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Abstract. Current metamodeling formalisms support the definition of
a metamodel with two views: classes and relations, that form the core
of the metamodel, and well-formedness rules, that constraints the set of
valid models. While a safe application of automatic operations on mod-
els requires a precise definition of the domain using the two views, most
metamodels currently present in repositories have only the first one part.
In this paper, we propose to start from valid and invalid model examples
in order to automatically retrieve well-formedness rules in OCL using Ge-
netic Programming. The approach is evaluated on metamodels for state
machines and features diagrams. The experiments aim at demonstrating
the feasibility of the approach and at illustrating some important design
decisions that must be considered when using this technique.

1 Introduction

Metamodeling is a key activity for capitalizing domain knowledge. A metamodel
formally defines the essential concepts of an engineering domain, providing the
basis for the automation of many operations on models in this domain (e.g.,
analysis, simulation, refactoring, transformation, visualization). However, do-
main engineers can benefit from the full power of automatic model operations
only if the metamodel is precise enough to effectively specify and implement
these operations, as well as to ensure a safe application. Current metamodel-
ing techniques, such as EMF3, GME [12] or MetaEdit+4, impose to define a
metamodel as two parts: a domain structure, which captures the concepts and
relationships that can be used to build models in a specific domain, and well-
formedness rules, that impose further constraints that must be satisfied by all

3 Eclipse Modeling Framework, cf. http://www.eclipse.org/modeling/emf/
4 cf. http://www.metacase.com
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models in the domain. The domain structure is usually modeled as a class dia-
gram, while well-formedness rules are expressed as logical formula.

When looking at the most popular metamodel repositories (e.g. [?], we find
hundreds of metamodels which include only the domain structure, with no well-
formedness rules. The major issue with this is that it is possible to build models
that conform to the metamodel (i.e., satisfy the structural constraints imposed
by concepts and relationships of the domain structure), but are invalid with
respect to the domain. For example, considering the class diagram metamodel
without well-formedness rules, it is possible to build a class diagram in which
there is a cyclic dependency in the inheritance tree (this model would be valid
with respect to the domain structure but invalid with respect to the domain
of object-oriented classes). From an engineering and metamodel exploitation
perspective, the absence of well-formedness rules is a problem because it can
introduce errors in operations that are defined on the basis of the domain struc-
ture. For example, operations that rely on automatic model generation might
generate wrong models or compatibility analysis (e.g. to build model transfor-
mation chains) can be wrong if the input model is considered as conforming to
the domain structure while it does not fully conform to the domain.

The intuition of this work is that domain experts know the well-formedness
rules, but do not explicitly model them and some operations may consider them
as assumptions (i.e., hidden contract). We believe that experts know them in the
sense that, if we show them a set of models that conform to the domain structure,
they are able to discriminate between those that are valid with respect to the
domain and those that are not. However, we can only speculate about why they
do not formalize them. Given the importance of well-formedness rules, we would
like to have an explicit model of these rules to get a metamodel as precise as
possible and get the greatest value out of automatic operations on models.

In this work, we leverage domain expertise to automatically generate well-
formedness rules in the form of OCL (Object Constraint Language) invariants
over a domain structure modeled as a class diagram with MOF. We gather
domain expertise in the initial domain structure and a set of models that conform
to the domain structure, in which some models are valid with respect to the
domain and some models are invalid. Starting from this input, our technique
relies on Genetic Programming [11] to automatically generate well-formedness
rules that are able to discriminate between the valid and invalid models.

We validate our approach on two metamodels: a state machine metamodel
and a feature diagrams metamodel. For the first metamodel our approach finds
10 out of 12 well-formedness rules, with precision = recall = 0.83. For the
second metamodel we retrieve seven out of 11 well-formedness rules with a
precision = 0.78 and recall = 0.64.

The contributions of this paper are the following:

– formalizing the synthesis of well-formedness rules as a search problem;
– a set of operators to automatically synthesize and mutate OCL expressions;
– a series of experiments that demonstrate the effectiveness of the approach

and provide a set of lessons learned for automatic model search and mutation.
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The paper is organized as follows. Section 2 provides the background and,
defines and illustrates the problem addressed. Section 3 details the proposed ap-
proach using Genetic Programming to derive well-formedness rules, and Section
4 reports our experiments to evaluate the approach. Section 5 surveys related
work. Finally, we conclude and outline our perspectives in Section 6.

