Algebraic Path Problems

Jacek Jonczy

RUN Seminar Bern

June 5, 2008

Outline

A few Motivating Examples
Shortest Path Problems
Single-Source Problem
All-Pairs Problem
Further Variants
Semirings
Types of Semirings
The Algebraic Path Problem (APP)
Some Definitions
Examples revisited
Methods to solve the APP
Overview: Instances of the APP
Our Approach
References

Outline

```
A few Motivating Examples Shortest Path Problems
Single-Source Problem
All-Pairs Problem
Further Variants
```


Semirings

```
Types of Semirings
The Algebraic Path Problem (APP) Some Definitions
Examples revisited Methods to solve the APP Overview: Instances of the APP
Our Approach
References
```


Is there a path from u to v ?

$$
\begin{array}{ll}
1 \wedge 1 & =1 \\
1 \wedge 0 \wedge 1 & =0 \\
1 \wedge 0 \wedge 1 \wedge 1 & =0 \\
\hline \bigvee\{1,0,0\} & =1
\end{array}
$$

\Longrightarrow Transitive Closure (Connectivity)

How long is the shortest path from u to v ?

\Longrightarrow Shortest Path Problem

The highest attainable reliability from u to v ?

\Longrightarrow Most Reliable Path Problem

What is the maximum capacity from u to v ?

\Longrightarrow Maximum Capacity Path Problem

Which language takes the automaton from state u

 to state v ?

$$
\begin{array}{llr}
\{a\} \cdot\{c\} & = & \{a c\} \\
\{a\} \cdot\{b\} \cdot\{a\} & = & \{a b a\} \\
\{a\} \cdot\{a\} \cdot \emptyset \cdot\{a\} & = & \emptyset \\
\hline \bigcup\{a c, a b a, \emptyset\} & = & \{a b a, a c\}
\end{array}
$$

\Longrightarrow Language accepted by a Finite State Automaton

What are the pathsets for the u, v-connectivity of

 the network?

$$
\begin{array}{lll}
e_{1} \wedge e_{2} & = & p_{1} \\
e_{3} \wedge e_{5} \wedge e_{4} & = & p_{2} \\
e_{3} \wedge e_{6} \wedge e_{7} \wedge e_{4} & = & p_{3} \\
\hline \bigvee\left\{p_{1}, p_{2}, p_{3}\right\} & = & p_{1} \vee p_{2} \vee p_{3}
\end{array}
$$

\Longrightarrow Structure Function for u, v-Connectivity

Outline

A few Motivating Examples

Shortest Path Problems
Single-Source Problem
All-Pairs Problem
Further Variants

Semirings

Types of Semirings
The Algebraic Path Problem (APP)
Some Definitions
Examples revisited
Methods to solve the APP
Overview: Instances of the APP
Our Approach
References

Single-Source Shortest-Paths Problem

- Given: weighted graph $G=(V, E, \lambda), \lambda: E \rightarrow \mathbb{R}$, and $s \in V$ the source of all considered paths
- Problem: compute for every $v \in V$ the minimal weight of all paths from s to $v, d_{s, v}$
- Relaxation: relaxing an edge (u, v)
- test whether the shortest path to v found so far can be improved by going through u. If so, update the distance estimate of v.
- formally: maintain a function $\delta: V \rightarrow \mathbb{R} \cup\{\infty\}$, initialized as follows:

$$
\delta(v)=\left\{\begin{array}{ll}
0 & \text { if } s=v, \\
\infty & \text { otherwise. }
\end{array}, \forall v \in V\right.
$$

- define the operation $\operatorname{relax}(u, v)$:

$$
\text { if } \delta(v)>\delta(u)+\lambda(u, v) \text { then } \delta(v):=\delta(u)+\lambda(u, v)
$$

- NB: relaxation used by algorithms such as Dijkstra and Bellman-Ford

Algorithms for the Single-Source Problem

- Dijkstra Algorithm
- input: $\mathbb{R}_{\geq 0 \text {-weighted graph. }}$
- output: $\forall v \in V: \delta(v)=d_{s, v}$.
- complexity:

