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Motivating Examples

Is there a path from u to v?

1INl =1
1IANOAL =
INOALIAL =0

V{1,0,0} =1

= Transitive Closure (Connectivity)
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Motivating Examples

How long is the shortest path from u to v?

7 5

(1)
. @ ©
7+5 =12
30 +20+10 =60
30+10+00+10 =00
min{oco, 60,12} =12

— Shortest Path Problem
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Motivating Examples

The highest attainable reliability from u to v?

0.9
0.6 0.7

. @ ©
0.6-0.7 = 042
09-09-0.8 = 0.648
09-0-05-0.8 = 0
maz{0.42,0.648,0} = 0.42

— Most Reliable Path Problem
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Motivating Examples

What is the maximum capacity from u to v?

min{10, 3} =3
min{5,20,7} =5
min{5,10,0,7} =0
max{3,5,0} =5

—> Maximum Capacity Path Problem
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Motivating Examples

Which language takes the automaton from state u

to state v?

—~
IS]
—
%@

{o}
. @\}
{a} {c}

{a} - {c} = {ac}
{a}-{b} -{a} = {abaj
{a} -{a}-0-{a} = 0
U{ac, aba, 0} = {aba,ac}

— Language accepted by a Finite State Automaton
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Motivating Examples

What are the pathsets for the u, v-connectivity of

the network?

€3 €4
er\ep = P1
es3 N\es N\ ey = D2
esNegNerNeg = D3
VAp1,p2.p3} = p1Vp2Vps

= Structure Function for u, v-Connectivity
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Shortest Path Problems  Single-Source Shortest-Paths Problem

Single-Source Shortest-Paths Problem

e Given: weighted graph G = (V,E,\), \: E — R, and s € V the
source of all considered paths
e Problem: compute for every v € V' the minimal weight of all paths
from s to v, ds,
e Relaxation: relaxing an edge (u,v)
e test whether the shortest path to v found so far can be improved
by going through w. If so, update the distance estimate of v.
e formally: maintain a function ¢ : V' — R U {o0}, initialized as
follows:

0 ifs=
5(0):{ " v , VoeV
0o otherwise.
e define the operation relax(u,v):
if 5(v) > d(u) + M(u,v) then 6(v) := o(u) + A(u, v)

e NB: relaxation used by algorithms such as Dijkstra and Bellman-Ford
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Shortest Path Problems  Single-Source Shortest-Paths Problem

Algorithms for the Single-Source Problem

e Dijkstra Algorithm

e input: R>o-weighted graph.

e output: Vv eV : §(v) =dspy.

e complexity:
1. with priority queue (as linear list): O(|V |2 + |E|) = O(|V|?)
2. with binary heap: O((|V| + |E]) - log|V|) = O(|E| - log|V])
3. with fibonacci heap: O(|V| - log|V|+ |E|)

e Bellman-Ford Algorithm

e input: R-weighted graph.

e output:
1. graph does not contain negative-weighted cycles:

VoeV: 6(v)=dse.

2. graph contains such cycles: stop with corresp. message

o complexity: O(|V| - |E|), hence in the worst case: O(|V|?)
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Shortest Path Problems  All-Pairs Shortest-Paths Problem

All-Pairs Shortest-Paths Problem

e Given: weighted graph G = (V, E,\), A\ : E — R, such that there
are no negative weighted cycles.

e Initial data structure: weighted matrix Wg = (wy,) where

0 if u=w,
Wyp = § OO if u#wv, (u,v)¢ E, .
Mu,v) ifu#wv, (u,v) e E

e Problem: compute the shortest distance matrix D = (dy,v)1<u,v<n-

Jacek Jonczy (IAM) Algebraic Path Problems June 5, 2008 13 / 44



Algorithms for the All-Pairs Problem

Iteration algorithm
e complexity: O(|V[*)
Iteration algorithm with Doubling Up
o complexity: O(|V|? - log|V|)
Floyd-Warshall Algorithm
o complexity: O(|V|?)
Johnson's Algorithm

e uses Dijkstra and Bellman-Ford
o well-suited for sparse graphs
e complexity: O(|V|-|E|-log|V|) (in the simplest case)
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Further Variants of the Shortest Path Problem

e Single-destination shortest-paths problem: Find a shortest path
to a given destination vertex (terminal) ¢ from every other vertex
v. NB: by reversing the direction of edges in the graph, the
problem can be reduced to a single-source problem.

e Single-pair shortest-path problem: Find the shortest path from
u to v for given vertices v and v. Special case of single-source
and all-pairs problems. NB: no algorithm is known that is
(asymptotically) faster than the best single-source algorithms in
the worst case.

