Algebraic Path Problems

Jacek Jonczy

Reasoning under **UN**certainty Group Institute of Computer Science and Applied Mathematics University of Berne, Switzerland http://www.iam.unibe.ch/~run/index.html email: jonczy@iam.unibe.ch

RUN Seminar Bern

Outline

A few Motivating Examples

Shortest Path Problems

Single-Source Problem

All-Pairs Problem

Further Variants

Semirings

Types of Semirings

The Algebraic Path Problem (APP)

Some Definitions

Examples revisited

Methods to solve the APP

Overview: Instances of the APP

Our Approach

References

Outline

A few Motivating Examples

Shortest Path Problems
Single-Source Problem
All-Pairs Problem
Further Variants

Semirings

Types of Semirings

The Algebraic Path Problem (APP)

Some Definitions

Examples revisited

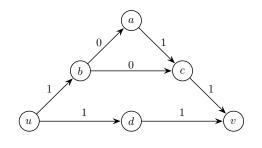
Methods to solve the APP

Overview: Instances of the APF

Our Approach

References

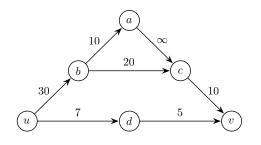
Is there a path from u to v?



$$\begin{array}{ll} 1 \wedge 1 & = 1 \\ 1 \wedge 0 \wedge 1 & = 0 \\ 1 \wedge 0 \wedge 1 \wedge 1 & = 0 \\ \hline \bigvee \{1, 0, 0\} & = 1 \end{array}$$

→ Transitive Closure (Connectivity)

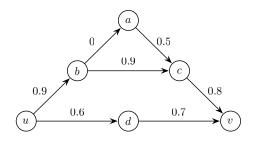
How long is the shortest path from u to v?



$$7+5 = 12
30+20+10 = 60
30+10+ ∞ +10 = ∞

$$min{\{\infty, 60, 12\}} = 12$$$$

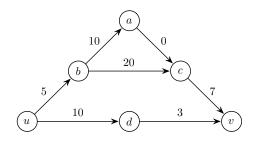
The highest attainable reliability from u to v?



$$\begin{array}{rcl}
0.6 \cdot 0.7 & = & 0.42 \\
0.9 \cdot 0.9 \cdot 0.8 & = & 0.648 \\
0.9 \cdot 0 \cdot 0.5 \cdot 0.8 & = & 0 \\
\hline
max{0.42, 0.648, 0} & = & 0.42
\end{array}$$

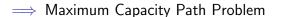
Most Reliable Path Problem

What is the maximum capacity from u to v?

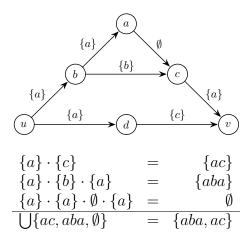


$$min{10,3} = 3$$

 $min{5,20,7} = 5$
 $min{5,10,0,7} = 0$
 $max{3,5,0} = 5$

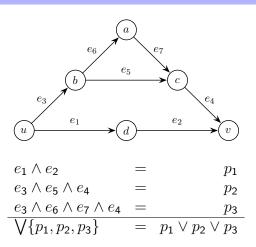


Which language takes the automaton from state u to state v?



→ Language accepted by a Finite State Automaton

What are the pathsets for the u, v-connectivity of the network?



 \implies Structure Function for u, v-Connectivity

Outline

A few Motivating Examples

Shortest Path Problems

Single-Source Problem All-Pairs Problem Further Variants

Semirings

Types of Semirings

The Algebraic Path Problem (APP)

