
A Malloc Tutorial∗

Marwan Burelle†

Laboratoire Système et Sécurité de l’EPITA (LSE)

February 16, 2009

Contents
1 Introduction 2

2 The Heap and the brk and sbrk syscalls 2
2.1 The Process’s Memory . 3
2.2 brk(2) and sbrk(2) . 3
2.3 Unmapped Region and No-Man’s Land . 4
2.4 mmap(2) . 4

3 Dummy malloc 4
3.1 Principle . 5
3.2 Implementation . 5

4 Organizing the Heap 5
4.1 What do we need ? . 5
4.2 How to represent block information . 6

5 A First Fit Malloc 7
5.1 Aligned Pointers . 7
5.2 Finding a chunk: the First Fit Algorithm . 8
5.3 Extending the heap . 8
5.4 Spliting blocks . 9
5.5 The malloc function . 10

6 calloc, free and realloc 11
6.1 calloc . 11
6.2 free . 12

6.2.1 Fragmentation: the malloc illness . 12
6.2.2 Finding the right chunk . 13
6.2.3 The free function . 14

∗http://wiki-prog.kh405.net
†marwan.burelle@lse.epita.fr

1

6.3 Resizing chunks with realloc . 14
6.3.1 FreeBSD’s reallocf . 18

6.4 Putting things together . 18

1 Introduction
What is malloc ? If you don’t even know the name, you might begin to learn C in the Unix
environment prior to read this tutorial. For a programmer, malloc is the function to allocate
memory blocks in a C program, most people don’t know what is really behind, some even
thinks its a syscall or language keyword. In fact malloc is nothing more than a simple function
and can be understood with a little C skills and almost no system knowledge.

The purpose of this tutorial is to code a simple malloc function in order to understand the
underlying concepts. We will not code an efficient malloc, just a basic one, but the concept
behind can be useful to understand how memory is managed in every day processes and how-to
deal with blocks allocation, reallocation and freeing.

From a pedagogical standpoint, this is a good C practice. It is also a good document to
understand where your pointers come from and how things are organized in the heap.

What is malloc
malloc(3) is a Standard C Library function that allocates (i.e. reserves) memory chunks. It
complies with the following rules:

• malloc allocates at least the number of bytes requested;

• The pointer returned by malloc points to an allocated space (i.e. a space where the
program can read or write successfully;)

• No other call to malloc will allocate this space or any portion of it, unless the pointer
has been freed before.

• malloc should be tractable: malloc must terminate in as soon as possible (it should not
be NP-hard !;)

• malloc should also provide resizing and freeing.

The function obey to the following signature:

void* malloc(size_t size);

Where size is the requested size. The returned pointer should be NULL in case of faillure
(no space left.)

2 The Heap and the brk and sbrk syscalls
Prior to write a first malloc, we need to understand how memory is managed in most multitask
systems. We will keep an abstract point of view for that part, since many details are system and
hardware dependant.

2

2.1 The Process’s Memory
Each process has its own virtual adress space dynamically translated into physical memory
adress space by the MMU (and the kernel.) This space is devided in sevral part, all that we
have to know is that we found at least some space for the code, a stack where local and volatile
data are stored, some space for constant and global variables and an unorganized space for
program’s data called the heap.

The heap is a continuous (in terme of virtual adresses) space of memory with three bounds:
a starting point, a maximum limit (managed through sys/ressource.h’s functions getrlimit(2)
and setrlimit(2)) and an end point called the break. The break marks the end of the mapped
memory space, that is, the part of the virtual adress space that has correspondance into real
memory. Figure 1 sketches the memory organisation.

Mapped Region Unmapped Region

U
na

va
ila

bl
e

Sp
ac

e

H
ea

p’
s

St
ar

t

br
ea

k

rl
im

it

The Heap

Figure 1: Memory organisation

In order to code a malloc, we need to know where the heap begin and the break position,
and of course we need to be able to move the break. This the purpose of the two syscalls brk
and sbrk.

2.2 brk(2) and sbrk(2)
We can find the description of these syscalls in their manual pages:

int brk(const void *addr);
void* sbrk(intptr_t incr);

brk(2) place the break at the given adress addr and return 0 if successful, -1 otherwise. The
global errno symbol indicate the nature of the error.
sbrk(2)move the break by the given increment (in bytes.) Depending on system implementa-
tion, it returns the previous or the new break adress. On failure, it returns (void *)-1 and set
errno. On some system sbrk accepts negative values (in order to free some mapped memory.)