e k-shortest (k-best) paths problem: Find the k shortest
(different) paths (single-source or all-pairs problem)
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Semiring

Definition (Semiring)
A semiring is an algebraic structure (.S, @, ®) such that
e (S,®) is a commutative monoid:

i. @ is commutative
ii. € is associative
iii. 0 is the neutral element for ©

e (S,®) is a monoid:
iv. @ is asssociative
v. 1is the neutral element for ®
e ® distributes over & (from right and left), i.e. V a,b,c € A:
Vi, a®((b®c)=(a®b)® (a®c)
e 0 annihilates ®, i.e. YV a € A:
vii. a®0=0

Jacek Jonczy (IAM) Algebraic Path Problems June 5, 2008 17 / 44



Semirings ~ Types of Semirings

|ldempotent, Commutative, and Bounded Semirings

Definition (Idempotent Semiring)
A semiring (S, @, ®) is called idempotent if

VaeSholds: a®a=a

Definition (Commutative Semiring)

A semiring (S, @, ®) is called commutative if
VabeSholds: a®b=bRa

Definition (Bounded Semiring)

A semiring (S, @, ®) is called bounded if

VaeS: 1@a=1 (1 annihilates @)
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Ordered Semirings

Definition (Ordered Semiring)

A semiring (S, @, ®) is called ordered when its partial order relation
=< is monotone w.r.t to both operations. Then we have:

a<bandd XV =a®d <b®V and a@d KbV

Obtaining an ordered semiring:

e Take idempotent semiring and define partial order by
a<b < a®b=1> (natural order)

o Take (partially or linearly) ordered semigroup (.S, ®) with neutral
element 1, and @ is the sup or inf operation (max or min in case of a
total order). The order relation of an ordered semigroup is monotone
w.r.t. the multiplication.
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Semirings ~ Types of Semirings

Complete Semirings

Definition (Complete Semiring)

A semiring (S, @, ®) is called complete if the existence of
(countable) infinite sums is guaranteed. In particular, for every

countable subset of S, we require:
e infinite commutativity of &
e infinite associativity of @
e infinite distributivity (® distributes over infinite sums)
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Closed Semirings

Definition [Lehmann, 1977]

A semiring (S, @, ®) is called closed if there is an additional unary
operation *, called closure, such that

VaeS: a"=1%a®a* =1dad"®a

Definition [Rote, 1989]

Consider a semiring (.S, ®, ®) and the iteration equation
r=1®a®uz, (1)

where a,z € S. If there is always a solution a* of (1), i.e. a fixed
point exists, then the semiring is called closed.
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Closed Semirings, cont.

Definition [Mohri, 2002]
A semiring (S, ®, ®) is called k-closed if

k+1 k

Yacs: @a”:@a”
n=0 n=0
where k£ > 0.
NB: a bounded semiring is a special k-closed semiring, namely for

k=0.
(0-closeness = boundedness)
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Simple Semirings

Definition (Simple Semiring)

A simple semiring is a semiring which is bounded and closed.
Definition (Dijkstra Semiring)
A Dijkstra semiring is a simple semiring (.S, @, ®) with the property
a®b= eitheraorb Va,bes.
In other words, its natural order defined by
ax=b < adb=ua

is a total order.
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The Algebraic Path Problem (APP)
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The Algebraic Path Problem (APP)  Some Definitions

General Definition

Definition (Algebraic Path Problem)

The Algebraic Path Problem consists in performing a special
unary operation, called the closure, over a square matrix with
entries in a semiring [Fink, 1992].

General distinction between:
e graph approach, and
e matrix approach.
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The Algebraic Path Problem (APP)  Some Definitions

Graph Approach

Consider a semiring (S, @, ®) and a graph G = (V, E, \), where
A E — S is the weight function.

Definition (Algebraic Path Problem)

Algebraic Path Problem: compute the sum of the weights of all paths
from v; to v; in terms of the semiring, for all pairs v;, v;:

d(vi, v;) @ A(p (sum-weight function)

pEP; ;

where A(p) = ®7_, \(vk, vp11). [Fink, 1992, Rote, 1989]

Prerequisites:

e Complete, idempotent Semiring
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The Algebraic Path Problem (APP)  Some Definitions

Graph Approach, cont.