2 Problem definition

This section precisely defines what we mean by metamodeling and illustrates how
both the domain structure and well-formedness rules are necessary to completely
specify a metamodel. Then we illustrate how the absence of well-formedness rules
can lead to situations where models conform to the domain structure but are
invalid with respect to the domain.

2.1 Definitions

Definition 1. Metamodel. A metamodel is defined as the composition of:

– Domain structure. This part of the metamodel specifies the core concepts
and attributes that define the domain, as well as the relationships that specify
how the concepts can be bound together in a model.

– Well-formedness rules. Additional properties that restrict the way con-
cepts can be assembled to form a valid model.

The method we introduce in this work can be applied to any metamodel
that is specified according to this definition. Nevertheless, for this work we had
to choose concrete formalisms to implement both parts. Thus, here, we exper-
iment with domain structures formalized with MOF and well-formedness rules
formalized with the Object Constraint Language (OCL).

2.2 Illustration of precise metamodeling

Here we illustrate why both parts of a metamodel are necessary to have a speci-
fication as precise as possible and avoid models that conform to the metamodel
but are invalid with respect to the domain. The model in Fig. 1 specifies a sim-
plified domain structure for state machines. A StateMachine is composed of
several Vertexs and several Transitions. Transitions have a source and a tar-
get Vertex, while Vertexs can have several incoming and outgoing Transitions.
The model distinguishes between several different types of Vertexs.

The domain structure in Fig. 1 accurately captures all the concepts that
are necessary to build state machines, as well as all the valid relationships that
can exist between these concepts. However, valid models can also exist, of this
structure, that are not valid state machines. For example, the metamodel does
not prevent the construction of a state machine in which a join pseudostate
has only one incoming transition (when it should have at least 2). Thus, the sole
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Fig. 1: State machine metamodel

domain structure of Fig. 1 is not sufficient to precisely model the specific domain
of state machines.

The domain structure needs to be enhanced with additional properties to cap-
ture the domain more precisely. The following well-formedness rules, expressed
in OCL, show some mandatory properties.

1. WFR1: Join pseudostates have one outgoing transition

( context Join inv : s e l f . outgoing−>s i z e ( ) = 1) )

2. WFR2: Fork pseudostates have at least two outgoing transitions

( context Fork inv : s e l f . outgoing−>s i z e ( ) > 1)

2.3 Problem definition

The initial observation of this work is that most metamodelers build the domain
structure, but do not specify the well-formedness rules. The absence of these
rules allows the creation of models that conform to the metamodel (only domain
structure) but are not valid with respect to the domain. For example, if we ignore
the well-formedness rules illustrated previously, it is possible to build the two
models of Fig. 2a and Fig. 2b. Both models conform to the structure of Fig. 1,
but the model of Fig. 2b is an invalid state machine.

(a) Valid (b) Invalid

Fig. 2: Example of state machines

The intuition of this work is that, given a domain structure without well-
formedness rules, it is possible (i) to generate models (e.g., using test model
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generation techniques [1]) and (ii) to ask domain experts to sort these models
between valid and invalid. Then, our objective is to automatically retrieve a set
of well-formedness rules. The retrieved well-formedness rules are not meant to
be exactly those sought (that are unknown), but shall be a good approximation.
In particular, they should be able to properly discriminate models beyond those
provided in the learning process, i.e., they should generalize the examples.

3 Approach description

3.1 Approach overview

The problem, as described in Section 2, is complex to solve. The only inputs
to our derivation mechanism are the sets of examples of valid (positive) and
invalid (negative) models. Hence, our goal is to retrieve the minimal set of well-
formedness rules that better discriminate between the two sets of models.