Since sbrk’s specification does not fix the meaning of its result, we won’t use the returned
value when moving the break. But, we can use a special case of sbrk: when increment is nul
(i.e. sbrk(0)), the returned value is the actual break adress (the previous and the new break
adresses are the same.) sbrk is thus used to retrieve the begining of the heap which is the initial
position of the break.

We will use sbrk as our main tool to implement malloc. All we have to do is to acquire
more space (if needed) to fulfil the query.

3

2.3 Unmapped Region and No-Man’s Land
We saw earlier that the break mark the end of the mapped virtual adress space: accessing
adresses above the break should trigger a bus error. The remaining space between the break
and the maximum limit of the heap is not associated to physical memory by the virtual memory
manager of the system (the MMU and the dedicated part of the kernel.)

But, if you know a little about virtual memory (and even if use your brain 5 seconds), you
know that memory is mapped by pages: physical memory and virtual memory is organize in
pages (frames for the physical memory) of fixed size (most of the time.) The page size is by far
bigger than one byte (on most actual system a page size is 4096 bytes.) Thus, the break may
not be on pages boundary.

Mapped Region Unmapped Region

U
na

va
ila

bl
e

Sp
ac

e

H
ea

p’
s

St
ar

t

br
ea

k

rl
im

it

Figure 2: Pages and Heap

Figure 2 presents the previous memory organisation with page boundaries. We can see the
break may not correspond to a page boundary. What is the status of the memory betwee the
break and the next page boundary ? In fact, this space is available ! You can access (for reading
or writing) bytes in this space. The issue is that you don’t have any clue on the position of the
next boundary, you can find it but it is system dependant and badly advise.

This no-man’s land is often a root of bugs: some wrong manipulations of pointer outside of
the heap can success most of the time with small tests and fail only when manipulating larger
amount of data.

2.4 mmap(2)

Even if we won’t use it in this tutorial, you should pay attention to the mmap(2) syscall. It
has an annonymous mode (mmap(2) is usualy used to directly map files in memory) which can
used to implement malloc (completely or for some specific cases.)
mmap in annonymous mode can allocate a specific amount of memory (by page size granu-

larity) and munmap can free it. It is often simpler and more efficient than classical sbrk based
malloc. Many malloc implementation use mmap for large allocation (more than one page.)
The OpenBSD’s malloc uses only mmap with some quirks in order to improve security (prefer-
ing page’s borders for allocation with holes between pages.)

3 Dummy malloc
First, we will play with sbrk(2) to code a dummy malloc. This malloc is probabily the
worst one, even if it is the simplest and quiet the fastest one.

4

3.1 Principle
The idea is very simple, each time malloc is called we move the break by the amount of space
required and return the previous address of the break. It is simple and fast, it takes only three
lines, but we cannot do a real free and of course realloc is impossible.

This malloc waste a lot of space in obsolete memory chunks. It is only here for education-
nal purpose and to try the sbrk(2) syscall. For educationnal purposes, we will also add some
error management to our malloc.

3.2 Implementation

1 /* An horrible dummy malloc */

2
3 #include <sys/types.h>
4 #include <unistd.h>
5
6 void *malloc(size_t size)

7 {

8 void *p;
9 p = sbrk(0);

10 /* If sbrk fails, we return NULL */

11 if (sbrk(size) == (void*)-1)
12 return NULL;
13 return p;
14 }

4 Organizing the Heap
In Section 3 on the preceding page, we present a first attempt to code a malloc function, but
we failed to fulfil all the requirements. In this section we will try to find an organisation of the
heap so that we can have an efficient malloc but also a free and a realloc.

4.1 What do we need ?
If we consider the problem outside of the programming context, we can infer what kind of
information we need to solve our issues. Let’s take analogy: you own a field and partition
it to rent portion of it. Clients ask for different length (you divide your field using only one
dimension) which they expect to be continous. When they have finished they give you back
their porpotion, so you can rent it again.

On one side of the field you have a road with a programmable car: you enter the distance
between the begin of the field and the destination (the begining of your portion.) So we need
to know where each portion begin (this the pointer returned by malloc) and when we are at a
begining of a portion we need the address of the next one.

