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The Korcak-exponent: A non-fractal descriptor for landscape patchiness
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A B S T R A C T

In this short paper we introduce a proper method to perform Korcak-analysis and obtain the correct

Korcak-exponent on a set of patches, embedded into two-dimensions. Both artificial and natural data

sets are used for the demonstration. The independence of the Korcak-exponent from the classical

(Hausdorff) fractal dimension is also demonstrated.
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1. Introduction

Analysis of size and shape of various patches embedded into
two-dimensions is a common scientific problem in spatial ecology,
since they represent ecological indicators of specific ecological
processes acting in the landscape in space and time (Wu et al.,
2000). The patches can be islands, lakes, forest fragments or other
vegetation patches, soil pores, corrosion patches, etc. The common
way to analyze them is the application of some computer-assisted
image analysis and the common results of these kinds of analysis
are some size-distribution function; very often a fractal dimension.
Various fractal dimensions have been used to describe size- and
shape-related properties of individual patches, as well as for sets of
patches since the pioneering work of Mandelbrot (Mandelbrot,
1982; Martı́n et al., 2009). Although for a set of statistically similar
patches, one can use perimeter–area analysis for fractal analysis;
this method requires the accurate knowledge of the areas and
perimeters of the patches composing the landscape mosaic. It has
been known for some time, that perimeter values are problematic
(Loehle, 2011); for example they can be measured with much
bigger errors than the corresponding area values (Ken et al., 2008;
Zunic and Martinez-Ortiz, 2009); this can be explained quite well
with the recently described violation of translational and
rotational invariances in digital geometry (Imre, 2006, 2007).
Due to the error propagations, all descriptors calculated from the
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perimeters – like for example the fractal dimension calculated by
the perimeter–area relation (Mandelbrot, 1982) – would have
errors at least as big as the perimeter-measurement error. For this
reason, the Korcak-method – which requires only the knowledge of
the areas of the studied patches – seemed to be a good candidate to
obtain the fractal dimension with satisfying accuracy of natural or
artificial patch-sets (Hastings and Sugihara, 1993; Imre et al.,
2011). The applicability of Korcak-method in ecology has been
already proved in several times (Korčák, 1938; Sugihara and May,
1990; Imre et al., 2011); it is not our goal here to give just another
exercise of this kind. Instead, we concentrate on the methodology
behind the Korcak-analysis and on the deemed relationship
between the Korcak-exponent and the classical Hausdorff fractal
dimension.

As in the practical applications of other techniques used for the
study of power law scaling of various phenomena, the use of
Korcak-analysis often involves one or more subjective components
associated with the data preparation and processing. The proper-
ties of the Korcak-method and of the Korcak-exponent are less-
known than that of other fractal-methods (Russ, 1994; Imre et al.,
2011), therefore this method is widely misused in various fields,
including in ecology. The misuse can be realized in two ways. First,
by choosing improper limiting sizes, one might obtain an incorrect
Korcak-exponent (or one might even obtain an exponent in
systems where the scaling – and the underlying statistical
similarity – is not true). The second common mistake is the
comparison of the obtained Korcak-exponent to fractal dimensions
obtained by other methods which can lead to misleading results
when studying ecosystems changes over time.

http://dx.doi.org/10.1016/j.ecocom.2012.10.001
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In this short methodology-paper we would like to show, how to
properly use the Korcak-method and what can be the outcome of
an improper analysis in terms of introducing a common error
which might lead to incorrect Korcak-exponent. In addition, we
show that the Korcak-exponent is not related to the Hausdorff
fractal dimension as commonly assumed, following the original
Mandelbrot’s argument (Mandelbrot, 1982). Although the Korcak-
exponent is a very good descriptor, any direct comparison with the
results of fractal dimensions can be misleading.

2. Korcak-plot, Korcak-exponent and Korcak-dimension

The Korcak-exponent is named after the Czech geographer,
Jaromı́r Korčák (Novotný and Nosek, 2009; Novotný, 2010).
Drawing on the method used by his colleague for the determina-
tion of cartographic scales, Korčák noticed that the frequency
distributions of occurrences of various geographical phenomena in
maps typically reveal a highly right skewed distribution with a few
large size observations and many small size observations. He
documented this empirical regularity on an extensive body of
material (Korčák, 1938, 1941).