From a certain perspective, well-formedness rule sets could be viewed as
declarative programs that take as input a model and produce as output a decision
about the validity of this model with respect to the domain. This observation
motivates the use Genetic Programming (GP) as a technique to derive such rule
sets. Indeed, GP is a popular evolutionary algorithm which aims at automatically
deriving a program that approximates a behaviour from examples of inputs and
outputs. It is used in a scenario where manually writing the program is difficult.
In our work, the examples of inputs are the models and the outputs are their
validity. As we will show later in this section, to guide the derivation process,
well-formedness rules should be evaluated on the example models. To this end,
the rules to search for are implemented as OCL invariants56.

The boundaries of our derivation process are summarized in Fig. 3. In addi-
tion to example models, the derivation process takes as input a metamodel for
which the invariants are sought. It produces as output fully operational OCL
invariants that represent an approximation to the sought invariants.

Fig. 3: Approach overview

In the next two sub-sections, first, a brief introduction to the GP technique
is given and then its use to solve specifically the problem of well-formedness rule
derivation is described.
5 http://projects.eclipse.org/projects/modeling.mdt.ocl.
6 In the remainder of this section, we use the term “invariant” (resp. “invariant set”)

to designate a well-formedness rule (resp. rule set)
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3.2 Genetic Programming

The most effective way to understand GP is to look to the typical GP process
(cycle), sketched in Fig. 4. Step 1 of a GP cycle consists of creating an initial
population of randomly-created programs. Then, in step 2, the fitness of each
program in the current population is calculated. This is typically done by execut-
ing the programs over the example inputs and comparing the execution results
with the expected outputs (those given as example). If the current population
satisfies termination criteria in step 3, e.g., a predefined number of iterations or
a target fitness value, the fittest program met during the evolution is returned
(step 7); otherwise, in step 4, a new population is created (it is also called evolv-
ing the current population). This is done by selecting the fittest programs of
the current population and reproducing them. Although, the selection process
favors the programs with the highest fitness values, it still gives a chance to any
program to avoid local optima. Reproduction involves three families of genetic
operations: (i) elitism to directly add top-ranked programs to the new popula-
tion, (ii) crossover to create new programs by combining genetic material of the
old ones, and (iii) mutation to alter an existing program by randomly adding
new genetic material. Once a new population is created, it replaces the current
one (step 5) and the next iteration of the GP cycle takes place, i.e., steps 2 to
5. Thus, programs progressively change to better approximate the behaviour as
specified by the inputs/outputs.

Fig. 4: A typical GP cycle

3.3 Using GP to Derive Well-Formedness Rules

To adapt GP to our problem, we have to produce a set of positive and negative
models (base of examples). Then, we need to define a way to encode a set of
invariants and to create the initial population of them. Another action consists
in selecting a mechanism to execute sets of invariant on the provided models
to calculate their fitness. Finally, proper genetic operators should be defined
to evolve the population of candidate sets. In the rest of this section, these
adaptations are described in details.
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Input/output encoding: The base of examples E is a set of pairs e = (m, v) where
m is a model (conforming to the considered metamodel M) and v, a boolean,
is the model validity stating if m satisfies the invariants or not. We refer to the
example model as em and to the example model validity as ev. Each model m
conforms to the ECORE [15] metamodel M .

Invariant set encoding: In GP, a population of programs is initially created and
evolved to search for the one which better approximates the behavior specified
by the examples of inputs and outputs. In our adaptation, a program is a set
p that contains OCL invariants ij , p = {i1, i2, ..., in}. A model m, to be valid
given an invariant set p, has to satisfy each invariant ij ∈ p. To encode an OCL
invariant ij , we use the format provided by the Eclipse OCL framework. An OCL
invariant is seen as a tuple (c, t) where c is the context, i.e., a main metamodel
class, and t is a tree that combines logical operators, comparison operators, func-
tions, metamodel elements, and constants according to OCL syntax. Metamodel
elements can be class attributes or class relationships (called references). In such
a tree, the leave nodes are metamodel elements and constants, and the leave-
node parents are comparison operators and functions. Any node on top of these
two levels is a logical operator. In our implementation, we use the logical opera-
tors {and, or, not, implies}, comparison operators {>,<,=,≥,≤, 6=}, and other
operations like {isKindOf, forAll, includesAll, size, allInstances, etc.}. These
operations are generally enough to encode a wide range of OCL invariants.