Definition (Algebraic Path Problem)

Algebraic Path Problem: for a complete semiring and the graph G,
compute explicitly the n x n-matrix D = (d,;), the “distance

matrix”, such that
dij = @ A(p)
pEP; ;
where A(p) = ®7_, A(vk, vr11). [Vogler, 2006]

Prerequisites:
e Complete Semiring
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The Algebraic Path Problem (APP)  Some Definitions

Matrix Approach

o Define addition and multiplication of n x n-matrices A = (a;;)
and B = (b;;) over the semiring (5, ®, ®):

A® B = (a;; ®byj), A®B=(c;) wherec;= @aik © i
k=1

e Define the k-th power of matrix A:

k—1
Ak = (dZ]) where dij = @air X Qrj, AO =1

r=0
e Define the closure of the matrix A:
A =Ppar (2)
k>0
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The Algebraic Path Problem (APP)  Some Definitions

Matrix Approach, cont.

Definition (Algebraic Path Problem)

Algebraic Path Problem: given a matrix A over a semiring (.S, ®, ®),
compute its closure A* defined by (2).

e The closure operation on matrices satisfies the closure property
[Lehmann, 1977]:

A= ARQA =T A" ®A

e The closure of a n x n-matrix over a simple semiring may be
computed as follows [Lehmann, 1977]:
n—1
A=A =IcAolo.. 9A"
k=0
NB: semiring does neither require completeness, idempotency, nor
annihilation of ® by 0.
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The Algebraic Path Problem (APP) Examples revisited

Examples revisited

Examples of closed (or complete) semirings

1. Transitive Closure

Graph G = (V, E,\), A: E — {0,1}
Boolean semiring: Bool = ({0,1},V, A,0,1)

e Satisfies properties of a Dijkstra semiring
e Problem of computing the transitive closure of G: APP over GG
and Bool
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The Algebraic Path Problem (APP) Examples revisited

Examples revisited

Examples of closed (or complete) semirings

2. Shortest Path Problem

Graph G = (V, E,\), A1 E — Rso U {00}
Tropical semiring: Trop = (R>o U {o0}, min, +, 00, 0)

Satisfies properties of a Dijkstra semiring

Problem of computing the length of the shortest path (for all
pairs): APP over G and Trop
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The Algebraic Path Problem (APP) Examples revisited

Examples revisited

Examples of closed (or complete) semirings

3. Maximum Reliability Path Problem

Graph G = (V, E,\), A: E — [0,1]
Viterbi semiring: Viterbi = ([0, 1], maz, -,0, 1)
Satisfies properties of a Dijkstra semiring

Problem of computing the highest attainable reliability between
two nodes: APP over G and Viterbi
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The Algebraic Path Problem (APP) Examples revisited

Examples revisited

Examples of closed (or complete) semirings

4. Maximum Capacity Path Problem

Graph G = (V, E,\), A1 E — Ryo U {0}
Bottleneck semiring: Bottle = (R U {00}, max, min, 0, co)

Satisfies properties of a Dijkstra semiring

Problem of computing the greatest transfer capacity between
two nodes: APP over G and Bottle
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The Algebraic Path Problem (APP) Examples revisited

Examples revisited
Examples of closed (or complete) semirings
5. Language accepted by a Finite State Automaton (FSA)

e FSA M =(Q,X%,d,F,qo), where 6 : Q x ¥ — Q
Set of words which lead from state ¢; to state go:

L(g1, ) ={weX | pe g(ql,w)}, where § : Q x ¥* — Q

such that 5(q, €) = {q} and 5((1700@) = U d(q',a)
q'€d(q.w)

Graph G = (V,E,;\), where V=Q, E=Q xQ, A\: E — Z(X*)
Kleene semiring: Kleene = (Z2(X*),U, *,0, {€}) (closed)

Problem of determining £(q1, ¢2) for all pairs of states g1 and ¢:
APP over GG and Kleene
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The Algebraic Path Problem (APP) Examples revisited

Examples revisited

Examples of closed (or complete) semirings

6. Two-Terminal Connectivity

e Network G = (V,E,\), \: E — B,

B, set of n-ary Boolean functions

Semiring of Boolean functions: BF = (B,,, max, min,0, 1)

Simple semiring, but not a Dijkstra semiring

Problem of computing the structure function for
u, v-connectivity for all pairs u and v: APP over G and BF
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The Algebraic Path Problem (APP) Examples revisited

Examples revisited

Examples of closed (or complete) semirings

7. Final example: matrix inversion

Consider the (partial) closed semiring (R, +,-,0,1)

The closure of x € R is defined by z* = ﬁ Va#l

]'his semiring can be completed to a closed semiring. Requires
0 to be not annihilating for @ [Lehmann, 1977].