Having a set of patches with an area-distribution, one can
determine the number (N) of patches with area (A) bigger than a
threshold area (A0). By choosing a set of A0s, one can make a double
logarithmic plot; the points might be fitted by a line, satisfying the
following equation:

NðA > A0Þ ¼ kA�K
0 (1)

where k is a form-constant and K is the so-called Korcak-exponent,
also called patchiness-index.

It should be known that for several real samples, the whole set
can be fitted only in two (or sometimes more) distinct parts, giving
more than one K values. An example is provided by (Imre et al.,
2011), where for a woodlot a single K value was obtained for the
whole size-range, while for open formations – like arable lands,
meadows – two distinct K’s were attained; 0.45 in the 100–
4000 m2 range and 1 in the 4000–100,000 m2 range).

3. Artificial Korcak-exponent by improper choice of A0

Korcak-plot – and Korcak-exponent – cannot be found in Korčák’s
original paper (Korčák, 1938). He had some tabulated data (probably
the most famous was the island-size distribution of the Cyclades),
showing the percentage of island in a size-range. The dividing sizes
(3–10–25–50–100–200 km2) were more or less logarithmically
equidistant. Later, this kind of analysis was kept in Korcak-plots, i.e.
the limiting sizes were more or less logarithmically equidistant.

Here we would like to demonstrate, how the choice of an impro-
per set of limiting sizes might cause an artificial Korcak-exponent.
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Fig. 1. (a) Korcak-plots with different choices of limiting areas (A0
This can happen, when the total number of patches is small as well as
when N(A > A0) are small (i.e. with bigger island areas). In Fig. 1a, the
Korcak-plot of a set (hundred pieces) of artificial patches can be seen.
They were generated in a very simple way; for the n-th patch
(1 � n � 100) the area had to satisfy the log(n) = �log(An) + 4
equation. After that (as it was proposed previously (Imre et al.,
2011)) we prepared a Korcak-plot by using An � d values as limiting
A0 values (d is a small real number; in digital geometry when areas
are given in pixels, it is usually 1). In that way, we had one patch with
area bigger than the ‘‘(biggest area)-1’’, two patches with area bigger
than the ‘‘(second biggest area)-1’’, etc. In that case, the slope
obtained from our Korcak-plot was K = 1. In the next step, we
prepared a second (third, etc.) Korcak-plot, where the i-th limiting
size (A0i) were chosen to satisfy the Ai + d < A0i < Ai+1 relation. The
corresponding N-values can be seen as small open circles.
Graphically this means, that the original data-points (full squares)
can shift to the right (parallel to the x-axis), all along the small circles,
with unchanged y-values. While upward arrows show the data with
properly chosen A0 values, the downside-arrows shows the data
with improperly chosen ones; the dotted line represents the fit with
an artificial Korcak-exponent. In extreme cases, one can obtain a
Korcak-plot where the limiting (gray dashed) line would be the
virtually correct shape (linear), but utterly artificial Korcak-line. For
small patch-size (where the Ns are high) one cannot see any
characteristic difference, while at the ‘‘big-area’’ side (see the
magnification in Fig. 1b) one can get log N � log A0 plots with K < 1
(see the dashed limiting line, in this case it represents K = 0.66).
Simply by the improper choice of the A0 values, one might get an
artificial K value, or – even as it can be seen in Fig. 1 – an artificial
break and double K values. We propose that for correct Korcak-plots
of Q patches with R different areas (Q � R, both are integers and they
are equal when all patches have different sizes), limiting areas must
be chosen to satisfy the following equation:

A0i ¼ Ai � d; i ¼ 1 . . . R (2)

where Ai is the i-th biggest area of the set, R is an integer, equal to
the number of different areas in the set and d is a small number;
when the areas are given in pixel, d = 1, when they are given in
other units, d should be equal to the last significant digit of the
given area-values (i.e. when A = 3.765 km2, then d = 0.001 km2,
when A = 3871 m2 then d = 1 m2, etc.).