Some Definitions

Examples revisited

Methods to solve the APP

Overview: Instances of the APP

Our Approach

References

Single-Source Shortest-Paths Problem

- Given: weighted graph $G=(V,E,\lambda)$, $\lambda:E\to\mathbb{R}$, and $s\in V$ the source of all considered paths
- Problem: compute for every $v \in V$ the minimal weight of all paths from s to v, $d_{s,v}$
- Relaxation: relaxing an edge (u, v)
 - test whether the shortest path to v found so far can be improved by going through u. If so, update the distance estimate of v.
 - formally: maintain a function $\delta: V \to \mathbb{R} \cup \{\infty\}$, initialized as follows:

$$\delta(v) = \begin{cases} 0 & \text{if } s = v, \\ \infty & \text{otherwise.} \end{cases}, \ \forall \ v \in V$$

• define the operation relax(u, v):

if
$$\delta(v) > \delta(u) + \lambda(u, v)$$
 then $\delta(v) := \delta(u) + \lambda(u, v)$

• NB: relaxation used by algorithms such as Dijkstra and Bellman-Ford

Jacek Jonczy (IAM) Algebraic Path Problems June 5, 2008 11 / 4

Algorithms for the Single-Source Problem

- Dijkstra Algorithm
 - input: $\mathbb{R}_{>0}$ -weighted graph.
 - output: $\forall v \in V : \delta(v) = d_{s,v}$.
 - complexity:
 - 1. with priority queue (as linear list): $\mathcal{O}(|V|^2 + |E|) = \mathcal{O}(|V|^2)$
 - 2. with binary heap: $\mathcal{O}((|V| + |E|) \cdot log|V|) = \mathcal{O}(|E| \cdot log|V|)$
 - 3. with fibonacci heap: $\mathcal{O}(|V| \cdot log|V| + |E|)$
- Bellman-Ford Algorithm
 - input: R-weighted graph.
 - output:
 - 1. graph does not contain negative-weighted cycles: $\forall v \in V : \delta(v) = d_{s,v}$.
 - 2. graph contains such cycles: stop with corresp. message
 - complexity: $\mathcal{O}(|V| \cdot |E|)$, hence in the worst case: $\mathcal{O}(|V|^3)$

All-Pairs Shortest-Paths Problem

- Given: weighted graph $G = (V, E, \lambda)$, $\lambda : E \to \mathbb{R}$, such that there are no negative weighted cycles.
- Initial data structure: weighted matrix $W_G = (w_{u,v})$ where

$$w_{u,v} = \begin{cases} 0 & \text{if } u = v, \\ \infty & \text{if } u \neq v, \ (u,v) \notin E, . \\ \lambda(u,v) & \text{if } u \neq v, \ (u,v) \in E \end{cases}$$

• Problem: compute the shortest distance matrix $D=(d_{u,v})_{1\leq u,v\leq n}$.

Algorithms for the All-Pairs Problem

- Iteration algorithm
 - complexity: $\mathcal{O}(|V|^4)$
- Iteration algorithm with Doubling Up
 - complexity: $\mathcal{O}(|V|^3 \cdot log|V|)$
- Floyd-Warshall Algorithm
 - complexity: $\mathcal{O}(|V|^3)$
- Johnson's Algorithm
 - uses Dijkstra and Bellman-Ford
 - well-suited for sparse graphs
 - complexity: $\mathcal{O}(|V| \cdot |E| \cdot log|V|)$ (in the simplest case)

Further Variants of the Shortest Path Problem

- Single-destination shortest-paths problem: Find a shortest path to a given destination vertex (terminal) t from every other vertex v. NB: by reversing the direction of edges in the graph, the problem can be reduced to a single-source problem.
- Single-pair shortest-path problem: Find the shortest path from u to v for given vertices u and v. Special case of single-source and all-pairs problems. NB: no algorithm is known that is (asymptotically) faster than the best single-source algorithms in the worst case.
- *k-shortest* (*k-best*) *paths problem:* Find the *k* shortest (different) paths (single-source or all-pairs problem)

4 🗇 ▶

Outline

A few Motivating Examples
Shortest Path Problems
Single-Source Problem
All-Pairs Problem
Further Variants

Semirings

Types of Semirings

The Algebraic Path Problem (APP)
Some Definitions
Examples revisited
Methods to solve the APP
Overview: Instances of the APP