Random invariant set creation: The first phase of the well-formedness rule
derivation process is the random generation of the initial population, consist-
ing of n invariant sets. In theory, there is an infinity of possible invariants that
can be generated for a given metamodel. However, Cadavid et al. [2] showed em-
pirically, i.e., by analyzing dozens of metamodels from the standard community,
academia, and industry, that there is a limited number of recurrent invariant
patterns (20), whose instances are used individually or combined to create com-
plex invariants. A pattern example is CollectionSizeEqualsOne, which states that
the size of a collection col, contained in a class A, should be equal to 1:

context A inv : co l−>s i z e ( ) = 1

Such a pattern could be instantiated for any collection that can be found in a
class, regardless of its type. Two possible instantiations for the state-machine
metamodel in Fig. 1, could be the following:

context Fork inv : s e l f . incoming−> s i z e ( ) = 1
context Fork inv : s e l f . outgoing−> s i z e ( ) = 1

In our random generation process, we first automatically produce all the
possible instances of the above-mentioned 20 basic patterns for the considered
metamodel. This results in a large number of rules, lots of them are wrong, some
of them are too simple or with wrong parameter values and thus it is still neces-
sary to explore, combine and mutate this initial space of rules in order to produce
the right set. To this end, for each invariant set to create, we randomly pick some
of of the generated instances to produce simple invariants or complex ones by

ha
l-0

09
23

78
9,

 v
er

si
on

 1
 - 

4 
Ja

n 
20

14



Fig. 5: An example of a randomly-created invariant set

combining the chosen instances with logical operators. Simple invariants can be
combined if they share the same context. Fig. 5 shows an example of a set with
three invariants. The two first invariants are simple and contain respectively an
instance of the pattern CollectionSizeEqualsOne and an instance of the pattern
CollectionIsSubset, i.e., a collection that shoud be included in another one. The
third invariant is the conjuction of an instance of CollectionSizeEqualsOne with
an instance of CollectionIncludesSelf, i.e., if a class contains a collection typed
with itself, an instance of this class also makes part of this contained collection.

The number of instances to select as well as the number of combinations
to perform to produce complex invariants (tree depths) are decided randomly
during the creation of each set. The pattern instances are syntactically (w.r.t
the OCL syntax) and semantically (w.r.t the metamodel structure) correct as
they are their combinations. However, this does not mean that they are good
invariants. This is decided by the fitness function.

Fitness calculation: In our implementation, OCL invariants are evaluated on the
example models using the Eclipse OCL engine. The fitness function f assesses
how well an invariant set p discriminates the models contained in the base of ex-
amples E with respect to the expert-based classification. f is a weighed function
of two sub-functions f1 and f2. The first component, f1, measures the rate of
example models in E that are well classified by p. A model em is well classified
if v (em, p), the evaluation of p on em, is equal to ev. f1 is defined as:

f1 (p,E) =

∑
e∈E I (v (em, p) = ev)

|E|
→ [0, 1] (1)

Function I(a) returns 1 if a = true and 0 otherwise. The evaluation of a set
of invariants p on a model m , v(m, p), is defined formally as:

v (m, p) = u (m, i1) ∧ u (m, i2) ∧ ... ∧ u (m, iz)→ Boolean;∀ik ∈ p (2)

Here, u(m, i) is a boolean function that returns true if m satisfies the invari-
ant i and false otherwise.

Component f1 allows to evaluate the set of invariants as a whole. However,
it could penalize candidate sets that include good invariants but a few ones. To
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reward good invariants individually, we defined a second component, f2, of the
fitness function. f2 is calculated by counting the invariants i ∈ p that are able
to find at least α true positives Tp and at least β true negatives Tp. We then
divide by the number of invariants |p| to normalize the result between 0 and 1:

f2 (p,E) =

∑
e∈E I (Tp(i, E) ≥ α ∧ Tn(i, E) ≥ β)

|p|
→ [0, 1] (3)

Here, a true positive (resp. negative) is a model e ∈ E classified as valid
(resp. invalid) and that satisfies (resp. not satisfies) the invariant i ∈ p:

Tp (p,E) =
∑

e∈E;e.v

I (u (e, i));Tn (p,E) =
∑

e∈E;¬e.v
I (¬u (e, i)) (4)

Now that we can generate an initial population and evaluate each of the
invariant sets, the next step consists in selecting invariant sets to use them to
produce a new population by applying crossover and mutation operators.