4. An ecological example: the lakes and reservoirs of the Isle
of Man

For an ecological example for obtaining an improper Korcak-
plot, we analyzed a set of lakes from the Isle of Man with
surface areas between 1.1 and 28.7 ha. The area data were taken
from the UK Lakes database (www.uklakes.net); some supporting
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Fig. 2. Korcak-plot for the lakes and reservoirs located on the Isle of Man with three

different choices of A0-sets (circles: A0-set constructed by dividing the previous

limiting value by two, triangles: similar, but dividing by three, squares: A0s are

constructed as Ai � d). The solid line is a linear fit for the triangles, the dashed ones

mark the 90% confidence band, showing that by the choice of the A0-set by the

observer can force the data to give some kind of Korcak-exponent.
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information is available at the homepage of the Isle of Man Water
and Sewerage Authority Website (http://www.gov.im/water/
reservoirs). The reason of this choice is that we wished to analyze
a well-defined, but sufficiently small set to demonstrate the effect
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Fig. 3. Korcak-plot of a set of sample-patches (see the upper part of the figure); K and DK

(a.u.). Perimeter–area plot of the same sets can be seen in the insert; triangles: K = 1, squ

the sets are identically equal to 2. This is also the value of the area Hausdorff dimensi
of the choice of A0. Most of the bodies of water are artificial
reservoirs; the small ones are usually regularly shaped, while the
two big ones have more complex shapes (except for the dam side),
following the contour dictated by the neighboring hills and valleys.
Surface areas are given in ha.

Three different choices for the A0-set can be seen in Fig. 2. The
first one (Option 1) is the one proposed by us in Eq. (2), when A0s
are chosen as Ai � d (black squares), d is 0.1 ha in this case, taken
from the accuracy of the given data. For the next one (Option 2), we
took an A0-set as (28, 14, 7, 3.5, 1.75, 0.875), taking the first value
slightly below the area of the biggest lake and dividing by two at
each step (similar method used in box-counting, by measuring
fractal dimension), similarly to a recent Korcak-exponent related
paper (Erlandsson et al., 2011). This set is marked by dots in Fig. 2.
Finally (Option 3), we also took the first value slightly below the
biggest area and then at each step, we divided it by three, obtaining
the (27, 9, 3, 1) A0-set. These data are marked by triangles in Fig. 2.
It should be noted here, that we – i.e. the observers – had two
choices; one should choose the first limiting value (although the
freedom is not full in this case, it should be ‘‘slightly’’ below the
highest area) and then one can freely choose the method of
reducing the A0s.

It can be seen in Fig. 2 that with a proper initial choice (Option
3) one can obtain a fairly linear Korcak-plot with K = 0.74 � 0.03
slope (R2 = 0.99616), represented by the solid line (90% confidence
band are also marked by dashed lines). Choosing the second A0-set
(Option 2), an entirely different picture is attained; here the biggest,
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complex-shaped reservoirs can be clearly distinguished from the
smaller ones. The same can be seen with our A0-set (Option 1); the
finer distribution is also revealed here. It is a basic criterion, that
the result of a measurement should not be influenced by the observer
(Rocchini and Neteler, 2012), neither during the actual measure-
ment, nor during the data evaluation. Therefore, we argue that
researchers undertaking a Korcak-analysis should avoid using A0-
sets that are independent from the data. The proposed alternative
(Option 1) yields better results from both theoretical and applied
viewpoints.

By this example we demonstrated that the method proposed
here leads to better results not only from a merely theoretical but
also from an applied ecological viewpoint.