1. with priority queue (as linear list): $\mathcal{O}\left(|V|^{2}+|E|\right)=\mathcal{O}\left(|V|^{2}\right)$
2. with binary heap: $\mathcal{O}((|V|+|E|) \cdot \log |V|)=\mathcal{O}(|E| \cdot \log |V|)$
3. with fibonacci heap: $\mathcal{O}(|V| \cdot \log |V|+|E|)$

- Bellman-Ford Algorithm
- input: \mathbb{R}-weighted graph.
- output:

1. graph does not contain negative-weighted cycles:

$$
\forall v \in V: \delta(v)=d_{s, v} .
$$

2. graph contains such cycles: stop with corresp. message

- complexity: $\mathcal{O}(|V| \cdot|E|)$, hence in the worst case: $\mathcal{O}\left(|V|^{3}\right)$

All-Pairs Shortest-Paths Problem

- Given: weighted graph $G=(V, E, \lambda), \lambda: E \rightarrow \mathbb{R}$, such that there are no negative weighted cycles.
- Initial data structure: weighted matrix $W_{G}=\left(w_{u, v}\right)$ where

$$
w_{u, v}= \begin{cases}0 & \text { if } u=v, \\ \infty & \text { if } u \neq v,(u, v) \notin E, . \\ \lambda(u, v) & \text { if } u \neq v,(u, v) \in E\end{cases}
$$

- Problem: compute the shortest distance matrix $D=\left(d_{u, v}\right)_{1 \leq u, v \leq n}$.

Algorithms for the All-Pairs Problem

- Iteration algorithm
- complexity: $\mathcal{O}\left(|V|^{4}\right)$
- Iteration algorithm with Doubling Up
- complexity: $\mathcal{O}\left(|V|^{3} \cdot \log |V|\right)$
- Floyd-Warshall Algorithm
- complexity: $\mathcal{O}\left(|V|^{3}\right)$
- Johnson's Algorithm
- uses Dijkstra and Bellman-Ford
- well-suited for sparse graphs
- complexity: $\mathcal{O}(|V| \cdot|E| \cdot \log |V|)$ (in the simplest case)

Further Variants of the Shortest Path Problem

- Single-destination shortest-paths problem: Find a shortest path to a given destination vertex (terminal) t from every other vertex v. NB: by reversing the direction of edges in the graph, the problem can be reduced to a single-source problem.
- Single-pair shortest-path problem: Find the shortest path from u to v for given vertices u and v. Special case of single-source and all-pairs problems. NB: no algorithm is known that is (asymptotically) faster than the best single-source algorithms in the worst case.
- k-shortest (k-best) paths problem: Find the k shortest (different) paths (single-source or all-pairs problem)

Outline

A few Motivating Examples Shortest Path Problems
 Single-Source Problem
 All-Pairs Problem
 Further Variants

Semirings
Types of Semirings
The Algebraic Path Problem (APP) Some Definitions
Examples revisited Methods to solve the APP Overview: Instances of the APP
Our Approach
References

Semiring

Definition (Semiring)

A semiring is an algebraic structure (S, \oplus, \otimes) such that

- (S, \oplus) is a commutative monoid:
i. \oplus is commutative
ii. \oplus is associative
iii. $\overline{0}$ is the neutral element for \oplus
- (S, \otimes) is a monoid:
iv. \oplus is asssociative
v. $\overline{1}$ is the neutral element for \otimes
- \otimes distributes over \oplus (from right and left), i.e. $\forall a, b, c \in A$:

$$
\text { vi. } a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c)
$$

- $\overline{0}$ annihilates \otimes, i.e. $\forall a \in A$:
vii. $a \otimes \overline{0}=\overline{0}$