A solution is to put a sign at the begining of each where we indicate the address of the next
one (and the size of the current one to avoid unecessary computing.) We also add a mark on
free portion (we put that mark when the client give it back.) Now, when a client want a portion
of a certain size we take the car and travel from sign to sign. When we find a portion marked as

5

free and wide enough we give it to the client and remove the mark from the sign. If we reach
the last portion (its sign have no next portion address) we simply go to the end of the portion
and add a new sign.

Now we can transpose this idea to the memory: we need extra-information at begining of
each chunks indicating at least the size of the chunk, the address of the next one and whether
its free or not.

4.2 How to represent block information
So what we need is a small block at the begining of each chunk containing the extra-information,
called meta-data. This block contains at least a pointer to the next chunk, a flag to mark free
chunks and the size of the data of the chunk. Of course, this block of information is before the
pointer returned by malloc.

m
et

a-
da

ta

data

pointer

m
et

a-
da

ta

free=1

data

pointer

m
et

a-
da

ta
data

pointer

next next

Figure 3: Heap’s Chunks Structures

Figure 3 presents an example of heap organisation with meta-data in front of the allocated
block. Each chunck of data is composed of a block of meta-data followed by the block of data.
The pointer returned by malloc is indicated in the lower part of the diagram, note that it points
on the data block, not on the complete chunk.

Now, how we translate this into C code ? This look like a classic linked list (and this is a
linked list), so we write a type for linked list with the needed information inside member of the
list. The type definition is self describing and presents no surprise:

1 typedef struct s_block *t_block;
2
3 struct s_block {
4 size_t size;

5 t_block next;

6 int free;

7 };

Note the use of a typedef to simplify the use of the type. Since we will never use the type
without a pointer we include it in the typedef, this is in fact the good practice for linked list
since the list is the pointer, not the block (an empty list is a NULL pointer.)

6

It may seems a waste of space to use an int as a flag, but since struct are aligned by
default, it won’t have changed anything, we will see later how we can shrink the size of meta-
data. Another point that we will see later is that malloc must return aligned address.

A frequent question at this point is: how can we create a structwithout a working malloc
? The answer is simple, you just need to know what realy is a struct. In memory, a struct
is simply the concatenation of its fields, so in our example a struct s block is just 12 bytes
(with 32 bit integer) the first four correspond to size, the next four to the pointer to next block
and finaly the last four are the integer free. When the compiler encounter an access to struct
field (like s.free or p->free) it translate it to the base address of the struct plus the sum of
the length of the previous field (so p->free is equivalent to *((char*)p+8) and s.free is
equivalent to *((char*)&s + 8).) All you have to do is to allocate enough space with sbrk
for the chunck (so the size of the meta-data plus the size of the data block) and put the address
of the old break in a variable of type t block:

/* Example of using t_block without malloc */

t_block b;

/* save the old break in b */

b = sbrk(0);
/* add the needed space */

/* size is the parameter of malloc */

sbrk(sizeof(struct s_block) + size);
b->size = size;

/* ... */

5 A First Fit Malloc
In this section we will implement the classic first fit malloc. The first fit algorithm is quiet
simple: we traverse the chunks list and stop when we find a free block with enough space for
the requested allocation.

5.1 Aligned Pointers
It is often required that pointers be aligned to the integer size (which is also the pointer size.)
In out case we will consider only 32 bit case. So, our pointer must be a multiple of 4 (32 bits
= 4 bytes, of course.) Since our meta-data block is already aligned, the only thing we need
is to align the size of the data block.

How do we do this ? There are several ways, on of the more efficient is to add a preprocessor
macro using arithmetic trick.

First, the arithmetic trick: given any positive integer dividing (integer division) it by four
and then multiplying it by four again results in the nearest smaller multiple of four, thus to
obtain the nearest greater multiple of four we only need to add four to it. This is quiet simple,
but it don’t work with an integer multiple of four, since it results with the next multiple of four.
But, let’s play with arithmetic again, let x be an integer such that x = 4 × p + q with 0 ≤ q ≤ 3,
then if x is a multiple of four, q = 0 and x−1 = 4× (p−1)+3, so ((x−1)/4)×4+4 = 4× p = x.
If x is not a multiple of four, then q , 0 and x − 1 = 4 × p + (q − 1) and 0 ≤ q − 1 ≤ 2, so
(x−1)/4×4+4 = 4× p+4 = x/4×4+4. And thus, we have our formula since (x−1)/4×4+4
always results to the nearest greater or equal multiple of four.