Selection method: To determine which sets of invariants will be reproduced to
create the new population, the Roulette-wheel selection method is used in this
work. This technique assigns to each invariant set in the current population a
probability of being selected for reproduction that is proportional to its fitness.
This selection strategy favours the fittest invariant sets while still giving a chance
to the others.

Genetic Operators : The crossover operator consists of producing new invariant
sets by combining the existing genetic material. After selecting two parent sets
for reproduction, two new invariant sets are created by exchanging invariants of
the parents. For instance, consider the two invariant sets p1 = {i11, i12, i13, i14}
having four invariants and p2 = {i21, i22, i23, i24, i25} with five invariants. If a
cut-point is randomly set to 2 for p1 and another to 3 for p2, the offspring
obtained are invariant sets o1 = {i11, i12, i24, i25} and io2 = {i21, i22, i23, i13, i14}.
Because each parent invariant is syntactically and semantically correct before the
crossover, this correctness is not altered for the offspring. Crossover is applied
with high probability.

Mutation allows to randomly inject new genetic materiel in the population. It
is applied with a low priority to offsprings after a crossover or to the selected par-
ents when the crossover is not applied. In our adaptation of GP, we implemented
10 mutation operators that modify an invariant set at many levels. Every oper-
ator preserves the sibling correctness, syntactically and semantically. The first
three operators are defined at the set level. One allows to add a new invariant,
produced randomly according to the procedure used in the initial population
generation. The second operator simply picks one of the existing invariants in
the set and removes it. If we consider the set of Fig. 5 , we could have, for in-
stance, the following mutations, corresponding respectively to the two operators:

Add : context Orthogonal inv : s e l f . outgoing−>i n c l ud e sA l l ( s e l f . incoming )
Remove : context Fork inv : s e l f . incoming−> s i z e ( ) = 1
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The third operator at the set level selects two invariants, simple or complex,
having the same context, and combines them using the “implies” operator. The
remaining operators are defined at the invariant level. For one invariant of the
considered set, some mutations consist in replacing respectively a comparison
or a logical operator by a new one. For example, “=” in “Inv 0” of Fig. 5
could be replaced by “>”. Similarly, “and” in “Inv 2” could become “implies”.
Incrementing/decrementing a numerical constant and replacing an attribute or
a reference by a new one that is of the same type and that belongs to the same
context, also are possible mutations, e.g., replacing 1 by 0 or “incoming” by
“outgoing” in “Inv 0”. Another used mutation is the replacement of an operand
(sub-tree) of a logical operator or a comparator by a randomly generated one.
For example, the operand “self.contents->includes(self)” in “Inv 2” could be
replaced by “self.outgoing->size() = 0”. The final mutation is the negation of a
node that returns a boolean value (a logical operator, a comparison operator or a
boolean function). For instance, “Inv 1” could be mutated to “not self.incoming
->includesAll(self.outgoing)”.

All the decisions made during the mutation, including the selection of the
mutation operator, the invariant to change, and the replacement elements, are
determined randomly.

4 Evaluation

4.1 Research Questions

The evaluation of our approach addresses the two following research questions:

1. To which extent our approach is able to derive well-formedness rules that
properly discriminate between valid and invalid models?

2. Are the produced well-formedness rules those that are expected?

The first questions aims at assessing the validity of the approach from the quan-
titative perspective while the second considers the qualitative perspective.