Idempotent, Commutative, and Bounded Semirings

Definition (Idempotent Semiring)
A semiring (S, \oplus, \otimes) is called idempotent if

$$
\forall a \in S \text { holds : } a \oplus a=a
$$

Definition (Commutative Semiring)
A semiring (S, \oplus, \otimes) is called commutative if

$$
\forall a, b \in S \text { holds : } a \otimes b=b \otimes a
$$

Definition (Bounded Semiring)
A semiring (S, \oplus, \otimes) is called bounded if

$$
\forall a \in S: \overline{1} \oplus a=\overline{1} \quad(\overline{1} \text { annihilates } \oplus)
$$

Ordered Semirings

Definition (Ordered Semiring)

A semiring (S, \oplus, \otimes) is called ordered when its partial order relation \preccurlyeq is monotone w.r.t to both operations. Then we have:

$$
a \preccurlyeq b \text { and } a^{\prime} \preccurlyeq b^{\prime} \Longrightarrow a \oplus a^{\prime} \preccurlyeq b \oplus b^{\prime} \text { and } a \otimes a^{\prime} \preccurlyeq b \otimes b^{\prime}
$$

Obtaining an ordered semiring:

- Take idempotent semiring and define partial order by

$$
a \preccurlyeq b \Longleftrightarrow a \oplus b=b \quad \text { (natural order) }
$$

- Take (partially or linearly) ordered semigroup (S, \otimes) with neutral element $\overline{1}$, and \oplus is the sup or inf operation (max or min in case of a total order). The order relation of an ordered semigroup is monotone w.r.t. the multiplication.

Complete Semirings

Definition (Complete Semiring)

A semiring (S, \oplus, \otimes) is called complete if the existence of (countable) infinite sums is guaranteed. In particular, for every countable subset of S, we require:

- infinite commutativity of \oplus
- infinite associativity of \oplus
- infinite distributivity (\otimes distributes over infinite sums)

Closed Semirings

Definition [Lehmann, 1977]
A semiring (S, \oplus, \otimes) is called closed if there is an additional unary operation *, called closure, such that

$$
\forall a \in S: a^{*}=\overline{1} \oplus a \otimes a^{*}=\overline{1} \oplus a^{*} \otimes a
$$

Definition [Rote, 1989]

Consider a semiring (S, \oplus, \otimes) and the iteration equation

$$
\begin{equation*}
x=\overline{1} \oplus a \otimes x, \tag{1}
\end{equation*}
$$

where $a, x \in S$. If there is always a solution a^{*} of (1), i.e. a fixed point exists, then the semiring is called closed.

Closed Semirings, cont.

Definition [Mohri, 2002]
A semiring (S, \oplus, \otimes) is called k-closed if

$$
\forall a \in S: \quad \bigoplus_{n=0}^{k+1} a^{n}=\bigoplus_{n=0}^{k} a^{n}
$$

where $k \geq 0$.
NB: a bounded semiring is a special k-closed semiring, namely for $k=0$.
(0-closeness $=$ boundedness)

Simple Semirings

Definition (Simple Semiring)

A simple semiring is a semiring which is bounded and closed.

Definition (Dijkstra Semiring)

A Dijkstra semiring is a simple semiring (S, \oplus, \otimes) with the property

$$
a \oplus b=\text { either } a \text { or } b \forall a, b \in S \text {. }
$$

In other words, its natural order defined by

$$
a \succcurlyeq b \quad \Longleftrightarrow \quad a \oplus b=a
$$

is a total order.

Outline

A few Motivating Examples Shortest Path Problems Single-Source Problem All-Pairs Problem Further Variants
 Semirings
 Types of Semirings

The Algebraic Path Problem (APP)
Some Definitions
Examples revisited
Methods to solve the APP
Overview: Instances of the APP
Our Approach
References

General Definition

Definition (Algebraic Path Problem)

The Algebraic Path Problem consists in performing a special unary operation, called the closure, over a square matrix with entries in a semiring [Fink, 1992].

General distinction between:

- graph approach, and
- matrix approach.

Graph Approach

Consider a semiring (S, \oplus, \otimes) and a graph $G=(V, E, \lambda)$, where $\lambda: E \rightarrow S$ is the weight function.