7

So, how do we do that in C ? First, note that dividing and multiplying by four can be express
using right and left bit-shift (>> and << in C) which are faster than simple multiplication. So
our formula can be write in C like that: (((x-1)>>2)<<2)+4, to have a proper macro we need
some extra parenthesis: (((((x)-1)>>2)<<2)+4). And now we can write our macro:

#define align4(x) (((((x)-1)>>2)<<2)+4)

5.2 Finding a chunk: the First Fit Algorithm
Finding a free sufficiently wide chunk is quite simple: We begin at the base address of the heap
(saved somehow in our code, we will see that later) test the current chunk, if it fit our need we
just return its address, otherwise we continue to the next chunk until we find a fitting one or the
end of the head. The only trick is to keep the last visited chunk, so the malloc function can
easily extends the end of the heap if we found no fitting chunk. The code is straightforward,
base is a global pointer to the starting point of our heap:

1 t_block find_block(t_block *last, size_t size){

2 t_block b=base;

3 while (b && !(b->free && b->size >= size)) {
4 *last = b;

5 b = b->next;

6 }

7 return (b);
8 }

The function returns a fitting chunk, or NULL if none where found. After the execution, the
argument last points to the last visited chunk.

5.3 Extending the heap
Now, we won’t always have a fitting chunk, and sometimes (especially at the begining of the
program using our malloc) we need to extends the heap. This is quite simple: we move the
break and initialize a new block, of course we need to update the next field of the last block
on the heap.

In later development we will need to do some trick with the size of struct s block, so
we define a macro holding the size of meta-data block, for now it is define as:

#define BLOCK_SIZE sizeof(struct s_block)

Nothing surprising in this code, we just return NULL if sbrk fails (and we don’t try to
understand why.) Note also that since we’re not sure that sbrk returns the previous break, we
first save it and then move the break. We could have compute it using last and last->size.

1 t_block extend_heap(t_block last, size_t s){

2 t_block b;

3 b = sbrk(0);
4 if (sbrk(BLOCK_SIZE + s) == (void*)-1)
5 /* sbrk fails, go to die */

6 return (NULL);
7 b->size = s;

8 b->next = NULL;

9 if (last)

8

10 last->next = b;

11 b->free = 0;

12 return (b);
13 }

5.4 Spliting blocks
You may have notice that we use the first available block regardless of its size (provide that it’s
wide enough.) If we do that we will loose a lot of space (think of it: you ask for 2 bytes and
find a block of 256 bytes.) A first solution is to split blocks: when a chunk is wide enough to
held the asked size plus a new chunk (at least BLOCK SIZE + 4), we insert a new chunk in the
list.

m
et

a-
da

ta

requested size unused space

m
et

a-
da

ta

next

m
et

a-
da

ta

requested size

m
et

a-
da

ta

free=1

m
et

a-
da

ta
next next

Figure 4: Splitting blocks

The following function is called only if space is available. The provided size must also be
aligned. In this function we’ll have to do some pointer arithmetic, to prevent errors, we will
use a little trick to be sure that all our operations are done with one byte precision (remember
p+1 depends on the type pointed to by p.)

We just add another field to struct s block of type characters array. Arrays in structure
are simply put there: the array lies directly in the whole memory block of the structure at the
point where the field is defined, thus for us, the array’s pointer indicate the end of the meta-data.
C forbid zero length array, so we define a one byte long array and this why we need to specify
a macro for the size of struct s block.

struct s_block {
size_t size;

t_block next;

9

int free;

char data[1];

};

/* Of course, update the BLOCK_SIZE macro */

#define BLOCK_SIZE 12 /* 3*4 ... */

Note that this extension does not require any modification to extend heap since the new
field will not be used directly.

Now the split block: this function cut the block passed in argument to make data block
of the wanted size. As for previous function s is already alined. The Figure 4 on the preceding
page shows what is done here.

1 void split_block(t_block b, size_t s){
2 t_block new;

3 new = b->data + s;

4 new->size = b->size - s - BLOCK_SIZE;

5 new->next = b->next;

6 new->free = 1;

7 b->size = s;

8 b->next = new;

9 }

Note the use of b->data in pointer arithmetic on line 3. Since the field data is of type
char[] we are sure that the sum is done by byte precision.