Our Approach

References

Semiring

Definition (Semiring)

A semiring is an algebraic structure (S, \oplus, \otimes) such that

- (S, \oplus) is a commutative monoid:
 - i. ⊕ is commutative
 - ii. ⊕ is associative
 - iii. $\bar{0}$ is the neutral element for \oplus
- (S, \otimes) is a monoid:
 - iv. \oplus is associative
 - v. $\bar{1}$ is the neutral element for \otimes
- \otimes distributes over \oplus (from right and left), i.e. $\forall a, b, c \in A$:

vi.
$$a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$$

- $\bar{0}$ annihilates \otimes . i.e. $\forall a \in A$:
 - vii. $a \otimes \bar{0} = \bar{0}$

Idempotent, Commutative, and Bounded Semirings

Definition (Idempotent Semiring)

A semiring (S, \oplus, \otimes) is called *idempotent* if

$$\forall a \in S \text{ holds} : a \oplus a = a$$

Definition (Commutative Semiring)

A semiring (S, \oplus, \otimes) is called *commutative* if

$$\forall a, b \in S \text{ holds} : a \otimes b = b \otimes a$$

Definition (Bounded Semiring)

A semiring (S, \oplus, \otimes) is called *bounded* if

$$\forall \ a \in S : \ \overline{1} \oplus a = \overline{1} \quad (\overline{1} \text{ annihilates } \oplus)$$

Ordered Semirings

Definition (Ordered Semiring)

A semiring (S, \oplus, \otimes) is called *ordered* when its partial order relation \leq is monotone w.r.t to both operations. Then we have:

$$a \preccurlyeq b \text{ and } a' \preccurlyeq b' \Longrightarrow a \oplus a' \preccurlyeq b \oplus b' \text{ and } a \otimes a' \preccurlyeq b \otimes b'$$

Obtaining an ordered semiring:

• Take idempotent semiring and define partial order by

$$a \preccurlyeq b \iff a \oplus b = b$$
 (natural order)

• Take (partially or linearly) ordered semigroup (S, \otimes) with neutral element $\overline{1}$, and \oplus is the sup or inf operation (max or min in case of a total order). The order relation of an ordered semigroup is monotone w.r.t. the multiplication.

< A →

Complete Semirings

Definition (Complete Semiring)

A semiring (S, \oplus, \otimes) is called *complete* if the existence of (countable) infinite sums is guaranteed. In particular, for every countable subset of S, we require:

- infinite commutativity of ⊕
- infinite associativity of ⊕
- infinite distributivity (⊗ distributes over infinite sums)

Closed Semirings

Definition [Lehmann, 1977]

A semiring (S, \oplus, \otimes) is called *closed* if there is an additional unary operation *, called closure, such that

$$\forall \ a \in S: \ a^* = \overline{1} \oplus a \otimes a^* = \overline{1} \oplus a^* \otimes a$$

Definition [Rote, 1989]

Consider a semiring (S, \oplus, \otimes) and the iteration equation

$$x = \bar{1} \oplus a \otimes x, \tag{1}$$

where $a, x \in S$. If there is always a solution a^* of (1), i.e. a fixed point exists, then the semiring is called *closed*.

21 / 44

Closed Semirings, cont.

Definition [Mohri, 2002]

A semiring (S, \oplus, \otimes) is called *k-closed* if

$$\forall \ a \in S: \quad \bigoplus_{n=0}^{k+1} a^n = \bigoplus_{n=0}^k a^n$$

where $k \geq 0$.

NB: a bounded semiring is a special k-closed semiring, namely for k=0.

(0-closeness = boundedness)

Simple Semirings

Definition (Simple Semiring)

A simple semiring is a semiring which is bounded and closed.

Definition (Dijkstra Semiring)

A *Dijkstra* semiring is a simple semiring (S, \oplus, \otimes) with the property

$$a \oplus b =$$
 either a or $b \ \forall \ a, b \in S$.