Definition (Algebraic Path Problem)

Algebraic Path Problem: compute the sum of the weights of all paths from v_{i} to v_{j} in terms of the semiring, for all pairs v_{i}, v_{j} :

$$
d\left(v_{i}, v_{j}\right)=\bigoplus_{p \in \mathcal{P}_{i, j}} \lambda(p) \quad \text { (sum-weight function) }
$$

where $\lambda(p)=\bigotimes_{k=i}^{j} \lambda\left(v_{k}, v_{k+1}\right)$. [Fink, 1992, Rote, 1989]
Prerequisites:

- Complete, idempotent Semiring

Graph Approach, cont.

Definition (Algebraic Path Problem)

Algebraic Path Problem: for a complete semiring and the graph G, compute explicitly the $n \times n$-matrix $D=\left(d_{i j}\right)$, the "distance matrix", such that

$$
d_{i j}=\bigoplus_{p \in \mathcal{P}_{i, j}} \lambda(p)
$$

where $\lambda(p)=\bigotimes_{k=i}^{j} \lambda\left(v_{k}, v_{k+1}\right)$. [Vogler, 2006]
Prerequisites:

- Complete Semiring

Matrix Approach

- Define addition and multiplication of $n \times n$-matrices $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ over the semiring (S, \oplus, \otimes) :
$A \oplus B=\left(a_{i j} \oplus b_{i j}\right), \quad A \otimes B=\left(c_{i j}\right) \quad$ where $c_{i j}=\bigoplus_{k=1}^{n} a_{i k} \otimes b_{k j}$
- Define the k-th power of matrix A :

$$
A^{k}=\left(d_{i j}\right) \text { where } d_{i j}=\bigoplus_{r=0}^{k-1} a_{i r} \otimes a_{r j}, A^{0}=I
$$

- Define the closure of the matrix A :

$$
\begin{equation*}
A^{*}=\bigoplus_{k \geq 0} A^{k} \tag{2}
\end{equation*}
$$

Matrix Approach, cont.

Definition (Algebraic Path Problem)

Algebraic Path Problem: given a matrix A over a semiring (S, \oplus, \otimes), compute its closure A^{*} defined by (2).

- The closure operation on matrices satisfies the closure property [Lehmann, 1977]:

$$
A^{*}=I \oplus A \otimes A^{*}=I \oplus A^{*} \otimes A
$$

- The closure of a $n \times n$-matrix over a simple semiring may be computed as follows [Lehmann, 1977]:

$$
A^{*}=\bigoplus_{k=0}^{n-1} A^{k}=I \oplus A \oplus A^{2} \oplus \ldots \oplus A^{n-1}
$$

NB: semiring does neither require completeness, idempotency, nor annihilation of \otimes by $\overline{0}$.

Examples revisited

Examples of closed (or complete) semirings

1. Transitive Closure

- Graph $G=(V, E, \lambda), \lambda: E \rightarrow\{0,1\}$
- Boolean semiring: Bool $=(\{0,1\}, \vee, \wedge, 0,1)$
- Satisfies properties of a Dijkstra semiring
- Problem of computing the transitive closure of G : APP over G and Bool

Examples revisited

Examples of closed (or complete) semirings

2. Shortest Path Problem

- Graph $G=(V, E, \lambda), \lambda: E \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$
- Tropical semiring: Trop $=\left(\mathbb{R}_{\geq 0} \cup\{\infty\}\right.$, min $\left.,+, \infty, 0\right)$
- Satisfies properties of a Dijkstra semiring
- Problem of computing the length of the shortest path (for all pairs): APP over G and Trop

Examples revisited

Examples of closed (or complete) semirings
3. Maximum Reliability Path Problem

- Graph $G=(V, E, \lambda), \lambda: E \rightarrow[0,1]$
- Viterbi semiring: Viterbi $=([0,1], \max , \cdot, 0,1)$
- Satisfies properties of a Dijkstra semiring
- Problem of computing the highest attainable reliability between two nodes: APP over G and Viterbi