5.5 The malloc function
Now, we can do our malloc function. It is mostly a wrapper around previous functions. We
have to aligne the required size, test if we are the first called malloc or not and every thing else
have already been told.

First, remember in Section 5.2 on page 8 the function find block use a global variable
base. This variable is defined as follow:

void *base=NULL;

It is a void pointer and it is NULL initialized. The first thing our malloc does is to test
base, if it NULL then this the first time we’re called, otherwise we start the previously described
algorithm.

Our malloc follow these lines:

• First align the requested size;

• If base is initialized:

– Search for a free chunk wide enough;

– If we found a chunk:

* Try to split the block (the difference between the requested size and the size of
the block is enough to store the meta-data and a minimal block (4 bytes;)

* Mark the chunk as used (b->free=0;)

10

– Otherwise: we extend the heap.
Note the use of the last: find block put the pointer to the last visited chunk in
last, so we can access it during the extension without traversing the whole list
again.

• Otherwise: we extended the heap (which is empty at that point.)

Note that our function extend heap works here with last=NULL.

Note also that each time we fail, we silently returns NULL as expected by the specification
of malloc. The Listing 1 presents the code.

Listing 1: The malloc function
1 void *malloc(size_t size){
2 t_block b,last;

3 size_t s;

4 s = align4(size);

5 if (base) {
6 /* First find a block */

7 last = base;

8 b = find_block(&last,s);

9 if (b) {
10 /* can we split */

11 if ((b->size - s) >= (BLOCK_SIZE + 4))
12 split_block(b,s);

13 b->free=0;

14 } else {
15 /* No fitting block, extend the heap */

16 b = extend_heap(last,s);

17 if (!b)
18 return(NULL);
19 }

20 } else {
21 /* first time */

22 b = extend_heap(NULL,s);

23 if (!b)
24 return(NULL);
25 base = b;

26 }

27 return(b->data);
28 }

6 calloc, free and realloc

6.1 calloc

calloc(3) is quite straightforward:

• First do the malloc with right size (product of the two operands);

11

• Put 0 on any bytes in the block.

We just play a little trick: the data block size in the chunk is always a multiple of 4, so
iterate by 4 bytes steps. For this, we just use our new pointer as an unsigned integer array. The
code is straightforward (see listing 2.)

Listing 2: The calloc function
1 void *calloc(size_t number, size_t size){
2 size_t *new;

3 size_t s4,i;

4 new = malloc(number * size);

5 if (new) {
6 s4 = align4(number * size) << 2;

7 for (i=0; i<s4 ; i++)
8 new[i] = 0;

9 }

10 return (new);
11 }

6.2 free

A quick implementation of free(3) can be quiet simple, but this does not mean that it is
convenient. We have two issues: find the chunk to be freed and avoiding space fragmentation.

6.2.1 Fragmentation: the malloc illness

A major issue of malloc is fragmentation: after several use of malloc and free, we end with
a heap divided in many chunks individually to small to satify big malloc while the whole free
space would have been sufficient. This issue is known as the space fragmentation problem.
While we cannot go against the extra-fragmentation due to our algorithm without changing it,
some other sources of fragmentation can be avoided.

When we select a free chunk wider enough to hold the requested allocation and another
chunk, we split the current chunk. While this offer a better usage of the memory (the new
chunk is free for further reservation) it introduces more fragmentation.

A solution to eliminate some fragmentation is to fusion free chunks. When we free a chunk,
and its neighbors are also free, we can fusion them in one bigger chunk. All we have to do is
to test the next and previous chunks. But, how to find the previous block ? We have several
solitions:

• search from the begin, particulary slow (especially if we already do a search for the freed
chunk)

• if we already do a search for the current chunk, we could keep a pointer on the last visited
chunk (as for find block)

• Double link our list.

12

We choose the last solution, it’s simpler and let’s us do some trick to find the target chunk. So,
we modify (again) our struct s block, but since we have another pending modification (see
the next section) we will present the modification later.

So, all we have to do now is the fusion. We first write a simple fusion function which fusion
a chunk and its successor. Fusionning with the predecessor will just be a test and a call with
the right chunk. In the code we use our new field prev for the predecessor.

