 870-876.

Torpey, K.W. \& Hawley, J. (1991). Design, excavation and lining of Shing Mun Tunnels, Hong Kong. Proceedings of the Sixth International Symposium on Tunnelling (Tunnelling '91), London, pp299-311.

Torpey, K.W. \& Larkin, K.F. (1990). Design and construction of the Shing Mun Tunnels (Route 5). Hong Kong Institution of Engineers Transactions, Hong Kong, vol. 2, pp 3-9.

REFERENCES

Troughton, V.M., Murray, L.V. \& Murray, S.A. (1991). Prediction and control of groundwater, vibration and noise for construction of the Hong Kong Bank seawater tunnel. Proceedings of the 6th International Symposium on Tunnelling (Tunnelling '91), London, pp 411-423.

Tsang, A. C. M., Salisbury, C.D. \& Yeung, S. S. M. (2012). Confinement Pressure for Face Stability of Tunnel Boring Machine (TBM) Tunnel Excavation Under Hong Kongi's Western District. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 147-158.
http://hkieged.org/geodiv/annualseminar.aspx
Tsang, K. K. H., Lai, S. Y. Y., Wong, R. W. M. \& Li, S.T.S. (2010). Adding value To Tseung Kwan O - Lam Tin Tunnel. Proceedings of the International Value Management Conference, Hong Kong, December 2010.

Tsang, L., Cheung, A., Leung, C. \& Chan, W. L. (2012a). Artificial Ground Freezing for TBM Breakthrough Construction. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 125-130. http://hkieged.org/geodiv/annualseminar.aspx

Tsang, L., Cheung, A., Leung, C. \& Chan, W. L. (2012b). Mined Tunnel Construction using Artificial Ground Freezing Technique for HATS 2A Project. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 131-136. http://hkieged.org/geodiv/annualseminar.aspx

Tunnels \& Tunnelling (1971). High Island Scheme - Hong Kong. Tunnels \& Tunnelling, vol. 3, p 177.

Tunnels \& Tunnelling (1972). Hong Kong airport tunnel road. Tunnels \& Tunnelling, vol. 4, no. 6, pp 534.

Tunnels \& Tunnelling (1994). Stanley cavern and Cheung Ching tunnels. Tunnels \& Tunnelling, vol. 26, no. 12, pp 33-34.

Tunnels \& Tunnelling International (1999). Tunnelling on the Tsueng Kwan O Extension. Tunnels \& Tunnelling International, October 1999, pp 32-36.

Tunnels \& Tunnelling International (2002). Refining design on the Black Hill tunnels. Tunnels \& Tunnelling International, November 2002, pp 20-22.

Twist, D.W.L. \& Tonge, W.A. (1979). Planning and design of the Aberdeen Tunnel. Hong Kong Engineer, vol. 7, no. 3, pp 13-30.

Vail, A.J., Lee, G.C. \& Robertson, I.R.S. (1976). Some aspects of the construction of the High Island Scheme. Hong Kong Engineer, vol. 4, no. 4, pp 53-63.

REFERENCES

Wang, J.B., Swann, L.H. \& Boyd, M. (2006). Monitoring of ground response associated with pipe-jacking works - Recent experience in Hong Kong. Proceedings of the HKIE Geotechnical Division 26th Annual Seminar, Hong Kong, pp 133-151.

Wightman, N.R. \& Cheung, C.K.W. (2002). Construction of MTR 601 cut and cover tunnels and development foundations in reclamation fill in Area 55(A) at Tseung Kwan O. Proceedings of the HKIE Geotechnical Division 22nd Annual Seminar, Hong Kong, pp 145-154.

Williams, T. (1991). The story of Lin Ma Hang lead mine, 1915-1962. Geological Society of Hong Kong Newsletter, vol. 9, no. 4, pp 3-27.

Wong, A. N. L. \& Wong, W. Y. (2012). Experience Sharing for Micro-tunnelling Projects Implemented by CLP Power. Proceedings of the HKIE Geotechnical Division 32nd Annual Seminar, Hong Kong, May 2012, pp 313-318. http://hkieged.org/geodiv/annualseminar.aspx

Wong, E. K. L. (2012). Prediction and monitoring of ground settlement caused by deep TBM tunnelling - a case study of Lai Chi Kok Drainage Tunnel. Fugro Prize competition organized by the HKIE Geotechnical Division, Hong Kong, 2012.

Wong, E. K. L. (2012). Prediction and monitoring of ground settlement caused by deep TBM tunnelling - a case study of Lai Chi Kok Drainage Tunnel. Fugro Prize competition organized by the HKIE Geotechnical Division, Hong Kong, 2012.

Wong, K.K.W., Ng, N.W.H., Leung, L.P.P. \& Chan, Y. (2008). Kowloon Southern Link - TBM crossing over MTR Tsuen Wan Line tunnels in HKSAR. The 6th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Shanghai, China, pp 350-355.

Wong, P.C.P. (2006). Ground investigation for tunnel works - a cautious approach. Proceedings of the HKIE Geotechnical Division 26th Annual Seminar, Hong Kong, pp 153-160.

Wong, S.T. (1994). A visit to Cheung Ching Tunnel. Asia Engineer, vol. 22, no. 5, pp 43.

Wong, W.M., Li, S.T.S., Sum, B.P.T. \& Lai, S.Y.Y. (2011). Alignment of Tseung Kwan O - Lam Tin tunnel the environmental and geotechnical perspectives. Seminar on Geopark, Geoconservation and Sustainable Development 2011, Hong Kong, pp 63-72.

Woods, N.W. \& Langford, R.L. (1991). The geology and exploitation of the West Brother Island graphite deposit. Geological Society of Hong Kong Newsletter, vol. 9, no. 2, pp 24-35.

REFERENCES

Woodward, W. (1935). Report on the construction of the first section of the Shing Mun Valley Waterworks Scheme. Legislative Council of Hong Kong, Sessional Papers, 1935, pp 147-164 (plus 2 maps).

World Tunnelling (1989). Under Tate's Cairn. World Tunnelling, vol. 2, pp 272-277.
World Tunnelling (1999). Tai Po to Butterfly Valley Treated Water Transfer. World Tunnelling, vol. 12, no. 8, pp 383-385.

Yang, W.W., Leung, M.T. \& Lo, J. (2003). Temporary supports for tunnels of Trunk Road T7 in metasediment ground. Proceedings of the HKIE Geotechnical Division 23rd Annual Seminar, Hong Kong, pp 296- 303.

Yang, W.W., Lo, J. \& King, H. (2006). Remarks on steel immersed tube tunnelling techniques. Proceedings of the HKIE Geotechnical Division 26th Annual Seminar, Hong Kong, pp 185-194.

Yang, W.W., Lo, Y.C. \& Ng, H.Y. (2005). Design and construction of MTRC tunnels for the Quarry Bay Congestion Relief Works. Proceedings of the 2005 Shanghai International Forum on Tunnelling, Shanghai, pp 356-364. (In Chinese).

Züblin (2007). Ed. Züblin AG web site. http://www.zueblin-
international.com/www/home.nsf/mainpage?ReadForm\&n1=0\&link=/www/projects.nsf/0/CB6451A5BF486727C1256F8D003337B3 (1 June 2007).