Examples revisited

Examples of closed (or complete) semirings
4. Maximum Capacity Path Problem

- Graph $G=(V, E, \lambda), \lambda: E \rightarrow \mathbb{R}_{\geq 0} \cup\{\infty\}$
- Bottleneck semiring: Bottle $=\left(\mathbb{R}_{\geq 0} \cup\{\infty\}\right.$, max, $\left.\min , 0, \infty\right)$
- Satisfies properties of a Dijkstra semiring
- Problem of computing the greatest transfer capacity between two nodes: APP over G and Bottle

Examples revisited

Examples of closed (or complete) semirings

5. Language accepted by a Finite State Automaton (FSA)

- FSA $M=\left(Q, \Sigma, \delta, F, q_{0}\right)$, where $\delta: Q \times \Sigma \rightarrow Q$
- Set of words which lead from state q_{1} to state q_{2} :

$$
\begin{array}{r}
\mathcal{L}\left(q_{1}, q_{2}\right)=\left\{\omega \in \Sigma^{*} \mid q_{2} \in \bar{\delta}\left(q_{1}, \omega\right)\right\}, \text { where } \bar{\delta}: Q \times \Sigma^{*} \rightarrow Q \\
\text { such that } \bar{\delta}(q, \epsilon)=\{q\} \text { and } \bar{\delta}(q, \omega a)=\bigcup_{q^{\prime} \in \bar{\delta}(q, \omega)} \delta\left(q^{\prime}, a\right)
\end{array}
$$

- Graph $G=(V, E, \lambda)$, where $V=Q, E=Q \times Q, \lambda: E \rightarrow \mathscr{P}\left(\Sigma^{*}\right)$
- Kleene semiring: Kleene $=\left(\mathscr{P}\left(\Sigma^{*}\right), \cup, *, \emptyset,\{\epsilon\}\right)$ (closed)
- Problem of determining $\mathcal{L}\left(q_{1}, q_{2}\right)$ for all pairs of states q_{1} and q_{2} : APP over G and Kleene

Examples revisited

Examples of closed (or complete) semirings
6. Two-Terminal Connectivity

- Network $G=(V, E, \lambda), \lambda: E \rightarrow \mathcal{B}_{n}$
- \mathcal{B}_{n} set of n-ary Boolean functions
- Semiring of Boolean functions: $\mathrm{BF}=\left(\mathcal{B}_{n}, \max , \min , 0,1\right)$
- Simple semiring, but not a Dijkstra semiring
- Problem of computing the structure function for u, v-connectivity for all pairs u and v : APP over G and BF

Examples revisited

Examples of closed (or complete) semirings
7. Final example: matrix inversion

- Consider the (partial) closed semiring ($\mathbb{R},+, \cdot, 0,1$)
- The closure of $x \in \mathbb{R}$ is defined by $x^{*}=\frac{1}{1-x}, \forall x \neq 1$
- This semiring can be completed to a closed semiring. Requires $\overline{0}$ to be not annihilating for \otimes [Lehmann, 1977].
- This semiring for matrix inversion cannot be described by the graph approach, since addition is not idempotent

Methods to solve the APP

- Iterative methods (search for a fixed point):
- Jacobi iteration
- Gauss-Seidel iteration
- Direct methods
- generalized versions of known algorithms, such as:
- Warshall's algorithm for transitive closure
- Warshall-Floyd algorithm for shortest path
- Kleene's algorithm for regular expressions
- Gauss-Jordan algorithm for matrix inversion
- Aho's algorithm
- Mahr's algorithm
- Adapted versions of Knuth's and Dijkstra's algorithms