5. The non-fractality of the Korcak-exponent

When Mandelbrot in his pioneering book (Mandelbrot, 1982)
introduced the Korcak-plot, for a special case he deduced the
following equality:

K ¼
Df-p

2
(3)

where Df-p is the fractal (Hausdorff) dimension of the perimeter.
Later this equation was used as a general law (Othmani and
Kaminsky, 1998; Kampichler, 1999; Peralta and Mather, 2000;
Sasaki et al., 2006; Erlandsson et al., 2011 and others), extended to
n-dimension by replacing the denominator with n. The notation K

is used here for the Korcak-exponent, while DK (the hypothetical
Korcak-dimension) can be used as half of this value.

Here, we would like to demonstrate – by a simple example –
that neither Df-A, nor Df-p (area and perimeter Hausdorff
dimensions) has any connection with the Korcak-exponent, not
even in case of similar patches/islands. The relation given by Eq. (3)
was never a theorem, only an assumption. When the experimental
result was not supportive, usually the patch-similarity was
blamed, rather than the validity of the assumption was questioned.
Here we gave a counter-example to show the invalidity of this
assumption, even when the patches are strictly similar.

In Fig. 3, one can see three different sets of square-shaped
islands, with perimeter and area fractal dimensions of the
individual patches are equal to 1 and 2, respectively. They are
all similar, therefore one can apply perimeter–area analysis for all
sets (Fig. 3, insert), showing that DPA = 1 (where DPA is the
perimeter–area dimension). For similar patches, the perimeter–
area dimension should be 2(Df-p/Df-A), i.e. the two times the ratio of
the perimeter and area dimensions; the later here is 2. On the
lower part of Fig. 3, one can see the Korcak-plots of these sets,
constructed with the previously proposed method. For one set,
K = 0.5, for the other, K = 1, for the third, K = 1.5. According to Eq.
(3), this would imply that their perimeter fractal dimensions
would be 1, 2 and 3, respectively, but this is not true. The perimeter
fractal dimension stays 1 for all sets; therefore the relationship
hypothesized in Eq. (3) is not correct. In the same way one can
construct patch-sets situated almost parallel with the x or y axes,
hence giving K = 0 + e to K = 1 � e (e is an arbitrarily small real
number), while keeping the area fractal dimension and the
perimeter fractal dimension as 2 and 1, respectively. It can be
seen that these values does not have any connections with the
Korcak-exponent.

Although Eq. (3) is the most used – or rather misused –
relationship between K and the Hausdorff dimension, there are two
other relationships which should be mentioned here. Russ
proposed that DK should be greater than or equal to the
Hausdorff-dimension of the same set (Russ, 1994), but this is also
not true, because one can easily construct a set with K < 0.5 (i.e.
DK < 1), where DK is not greater than or equal to 1, which is the
lower limit for the Hausdorff dimension for patches. Also, for a
special case, Nikora et al. (1999) introduced a more complex
relationship for DK, using the linear combination of the various
fractal dimensions (Nikora et al., 1999), including ones related not
only to the individual patches but to the whole set. The study about
the validity of Nikora’s method for more general cases is still in
progress.

6. Conclusions

In this short paper we introduced a proper method for Korcak-
analysis to obtain the correct Korcak-exponent. The Korcak-
exponent is a descriptor for the area distribution of a set of
patches–embedded into 2-D – in a certain area-range. With
improper analysis, one can easily obtain utterly artificial Korcak-
exponents, leading to ecologically flawed results. For proper
analysis, the limiting area (A0) for Korcak-plot should be defined
separately for each set as A0i = Ai � d to avoid artificial K-value at
the high-area region. We can also retain more data points for
fitting, which can help us to check the validity of the often mis-
assumed linearity in double logarithmic plots as well as showing
some finer details, overlooked when only a very few points are
available (like in the log-equidistant case). It was also shown that
the Korcak-exponent is not related to the Hausdorff fractal
dimension of the individual patches, not even in case of
statistically similar ones. Therefore this exponent should not be
handled as Df/2, it should be handled as a non-fractal descriptor.

After the pioneering papers by O’Neill et al. (1988) and Sugihara
and May (1990), a number of papers have dealt with the use of
fractals for explaining different ecological processes at different
scales. With this manuscript we hope to stimulate discussion
among ecologists about real fractal measures of landscape
complexity, which is a long lasting theme in landscape ecology.
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