In other words, its natural order defined by

$$a \succcurlyeq b \iff a \oplus b = a$$

is a total order.

Outline

A few Motivating Examples The Algebraic Path Problem (APP) Some Definitions Examples revisited Methods to solve the APP

Overview: Instances of the APP

Our Approach References

General Definition

Definition (Algebraic Path Problem)

The Algebraic Path Problem consists in performing a special unary operation, called the closure, over a square matrix with entries in a semiring [Fink, 1992].

General distinction between:

- graph approach, and
- matrix approach.

Graph Approach

Consider a semiring (S, \oplus, \otimes) and a graph $G = (V, E, \lambda)$, where $\lambda : E \to S$ is the weight function.

Definition (Algebraic Path Problem)

Algebraic Path Problem: compute the sum of the weights of all paths from v_i to v_j in terms of the semiring, for all pairs v_i , v_j :

$$d(v_i, v_j) = \bigoplus_{p \in \mathcal{P}_{i,j}} \lambda(p)$$
 (sum-weight function)

where
$$\lambda(p) = \bigotimes_{k=i}^{j} \lambda(v_k, v_{k+1})$$
. [Fink, 1992, Rote, 1989]

Prerequisites:

• Complete, idempotent Semiring

Graph Approach, cont.

Definition (Algebraic Path Problem)

Algebraic Path Problem: for a complete semiring and the graph G, compute explicitly the $n \times n$ -matrix $D = (d_{ij})$, the "distance matrix". such that

$$d_{ij} = \bigoplus_{p \in \mathcal{P}_{i,j}} \lambda(p)$$

where
$$\lambda(p) = \bigotimes_{k=i}^{j} \lambda(v_k, v_{k+1})$$
. [Vogler, 2006]

Prerequisites:

Complete Semiring

Jacek Jonczy (IAM)

Matrix Approach

• Define addition and multiplication of $n \times n$ -matrices $A = (a_{ij})$ and $B = (b_{ij})$ over the semiring (S, \oplus, \otimes) :

$$A \oplus B = (a_{ij} \oplus b_{ij}), \quad A \otimes B = (c_{ij}) \quad \text{where } c_{ij} = \bigoplus_{k=1}^{n} a_{ik} \otimes b_{kj}$$

Define the k-th power of matrix A:

$$A^k = (d_{ij})$$
 where $d_{ij} = \bigoplus_{r=0}^{k-1} a_{ir} \otimes a_{rj}, \ A^0 = I$

Define the *closure* of the matrix A:

$$A^* = \bigoplus_{k > 0} A^k \tag{2}$$

June 5, 2008

Jacek Jonczy (IAM)

Matrix Approach, cont.

Definition (Algebraic Path Problem)

Algebraic Path Problem: given a matrix A over a semiring (S, \oplus, \otimes) , compute its closure A^* defined by (2).

 The closure operation on matrices satisfies the closure property [Lehmann, 1977]:

$$A^* = I \oplus A \otimes A^* = I \oplus A^* \otimes A$$

• The closure of a $n \times n$ -matrix over a *simple* semiring may be computed as follows [Lehmann, 1977]:

$$A^* = \bigoplus_{k=0}^{n-1} A^k = I \oplus A \oplus A^2 \oplus \ldots \oplus A^{n-1}$$

NB: semiring does neither require completeness, idempotency, nor annihilation of \otimes by $\bar{0}$.