The General Solution

Generalized version of the Warshall-Floyd-Kleene (WFK) algorithm

```
Algorithm 1: Generalized WFK
    Input: \(x \times n\) matrix \(A=\left(a_{i j}\right), a_{i j} \in S, S\) is a closed semiring.
    Output: \(C\), the closure of \(A\).
    1 begin
\begin{tabular}{l|l}
\(\mathbf{2}\) & \(A^{(0)} \leftarrow A\) \\
\(\mathbf{3}\) & for \(k\) from 1 to \(n\) do \\
\(\mathbf{4}\) & foreach \(1 \leq i, j \leq n\) do \\
\(\mathbf{5}\) & \(\quad\left[A^{(k)}\right]_{i j} \leftarrow\left[A^{(k-1)}\right]_{i j} \oplus\left[A^{(k-1)}\right]_{i k} \otimes\left(\left[A^{(k-1)}\right]_{k k}\right)^{*} \otimes\left[A^{(k-1)}\right]_{k j}\) \\
\(\mathbf{6}\) & end \\
\(\mathbf{7}\) & end \\
\(\mathbf{8}\) & \(C \leftarrow I_{n}+A^{(n)}\) \\
\(\mathbf{9}\) end
\end{tabular}
```

- Intuitively, $\left(\left[A^{(k-1)}\right]_{k k}\right)^{*}$ represents the "sum" of all cycles with nodes in $\{1, \ldots, k-1\}$ that pass through node k (length $k-1$)
- Complexity: $\mathcal{O}\left(n^{3} \cdot\left(T_{\oplus}+T_{\otimes}+T_{*}\right)\right)$

Overview: Instances of the APP

The APP generalizes many important problems (choice):

- Graph and Network Problems
- transitive closure and transitive reduction
- shortest distance problems (distance functions)
- capacity problems (max flow, network capacity, tunnel-problem)
- connectivity measures for reliability networks
- stochastic communication network problems
- Linear Algebra
- computing the inverse of a matrix
- Regular Language Problems
- correspondance: regular expressions and finite state automata

Outline

A few Motivating Examples
Shortest Path Problems
Single-Source ProblemAll-Pairs ProblemFurther Variants
Semirings
Types of Semirings
The Algebraic Path Problem (APP)
Some Definitions
Examples revisitedMethods to solve the APPOverview: Instances of the APP
Our Approach
References

Our Approach I

1. Computing the structure function from the APP point of view:

- Semiring of Boolean functions
- All-pairs connectivity \rightarrow generalized WKF-algorithm
- Single-source connectivity \rightarrow e.g. Dijkstra
- Generalized single-source connectivity $\rightarrow \mathrm{JH}$-algorithm

2. Obtaining the struture function for two-terminal reliability (s, t-connectivity) as instance of the APP
3. Extending the APP

- All-pairs APP
- Single-source APP
- Generalized single-source APP (source-to-any, source-to-all,... .)

4. Network reliability computation (computing the structure function) as projection problem in a VA

Outline

A few Motivating Examples
Shortest Path Problems
Single-Source Problem
All-Pairs Problem
Further Variants

Semirings

Types of Semirings
The Algebraic Path Problem (APP) Some Definitions
Examples revisited Methods to solve the APP Overview: Instances of the APP
Our Approach

References

References I

[Fink, 1992]	E. Fink. A survey of sequential and systolic algorithms for the algebraic path problem. Technical Report CS-92-37, Department of Computer Science, University of Waterloo, 1992.
[Mohri, 2002]	M. Mohri. Semiring frameworks and algorithms for shortest-distance problems. Journal of Automata, Languages and Combinatorics, 7(3):321-350, 2002.
[Lehmann, 1977]	Daniel Lehmann. Algebraic structures for transitive closure. Theoretical Computer Science, 4:59-76, 1977.

References II

[Rote, 1989] Günter Rote.
Path problems in graphs.
In G. Tinhofer, E. Mayr, H. Noltemeier, M. M. Syslo, and
R. Albrecht, editors, Computational Graphs Theory, Computing Supplementum 7. Springer-Verlag, 1990.
[Shier, 1991] Douglas R. Shier.
Network reliability and algebraic structures. Oxford Clarendon Press, New York, USA, 1991.
[Warshall, 1962] Stephen Warshall.
A theorem on boolean matrices.
Journal of the ACM, 9(1):11-12, 1962.