4.2 Experimental Setting

Method. To answer both research questions, we conduct an experiment in which
we evaluate our approach over two different metamodels. The evaluation is per-
formed in a semi-real environment in which we know a priori the well-formedness
rules sought (OCL invariants provided with the metamodels). The example mod-
els are randomly created using Alloy [8]. The creation with Alloy takes into
account the known invariants. The number of positive models that are created
(those that satisfy all the invariants) is equal to five times the number of known
invariants. An identical number of negative models is also created. To create
negative models, we randomly negate one or more invariants to force Alloy to
violate them. The positive and negative model examples are then given as input
to the derivation process, but not the known invariants.
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To answer the first question, we first calculate the classification correctness
of the best found invariant set, i.e., proportion of models in the example base
that are correctly classified (f1 in the fitness function). Then, considering the
stochastic nature of our approach, i.e., different executions may lead to different
results, we take a sample of executions and compare it with another sample
obtained by a random technique. To have a fair comparison, we defined the
random technique as the selection of the best from n ×m randomly–generated
sets, where n and m are respectively the size of a population and the number of
iterations in our approach. In other words, both our approach and the random
technique explore the same number of invariant sets. The comparison of the two
samples is done using an independent-sample t-test (or Mann-Whitney test if f1
values are not normally distributed in the two execution samples). The tests are
performed with a significance at the level of α = 0.05, i.e., a probability of less
than 5% that the difference between the two samples is obtained by chance.

To answer the second research question, we analyzed the invariants of the
best derived solution and compare them with the known invariants. The compar-
ison produces four sets: invariants found that match the expected ones (FOU),
invariant found that are subsumed (less general) by the expected ones (SUB),
invariants that are not expected (INC), and expected invariants not found ex-
cluding the subsumptions (MIS). Ideally, all the found invariants should be in
FOU and MIS should be empty. Solutions with all the invariants in FOU but a
few in SUB are also acceptable. We defined two versions of precision and recall
depending on the acceptance of subsumed invariants (relaxed) or not (strict), as
follows:

precisionstrict = |FOU |
|FOU |+|SUB|+|INC| and recallstrict = |FOU |

|FOU |+|SUB|+|MIS|

precisionrel = |FOU |+|SUB|
|FOU |+|SUB|+|INC| and recallrel = |FOU |+|SUB|

|FOU |+|SUB|+|MIS|

Data.The first metamodel used is the one of state machines (see Fig. 1). We
selected 12 OCL invariants related to the incoming and outgoing transitions
depending on the state types. As mentioned earlier we created 60 positive and
60 negative models (5× 12 for each set).

The second metamodel that we consider represents the feature diagrams [10]
(see Fig. 6). For this metamodel, we selected 11 OCL invariants covering the
interdependencies between the feature types and the relation types. We created
accordingly 55 positive and 55 negative example models.

Fig. 6: Feature diagram metamodel
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Algorithmic parameters. GP, being a meta-heuristic algorithm, it depends
on many parameters. The population size was fixed to 100 invariant sets and the
evolution was performed with a maximum of 1000 iterations. To ensure that the
best invariant sets will be kept during the evolution, we used an elitism strategy
that consists in automatically adding the 10 fittest sets of each generation to the
next one. For the evolution operator, the crossover probability was set to 0.9.
We used the same probability for mutation. Unlike classical genetic algorithms,
having a high mutation probability is not unusual for GP algorithms (see, for
instance, [13]). For the fitness function we give equal weights to f1 and f2 (0.5),
and the parameter α of f2 was set to 1. Finally, the probability of creating
complex invariants vs. simple ones during the random creation is set to 0.1, i.e.,
each time an invariant has to be generated, it has nine chances to be simple and
one to be complex. This probability is recursively applied to the operands of the
logical operators when a complex invariant is created.

4.3 Results

Question 1. Given the stochastic nature of the GP, we performed a sample of
executions and took the best found set. For the state machine metamodel the
optimal best set was found before reaching the maximum number of iterations
(after 537 iterations). This set perfectly discrimnates the positive models from
the negative ones (f1 = 1). For the feature digram metamodel, the best set
missclassified 10 from the 110 models (f1 = 0.91). The second step was to assess if
the GP-based derivation performs better, in terms of discrimination power, than
random generation. We performed a Kolmogoriv-Smirnov test that revealed that
the f1 values are normally distributed in both GP-based and random execution
samples. This allows us to perform an independent-samples t-test with the null
hypothesis that there is no difference in f1 between the two derivation techniques.
As illustrated in Table 1, the GP-based derivation performs clearly better than
the random technique (∼ 0.9 compared to ∼ 0.25) and this difference in f1 is
statistically significant with p < 0.001 for both metamodels.

Table 1: Comparison with random generation (Question 1).
Metamodel Average f1 for GP Average f1 for Random Sig.