< A →

Examples of closed (or complete) semirings

1. Transitive Closure

- Graph $G = (V, E, \lambda)$, $\lambda : E \rightarrow \{0, 1\}$
- Boolean semiring: Bool = $(\{0,1\}, \lor, \land, 0, 1)$
- Satisfies properties of a Dijkstra semiring
- Problem of computing the transitive closure of G: APP over G and Bool

June 5, 2008 30 / 44

Examples of closed (or complete) semirings

2. Shortest Path Problem

- Graph $G = (V, E, \lambda)$, $\lambda : E \to \mathbb{R}_{\geq 0} \cup \{\infty\}$
- Tropical semiring: Trop = $(\mathbb{R}_{\geq 0} \cup \{\infty\}, min, +, \infty, 0)$
- Satisfies properties of a Dijkstra semiring
- Problem of computing the length of the shortest path (for all pairs): APP over G and Trop

June 5, 2008 31 / 44

Examples of closed (or complete) semirings

3. Maximum Reliability Path Problem

- Graph $G = (V, E, \lambda), \lambda : E \rightarrow [0, 1]$
- Viterbi semiring: Viterbi = $([0,1], max, \cdot, 0, 1)$
- Satisfies properties of a Dijkstra semiring
- Problem of computing the highest attainable reliability between two nodes: APP over G and Viterbi

Examples of closed (or complete) semirings

4. Maximum Capacity Path Problem

- Graph $G = (V, E, \lambda)$, $\lambda : E \to \mathbb{R}_{\geq 0} \cup \{\infty\}$
- Bottleneck semiring: Bottle = $(\mathbb{R}_{\geq 0} \cup \{\infty\}, max, min, 0, \infty)$
- Satisfies properties of a Dijkstra semiring
- Problem of computing the greatest transfer capacity between two nodes: APP over G and Bottle

June 5, 2008 33 / 44

Examples of closed (or complete) semirings

5. Language accepted by a Finite State Automaton (FSA)

- FSA $M = (Q, \Sigma, \delta, F, q_0)$, where $\delta : Q \times \Sigma \to Q$
- Set of words which lead from state q₁ to state q₂:

$$\mathcal{L}(q_1,q_2) = \{\omega \in \Sigma^* \mid q_2 \in \overline{\delta}(q_1,\omega)\}, \quad \text{where } \overline{\delta} : Q \times \Sigma^* \to Q$$
 such that $\overline{\delta}(q,\epsilon) = \{q\} \text{ and } \overline{\delta}(q,\omega a) = \bigcup_{q' \in \overline{\delta}(q,\omega)} \delta(q',a)$

- Graph $G = (V, E, \lambda)$, where V = Q, $E = Q \times Q$, $\lambda : E \to \mathscr{P}(\Sigma^*)$
- Kleene semiring: Kleene $=(\mathscr{P}(\Sigma^*),\cup,*,\emptyset,\{\epsilon\})$ (closed)
- Problem of determining $\mathcal{L}(q_1, q_2)$ for all pairs of states q_1 and q_2 : APP over G and Kleene

Examples of closed (or complete) semirings

6. Two-Terminal Connectivity

- Network $G = (V, E, \lambda)$, $\lambda : E \to \mathcal{B}_n$
- \mathcal{B}_n set of n-ary Boolean functions
- Semiring of Boolean functions: BF = $(\mathcal{B}_n, max, min, 0, 1)$
- Simple semiring, but not a Dijkstra semiring
- Problem of computing the structure function for u, v-connectivity for all pairs u and v: APP over G and BF

4 🗇 ▶

Examples of closed (or complete) semirings

7. Final example: matrix inversion

- ullet Consider the (partial) closed semiring $(\mathbb{R},+,\cdot,0,1)$
- The closure of $x \in \mathbb{R}$ is defined by $x^* = \frac{1}{1-x}$, $\forall x \neq 1$
- This semiring can be completed to a closed semiring. Requires $\bar{0}$ to be not annihilating for \otimes [Lehmann, 1977].
- This semiring for matrix inversion cannot be described by the graph approach, since addition is not idempotent

Methods to solve the APP

- Iterative methods (search for a fixed point):
 - Jacobi iteration
 - Gauss-Seidel iteration
- Direct methods
 - generalized versions of known algorithms, such as:
 - Warshall's algorithm for transitive closure
 - Warshall-Floyd algorithm for shortest path
 - Kleene's algorithm for regular expressions
 - Gauss-Jordan algorithm for matrix inversion
 - Aho's algorithm
 - Mahr's algorithm
 - Adapted versions of Knuth's and Dijkstra's algorithms