1 t_block fusion(t_block b){

2 if (b->next && b->next->free){
3 b->size += BLOCK_SIZE + b->next->size;

4 b->next = b->next->next;

5 if (b->next)
6 b->next->prev = b;

7 }

8 return (b);
9 }

Fusion is straightforward: if the next chunk is free, we sum the sizes of the current chunk
and the next one, plus the meta-data size. Then, the we make next field point to the successor
of our successor and if this successor exists we update its predecessor.

6.2.2 Finding the right chunk

The other free’s issue is to find, efficiently, the correct chunk with only the pointer returned
by malloc. In fact, there are several issues here:

• Validating the input pointer (is it realy a malloc’ed pointer ?)

• Finding the meta-data pointer

We can eliminate most of invalid pointers by a quick range test: if the pointer is outside the
heap, it can not be a valid pointer. The remaining cases are related to the last case. How can
we be sure that a pointer was obtained by a malloc ?

A solution is to have some magic number inside the block structure. And better thant a
magic number, we could use the pointer itself. I explain: say we have field ptr pointing to the
field data, if b->ptr == b->data, then b is probably (very probably) a valid block. So, here
is the extended structure and functions that verify and access the bloc corresponding to a given
pointer:

1 /* block struct */

2 struct s_block {
3 size_t size;

4 struct s_block *next;

5 struct s_block *prev;

6 int free;

7 void *ptr;

8 /* A pointer to the allocated block */

9 char data[1];

10 };

11 typedef struct s_block *t_block;
12
13 /* Get the block from and addr */

14 t_block get_block(void *p)

13

15 {

16 char *tmp;
17 tmp = p;

18 return (p = tmp -= BLOCK_SIZE);
19 }

20
21 /* Valid addr for free */

22 int valid_addr(void *p)
23 {

24 if (base)
25 {

26 if (p>base && p< sbrk(0))
27 {

28 return (p == (get_block(p))->ptr);
29 }

30 }

31 return (0);
32 }

6.2.3 The free function

free is now straightforward: we verify the pointer and get the corresponding chunk, we mark
it free and fusion it if possible. We also try to release memory if we’re at the end of the heap.

Releasing memory, is quite simple: if we are at the end of the heap, we just have to put the
break at the chunk position with a simple call to brk(2).

the listing 3 on the following page presents our implementation, it follows this structure:

• If the pointer is valid:

– we get the block address

– we mark it free

– if the previous exists and is free, we step backward in the block list and fusion the
two blocks.

– we also try fusion with then next block

– if we’re the last block we release memory.

– if there’s no more block, we go back the original state (set base to NULL.)

• If the pointer is not valid, we silently do nothing.

6.3 Resizing chunks with realloc
The realloc(3) function is almost as straightforward as calloc(3). Basically, we only need
a memory copy operation. We won’t use the provided memcpy, since we can do better (size are
available in blocks and are aligned.)

The copy is straightforward:

14

Listing 3: The free function
1 /* The free */

2 /* See free(3) */

3 void free(void *p)
4 {

5 t_block b;

6 if (valid_addr(p))
7 {

8 b = get_block(p);

9 b->free = 1;

10 /* fusion with previous if possible */

11 if(b->prev && b->prev->free)
12 b = fusion(b->prev);

13 /* then fusion with next */

14 if (b->next)
15 fusion(b);

16 else
17 {

18 /* free the end of the heap */

19 if (b->prev)
20 b->prev->next = NULL;

21 else
22 /* No more block !*/

23 base = NULL;

24 brk(b);
25 }

26 }

27 }

1 /* Copy data from block to block */

2 void copy_block(t_block src, t_block dst)
3 {

4 int *sdata ,*ddata;

5 size_t i;

6 sdata = src->ptr;

7 ddata = dst->ptr;

8 for (i=0; i*4<src->size && i*4<dst->size; i++)
9 ddata[i] = sdata[i];

10 }

A very naive (but working) realloc, just follow this algorithm:

• Allocate a new bloc of the given size using malloc;

• Copy data from the old one to the new one;

• Free the old block;

• Return the new pointer.

Of course, we want something a little bit more efficient: we don’t want a new allocation if
we have enough room where we are. The different cases are thus:

15

• If the size doesn’t change, or the extra-available size (do to alignement constraint, or if
the ramainning size was to small to split) is sufficient, we do nothing;

• If we shrink the block, we try a split;

• If the next block is free and provide enough space, we fusion and try to split if necessary.

The listing 4 on the next page presents our implementation. Don’t forget, that the call
realloc(NULL,s) is valid and should be replaced by malloc(s).