State machines 0.96 0.22 < 0.001
Feature diagrams 0.88 0.25 < 0.001

Question 2. We manually analyzed the obtained invariants for each metamodel
and compared them to the expected ones7. Table 2 summarizes the analysis
results. For state machines, 12 invariants were found. 10 of them exactly matches

7 Full results at http://geodes.iro.umontreal.ca/en/projects/MOTOE/MODELS13
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Table 2: Precision and recall for invariant determination (Question 2).
Metamodel precisionstrict recallstrict precisionrel recallrel

State machines 0.83 0.83 0.83 0.83
Feature diagrams 0.78 0.64 0.89 0.73

expected invariants, 2 are incorrect and 2 are missing. This led to a precision
and a recall (strict an relaxed) of 0.83. The missing and incorrect invariants are:

Miss ing i nva r i an t s
context I n i t i a l inv : s e l f . incoming−>s i z e ( ) = 0
context Fina l inv : s e l f . outgoing−>s i z e ( ) = 0

In c o r r e c t i nva r i an t s
context I n i t i a l inv : s e l f . outgoing−>i n c l ud e sA l l ( s e l f . incoming ) )
context Fina l inv : s e l f . incoming−>i n c l ud e sA l l ( s e l f . outgoing ) )

We expected invariants enforcing that the set of incoming (respectively out-
going) transitions is empty for initial (respectively final) states. Our algorithm,
based on the examples, finds invariants that evaluate to true, as empty sets are
always included in other sets, but do not represent the correct semantic.

For the feature diagrams, the results were slightly worse. Indeed, 9 invariants
were derived. 7 of them are good invariants whereas one is subsumed and one
is incorrect. 3 expected invariants were not recovered. Consequently, the strict
precision is 0.78 and the strict recall 0.64, whereas, the relaxed ones are increased
respectively to 0.89 and 0.73. The concerned invariants are:

Miss ing i nva r i an t s
context Or inv : contents−>f o rA l l ( v : Vertex | v . oc l IsKindOf ( Feature ) )
context Optional inv : contents−>f o rA l l ( v : Vertex | v . oc l IsKindOf ( Feature ) )
context Pr imit iveFeature inv : s e l f . contents−>s i z e ( ) = 0

In c o r r e c t i nva r i an t
context Pr imit iveFeature inv : s e l f . conta iner−>i n c l ud e sA l l ( s e l f . contents ) )

Subsumed inva r i an t
Expected : context DecomposableFeature inv : s e l f . contents−>s i z e ( ) > 1
Found : context DecomposableFeature inv : s e l f . contents−>s i z e ( ) > 0

The incorrect invariant correspond to the same case discussed for the state ma-
chines, i.e., inclusion of an empty set. The subsumed invariant is explained by
the fact that in all the positive models, the contents of a DecomposableFeature
includes more than one element with lead to the condition “> 1” instead of the
expected “> 0”. Finally, two invariants with the iterator forAll were not found.

4.4 Threats to Validity and Performence Issues

As for any experimental evaluation, some threats could affect the validity of our
findings. Conclusion validity could be affected by the stochastic nature of our
approach. To address this threat, we conducted statistical tests on a sample of
executions to show that the difference in correctness between our approach and
random generation is large and statistically significant. Another related threat
concerns the influence of the algorithmic parameters on the obtained results.
We set some of the parameters to standard or consensual values (crossover prob-
ability, population size, and number of iterations). For the others, we tested
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different combinations (fitness function weights and mutation probability). Mu-
tation probability, in particular, is certainly the parameter that has the most
influence on the results. Indeed, when the initial population does not contain
invariants that are close the ones sought, many mutations are necessary to con-
verge towards the optimal invariant set (see for example, [13,6]).

We identified two potential threats to the external validity. First, the models
used as examples were automatically generated taking into account the sought
invariants rather than collected and classified by experts as valid/invalid. To
ensure that the produced models cover well the modeling space, we forced Alloy
to perform the generation with different parameter values such the number of
class instances in each model. In the future, we plan to conduct new experiments
with more real settings to circumvent this threat. The second threat concerns
the used metamodels. Although these metamodels describe different domains,
the investigation of more metamodels is necessary to draw better conclusions.
The manual comparison made by the authors to answer Question2 could repre-
sent a threat to the internal validity. Deciding for the exact invariant matches
and subsumptions could be error-prone and affected by the experimenter ex-
pectancies. To prevent this threat, we conducted this comparison rigorously and
diligently. We expect to use independent subjects to write/classify the models
and evaluate the invariants in our future experiments.