Jacek Jonczy (IAM)

The General Solution

Generalized version of the Warshall-Floyd-Kleene (WFK) algorithm

```
Algorithm 1: Generalized WFK
```

```
Input: x \times n matrix A = (a_{ij}), a_{ij} \in S, S is a closed semiring. Output: C, the closure of A.

1 begin

2 | A^{(0)} \leftarrow A

3 | for k from 1 to n do

4 | foreach 1 \le i, j \le n do

5 | [A^{(k)}]_{ij} \leftarrow [A^{(k-1)}]_{ij} \oplus [A^{(k-1)}]_{ik} \otimes ([A^{(k-1)}]_{kk})^* \otimes [A^{(k-1)}]_{kj}

6 | end

7 | end

8 | C \leftarrow I_n + A^{(n)}

9 end
```

- Intuitively, $([A^{(k-1)}]_{kk})^*$ represents the "sum" of all cycles with nodes in $\{1, \ldots, k-1\}$ that pass through node k (length k-1)
- Complexity: $\mathcal{O}(n^3 \cdot (T_{\oplus} + T_{\otimes} + T_*))$

4 🗇 ト

Overview: Instances of the APP

The APP generalizes many important problems (choice):

- Graph and Network Problems
 - transitive closure and transitive reduction
 - shortest distance problems (distance functions)
 - capacity problems (max flow, network capacity, tunnel-problem)
 - connectivity measures for reliability networks
 - stochastic communication network problems
- Linear Algebra
 - computing the inverse of a matrix
- Regular Language Problems
 - correspondance: regular expressions and finite state automata

June 5, 2008 39 / 44

Outline

A few Motivating Examples The Algebraic Path Problem (APP)

Methods to solve the APP

Our Approach

References

Our Approach I

- 1. Computing the structure function from the APP point of view:
 - Semiring of Boolean functions
 - All-pairs connectivity → generalized WKF-algorithm
 - $\bullet \ \, \text{Single-source connectivity} \rightarrow \text{e.g. Dijkstra} \\$
 - Generalized single-source connectivity → JH-algorithm
- 2. Obtaining the struture function for two-terminal reliability (s, t-connectivity) as instance of the APP
- 3. Extending the APP
 - All-pairs APP
 - Single-source APP
 - Generalized single-source APP (source-to-any, source-to-all,...)
- 4. Network reliability computation (computing the structure function) as projection problem in a VA

Outline

A few Motivating Examples
Shortest Path Problems
Single-Source Problem
All-Pairs Problem

Semirings

Types of Semirings

The Algebraic Path Problem (APP)

Some Definitions

Examples revisited

Methods to solve the APP

Overview: Instances of the APP

Our Approach

References

References I

[Fink, 1992] E. Fink.

A survey of sequential and systolic algorithms for the algebraic path problem.

Technical Report CS-92-37, Department of Computer Science, University of Waterloo, 1992.

[Mohri, 2002] M. Mohri.

Semiring frameworks and algorithms for shortest-distance problems.

Journal of Automata, Languages and Combinatorics, 7(3):321–350, 2002.

[Lehmann, 1977] Daniel Lehmann.

Algebraic structures for transitive closure.

Theoretical Computer Science, 4:59–76, 1977.

References II

[Rote, 1989] Günter Rote.

Path problems in graphs.

In G. Tinhofer, E. Mayr, H. Noltemeier, M. M. Syslo, and

R. Albrecht, editors, Computational Graphs Theory, Computing Supplementum 7. Springer-Verlag, 1990.

[Shier, 1991] Douglas R. Shier.

Network reliability and algebraic structures.

Oxford Clarendon Press, New York, USA, 1991.

[Warshall, 1962] Stephen Warshall.

A theorem on boolean matrices.

Journal of the ACM, 9(1):11 - 12, 1962.