16

Listing 4: The realloc function
1 /* The realloc */

2 /* See realloc(3) */

3 void *realloc(void *p, size_t size)
4 {

5 size_t s;

6 t_block b, new;

7 void *newp;

8 if (!p)
9 return (malloc(size));

10 if (valid_addr(p))
11 {

12 s = align4(size);

13 b = get_block(p);

14 if (b->size >= s)
15 {

16 if (b->size - s >= (BLOCK_SIZE + 4))
17 split_block(b,s);

18 }

19 else
20 {

21 /* Try fusion with next if possible */

22 if (b->next && b->next->free
23 && (b->size + BLOCK_SIZE + b->next->size) >= s)

24 {

25 fusion(b);

26 if (b->size - s >= (BLOCK_SIZE + 4))
27 split_block(b,s);

28 }

29 else
30 {

31 /* good old realloc with a new block */

32 newp = malloc(s);

33 if (!newp)
34 /* we’re doomed ! */

35 return (NULL);
36 /* I assume this work ! */

37 new = get_block(newp);

38 /* Copy data */

39 copy_block(b,new);

40 /* free the old one */

41 free(p);

42 return (newp);
43 }

44 }

45 return (p);
46 }

47 return (NULL);
48 }

17

6.3.1 FreeBSD’s reallocf

FreeBSD provides another realloc function: reallocf(3) which free the given pointer in
any case (even if the reallocation fails.) This just a call to realloc and a free if we get a NULL
pointer. The listing 5 presents the code.

Listing 5: The reallocf function
1 /* The reallocf */

2 /* See reallocf(3) */

3 void *reallocf(void *p, size_t size)
4 {

5 void *newp;
6 newp = realloc(p,size);

7 if (!newp)
8 free(p);

9 return (newp);
10 }

6.4 Putting things together
All need, now is to integrated modification done to the block structure in previous code. We
only need to rewrite split block and extend heap and redefine BLOCK SIZE.

18

Listing 6: Putting things together
1 /* block struct */

2 struct s_block {
3 size_t size;

4 struct s_block *next;

5 struct s_block *prev;

6 int free;

7 void *ptr;

8 /* A pointer to the allocated block */

9 char data[1];

10 };

11 typedef struct s_block *t_block;
12
13 /* Define the block size since the sizeof will be wrong */

14 #define BLOCK_SIZE 20
15
16 /* Split block according to size. */

17 /* The b block must exist. */

18 void split_block(t_block b, size_t s)
19 {

20 t_block new;

21 new = (t_block)(b->data + s);

22 new->size = b->size - s - BLOCK_SIZE;

23 new->next = b->next;

24 new->prev = b;

25 new->free = 1;

26 new->ptr = new->data;

27 b->size = s;

28 b->next = new;

29 if (new->next)
30 new->next->prev = new;

31 }

32
33 /* Add a new block at the of heap */

34 /* return NULL if things go wrong */

35 t_block extend_heap(t_block last, size_t s)

36 {

37 int sb;

38 t_block b;

39 b = sbrk(0);
40 sb = (int) sbrk(BLOCK_SIZE + s);
41 if (sb < 0)
42 return (NULL);
43 b->size = s;

44 b->next = NULL;

45 b->prev = last;

46 b->ptr = b->data;

47 if (last)
48 last->next = b;

49 b->free = 0;

50 return (b);
51 }

19

List of Figures
1 Memory organisation . 3
2 Pages and Heap . 4
3 Heap’s Chunks Structures . 6
4 Splitting blocks . 9

Listings
1 The malloc function . 11
2 The calloc function . 12
3 The free function . 15
4 The realloc function . 17
5 The reallocf function . 18
6 Putting things together . 19

20

	Introduction
	The Heap and the brk and sbrk syscalls
	The Process's Memory
	brk(2) and sbrk(2)
	Unmapped Region and No-Man's Land
	mmap(2)

	Dummy malloc
	Principle
	Implementation

	Organizing the Heap
	What do we need ?
	How to represent block information

	A First Fit Malloc
	Aligned Pointers
	Finding a chunk: the First Fit Algorithm
	Extending the heap
	Spliting blocks
	The malloc function

	calloc, free and realloc
	calloc
	free
	Fragmentation: the malloc illness
	Finding the right chunk
	The free function

	Resizing chunks with realloc
	FreeBSD's reallocf

	Putting things together