This semiring for matrix inversion cannot be described by the
graph approach, since addition is not idempotent
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The Algebraic Path Problem (APP) Methods to solve the APP

Methods to solve the APP

e |terative methods (search for a fixed point):
e Jacobi iteration

e Gauss-Seidel iteration

e Direct methods
e generalized versions of known algorithms, such as:
e Warshall's algorithm for transitive closure
e Warshall-Floyd algorithm for shortest path
e Kleene's algorithm for regular expressions
e Gauss-Jordan algorithm for matrix inversion
e Aho's algorithm
e Mabhr's algorithm
e Adapted versions of Knuth's and Dijkstra’s algorithms
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The Algebraic Path Problem (APP) Methods to solve the APP

The General Solution

Generalized version of the Warshall-Floyd-Kleene (WFK) algorithm

Algorithm 1: Generalized WFK
Input: z x n matrix A = (asj), ai; € S, S is a closed semiring.
Output: C, the closure of A.

1 begin

2 A(O) — A

3 for k from 1 to n do

4 foreach 1 <i,j <n do

5 | [AW]i; = [A% V] @ [A® D] @ ([A® D))" © [AP D]y
6 end

7 end

8 | Co1In+A™

9 end

e Intuitively, ([A®~D].)* represents the “sum” of all cycles with
nodes in {1,...,k — 1} that pass through node k (length k& — 1)

e Complexity: O(n- (Ty + Ty + T%))
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The Algebraic Path Problem (APP)  Overview: Instances of the APP

Overview: Instances of the APP

The APP generalizes many important problems (choice):

e Graph and Network Problems
e transitive closure and transitive reduction
e shortest distance problems (distance functions)
e capacity problems (max flow, network capacity, tunnel-problem)
e connectivity measures for reliability networks

e stochastic communication network problems

e Linear Algebra
e computing the inverse of a matrix

e Regular Language Problems
e correspondance: regular expressions and finite state automata

Jacek Jonczy (IAM) Algebraic Path Problems June 5, 2008 39 / 44



Outline

Our Approach
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Our Approach |

1. Computing the structure function from the APP point of view:
e Semiring of Boolean functions

All-pairs connectivity — generalized WKF-algorithm

Single-source connectivity — e.g. Dijkstra

Generalized single-source connectivity — JH-algorithm

2. Obtaining the struture function for two-terminal reliability
(s, t-connectivity) as instance of the APP

3. Extending the APP
e All-pairs APP
e Single-source APP
o Generalized single-source APP (source-to-any, source-to-all,...)

4. Network reliability computation (computing the structure
function) as projection problem in a VA

Jacek Jonczy (IAM) Algebraic Path Problems June 5, 2008 41 / 44



Outline

References

Jacek Jonczy (IAM) Algebraic Path Problems June 5, 20

42 / 44



References |

[Fink, 1992] E. Fink.
A survey of sequential and systolic algorithms for the
algebraic path problem.
Technical Report CS-92-37, Department of Computer
Science, University of Waterloo, 1992.

[Mohri, 2002] M. Mohri.
Semiring frameworks and algorithms for shortest-distance
problems.
Journal of Automata, Languages and Combinatorics,
7(3):321-350, 2002.

[Lehmann, 1977]  Daniel Lehmann.
Algebraic structures for transitive closure.
Theoretical Computer Science, 4:59-76, 1977.

Jacek Jonczy (IAM) Algebraic Path Problems June 5, 2008 43 / 44



References ||

[Rote, 1989] Giinter Rote.
Path problems in graphs.
In G. Tinhofer, E. Mayr, H. Noltemeier, M. M. Syslo, and
R. Albrecht, editors, Computational Graphs Theory,
Computing Supplementum 7. Springer-Verlag, 1990.

[Shier, 1991] Douglas R. Shier.
Network reliability and algebraic structures.
Oxford Clarendon Press, New York, USA, 1991.

[Warshall, 1962] Stephen Warshall.
A theorem on boolean matrices.
Journal of the ACM, 9(1):11 — 12, 1962.

Jacek Jonczy (IAM) Algebraic Path Problems June 5, 2008 44 / 44



	A few Motivating Examples
	Shortest Path Problems
	Single-Source Shortest-Paths Problem
	All-Pairs Shortest-Paths Problem
	Further Variants of the Shortest Path Problem

	Semirings
	Types of Semirings

	The Algebraic Path Problem (APP)
	Some Definitions
	Examples revisited
	Methods to solve the APP
	Overview: Instances of the APP

	Our Approach
	References