Several implementation iterations were necessary to obtain an efficient ver-
sion of our algorithm. We reused many elements that affect the performance of
our algorithm, Eclipse OCL engine, Alloy model generator, and Alloy to ECORE
transformer. These elements are used for each invariant set in the population and
repeated trough the different evolution iterations. To obtain an acceptable per-
formance, we first parallelized the GP process to calculate the fitness function
of each invariant set in a population in separated threads. After, many trials,
we created one thread per invariant set when evaluating a population. A second
change, which improved considerably the performance, is the pre-calculation of
the component u (e, i) that is used in f1 and f2, i.e., we pre-calculate the va-
lidity of each example model for each invariant present in the population. As
many invariants are shared by many sets, and their validity is used in f1 and f2,
the improvement was considerable. The two optimizations allowed us to run the
algorithm over a input size 20 time bigger.

5 RelatedWork

In this section we analyze the related works to our approach from two different
perspectives. The first one is the derivation of invariants, as rules learned from
an underlying artifact, either models or programs. In the second perspective,
we cite other works using learning techniques to derive useful information for
MDE stakeholders. For the first perspective, the main referent in the derivation
of invariants in software engineering is Daikon [5]. Taking a program as input,
it analyzes the computed values and detects likely invariants that can be used
for program understanding and documentation and verification of formal spec-
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ifications among other tasks. The machine learning technique used is an infer-
ence engine based on a generate-and-check algorithm. This approach was later
notoriously complemented with Sam Ratcliff’s work [13]. Demonstrating that
evolutionary search can consider a very wide amount of program invariants, the
need for a filtering mechanism was imposed. The given solution was the use of
mutation testing, enabling thus the approach to sort out invariants that are not
interesting for the user. Zeller investigates the idea of specification mining[16],
where he intends to leverage on repositories of software specifications, in order
to reuse this knowledge into actionable recommendations for today’s developers
of formal specifications. The main technique for achieving specification mining is
the generation of test cases covering a wide range of possible program executions
- the “execution space”. Test cases which lead to undesired program executions,
or so-called illegal states, are used to enrich specifications [3].

For the second perspective, in the field of Model-Driven Engineering, machine
learning techniques have been used successfully. [4] uses formal concept analysis
to learn patterns of model transformation rules from a set of examples. Another
application is the reverse engineering of metamodels, also known as metamodel
recovery. In [9] the authors propose a mechanism to learn a metamodel from a
set of models, by using techniques inspired by grammar inference. In the same
fashion, [7] proposes a process for pattern extraction from deployable artifacts
in order to recover architecture models. Learning of metamodels has also been
presented as bottom-up metamodeling. In [14], authors present an approach to
build metamodels from partial object models, annotated with information to
build abstractions. These abstractions are refined iteratively, in order to obtain
an implementation metamodel ready to use for MDE activities. Although this
approach does not actually use search-based techniques, it does highlight the
importance of guiding domain experts in the difficult task of metamodeling.

6 Conclusions

In this paper, we propose an approach to automatically derive well-formedness
rules for metamodels. Our approach uses positive and negative example models
as input and it is based on a Genetic Programming that evolves a population
of random created rules, guided by a fitness function that measures how well
the rules discriminate the models used as example. Once finished, the process
returns the best set of well-formedness rules ever created during the process.
We validate the approach over two different metamodels coming from different
domains: a state machines, and feature diagrams. As a result, our approach auto-
matically derives most of the expected well-formedness rules. This results shows
the feasibility of our approach and defines a starting point for our future works.
Future work includes investigating the support of more complex invariants, and
alternatives in the way to obtains model examples. We are also extending our
experiments to address the threats to validity mentioned in this paper. In par-
ticular, we explore the application of the approach on other various metamodels,
including ones coming from industry.
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